

Supplementary Fig. 1 Comparisons of human H7N9 mAbs *in vitro.* **a** ELISA binding curves of the indicated mAbs to H7N9 HA1 from A/Shanghai/2/2013, A/Guangdong/17SF003/2016, and A/Hong Kong/125/2017. **b** ELISA binding curves of the indicated mAbs to H7N9 HA based on A/Shanghai/2/2013 and H7N7 HA based on A/Netherlands/219/2003. **c** Neutralization curves of the indicated mAbs against the 2013 and 2017 H7N9 pseudo viruses in MDCK cells. Data shown are mean ± SEM, with source data provided in a Source Data file. Similar results have been independently reproduced at least once.

Heavy C	nain V-gene								
	I	R1	CDR H	<u>1</u> FR2		CDR H2		FR3	
	10	20	30	40	50	60	70	80 ABC	90
	I	I	I	I	I	I	I	I	I
IGHV4-59	QVQLQESGPGLVK	SETLSLTCTVS	GGSIS SYYW	SWIRQPPGKGL	EWIGYIYYS	GSTN YNPSLKS	RVTISVDTSKNÇ)FSLKLSSVTA	ADTAVYYC
H7.HK1	QVQLQESGPGLVK	SETLSLTC <mark>S</mark> VS	GGSI <mark>N</mark> <mark>SYY</mark> W	TWIRQPPGKGL	EWVGYI <mark>YHS</mark>	GST <mark>S</mark> YNPSLKS	RITISVAPSKNH	IFSLELTSMTA	adtavyyca <mark>r</mark>
H7.HK2	QVQLQ <mark>G</mark> SGPGL <mark>LR</mark> I	SETLSLTC <mark>S</mark> VS	GVSI <mark>n</mark> Syyw	SWVRQPPGK <mark>A</mark> I	EWIGYI <mark>YYS</mark>	<mark>G</mark> MTN YNPSLES	RVTISVD <mark>R</mark> SKNÇ)FSLK <mark>MT</mark> SVTA	ADTARYFCA <mark>R</mark>
IGHV7-4-1	QVQLVQSGSELKKI	GASVKVSCKAS	GYTFT SYAM	NWVRQAPGQGL	EWMGWINTN	TGNPTYAQGFTG	REVESLDTSVSI	AYLQICSLKA	EDTAVYYC
н7.нк3	QVQLVQSGSELKR	GASVKVSC <mark>R</mark> AS	GYTFT SY <mark>TI</mark>	NWVRQAPGQGI	EWMGWINTS	TGDPTYAQGFTG	RFVFSLDTSVSI	AYLEISRLKA	EDTAVYYCAR
IGHV4-61	QVQLQESGPGLVKI	SETLSLTCTVS	GGSVSSGSYYW	SWIRQPPGKGL	EWIGYIYYS	GSTN YNPSLKS	RVTISVDTSKNÇ	FSLKLSSVTA	ADTAVYYC
H7.HK4	QVQLQESGPGLVK	SETLSLTCTVS	GGSV <mark>RSA</mark> SY <mark>A</mark> W	SWIRQPPGKGL	EWIGDIYYS	G <mark>T</mark> TN YNPSLKS	RVTLSVDT <mark>A</mark> KNF	₹FSL <mark>RLR</mark> SVTA	ADTAVY <mark>H</mark> CAR
Light Cl	hain V-gene		CDR 1.1	au	2 (ד אסי	FR3		
	10	20	ABCDE 30	40	<u> </u>) 60	70	80	88
	1	1		±0	1	, 00 I	1	1	1
IGKV2-28	DIVMTOSPLSLPV	PGEPASISCRS	SOSLLHSNGYN	YLDWYLOKPGO	SPOLLIYLO	SSNRASGVPDRFS	GSGSGTDFTLKI	SRVEAEDVGV	YYC
H7.HK1	DIVMTOSPVSLPV	PGEPASISCNS	SOSLLHSNGYA	LDWYLOKPGO	SPKLMIYL	LNRAFGVPDRFS	GSGSGTDFTLKI	SRVEAEDVGV	YYC
H7.HK2	DIVMTOSPLSLPV	PGEPASISCRS	NOSLOHSNGYV	LDWYROKPGC	SPHLLIYL	SFNRASGVPDRFS	GGGSGTDFTLKI	SRVEAEDVGV	YYC
TCKV1-5		SVCDBVTTCBA		WYOOKPCK			CSCSCTETT.TT	SST.OPDFAT	vvc
HO HK3	DIOMTOSDSTILSA	VGDRVTTTCPA	SOGI SSWIA	MAOOKDCK MIÕÕUI GU	ADKITIVKA	SSLEDGVI DATE	CSCSCTETITI	ISSIQIDDIAI	VVC
IGKV1-16	DIQMTQSPSSLSAS	SVGDRVTITCRA	SQGI SNYLA	WFQQKPGK	APKSLIYAA	ASSLQSGVPSRFS	GSGSGTDFTLTI	SSLQPEDFAT	YYC
H7.HK4	DIQMTQSPSSLSAS	SVGDRVTITCRA	SQGI RNYLA	WFQQKPG	APKSLIFAA	ASSLHTGVPSRFS	GSGSGTDFTLTI	SSLQPEDFAT	YYC
CDR3									
	CDR H3	FR4		<u>L3</u> FR4	1				
	95 TUUABC 1	103 110	90	98	106				
U7 UV1					ו				
n/.nti	LCCUCDICSDI	MGOGITAIASS	MOALO	IFFIFGPGIRV	DTU				

