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Supplemental Material S1. 
Examples of 3D lineage trees in MATLAB, Python, and R from a simulation of a growing 
tumor with a small number of cellular clones (probability of mutation: 𝓟𝒎𝒖𝒕=0.005). 
 
To obtain a better understanding of tumor spatio-temporal evolution, we inspected the 3D lineage 
trees of the six largest cellular clones (out of 9) from this simulation, including the initial clone. 
Fig.S1-S3 show pairs of 3D lineage trees using our LinG3D routines in MATLAB (Fig.S1), Python 
(Fig.S2), and R (Fig.S3). Top rows show trees that include traces of all cells belonging to a given 
clone (Fig.S1-S3A-F); bottom rows show trees that include only traces of cells that survived to the 
end of the simulation, that is without branches with dead cells (Fig.S1-S3A’-F’). Each clone is 
denoted by a different color. In all cases, the trees with alive cells are smaller than the trees with 
all cells, since many cells have died (due to random cell death or drug-induced cell death) or have 
left the computational domain. In some cases (Fig.S1-S3A’) there are no surviving cells—the most 
obvious is the initial clone of drug-sensitive cells (clone #0) for which all cells have died after the 
drug was administered.    
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Fig.S1. 3D lineage trees of individual clones drawn with MATLAB routines. For each clone (denoted by a 
different color), the top row shows the 3D lineage tree with all cells belonging to that clone (LinG3DClone.m 
routine), while the bottom row includes only the cells that survived to the end of the simulation 
(LinG3DAliveClone.m routine). A-A’: initial clone #0; B-B’: mutated clone #1; C-C’: mutated clone #2; D-D’: 
mutated clone #3; E-E’: mutated clone #4; F-F’: mutated clone #5.   
.   
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Fig.S2. 3D lineage trees of individual clones drawn with Python routines. For each clone (denoted by a 
different color), the top row shows the 3D lineage tree with all cells belonging to that clone (LinG3DClone.py 
routine), while the bottom row includes only the cells that survived to the end of the simulation 
(LinG3DAliveClone.py routine). A-A’: initial clone #0; B-B’: mutated clone #1; C-C’: mutated clone #2; D-D’: 
mutated clone #3; E-E’: mutated clone #4; F-F’: mutated clone #5. 
   
.   
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Fig.S3. 3D lineage trees of individual clones drawn with R routines. For each clone (denoted by a different 
color), the top row shows the 3D lineage tree with all cells belonging to that clone (LinG3DClone.r routine), 
while the bottom row includes only the cells that survived to the end of the simulation (LinG3DAliveClone.r 
routine). A-A’: initial clone #0; B-B’: mutated clone #1; C-C’: mutated clone #2; D-D’: mutated clone #3; E-
E’: mutated clone #4; F-F’: mutated clone #5.   
.   
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Supplemental Material S2. 
Examples of 3D lineage trees in MATLAB, Python, and R from a simulation of a growing 
tumor with a large number of cellular clones (probability of mutation: 𝓟𝒎𝒖𝒕=0.05). 
 
