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Supplementary discussion

Importance of patch size and kernel size

Considering the same autoencoder configuration as used throughout the paper (x = 3, y = 18,735, z1 = 1024,

b = 1, z2 = 64), x is adjusted in the following to show the effect of an adjusted patch size.

As shown in Supplementary Figure 5, a change in patch size is altering the latent representations only mod-

erately. Of note, the precise latent representations, like the overall contrast, differ in every autoencoder run

independently of the patch size. A patch size of 2× 2 pixels (Supplementary Figure 5a) impedes the kernels in

the second layer to traverse the input patches, reflected by visible squares. A patch size of 1×1 would effectively

disable the possibility to incorporate the spatial context of the data and would be incompatible with the used

kernel size of 2× 2 pixels of the proposed architecture. In contrast, a higher patch size will allow the kernels to

traverse larger areas, for the sake of being less memory efficient. Supplementary Figures 5b and 5c show that an

increased patch size leads also to an increased size of the latent representations. Supplementary Table 2 shows

the size dependency of the latent representation to the input patch size, whereas

Latent space dimension (px) = No. of patches per dimension× (Patch size− 1)

The patch size is subtracted by one, as the kernel size of 2 × 2 pixels reduces the spatial dimensions of the

patches accordingly.
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Closely related to the patch size, the kernel size influences which area the autoencoder focuses on during feature

extraction. Considering that the hypoxia regions in the samples under investigation do not spread over large

regions, they are likely to be missed with an increased kernel size. Supplementary Figures 6a–6b illustrate two

exemplary latent features each in two unsupervised convolutional autoencoder (ConvAE) runs when the patch

size and kernel size were increased to 5 and 4 (latent space configuration: x = 5, y = 18,735, z1 = 1024, b =

3 (i.e., kernel size = 4), z2 = 64) or 7 and 6 (latent space configuration: x = 7, y = 18,735, z1 = 1024, b = 5

(i.e., kernel size = 6), z2 = 64), respectively. Only the kernel size of the second hidden layer of the autoencoder

was adjusted. The latent features on the left hand side of the figure show the features with the highest feature

importance for hypoxia and the one on the right hand side one additional latent feature to highlight that the

autoencoder focuses more on larger structures. For the hypoxia-associated latent features, the recovery method

revealed a total of 466 contributing mass-to-charge (m/z) values for the run with a kernel size of 4, and 11

contributing m/z values for the run with a kernel size of 6. The number of derived features already suggests

that the latent features are either too unspecific, resulting in too many associations, or too abstract, resulting

in only few associations. Supplementary Figure 6c shows the structural similarity index measure (SSIM) scores

of both runs compared to the exemplary run of the unsupervised ConvAE approach with a patch size of 3 and

a kernel size of 2. Of note, some individual runs with a kernel size of 4 were able to achieve similar or even

slightly better SSIM scores than the exemplary run with a kernel size of 2 (Supplementary Figure 7). However

overall, results obtained with a higher kernel size exhibited lower SSIM scores and were generally more diverse

and less deterministic.

Besides the training of the autoencoder, the patch size has a greater influence on the performance on the

random forest (RF) regression models. Supplementary Figure 8 shows that a higher patch size results in a

greater number of pixels being considered when deriving the mean hypoxia value. As a consequence, the

regression model can no longer account for the precise position of particular small hypoxic spots. This effect

deteriorates the performance of the RF especially when training is carried out on fewer overlapping patches. The

number of overlapping patches is defined by the step size, i.e., a step size of 1 generates the maximum amount

of overlapping patches. To assess the impact, the topmost-ranked features were compared to the reference

2



mass-to-charge (m/z) value 998.472 at a patch size of 3 and 5, with a fixed step size of either 1 or 2 in 10 RF

only runs, considering all cross-validation results. This comparison takes into account that a change in the step

size will influence the total number of patches for training the RF. Supplementary Figure 9 shows that among

the topmost-ranked features, more outliers with a low SSIM were picked up by the RF at a patch size of 5

compared to a patch size of 3, given the step size was set to 1. At a step size of 2, the SSIM score of experiments

with a patch size of 5 deteriorated further in comparison to runs with a patch size of 3.

