
 

 

Supplementary Information 

Supplemental Methods 
In-vitro	culture	of	single	gut	bacterial	strains	with	added	sugars.	Five gut commensal 

bacterial strains, Bacteroides vulgatus ATCC 8482, Bacteroides ovatus ATCC 8483, 

Bacteroides uniformis ATCC 8492, Blautia hydrogenotrophica DSM 10507, Escherichia coli 

DSM 101114 were cultured with or without added sugars (glucose, sucrose, and kestose). The 

base culture medium without sugar added were modified based on the Yeast Casitone Fatty 

Acids (YCFA) broth, containing 10.0 g/L casitone, 2.5 g/L yeast extract, 45 mg/L MgSO4·7H2O, 

90 mg/L CaCl2·2H2O, 450 mg/L K2HPO4, 450 mg/L KH2PO4, 900 mg/L NaCl, 1.0 mg/L 

resazurin, 4.0 g/L NaHCO3, 1.0 g/L L-Cysteine-HCl, 10 mg/L Hemin, 1.90 mL/L acetic acid, 

0.7 mL/L propionic acid, 90 µL/L iso-butyric acid, 100 µL/L n-valeric acid, 100 µL/L iso-valeric 

acid, 0.02 mg/L biotin, 0.02 mg/L folic acid, 0.05 mg/L thiamine-HCl, 0.05 mg/L riboflavin, 

0.001 mg/L vitamin B12, 0.05 mg/L aminobenzoic acid. The pH was adjusted to between 6.7-

6.8, and autoclaved media were pre-reduced in an anaerobic chamber overnight. 5 g/L of 

different sugars (glucose, sucrose, and kestose) were added to the base medium as treatment 

groups. Master tubes of single bacterial strains were first cultured on Tryptic Soy Agar (TSA) 

containing 5% sheep blood using the streak plate method. A single colony was picked from 

each agar plate and inoculated into the base culture medium to culture for 24 hours, before 

inoculating 100 µL of each culture into 10 mL of four different media: base medium without 

sugar added, with glucose added, with sucrose added and with kestose added. After culturing 

for 24 hours, optical density at 600 nm was tested in technical triplicates for each sample. 

Cultured microbial cells were purified by washing with phosphate buffered saline (PBS) buffer 

three times, and the resulting microbial pellets were stored at -80 ºC for proteomics analysis. 

 

In-vitro	 human	 gut	microbiota	 culture	with	 added	 sugars. Three healthy individual 

microbiota samples were collected and biobanked using our live microbiota biobanking 

protocol83. The study was approved by the Ottawa Health Science Network Research Ethics 

Board at the Ottawa Hospital, Ottawa, Canada (# 20160585–01 H). The frozen microbiome 

samples were thawed at 37 ºC and cultured in our optimized culture medium37 with or without 

the presence of different sugars (10 mM glucose, 20 mM fructose, 10 mM glucose + 20 mM 

fructose, or 10 mM kestose). Samples were cultured in technical triplicates, and were taken at 

0 hr, 1hr, 5 hr, 12 hr, and 24 hr of culturing for optical density and metaproteomic analyses. 



 

 

After culturing, 96-well deep well plates were first centrifuged at 3,000 g for 45 min under 4 °C. 

Then the pellets were washed in 4 °C phosphate buffered salin (PBS) buffer and centrifuged 

at 3,000 g for 45 min again, before pelleting and removing culture debris three times using 300 

g, 4 °C , 5 min centrifugation.  Microbial suspensions were then centrifuged at 3,000 g, 4 °C 

for another 45 min. The purified cell pellets were stored at -80 °C before protein extraction. 

 

Protein	extraction,	digestion	and	LC-MS/MS	analysis. For single strain samples, proteins 

were extracted with 4% SDS 8M urea buffer in 100 mM Tris-HCl buffer and precipitated 

overnight at -20 ºC, before being purified by washing with ice-cold acetone three times. 

Quantified proteins were then reduced and alkylated before being digested using trypsin (50:1 

protein-to-trypsin ratio) for 24 hours at 37 ºC and were desalted using reverse phase beads38. 