Since this simulation has generated a large number of clones (147), we focus here only on a small 
subset (12) of the largest clones and present their 3D lineage trees. Fig.S4-S6 show pairs of 3D 
lineage trees using our LinG3D routines in MATLAB (Fig.S4), Python (Fig.S5), and R (Fig.S6). 
Top rows show tress that include traces of all cells belonging to a given clone (Fig.S4-S6A-L); 
bottom rows show trees that include only traces of cells that survived to the end of the simulation 
(Fig.S4-S6A’-L’). As in the previous case, each clone is denoted by a different color. These clones 
are smaller and much less dispersed than in the previous example since the cells have mutated 
more often and generated more clones. Again, the trees with alive cells are smaller than the trees 
with all cells, since many cells have died (due to random cell death or drug-induced cell death) or 
have left the computational domain. In some cases, there are no surviving cells, including the initial 
drug-sensitive clone (Fig.S4-S6A’). The late clones, that is the clones emerging later during the 
tumor development, are smaller, and the majority of clones have not survived to the end of the 
simulation—more than 80 out of 147 (results not shown).    
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Fig.S4. 3D lineage trees of individual clones drawn with MATLAB routines. For each clone (with a different 
color) the top row includes the 3D lineage tree with all cells (LinG3DClone.m routine), while the bottom row 
includes only the cells that survived to the end of the simulation (LinG3DAliveClone.m routine). A-A’: initial 
clone #0; B-B’: mutated clone #2; C-C’: mutated clone #3; D-D’: mutated clone #5; E-E’: mutated clone #7; 
F-F’: mutated clone #9.   
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Fig.S4 (cont). 3D lineage trees of individual clones drawn with MATLAB routines. For each clone, the top 
row includes the 3D lineage trees with all cells (drawn with LinG3DClone.m), while the bottom row includes 
only the cells that survived to the end of the simulation (drawn with LinG3DAliveClone.m). G-G’: mutated clone 
#12; H-H’: mutated clone #14; I-I’: mutated clone #16; J-J’: mutated clone #19; K-K’: mutated clone #20; L-
L’: mutated clone #25.   
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Fig.S5. 3D lineage trees of individual clones drawn with Python routines. For each clone (with a different 
color) the top row includes the 3D lineage tree with all cells (LinG3DClone.py routine), while the bottom row 
includes only the cells that survived to the end of the simulation (LinG3DAliveClone.py routine). A-A’: initial 
clone #0; B-B’: mutated clone #2; C-C’: mutated clone #3; D-D’: mutated clone #5; E-E’: mutated clone #7; 
F-F’: mutated clone #9.   
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Fig.S5 (cont). 3D lineage trees of individual clones drawn with Python routines. For each clone, the top row 
includes the 3D lineage trees with all cells (drawn with LinG3DClone.py), while the bottom row includes only 
the cells that survived to the end of the simulation (drawn with LinG3DAliveClone.py). G-G’: mutated clone 
#12; H-H’: mutated clone #14; I-I’: mutated clone #16; J-J’: mutated clone #19; K-K’: mutated clone #20; L-
L’: mutated clone #25.   
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Fig.S6. 3D lineage trees of individual clones drawn with R routines. For each clone (with a different color) the 
top row includes the 3D lineage tree with all cells (LinG3DClone.r routine), while the bottom row includes only 
the cells that survived to the end of the simulation (LinG3DAliveClone.r routine). A-A’: initial clone #0; B-B’: 
mutated clone #2; C-C’: mutated clone #3; D-D’: mutated clone #5; E-E’: mutated clone #7; F-F’: mutated 
clone #9.   
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Fig.S6 (cont). 3D lineage trees of individual clones drawn with R routines. For each clone, the top row includes 
the 3D lineage trees with all cells (drawn with LinG3DClone.r), while the bottom row includes only the cells 
that survived to the end of the simulation (drawn with LinG3DAliveClone.r). G-G’: mutated clone #12; H-H’: 
mutated clone #14; I-I’: mutated clone #16; J-J’: mutated clone #19; K-K’: mutated clone #20; L-L’: mutated 
clone #25.   
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Supplemental Material S3. 
Examples of cellular clones and 3D lineage trees from cell culture 
 
To illustrate the use of LinG3D routines for experimental data, we traced ten cellular clones in the 
series of bright field images of the 2D culture of U2OS sarcoma cells. The images were acquired 
automatically every 3 minutes for 96 hours, and eight annotated images from this experiment are 
shown in Fig.S7A-H. For each annotated image, we recorded coordinates of all cells arising from 
the 10 selected precursor cells (shown in Fig.S7A) and coordinated of two daughter cells if the 
traced cell has divided. The full 3D lineage trees for nine clones are shown in Fig.S7I-R. Their 
colors correspond to the color of the selected cells. 
 

 
Fig.S7 Cellular clones and 3D lineage trees from in vitro culture. A-H. bright field images of in vitro culture of 
U2OS sarcoma cells with identified ten cellular clones. I-R. 3D lineage trees with all cells for 9 out of 10 cellular 
clones for the cell culture (drawn with LinG3DClone.m),   
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Supplemental Material S4. 
Mathematical equations from a model for S1 and S2 
To illustrate how the 3D lineage tree algorithms can be applied, we developed a relatively simple 
agent-based model of the growing tumor exposed to a cytotoxic drug (MATLAB routine: 
tumorGrowth_example1.m and tumorGrowth_example2.m). This model is based on our Multi-Cell 
Lattice-Free, MultiCell-LF, framework [1-3] in which individual cells interact with one another 
through physical forces and with the surrounding microenvironment via chemical factors, such as 
drugs or oxygen.  