Convolutional variational autoencoder (ConvVAE)

In a ConvVAE, the encoder is outputting the mean and variance of a latent space dimension to describe its

distribution. This is different to a non-variational approach, in which the encoder outputs a direct mapping

from the input. For comparison, the overall architecture and configuration of the non-variational approach was

employed (see Methods for details). After training the ConvVAE, mean latent representations were extracted

to train the RF regression model and subsequently ranking them for association with hypoxia. Supplementary

Figure 10 shows exemplary mean latent space representations of the ConvVAE from different runs, with the

top-ranked hypoxia-associated feature shown on the left hand side and one additional feature on the right hand

side. When comparing the recovered m/z values to the reference m/z value 998.472, the SSIM scores of the

ConvVAE were found to be significantly lower than those of the proposed ConvAE (Supplementary Figure 11).

This suggests that the mean latent features of the ConvVAE do not retain sufficient hypoxia information.

Redundancy of m/z values

Supplementary Figures 12 and 13 illustrate that even when the number of m/z values is drastically reduced

(from 18,735 to 2,642 and 775 m/z values, respectively), the SSIM scores of the ConvAE approaches are higher

than those of RFs alone. Due to the difference in pre-processing the samples (see Methods), the reference m/z

value changed from 998.472 (18,735 m/z values) to 998.502 (2,642 m/z values) and 999.4807 (775 m/z values),

respectively.
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Supplementary figures

a High hypoxia association
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b Moderate hypoxia association
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Supplementary Figure 1: Representation of individual samples in latent space. a Latent feature

with highest associated to hypoxia annotations according to random forest feature importance. b Latent feature

with moderate hypoxia association according to random forest feature importance.

a High hypoxia association

0 25 50 75

0

20

40

60

80

Sample1

0 25 50 75

0

20

40

60

80

Sample3

0 25 50 75

0

20

40

60

80

Sample5

0.0

2.5

5.0

7.5

10.0

Latent m/z, id=37

b Moderate hypoxia association
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c No hypoxia association
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Supplementary Figure 2: Additional representations of latent features with diverse scores for hy-

poxia association. a High hypoxia association, b moderate hypoxia association and c no hypoxia association

according to random forest feature importance.
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Supplementary Figure 3: Structural similarity index measure (SSIM) of mass-to-charge (m/z)

values recovered from different latent features to the reference m/z value 998.472 in exemplary

unsupervised convolutional autoencoder (ConvAE) run. Latent feature #26 and #44 were found to be

moderately associated with the hypoxia annotations. Latent feature #37 achieved the second highest feature

importance score and latent feature #56 was ranked highest. Higher scores denote higher similarity to the

reference m/z value 998.472. Boxplots follow the Tukey style (see Methods), incorporating p value cutpoints:

**** < 10−4, *** < 0.001, ** < 0.01, * < 0.05, ns >= 0.05. Groups were compared using two-sided

Mann-Whitney U rank tests, where p values were corrected to control the false discovery rate.

5



M/z values found by semi-supervised ConvAE approach
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Supplementary Figure 4: Exemplary mass-to-charge (m/z) values that were distinctively associ-

ated with hypoxia by the semi-supervised convolutional autoencoder (ConvAE) approach.
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a Patch size x = 2, kernel size = 2
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b Patch size x = 4, kernel size = 2
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c Patch size x = 5, kernel size = 2
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Supplementary Figure 5: Effect of adjusted input patch size in unsupervised convolutional au-

toencoder (ConvAE) runs. Apart from the patch size, all other parameters remained fixed. Shown are

latent features which exhibited the highest feature importance score for hypoxia (left) and one other latent

feature (right) in different autoencoder runs with a patch size x = 2, b patch size x = 4 c, patch size x = 5.