		I I	I	I I	I I	1
H7.HK1	LGG <mark>HGDYGS</mark> D <mark>Y</mark>	WGQG	TLVTVSS	MQALQTE	FTFGPGI	RVDIK
H7.HK2	QGI <mark>FGDYGS</mark> D <mark>Y</mark>	WGPG	TLVTVSS	MQGLQTE	FTFGPGI	TVDLK
н7.нк3	AFGLTVVRGGI	VGVWGQG	TTVTVSS	QQYNSYS	QTFGQGI	KVEIK
H7.HK4	ERYYYGSSGDFI	DY WGQG	TLVTVSS	QHYNSYE	PTFGQGI	KLEIK

Supplementary Fig. 2 H7.HK mAb sequences. Protein sequences of the heavy and light chain variable regions of H7.HK mAbs are aligned to the putative germline V-genes at top, with amino acid substitutions in red, and in magenta for substitutions shared between the clonally related mAbs H7.HK1 and H7.HK2. Spaces are added to maintain alignment; framework regions (FR) and complementarity-determining regions (CDRs) are indicated based on the Kabat numbering and nomenclature. Highlighted in yellow are the mAb residues (paratopes of H7.HK1 and H7.HK2) contacting the H7 antigen. The putative N-linked glycosylation sites on the light chain CDR L1 of H7.HK1 and H7.HK2 and the heavy chain CDR H2 of H7.HK3 are underlined.

Supplementary Fig. 3 Human H7N9 mAbs binding to a soluble, disulfide-stabilized, fully cleaved H7 HA trimer H7 SH13 DS2 6R. a ELISA binding curves of the H7.HK mAbs to H7 SH13 DS2 6R HA trimer. b ELISA binding curves of previously reported mAbs to H7 SH13 DS2 6R HA trimer; the H7.HK2 mAb was included for comparison. Source data are provided in the Source Data file. Similar results have been independently reproduced at least once.

H7.HK2 Data Processing

Supplementary Fig. 4 Cryo-EM data processing for H7.HK1 and H7.HK2 in complex with H7 SH13 DS2 6R HA trimer.