Proteomic samples were analyzed using an Orbitrap Exploris 480 mass spectrometer 

(ThermoFisher Scientific Inc.) coupled with an UltiMate 3000 RSLCnano liquid 

chromatography system following a 1-hour gradient of 5 to 35% (v/v) acetonitrile (v/v) at the 

flow rate of 300 L/min. MS full scan was performed from 350 - 1400 m/z with a resolution of 

60,000, followed by an MS/MS scan of 12 most intense ions, a dynamic exclusion repeat count 

of one, exclusion duration of 30 s, and resolution of 15,000. Metaproteomics samples of the 

cultured individual microbiomes were prepared using a semi-automated approach. Briefly, 

samples were lysed in a buffer containing 8 M urea, 4% SDS in 100 mM Tris-HCl (pH = 8.0) to 

extract microbial total proteins. The proteins were purified by a double-precipitation procedure 

in 50%:50%:0.1% (v/v/v) acetone: ethanol: acetic acid solution. Protein digestion and desalting 

steps were performed using an automated liquid handler (Hamilton Nimbus-96). Briefly, 100 

µg proteins were dissolved in 100 µL 6 M urea in 100 mM Tris-HCl (pH 8) buffer, before being 

reduced by 10 µL 0.1 M dithiothreitol (DTT) solution under 56 °C for 30 minutes and alkylated 

by 10 µL 0.2 M iodoacetamide (IAA) solution in dark, 25 °C for 40 minutes. Samples were each 

added 1000 µL 100 mM Tris·HCl buffer containing 2 µg/mL trypsin (trypsin:proteins = 1:50) for 

a 24-hour digestion under 37 °C, before being desalted using an automated pipeline based on 

reverse-phase (RP) desalting columns. 11-plex tandem mass tag (TMT11plex) was used for 

metaproteomic quantification for a total of 189 samples. An even mixture of all samples was 

used as the reference channel in each 11-plex. Samples were scrambled before labeling with 

TMT11plex, so that each labeled sample contains samples from different individuals, different 

time points and different treatments to avoid any bias that may be induced between analyses. 

TMT-labelled samples were analyzed using an Orbitrap Exploris 480 mass spectrometer 

(ThermoFisher Scientific Inc.) coupled with an UltiMate 3000 RSLCnano liquid 



 

 

chromatography system following a 2-hour gradient of 5% to 35% solvent B (80% acetone 

nitrile, 0.1% formic acid, v/v).  

 

Datasets. Metagenomics data corresponding to the ultra-deep metaproteomic analysis of the 

four individual microbiomes were obtained from the previous MetaPro-IQ study14,33 (accessible 

from the NCBI sequence read archive (SRA) under the accession of SRP068619, including 

“Metagenome of MLI sample in individual HM454”, “Metagenome of MLI sample in individual 

HM455”, “Metagenome of MLI sample in individual HM466”, “Metagenome of MLI sample in 

individual HM503”) and the same samples were reanalyzed by an ultra-deep metaproteomics 

approach14 (accessible through the ProteomeXchange Consortium 

(http://www.proteomexchange.org) via the PRIDE partner repository40 with the dataset 

identifier PXD027297). Proteomics dataset of the cultured singles strain samples has been 

deposited to ProteomeXchange Consortium via the PRIDE partner repository with the dataset 

identifier PXD037923. Metaproteomic dataset of the RapidAIM-cultured microbiome samples 

has been deposited to ProteomeXchange Consortium via the PRIDE partner repository with 

the dataset identifier PXD037925. The metaproteomic dataset of the mouse gut microbiome 

comprising twenty gut microbes is derived from a previous study41 that was deposited to 

ProteomeXchange Consortium with the dataset identifier PXD009535 and to MassIVE with the 

dataset identifier MSV000082287. 

 

Database	search	and	data	processing. Proteomics database searches were performed by 

combining FASTA databases of the individual strains downloaded from NCBI. The databases 

were combined for performing database search using MaxQuant42 1.6.17.0, with the label-free 

quantification option turned off. Metaproteomic database searches of cultured microbiome 

samples were performed using MetaLab V2.243, MaxQuant option was used to search the TMT 

dataset against the IGC database of the human gut microbiome. The resulting data table was 

normalized using R package MSstatsTMT , and missing values were imputed using R package 

DreamAI45. The "fraction" of each taxon-specific protein is computed by dividing the protein 

intensity by the sum of intensities of all proteins assigned to the same taxon. The log2 fold 

change of each protein is obtained by taking log2 of the ratio between its fraction in the 

treatment group (with added sugars) and its fraction in the control group (without added sugars). 