Latent representations depicted similar characteristics independent of the patch size. A higher input patch size

increases the latent image size.
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a Patch size x = 5, kernel size = 4
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b Patch size x = 7, kernel size = 6
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c Similarity scores of exemplary runs
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Supplementary Figure 6: Effect of adjusted kernel and patch size in unsupervised convolutional

autoencoder (ConvAE) runs. Apart from the kernel size and the patch size, all other parameters remained

fixed. a, b Shown are latent features which exhibited the highest feature importance score for hypoxia (left)

and one other latent feature (right) in different autoencoder runs with a patch size x = 5, kernel size = 4 and b

patch size x = 7, kernel size = 6. A higher input patch size increases the latent image size, while a higher kernel

size decreases it. c Structural similarity index measure (SSIM) of all identified hypoxia-associated features to

the reference mass-to-charge (m/z) value 998.472 in exemplary runs with adjusted kernel sizes and exemplary

unsupervised ConvAE run shown in Fig. 6. Boxplots follow the Tukey style (see Methods), incorporating p

value cutpoints: **** < 10−4, *** < 0.001, ** < 0.01, * < 0.05, ns >= 0.05. Groups were compared using

two-sided Mann-Whitney U rank tests, where p values were corrected to control the false discovery rate.
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a Patch size x = 5, kernel size = 4
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b Similarity scores of exemplary runs
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Supplementary Figure 7: Example in which an adjusted kernel and patch size in one unsupervised

convolutional autoencoder (ConvAE) run retained hypoxia-associated features according to the

structural similarity index measure (SSIM). Apart from the kernel size and the patch size, all other

parameters remained fixed. a Shown are latent features which exhibited the highest feature importance score

for hypoxia (left) and one other latent feature (right) in an additional autoencoder run with patch size x = 5,

kernel size = 4. A higher input patch size increases the latent image size, while a higher kernel size decreases

it. b SSIM of all identified hypoxia-associated features to the reference mass-to-charge (m/z) value 998.472 in

exemplary run with adjusted kernel size and exemplary unsupervised ConvAE run shown in Fig. 6. Boxplots

follow the Tukey style (see Methods), incorporating p value cutpoints: **** < 10−4, *** < 0.001, ** < 0.01,

* < 0.05, ns >= 0.05. Groups were compared using two-sided Mann-Whitney U rank tests, where p values

were corrected to control the false discovery rate.
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a Hypoxia annotations, patch size x = 3

b Hypoxia annotations, patch size x = 5

Supplementary Figure 8: Effect of increasing the patch size on annotation patches. Shown are some

exemplary annotation patches of Sample 1. a Proposed patch size, x = 3, b increased patch size, x = 5 for the

hypoxia annotations. The precise position of smaller hypoxic spots is obscured in larger patch sizes when using

the mean values for summarization.
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Supplementary Figure 9: Effect of increased patch size size on random forest (RF) regression

models trained on overlapping patches. Shown is the structural similarity index measure (SSIM) between

the topmost-ranked features to the reference mass-to-charge (m/z) value 998.472 with varying patch sizes at a

step size of either 1 (left-hand side of image) creating the maximum number of overlapping patches, or 2 (right-

hand side of image) creating a reduced set of overlapping patches, in all three samples and cross validation

results of 10 RF only runs. Higher scores denote higher similarity to the reference m/z value 998.472. Boxplots

follow the Tukey style (see Methods), incorporating p value cutpoints: **** < 10−4, *** < 0.001, ** < 0.01,

* < 0.05, ns >= 0.05. Groups were compared using two-sided Mann-Whitney U rank tests, where p values

were corrected to control the false discovery rate.
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Supplementary Figure 10: Examples of mean latent features from different convolutional varia-

tional autoencoder (ConvVAE) runs. Shown are mean latent features which exhibited the highest feature

importance score for hypoxia (left) and one other latent feature (right).
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a Similarity scores of 10 runs
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Supplementary Figure 11: Quantitative analysis of 10 runs each using the proposed non-

variational unsupervised convolutional autoencoder (ConvAE) shown in Fig. 7b versus a un-

supervised convolutional variational autoencoder (ConvVAE) approach. Boxplots follow the Tukey

style (see Methods), incorporating p value cutpoints: **** < 10−4, *** < 0.001, ** < 0.01, * < 0.05,

ns >= 0.05. Groups were compared using two-sided Mann-Whitney U rank tests, where p values were corrected

to control the false discovery rate. a Structural similarity index measure (SSIM) of all identified hypoxia-

associated features to the reference mass-to-charge (m/z) value 998.472 per sample in 10 individual runs each.