Heavy Chain

Light Chain

Supplementary Fig. 5 Cryo-EM details of H7.HK1 and H7.HK2 in complex with H7 SH13 DS2 6R HA trimer. a Representative micrograph of H7.HK1 and H7.HK2. b Representative 2D class averages of H7.HK1 and H7.HK2. c The gold-standard Fourier Shell Correlation (FSC) resulted in a resolution of 3.62 Å for the overall map of H7.HK1 and 3.69 Å for the overall map of H7.HK2. Non-uniform refinement with C3 symmetry was used for both reconstructions. d The orientations of all particles used in the final refinement are shown as a heatmap. e The local resolution of the final overall map is shown contoured at 0.0989 for both structures. Resolution estimation was generated through cryoSPARC using an FSC cutoff of 0.143. f Representative density is shown for the interface of H7.HK1 heavy chain, light chain, and H7 HA. g Representative density is shown for the interface of H7.HK2 heavy chain, light chain, and H7 HA.

Supplementary Fig. 6 Comparison of H7.HK1 and H7.HK2 binding epitopes to H7. a Differences in the epitopes of H7.HK1 and H7.HK2. Majority of surface contacts are conserved, shown in orange. H7.HK1 specific surfaces are shown in magenta, and H7.HK2 specific surfaces are shown in cyan. **b** Hydrogen bonds and salt bridges formed by H7.HK1 and H7.HK2 with H7. **c** Differences in CDR L2 binding to H7 by H7.HK1 and H7.HK2 as a result of F56S substitution in H7.HK2. S56 forms an additional hydrogen bond with G129 of H7. Additionally, position of Y49 is shifted so that it forms a hydrogen bond with T165 for H7.HK2 instead of Q163 for H7.HK1.

H7.HK1 CDR L2

S56

Supplementary Fig. 7 Antigenic drift of H7 HA1 in 2016-2017. a The A/Aichi/2/1968 H3N2 HA1 protein sequence is shown at top to indicate the H3 numbering of HA1. The H7 HA1 sequences from the indicated viral isolates are aligned to the 2013 Hong Kong H7N9 autologous isolate, with identical amino acids shown in dots. "-" depicts gap. Highlighted in yellow are the H7 contact residues (epitope) with both mAbs H7.HK1 and H7.HK2. H7.HK1 specific epitopes are in magenta; H7.HK2 specific epitopes are in cyan. **b** Surface presentation of the H7 HA1 domain highlighting the epitopes (orange) of mAbs H7.HK1 and H7.HK2, with three mutations in red that appeared in the 2016-2017 viral isolates of H7N9. The sticks are interacting CDRs of mAb H7.HK1 heavy and light chains.

Supplementary Table 1 Cryo-EM data collection, refinement, and validation statistics for H7 SH13 DS2 6R HA in complex with H7.HK1 and H7.HK2 Fabs.

	H7 SH13 DS2 6R	H7 SH13 DS2 6R
	H/.HK1	H7.HK2
	(EMD-41422)	(EMD-41441)
	(PDB: 8TNL)	(PDB: 8TOA)
Data collection and processing		
Magnification	105000	105000
Voltage (kV)	300	300
e–/A ²	58	58
Defocus range (µm)	0.8-2	0.8-2
Pixel size (A)	0.83	0.83
Symmetry imposed	C3	C3
Initial particle images (no.)	5713957	2339643
Final particle images (no.)	178347	191469
Map resolution (Å)	3.62	3.69
FSC threshold	0.143	0.143
Refinement		
Initial model used (PDB code)	6IDD	8TNL
Model resolution (Å)	3.62	3.69
FSC threshold	0.143	0.143
Model composition		
Non-hydrogen atoms	16487	15570
Protein residues	2112	2109
Ligands	7	11
B factors (Å ²)		
Protein	39	58
Glycans	58	48
R.m.s. deviations		
Bond lengths (Å)	0.005	0.007
Bond angles (°)	1.121	1.231
Validation		
MolProbity score	1.65	2.23
Clashscore	5.45	12.08
Poor rotamers (%)	0.06	1.62
Ramachandran plot		-
Favored (%)	94.86	92.30
Allowed (%)	5.14	7.41
Disallowed (%)	0.0	0.29