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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Reviewers Comments 

 

This study investigates the impact of environmental pollution on the gut microbiome in a population 

from a highly polluted area in Campania, Italy. It presents novel findings showing that exposure to 

pollutants like dioxins and heavy metals alters gut microbiome composition and increases the 

abundance of microbial genes related to pollutant degradation and resistance. This adaptation 

suggests the gut microbiome's potential role in detoxifying harmful compounds, highlighting its 

significance in environmental health interactions and risk assessment models. The research 

underscores the urgent need for further exploration of the microbiome's capacity to counteract 

pollution's adverse health effects, potentially leading to the development of probiotic treatments. 

 

Major Comments: 

 

The differences in the microbiome betadiversity between the 3 populations is quite striking, I worry 

about other drivers beyond pollution – while I agree that the communities appear to be relative 

homogeneous. I would like to see a more robust analysis of the microbial differences using more 

appropriate statistical tests to account for structural differences between the cohorts (see below). 

 

It would be good to determine if the microbiome is predictive of burden – and what those features 

are, i.e. Random Forest. Also, I would like to see some attempt to derive predictive assessment with 

AuROC analysis to determine if the microbial features are predictive of the pollutant burden. It would 

also be nice to see some attempt as using tools like mmvec 

(https://www.nature.com/articles/s41592-019-0616-3) to really determine if the pollutant levels in 

blood are associated with specific MAGs or pathways. 

 

 

Minor Comments: 

 

Ln 87-91 – this paragraph feels like it belongs earlier in the justification for this introduction. 



Ln 141 – this is the first report of ‘mOTUs’ so please define. 

Ln 130-131 – “with clear clustering of the HIGH and LOW 130 groups (Figure 1A)” – maybe I am 

missing something, but I do not see any ‘clear clustering in this ordination, if anything the 

communities looks fundamentally different to each other? Can you run this as Aitchinson’s distance 

and RobustPCA to see if these differences hold up for Fig. 1b? 

Ln 133-142 – it is not clear in Fig 1 C and D what the ‘abundance metric’ is for the Y axis. And you 

really should not use Wilcoxon for compositional data. If you did a CLR-transform you could maybe 

argue that it works, but it’s better to look at log-ratios with something like ANCOM BC or SongBird? 

Also why do this at the Phylum level, why not run a proper OGU analysis 

(https://journals.asm.org/doi/full/10.1128/msystems.00167-22) and then use a log-ratio analysis to 

identify those taxa that are differentially proportionally different. Even better run Random Forest and 

find the taxa that best describe the differences between these communities. I would also suggest the 

same for the functional gene analysis in Fig 2. Also please note that all your data are proportional 

and so try and refrain from using the word ‘abundance’, unless you put relative in front of it. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

In general, De Filippis and colleagues explored a fantastic cross-sectional population cohort in the 

Campania region of Italy covering different expousures to environmental pollution grouped in HIGH, 

MeEDIUM and LOW. Fecal samples and blood samples were retrieved from 359 healthy subjects 

randomly selected from the SPES trial (4227 subjects). Trace elements and dioxins were determined 

in blood. Fecal microbiome profiling showed compositional changes in response to the level of 

pollution and identified bacterial genes associated with dioxin degradation and antibiotic resistance. 

In summary, the study addresses the important question to which extent the environment affects 

microbiome changes, and the presented study cohort is clearly designed and suitable to address this 

question. While the data give valuable insights, the study remains descriptive and lacks validation. 

 

Since only a sub-group of subjects in the SPES trial have been assigned to this study, additional 

validation seems possible in remaining smaller groups of subjects. Are compositional and functional 

changes reproducible and representative to the pollution categories. Would it be possible to validate 

response to selected chemicals in selected bacteria identified in the analysis? 

 

In Figure 1, the authors use PLS-DA analysis to show differences between high, medium and low 

exposed subjects. However, PLS-DA is suitable to identify features that best describe differences 

between groups rather than differences in microbiota composition per se. I wonder how the 



supervised and un-supervised PCoA analysis describes differences between these groups. Are the 

selected targets for further analysis justified by statistical selection or choices of the authors? The 

authors give no feature selection including feature importance as outcome of the PLS-DA, so one 

could wonder how significant the differences really are. 