 

Generation	of	GCN	and	PCN. For the ultra-deep metaproteomic dataset, the genus-COG 

version of GCN and PCN tables were directly obtained from the previous work14. In addition, 



 

 

here we generated a genus-KEGG version of GCN and PCN for each individual microbiome 

using a similar method. Briefly, for the genus-KEGG GCN, by searching raw metagenomic 

reads against an integrated gene catalog (IGC) database of the human gut microbiome48, we 

obtained a list of proteins quantified by read counts. FASTA sequences of these proteins were 

searched against the KEGG database using GhostKOALA84. Taxonomic origination of the 

proteins was obtained by searching against an in-house database generated with the NCBI 

non-redundant (nr) database (downloaded 2/3/2016). To generate genus-KEGG PCN, the 

taxonomic table of the metaproteomics dataset was directly obtained from MetaLab, and 

KEGG annotation was also performed by querying protein FASTA sequences with 

GhostKOALA. Protein group intensity was used as the quantification information in PCNs. For 

the proteomic dataset of single strains, the whole proteomic FASTA database was submitted 

to EggNOG mapper (http://eggnog-mapper.embl.de/, submitted Oct-30-2021, ran emapper.py 

2.1.6) to obtain functional annotations. To generate GCN, protein coding sequence (CDS) files 

were downloaded from NCBI, and the count of each protein id in the CDS files was considered 

as the copy number of each gene in the GCN. For PCN generation, intensities of identified 

proteins matched to each strain were used. Note that protein ids in the CDS file were 100% 

matched with those in the proteomic FASTA database in each strain. For the metaproteomics 

dataset of the cultured microbiome samples, functional information for the generation of PCN 

was obtained from the resulting functional table automatically generated by the MetaLab 

software. Taxonomic assignment was performed using the “protein-peptide bridge” method as 

described previously14. The PCNs for this dataset were then generated based on intensities of 

COG-genus pairs. 

 
The	community	assembly	model.	

There is a longstanding gap between the ecological model which considers the protein 

functions of organisms and the data analysis of genomic data to give ecological insights. Ever 

since Robert MacArthur proposed a community model in 1970 to consider how different 

consumers compete exclusively for renewing resources85, many extensions of this model were 

proposed to include more complex ecological factors such as cross-feeding interactions86–89 

and multiple essential nutrients90. Almost all of them focus on the phenotype of microbes 

because only functions of expressed proteins are relevant for the consumption and production 

of nutrients in the ecosystem. Due to the lack of metaproteomic data, many computational 

approaches attempting to generate ecological implications rely on the over-complete inferred 

protein capacity derived from genomes7,9–12. To reconcile this gap, we built an ecological 



 

 

framework with the genomic capacity and protein functions together by introducing species 

with sub-sampled functions. The model framework is useful for explaining the difference 

between genomic capacity and protein functions. The selective expression can be considered 

as the same microbe with different expressions under different environments76–78 or evolved 

strains from the same species that have distinct metabolic niches observed in evolutionary 

experiments of microbes79,26,27. The synthetic data can be generated in four steps: 

Step 1: Assignment of species’ genomic capacity. Three types of protein functions are modeled: 

niche function, specialist function, and essential function. Both specialist function and niche 

function are considered as the capacity to consume a unique and externally supplied resource. 

The probability of a random consumer being assigned the ability to have a niche function is 

0.7. To make fewer species own specialist functions in their genomes, the probability of a 

random consumer being assigned the ability to have a specialist function is 0.2, much lower 

than the probability of owning a niche function. The maximal consumption rate of a resource 

by one species represents the consumption rate that the species would have if it allocates the 

entire proteome (100%) to the consumption of the resource. If many resources are consumed, 

the total proteome has to be divided into several parts and the consumption rates would be a 

fraction of the corresponding maximal consumption rates. The essential function is not 

modeled as the consumption of alternative resources due to its metabolic essentiality. Instead, 

the essential function is modeled as multiplying the growth rate by a factor of 0.95 for each 

missing essential function. 

Step 2: Assignment of species’ protein functions based on their genomic capacity. Each 

species sub-samples its genomic potential functions with a sub-sampling probability p (which 

is a random number uniformly distributed between 0 and 1) to obtain its protein functions (i.e. 

which resource it can truly consume). As a result, all protein functions of species form the basis 

for PCN. The true consumption rate of one species on a resource is its maximal consumption 

rate on the resource divided by the number of resources that can be utilized by the species. 

This process can be thought of as the proteome allocation to consume several resources 

simultaneously68,69. This assumption imposes a trade-off between a generalist and a specialist 

species: a generalist species utilizes more resources but has lower consumption rates for all 

resources, while a specialist species consumes fewer resources but has higher consumption 

rates for consumed resources. 