c Number of hypoxia-associated m/z values that were identified by both approaches in 10 runs.
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a Similarity scores of 10 runs
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Supplementary Figure 12: Quantitative analysis of 10 runs each of convolutional autoencoder

(ConvAE) and random forest (RF) only approaches, with the total number of features being

reduced to 2,642 m/z values. Boxplots follow the Tukey style (see Methods), incorporating p value cutpoints:

**** < 10−4, *** < 0.001, ** < 0.01, * < 0.05, ns >= 0.05. Groups were compared using two-sided Mann-

Whitney U rank tests, where p values were corrected to control the false discovery rate. a Structural similarity

index measure (SSIM) of all identified hypoxia-associated features to the reference mass-to-charge (m/z) value

998.502 per sample in 10 individual runs each. c Number of hypoxia-associated m/z values that were identified

by the three approaches in 10 runs.
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a Similarity scores of 10 runs
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Supplementary Figure 13: Quantitative analysis of 10 runs each of convolutional autoencoder

(ConvAE) and random forest (RF) only approaches, with the total number of features being

reduced to 775 m/z values. Boxplots follow the Tukey style (see Methods), incorporating p value cutpoints:

**** < 10−4, *** < 0.001, ** < 0.01, * < 0.05, ns >= 0.05. Groups were compared using two-sided

Mann-Whitney U rank tests, where p values were corrected to control the false discovery rate. a Structural

similarity index measure (SSIM) of all identified hypoxia-associated features to the reference mass-to-charge

(m/z) value 999.4807 per sample in 10 individual runs each. c Number of hypoxia-associated m/z values that

were identified by the three approaches in 10 runs.
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Supplementary Figure 14: Deriving peak references from multiple samples. First, mass-to-charge

(m/z) values of all samples are sorted to define a set of mean m/z values. Second, peak picking on the mean

spectra per sample is applied (not shown) and peaks mapped to the mean m/z values. M/z values from different

samples but similar masses (e.g., 601.3146, 601.3244) will map to the same mean m/z value. These groups are

utilized to derive peak references by taking their mean m/z value (e.g., 601.3195 from peaks 601.3146 and

601.3244).
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Supplementary Figure 15: Peak picking on multiple samples. Shown is the mean intensity of all pixels

in the range of mass-to-charge (m/z) values 809.30 to 809.50 per sample. Row #1 shows the mean raw spectra

per sample. Row #2 shows the peaks derived from the mean spectra of a given sample. Row #3 illustrates

the final TIC-normalized peaks for all samples. a For Samples 5, 4, 1 and 2, their sample-specific peaks match

best with mean m/z value 809.387. b For Sample 3, its sample specific peaks match best with mean m/z value

809.400. The two peaks around 809.387 and 809.400 are likely to denote mass shifts. As the true mass is

unknown, both peaks are kept for further analysis.
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Supplementary Figure 16: Mass-to-charge (m/z) values (989.4617, 990.4844, 991.4584) repre-

senting isotopes from the same peptide. Shown are non-normalized ion images of Sample 5.

18



a Example of standard error restriction
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b Example of technical error restriction

809.1 809.2 809.3 809.4 809.5 809.6 809.7
0

20

40

60

80

100

TI
C-

no
rm

al
ize

d 
in

te
ns

ity

c Example of technical error restriction, no
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Supplementary Figure 17: Defining mass spectrometry imaging (MSI) mass ranges MSI mass

min and MSI mass max of peaks for mapping with tandem mass spectrometry (MS) masses.

a Standard error (red line), given by the full width at half maximum (FWHM) of all samples, restricts the

minimum error (blue line) at peak - 0.0487. b Minimum error of peak is within the range of the standard error

and is not further restricted. c Peak without (preserved) neighboring peaks that could be linked to mass shifts.