 

It would be also important to state if the high, medium and low exposed conditions follow certain 

dose-response characteristics or if the actual exposures to the different environmental toxins vary 

quite substantially between groups. The authors correlate heavy metal exposure to the selection of 

antibiotic resistance genes. Here the question is how well the metadata of subjects would exclude 

the possibility of confounding effects. It would also be helpful to perform experimental studies to 

validate these findings, since the selection of antibiotic resistance genes in response to heavy metal 

exposure seems an important hypothesis. In summary, the findings are really interesting but 

exclusively descriptive and the rational to pick the presented differences is not clear. 

 

 

 



Reviewer #1 (Remarks to the Author): 
 
Reviewers Comments 
 
This study investigates the impact of environmental pollution on the gut microbiome in a 
population from a highly polluted area in Campania, Italy. It presents novel findings showing that 
exposure to pollutants like dioxins and heavy metals alters gut microbiome composition and 
increases the abundance of microbial genes related to pollutant degradation and resistance. This 
adaptation suggests the gut microbiome's potential role in detoxifying harmful compounds, 
highlighting its significance in environmental health interactions and risk assessment models. The 
research underscores the urgent need for further exploration of the microbiome's capacity to 
counteract pollution's adverse health effects, potentially leading to the development of probiotic 
treatments. 
 
Major Comments: 
 
The differences in the microbiome betadiversity between the 3 populations is quite striking, I 
worry about other drivers beyond pollution – while I agree that the communities appear to be 
relative homogeneous. I would like to see a more robust analysis of the microbial differences using 
more appropriate statistical tests to account for structural differences between the cohorts (see 
below).  
It would be good to determine if the microbiome is predictive of burden – and what those features 
are, i.e. Random Forest. Also, I would like to see some attempt to derive predictive assessment 
with AuROC analysis to determine if the microbial features are predictive of the pollutant burden. 
It would also be nice to see some attempt as using tools like mmvec 
(https://www.nature.com/articles/s41592-019-0616-3) to really determine if the pollutant levels in 
blood are associated with specific MAGs or pathways. 
We thank the reviewer for these suggestions to improve our work. We performed mmvec to 
estimate correlations between the abundance of microbial taxa and metabolites (metals and 
dioxins). The results of the analysis are shown as Supplementary Figure S4, which highlights that 
two Pseudomonas mOTUs (phylum Pseudomonadota; ref_mOTU_v3_00154 and 
ref_mOTU_v3_00150), already identified as significatively more abundant in the MEDIUM group 
using Wilcoxon’s tests (Supplementary Data S4), co-occur with heavy metal concentration 
(mercury -Hg - and antimony - Sb), while two mOTUs identified as Ruminococcus gnavus and 
unidentified Lachnospiraceae (ref_mOTU_v3_01594 and ext_mOTU_v3_16324) are negatively 
associated with dioxins (PCDD/Fs and DL-PCB) . We added these results in the main text (lines 160-
166). 
 

https://www.nature.com/articles/s41592-019-0616-3


 
In addition, we carried out Random Forest classification based on microbiome taxonomic 
composition at species-level. The results are summarized in the table below. Indeed, we found that 
gut microbiome composition was able to discriminate subjects in the three groups with a good 
level of accuracy (>0.7 for all the comparisons). We added these details in the revised text (lines 
143-159) and the most discriminant taxa were summarized as Supplementary Figure S3. 
 

Class 1 Class 2 AUC 

Low Medium 0.77 

Low High 0.71 

Medium High 0.83 

   

 
 
Minor Comments: 
 
Ln 87-91 – this paragraph feels like it belongs earlier in the justification for this introduction.  
Ln 141 – this is the first report of ‘mOTUs’ so please define. 
Done. 
 