Computational domain   
The model is defined on a square tissue patch: [−100,100] × [−100,100]	𝜇𝑚$,	that contains five 
irregularly distributed stationary vessels 𝒱% 	(𝑖 = 1,… ,5) that are the source of a cytotoxic drug 
𝛾(𝑥, 𝑦, 𝑡). The tumor cells 𝑋%	(𝑖 = 1,… ,𝒩') can proliferate, absorb the drug, undergo random and 
drug-induced death, and can mutate which results in cell resistance to the drug. The initial 
condition consists of a single tumor cell located in the middle of the domain with no drug. The no-
flux boundary conditions are imposed on the drug domain. The cells are also removed from the 
system if they move outside of the domain boundaries.  
Drug kinetics   
Drug distribution within the tumor tissue depends on three factors: the amount of drug supplied by 
the vessels, the amount of drug taken up by the tumor cells, and the spatial localization of all blood 
vessels and cells. The drug 𝛾(𝑥, 𝑦, 𝑡) is supplied from each vessel 𝒱%  with the influx rate ℐ( , it 
diffuses through the tissue with a constant diffusion coefficient 𝒟(, and is absorbed by each cell 
𝑋% 	with the uptake rate 𝒰( proportional to the drug concentration 𝛾(𝑥, 𝑦, 𝑡). The equation of drug 
kinetics is defined as follows: 

𝜕𝛾(𝑥, 𝑦, 𝑡)
𝜕𝑡

= ℐ! ∙,𝜒ℛ!.𝒱# , (𝑥, 𝑦)0
𝒩!

#%&122222232222224
#'()*+	-*..)/

+𝒟!∆𝛾(𝑥, 𝑦, 𝑡)122232224
0#((*-#1'

−𝒰! ∙ 𝛾(𝑥, 𝑦, 𝑡) ∙,𝜒ℛ"(𝑋# , (𝑥, 𝑦))
𝒩"

#%&122222222232222222224
23))*45	*.6473	

 

where interactions between the drug grid (𝑥, 𝑦) and the individual cells or vessels (𝑍 = 𝒱% 	or	𝑋%) 
are specified by the indicator function with radius ℛ: 

𝜒ℛ((𝑥, 𝑦), 𝑍) = <1 𝑖𝑓	‖(𝑥, 𝑦) − 𝑍‖ < ℛ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
Cell division and mutation 
Each cell is defined by its position 𝑋% and a constant radius ℛ'. The cell can inspect its vicinity of 
radius ℛ)  and can count the number 𝒩%  of neighboring cells. Cell age progresses with time  
(*𝒜!
*,

= 1), and when the cell reaches maturity, 𝒜% ≥ 𝒜%
*%-, and is not overcrowded, that is the 

number of cell neighbors does not exceed the prescribed threshold, 𝒩% ≤ 𝒩./0 , the cell will 
divide. Upon division of cell 𝑋%, two daughter cells 𝑋%" 	and	𝑋%# are created. 𝑋%"	will take position 
of the mother cell, i.e.  𝑋%" = 𝑋% and 𝑋%# will be located in the vicinity of the mother cell in the 
randomly selected direction, i.e., 𝑋%# = 𝑋% +½	ℛ'(𝑐𝑜𝑠𝛼, 𝑠𝑖𝑛𝛼), where 𝛼 ∈ [0,2𝜋].  

Each daughter cell inherits the division age from the mother cell with small noise 𝜔 , i.e., 
𝒜%"
*%- , 𝒜%#

*%- =	𝒜%
*%- + 𝜔, where 	𝜔 ∈ [−5,5].	The current age for each daughter cell is then set at 

0, i.e., 	𝒜%" =	𝒜%# = 0.  
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The mutation status of each daughter cell is inherited from the mother cell, i.e., ℳ%" =	ℳ%# =
	ℳ%. However, each daughter cell can acquire a new mutation status when it is born; the probability 
of new mutation is determined by 𝒫.1, (the only parameter we varied in the presented examples). 
Cell mutation will result in a shorter cell division age, i.e., 𝒜%