Step 3: Community assembly. We assumed a chemostat environment, similar to the setting 

considered by many Consumer-Resource models86,88. The dilution rate D is considered as 0.1 

per hour. A fixed number of resources is considered and the pool concentrations (or supply 



 

 

rates) for all resources are assumed to be the same for simplicity. For each species, the growth 

rate is treated as the sum of consumption rates for different resources divided by the yield. For 

simplicity, all yields are assumed to be equal (Y = 1). Overall, the dynamics for the 

concentrations of resource , (denoted as A') and the abundance of the species B (written as 

C6): 

 78%
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where G6'  is the consumption rate of species B  on resource , , ℎ'   is the supply rate of 

resource	,,	I is the same yield assumed for all resources, H(= 0.95) is the diminishing rate for 

the overall consumption rate that is multiplied for each missing essential function, and J? is 

the number of missing essential functions. The consumption rate of one species of a resource 

is randomly drawn from the uniform distribution between 0 and 1. Eventually, for each species, 

its true consumption rates are its randomly drawn consumption rates divided by the number of 

resources the species can use to constrain the total proteome budget68,69. The incidence matrix 

of the consumption abilities establishes part of PCN for niche functions and specialist functions 

of the species. The entire PCN is completed by including the presence/absence information of 

all essential functions. 

Step 4: Generate GCN and PCN for survived species. When we simulated the above 

community assembly process to reach a steady-state in the chemostat environment, survived 

species can be found as species existing with non-negative abundances at the end of the 

simulation. For survived species, we can reconstruct the GCN and PCN for them. Within 

equipped GCN and PCN, we would be able to compute FR), FR*, and network degrees (kGCN 

and kPCN). 

	

More	 details	 about	 validating	 our	 computational	 pipeline	 using	 a	 consumer-

resource	model	 
Previously developed consumer-resource models (CRMs) only focus on the physiologies of 

microbes (i.e. phenotypes)91–93. Simply put, those models ignored genomic capacity or 

potential functions, but only considered expressed functions (e.g., how species consume 

different resources). There was no attempt to build a consumer-resource model of microbial 

communities that integrates both potential and expressed functions. As a first step toward this 

direction, we constructed such a model.  



 

 

We assumed three types of protein functions: niche functions (colored red), specialist 

functions (colored blue), and essential functions (colored green) in a functional pool. For 

simplicity, each of the niche (or specialist) functions is modeled as the consumption of a unique 

and externally supplied resource (Fig. 2a1). To model the difference between niche and 

specialist functions, we assume they are associated with different numbers of species (i.e., 

“consumers” in the consumer-resource modeling framework). The former should be associated 

with much more species than the latter. The loss of a niche or specialist function would make 

a species unable to consume the corresponding externally supplied resource (Fig. 2a2, a3). 

The loss of an essential function is simply modeled as the reduction of a species’ growth rate 

(Fig. 2a4). Mathematically, we multiply the intrinsic growth rate of a species by a diminishing 

factor H = 0.95 for each missing essential function.  

The key issue in this genome-aware consumer-resource modelling framework is to 

decide how microbes select a subset of their potential functions to express. To tackle this issue, 

we first assigned potential functions to each species (Fig. 2b, left). In particular, for each 

species, each niche (specialist, or essential) function was assigned to the species’ genome 

with probability (. ((/, or (0), respectively. In our simulations, we set (. = (0 = 0.7 to ensure 

that we cannot distinguish niche functions from essential functions only based on GCN and 

thus would like to see if they show different patterns after the community assembly.  We set 

(/ = 0.2 < (. = (0 so that specialist functions were assigned to fewer species than niche and 

essential functions. Then for each species, we determined its truly expressed functions by 

randomly sub-sampling a subset of its potential functions (Fig. 2b, middle). This behavior of 

sub-sampling of genomic abilities as true expressions was observed when we cultured single 

microbial strains in different environments (Supplementary Fig. 21). For function type-B (B =

1,2,3), this was achieved by expressing each potential function with a species-specific and 

function-type-specific probability (',6 randomly drawn from a uniform distribution L(0,1). Since 

different species have different sub-sampling probabilities, some species will tend to be 

generalists (or specialists). Similar to all consumer-resource models91–93, we assume a fixed 

expression pattern for each species and all resources being supplied so that we don’t have to 

consider the complexity of adaptive expression (such as different expression patterns when 

different resources are supplied). In the end, we assembled all species in the same community 

and ran consumer-resource dynamics until the system reached a steady state, for which we 

constructed the PCN of the survived species (Fig. 2b, right).  