Ln 130-131 – “with clear clustering of the HIGH and LOW groups (Figure 1A)” – maybe I am missing 
something, but I do not see any ‘clear clustering in this ordination, if anything the communities 
looks fundamentally different to each other? Can you run this as Aitchinson’s distance and 
RobustPCA to see if these differences hold up for Fig. 1b? 
Thanks for the suggestion. We calculated Robust Aitchinson’s distance, and the results were similar 
to those obtained using Jaccard’s. The violin plots summarizing these results are provided as 
Supplementary Figure S2 in the revised version of the manuscript. 



 
 
Ln 133-142 – it is not clear in Fig 1 C and D what the ‘abundance metric’ is for the Y axis. And you 
really should not use Wilcoxon for compositional data. If you did a CLR-transform you could maybe 
argue that it works, but it’s better to look at log-ratios with something like ANCOM BC or SongBird? 
Also why do this at the Phylum level, why not run a proper OGU analysis 
(https://journals.asm.org/doi/full/10.1128/msystems.00167-22) and then use a log-ratio analysis 
to identify those taxa that are differentially proportionally different. Even better run Random 
Forest and find the taxa that best describe the differences between these communities.  
Also please note that all your data are proportional and so try and refrain from using the word 
‘abundance’, unless you put relative in front of it. 
Thanks for the suggestions. As reported above, we carried out Random Forest classification on 
microbiome taxonomic composition data and found a good discriminant power of the microbiome 
composition between the three groups. Results have been added in the text (lines 143-159) and 
most discriminant taxa have been summarized in supplementary figure S3. As reported in the text, 
several discriminant taxa from Random Forest classifier overlap with those reported in Suppl. Data 
S4. 
Regarding phylum level analysis, we agree that it is not highly informative. However, we found 
interesting that even at a low level of taxonomic resolution, the differences among the three 
groups are so evident. Therefore, we decided to include phylum level differences in the main 
figures. In addition, we also provided differences at species level in the text (lines 138-156) and 
Supplementary Data S4. In the revised text, we added Random Forest classification on species-
level taxonomic composition of the microbiome. These results are also reported in the revised text. 
We changed all the occurrences of “abundance” with “relative abundance” in the text and 
corrected Fig. 1C-D. 
 
Reviewer #2 (Remarks to the Author): 
 
In general, De Filippis and colleagues explored a fantastic cross-sectional population cohort in the 
Campania region of Italy covering different exposures to environmental pollution grouped in HIGH, 
MEDIUM and LOW. Fecal samples and blood samples were retrieved from 359 healthy subjects 
randomly selected from the SPES trial (4227 subjects). Trace elements and dioxins were 
determined in blood. Fecal microbiome profiling showed compositional changes in response to the 
level of pollution and identified bacterial genes associated with dioxin degradation and antibiotic 
resistance. In summary, the study addresses the important question to which extent the 
environment affects microbiome changes, and the presented study cohort is clearly designed and 
suitable to address this question. While the data give valuable insights, the study remains 
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descriptive and lacks validation.  
 
Since only a sub-group of subjects in the SPES trial have been assigned to this study, additional 
validation seems possible in remaining smaller groups of subjects. Are compositional and 
functional changes reproducible and representative to the pollution categories. Would it be 
possible to validate response to selected chemicals in selected bacteria identified in the analysis? 
We thank the reviewer for appreciating our work. The most suitable way to validate the results 
would be the assessment of the effect of selected chemicals in some of the bacteria identified as 
correlated with pollutants. This could be done in vitro or in pre-clinical trials, which would require 
the set up of new projects. Exploring in-vitro microbial dynamics exposing strains to chemicals 
would be interesting and would provide a validation of our results. However, this analysis would 
require a different study, as well as the isolation of specific strains from human gut. In addition, a 
new project (and additional fundings) would be necessary to sequence the fecal metagenomes of 
the remaining subjects enrolled in the SPES trial (about 3860) and validate the results on the whole 
cohort. 
 