*%- = 	½	𝒜./,, where 𝒜./, is the 
default cell division (maturation) age. It is assumed that the random mutations will start after the 
cell colony reaches a noticeable size.  
Cell drug absorption, accumulation, and drug-induced death 
Each cell absorbs drug 𝛾(𝑥, 𝑦, 𝑡) from its immediate vicinity of radius ℛ(. The cell uptake rate is 
𝒰(. Drug accumulation 𝒬% by the cell 𝑋% is described by the following equation:  

𝑑𝒬#
𝑑𝑡

=, 𝒰!
(+,/)

∙ 𝛾(𝑥, 𝑦, 𝑡)	𝜒ℛ#((𝑥, 𝑦), 𝑋#) 

Upon cell division, the levels of absorbed drug for both daughter cells are set to 0, i.e., 𝒬%" =
	𝒬%# = 0.  When the drug accumulated by a non-mutated cell (ℳ% = 0) exceeds the prescribed 
threshold, i.e.  𝒬% > 𝒬,23, the cell will die with a probability 𝒫𝒬*%5. Once the cell dies, it is removed 
from the system. 
Cell random death  
All cells, mutated and non-mutated, can undergo random death with a probability 𝒫*%5, provided 
that they are of considerable age, that is their current age 𝒜% exceed twice the cell division age 
𝒜%
*%-. Once the cell dies, it is removed from the system. 

Cell-cell and cell-vessel interactions 
Individual cells  𝑋% and 𝑋6 	can exert a cell-cell repulsive force 𝑓%,6 	 (with stiffness 𝑘' and a resting 
length 2ℛ') to avoid overlapping: 

𝑓#,; = M 𝑘<.2ℛ< − P𝑋# − 𝑋;P0
𝑋# − 𝑋;
P𝑋# − 𝑋;P

												𝑖𝑓	P𝑋# − 𝑋;P < 2ℛ<

0																																																																					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																				
 

If the cell 𝑋% overlaps with multiple (M) cells, the cumulative repulsive force is:  

𝐹#
53. = ,𝑘<.2ℛ< − P𝑋# − 𝑋;$P0

𝑋# − 𝑋;$
P𝑋# − 𝑋;$P

=

'%&

 

 

To avoid overlapping between cells and vessels, a repulsive force 𝑔%,6 	(with stiffness 𝑘-  and a 
resting length (ℛ' +ℛ-)) between the overlapping cell 𝑋% and the vessel, 𝑉6 is exerted on the cell: 

𝑔#,; = M𝑘>.(ℛ< +ℛ>) − P𝑋# − 𝑉;P0
𝑋# − 𝑉;
P𝑋# − 𝑉;P

												𝑖𝑓	P𝑋# − 𝑉;P < ℛ< +ℛ>

0																																																																					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																				
 

 
If cell 𝑋% overlaps with multiple (M) vessels, the cumulative repulsive force is  

𝐺#
53. = ,𝑘>.(ℛ< +ℛ>) − P𝑋# − 𝑉;$P0

𝑋# − 𝑉;$
P𝑋# − 𝑉;$P

=

'%&
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Cell Relocation 
Cell dynamics is governed by Newton’s second law of motion, where the applied forces arise as a 
result of cell-cell repulsive interactions 𝐹%

358, repulsive interactions between cells and vessels 𝐺%
358, 

and forces needed to overcome medium viscosity 𝐹%-%9, where 𝑚% is cell mass:    

𝑚%
𝑑$𝑋%
𝑑𝑡$ = 𝐹%

358 + 𝐺%
358+𝐹%-%9 

Assuming that springs are overdamped: 𝑚%
*#:!
*,#

= 0, and that viscous force is proportional to cell 

velocity: 𝐹%-%9 = −𝜈 *:!
*,

 , the equation of cell relocation is given by:  
𝑑𝑋%
𝑑𝑡 =

1
𝑣 _𝐹%

358 + 𝐺%
358`	

 
 
All model parameters are listed in Table 1. 
 