Minimum error leads to a more conservative range used for mapping with tandem MS masses than the standard

error.
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Supplementary tables

Supplementary Table 1: Peptide candidates (#43) found with at least 2 masses matched from

semi-supervised convolutional autoencoder (ConvAE) run to tandem mass spectrometry exper-

iment, showing only one exemplary mass pair, the complete data is provided as Supplementary

Table in a separate file

Protein(s) Gene name(s) Mass 1 Mass 2

Keratin, type II cytoskeletal 6A;Keratin, type ... KRT6A;KRT6C;KRT6B 808.387 877.441

Cytochrome b-c1 complex subunit 1, mitochondrial UQCRC1 808.400 1042.519

Phosphoglycerate kinase 1 PGK1 808.400 1011.519

Multifunctional protein ADE2;Phosphoribosylamin... PAICS 1015.501 1409.733

Prelamin-A/C;Lamin-A/C LMNA 1042.547 971.497

Trifunctional purine biosynthetic protein adeno... GART 1042.547 1036.548

Heterogeneous nuclear ribonucleoprotein M HNRNPM 1425.709 822.371

Keratin, type II cytoskeletal 5 KRT5 1425.709 1424.693

60S ribosomal protein L18a RPL18A 1425.709 1042.519

60S ribosomal protein L15;Ribosomal protein L15 RPL15 1425.709 1166.612

Cullin-associated NEDD8-dissociated protein 1 CAND1 988.480 965.469

Serine hydroxymethyltransferase, mitochondrial;... SHMT2 988.480 854.495

Heat shock cognate 71 kDa protein HSPA8 988.480 1409.694

DNA-dependent protein kinase catalytic subunit PRKDC 877.466 1337.665

Eukaryotic translation initiation factor 3 subu... EIF3C;EIF3CL 1042.519 1166.637

Vigilin HDLBP 1424.713 1061.512

Signal transducer and activator of transcriptio... STAT1 1424.713 1307.631

Phosphoglucomutase-1 PGM1 1089.554 1026.520

V-type proton ATPase subunit B, brain isoform ATP6V1B2 1089.554 1307.631

Keratin, type I cytoskeletal 14 KRT14 1424.693 1166.637

L-lactate dehydrogenase A chain LDHA 1166.637 1026.520

Annexin A7 ANXA7 1043.548 1090.536

Hexokinase-1 HK1 1409.733 1030.522

Keratin, type I cytoskeletal 16 KRT16 1337.665 854.495

60S ribosomal protein L5 RPL5 1337.665 1000.473

Heterogeneous nuclear ribonucleoproteins A2/B1 HNRPA2B1;HNRNPA2B1 1337.665 1409.694

Collagen alpha-3(VI) chain COL6A3 1036.529 989.471

Plastin-2 LCP1 997.502 1116.535

Programmed cell death protein 6 PDCD6 997.502 1338.656

Desmoplakin DSP 1011.490 944.515
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Supplementary Table 1: Continued: Peptide candidates (#43) found with at least 2 masses

matched from semi-supervised convolutional autoencoder (ConvAE) run to tandem mass spec-

trometry experiment, showing only one exemplary mass pair, the complete data is provided as

Supplementary Table in a separate file

Protein(s) Gene name(s) Mass 1 Mass 2

Gasdermin-A GSDMA 944.493 1038.511

Basic leucine zipper and W2 domain-containing p... BZW1 1061.512 807.391

Elongation factor 2 EEF2 1090.536 1038.511

Annexin A6 ANXA6 1090.536 1025.527

Protein-glutamine gamma-glutamyltransferase K TGM1 971.497 1410.739

Eukaryotic translation initiation factor 3 subu... EIF3L 989.471 964.486

Galectin-7 LGALS7 909.463 856.443

T-complex protein 1 subunit eta CCT7 909.463 944.515

Eukaryotic translation initiation factor 4 gamma 1 EIF4G1 1026.520 1410.739

Coatomer subunit alpha;Xenin;Proxenin COPA 807.391 944.515

Plectin PLEC 1030.522 966.486

Glyceraldehyde-3-phosphate dehydrogenase GAPDH 1410.739 1064.539

Importin-5 IPO5 1036.548 1116.535
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Supplementary Table 2: Dependency of the dimensions of the latent representations (last column)

on the input patch size (second column), illustrated using four exemplary input patch sizes

Largest image Patch size Padded image No. of patches Latent space

dimension (px.) (x) dimension (px.) per dimension dimension (px.)

127 2 128 64 64

127 3 129 43 86

127 4 128 32 96

128 5 130 26 104
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