In Figure 1, the authors use PLS-DA analysis to show differences between high, medium and low 
exposed subjects. However, PLS-DA is suitable to identify features that best describe differences 
between groups rather than differences in microbiota composition per se. I wonder how the 
supervised and un-supervised PCoA analysis describes differences between these groups. Are the 
selected targets for further analysis justified by statistical selection or choices of the authors? The 
authors give no feature selection including feature importance as outcome of the PLS-DA, so one 
could wonder how significant the differences really are.  
 
We thank the reviewer for the suggestion. The genera/species commented in the results are those 
significantly different among the three groups after Wilcoxon paired-tests (all the significant are 
reported as Supplementary Data S4). In addition, we added in the revised text machine-learning 
(Random Forest) classification based on microbiome taxonomic profiles and found a good 
predictive power of the microbiome composition. Data are reported in the revised text (lines 143-
159) and the most discriminant taxa among the three groups are reported in Supplementary Figure 
S3.  
Finally, according to the Reviewer’s suggestion, we extracted the top 20 most important mOTUs 
from the PLS-DA, which are reported in the table below. Interestingly, all of them belong to the 
phylum Pseudomonadota, and those identified as Pseudomonas species showed a higher 
abundance in the MEDIUM group (most of them were already identified as statistically significant 
taxa by Wilcoxon’s tests and reported in Supplementary Data S4). We added these results in the 
text (lines 140-145)  
 

motu Phylum Species 

ext_mOTU_v3_18094 Pseudomonadota Phyllobacterium species incertae sedis 

ref_mOTU_v3_00129 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00133 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00140 Pseudomonadota Pseudomonas chlororaphis 

ref_mOTU_v3_00146 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00149 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00150 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00152 Pseudomonadota Pseudomonas moorei 

ref_mOTU_v3_00153 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00154 Pseudomonadota Pseudomonas fluorescens 

ref_mOTU_v3_00161 Pseudomonadota Pseudomonas umsongensis 

ref_mOTU_v3_00162 Pseudomonadota Pseudomonas silensiensis 



ref_mOTU_v3_00163 Pseudomonadota Pseudomonas fluorescens 

ref_mOTU_v3_00164 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00167 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00168 Pseudomonadota Pseudomonas koreensis 

ref_mOTU_v3_00169 Pseudomonadota Pseudomonas sp. 

ref_mOTU_v3_00170 Pseudomonadota Pseudomonas fluorescens 

ref_mOTU_v3_00185 Pseudomonadota Pseudomonas capeferrum 

ref_mOTU_v3_01648 Pseudomonadota Pantoea rodasii 

 
 
It would be also important to state if the high, medium and low exposed conditions follow certain 
dose-response characteristics or if the actual exposures to the different environmental toxins vary 
quite substantially between groups. The authors correlate heavy metal exposure to the selection of 
antibiotic resistance genes. Here the question is how well the metadata of subjects would exclude 
the possibility of confounding effects. It would also be helpful to perform experimental studies to 
validate these findings, since the selection of antibiotic resistance genes in response to heavy 
metal exposure seems an important hypothesis. In summary, the findings are really interesting but 
exclusively descriptive and the rational to pick the presented differences is not clear. 
We thank the reviewer for this comment. The information about antibiotic use in the 6 months 
before recruitment was available for the whole SPES cohort and it was added in M&M and the 
metadata provided in Supplementary Table S1. As shown, only few subjects in each group declared 
the use of antibiotics and the occurrence of antibiotic use did not differ among the 3 groups as 
shown by Fisher’s exact tests (p>0.05). 
In addition, the relationship between heavy metals exposure and acquisition of AMR genes was 
previously found in different environments (e.g., ref. 38-40), supporting these findings. Also in this 
case, ad-hoc designed experiments would be necessary to validate in-vitro or in animal models the 
observations and the dose-response effect. 
 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Thank you for the edits. I am satisfied that the work is robust, rigorous and impactful. 

 

Reviewer #2 (Remarks to the Author): 

 

The authors sufficiently replied to my comments, specifically adding a bit more information to the 

compositional analysis. I agree that validation may be beyond the scope of this project. 
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