Table 1: Model physical and computational parameters  

Parameter Symbol Value  
Physical parameters 
Cell radius  ℛ< 5 𝜇𝑚 
Average cell division age 𝒜?46 18 min 
Number of neighbors for overcrowding 𝒩?4+ 5 cells 
Cell neighborhood radius ℛ@ 15 𝜇𝑚 
Cell-cell repulsive spring stiffness  𝑘< 50 𝜇𝑔/𝜇𝑚 ∙ 𝑠A 
Vessel radius  ℛ> 10 𝜇𝑚 
Cell-vessel repulsive spring stiffness 𝑘> 100 𝜇𝑔/𝜇𝑚 ∙ 𝑠A 
Medium viscosity 𝜈 250	𝜇𝑔/𝜇𝑚 ∙ 𝑠 
Time of drug injection  𝒩#'; 250 min 
Drug influx from the vessel  ℐ! 5 𝜎𝑔/𝜇𝑚B ∙ 𝑠 
Drug diffusion coefficient 𝒟! 10	𝜇𝑚A/𝑠 
Drug uptake rate 𝒰! 0.015 𝑠C& 
Cell sensing radius  ℛ! 3 𝜇𝑚 
Drug level for cell killing  𝒬6D5 4 𝜎𝑔/𝜇𝑚B 
Probability parameters 
Probability of mutation  𝒫?*6 0.05 or 0.005 
Probability of random death 𝒫0#3 0.8  
Probability of drug induced death 𝒫𝒬0#3 0.85 
Computational Parameters  
Domain size Ω [-100,100]2 𝜇𝑚 
Grid width  ℎF 5 𝜇𝑚 
Time step ∆𝑡	 0.25	𝑠 
Number of iterations  𝑁6164) 100,000 
Scaling parameter 𝜎 10-19 
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Output data used by the 3D lineage tree algorithms  
In order to draw the 3D lineage trees, the output data needs to be prepared in the following format:   

cell_history=[cell ID, clone ID, mother ID, birth iter, div/death iter] 
cellXY_iter=[x, y] 

cellID_iter=[cell ID] 
and saved as text files: cell_history.txt, cellXY_iter.txt, and cellID_iter.txt, respectively, where iter 
is the iteration number. Here, cell ID is a unique ID number for the cell, clone ID is a number 
unique to a given clone to which the cell belongs, mother ID is a unique ID number of the cell’s 
mother cell, birth iter is an iteration number at which the cell was born, div/death iter is the 
iteration number at which the cell either divided into two daughter cells or died, x and y are the 
coordinates of the cells at a given iteration iter. The vector cell_history contains history of all cells 
from the whole simulation and should be save at the end of simulation. The vectors cellXY_iter 
and cellID_iter are created and saved for the iteration with number iter. These data sets are initiated 
by: cell_history=[1,0,0,0,0], which means that the first cell has unique index 1, belongs to clone 
number 0, cell’s mother index is 0, the cell was born in iteration 0, and is still alive (has neither 
died nor divided); cellXY_0=[x0,y0] are the coordinates of the initial cell; cellID_0=[1] is a unique 
index of the initial cell (first cell). 
 
Subsequently, these data sets have to be updated in the following situations: 

1. Cell division: (a) for the mother cell, find the row in cell_history that corresponds to the 
unique mother ID and update the last element to indicate the current iteration number, i.e., 
iteration at which the cell has divided; (b) for each daughter cell, create a new row in 
cell_history and add new unique cell ID (keep track of the last unique ID used), copy clone 
ID from the mother cell, copy mother cell unique ID, add the current iteration number to 
indicate iteration at which the cell was born, keep last element equal to 0 to indicate that 
the cell is alive. Repeat the same for the second daughter cell (cell ID must be unique).   

2. Cell mutation: find the row in cell_history that corresponds to the unique cell ID and update 
the second component with a new unique clone ID number (keep track of the last unique 
clone ID used). 

3. Cell random death: find the row in cell_history that corresponds to the unique cell ID and 
update the last component to indicate the iteration in which the cell died. 

4. Cell drug-induced death: find the row in cell_history that corresponds to the unique cell ID 
and update the last component to indicate the iteration in which the cell died. 

5. Cell removal from the system if it moved outside the computational domain: find the row 
in cell_history that corresponds to the unique cell ID and update the last component to 
indicate iteration in which the cell was removed.  

6. Saving cell data: for those iterations iter, for which data is being saved in the external text 
files, save coordinates of all cells currently in the system (file cellXY_iter.txt) and unique 
cell IDs (file cellID_iter.txt) in the very same order in which the coordinates are saved.  

7. Saving drug data: for the last iteration, save the values of drug concentration in all grid 
points (in (external text file drug.txt). 
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