We assumed the species pool consists of J = 10,000 species, and the function pool 

consists of 20 functions for each of the three function types. We introduced 10,000 species to 



 

 

ensure the number of initial species in the assembly simulation is much larger than the number 

of functions so that we can assemble a high-diversity community in the end. Starting from the 

GCN of the initial species pool (Fig. 2c, left), for each species, we randomly sub-sampled a 

subset of potential functions to express (middle panel, Fig. 2c). For each species, its true 

consumption rates are its maximal consumption rates divided by the number of resources the 

species can use (see Methods) to prevent the selection of generalist species that consume all 

resources without a penalty68,69. Due to the competitive exclusion principle94, the maximal 

number of species surviving in the final steady state is 40, because there are 40 unique 

externally supplied resources (“nutrients”) in our model.  

We demonstrated a simulation example with 35 species surviving in the final steady 

state (Fig. 2c, right). For this assembled steady-state microbial community, we found that the 

three modeled protein functions types were correctly revealed as three clusters by the 

Gaussian mixture model in both the comparison of network degree (Fig. 2d) and FR (Fig. 2e). 

In particular, for niche functions (red cluster in Fig. 2d, e), their mean degree in PCN (2.1) is 

much lower than that in GCN (24.45), and their mean FR* (0.005) is also much lower than their 

mean FR) (0.48). For essential functions (green cluster in Fig. 2d, e), their mean degree in 

PCN (23.7) is close to that in GCN (26.7), and their mean FR* (0.47) is also similar to their 

mean FR) (0.57). For specialist functions (blue cluster in Fig. 2d, e), both their k!"# and k$"# 

(or FR) and FR*) are low.  

The three functional clusters revealed by the classification of network degrees and 

functional redundancies for all modeled protein functions exactly match the three function types 

in our model. Moreover, the relative positioning of the three functional clusters based on our 

simulation data agrees well with our hypothesis (Fig. 1). This clearly validates our hypothesis 

that niche-occupying proteins have a larger difference in FR and network degree than 

metabolically essential proteins. 

We emphasize that the three functional clusters observed in the k!"# vs. k$"# (or the 

FR) vs. FR*) plot is highly nontrivial. It is a result of the community assembly. To demonstrate 

the importance of community assembly, we randomly picked 35 species (same as the number 

of survived species) from the initial pool with equal abundances (i.e., the relative abundance is 

1/35 for each species) without natural selection and found that it is impossible to distinguish 

niche functions from essential functions (Fig. 2f, g). Interestingly, for essential functions, we 

noticed that those species survived after the community assembly tend to have much larger 

FR* (with mean of 0.478) than randomly selected species (with mean of 0.132). By contrast, 



 

 

for niche functions, survived species tend to have a smaller FR* (with mean of 0.005) than 

randomly selected species (with mean of 0.133). Similarly, we also computed FR for the same 

randomly picked 35 species that share the abundances as survived species in the simulation. 

Again, we cannot differentiate niche functions from essential functions (Supplementary Fig. 2). 

We also simulated another community with 100 niche functions, 100 specialist 

functions, and 100 essential functions. The species pool still consists of J = 10,000 species. 

The simulated results are similar to that for the community with fewer functions (Supplementary 

Fig. 3; Fig. 2). In addition, we tested the robustness of model parameters by varying (., (/, 

and (0 , finding that patterns of comparison of kGCN and kPCN (Supplementary Fig. 4) and 

comparison of FRg and FRp (Supplementary Fig. 5) are highly reproducible. 

We noticed that the assumption of the trade-off between generalists and specialists 

(represented by assuming that the total proteome is relatively constant) is very important. In 

our model, this assumption is achieved by considering true consumption rates in PCN as 

maximal consumption rates in GCN divided by the number of resources. The importance of 

this trade-off lies in the fact that it forces the niche partitioning among species. In the absence 

of this assumption, there is no pattern of redundancy difference since generalists can always 

out-compete specialists. This trade-off makes sense because typically the total proteome 

budgets for microbes have been observed to be relatively fixed68,69.  

 
Normalized	gene-level	functional	redundancy	(#!"!)	and	normalized	protein-level	
functional	redundancy	(#!""). Across multiple samples, it is pointless to compare the FR) 

or FR* directly because of the difference in microbial taxonomic diversities. In fact, it has been 

shown in the past that the normalized functional redundancy, which is the functional 

redundancy divided by the taxonomic diversity, can be compared across samples12. In our 

study, the definition for nFR) is 

 nFR) =	
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and the definition for nFR* is 
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Calculation	of	nestedness.	To reveal the nested structure of an incidence matrix, we first 

need to use the Nestedness Temperature Calculator (NTC)95 to organize the matrix. Then we 

adopted the Nestedness based on Overlap and Decreasing Fill (NODF) measure previously 



 

 

defined50. The measure can only be computed for binary incidence matrices. As with any 

perfectly nested matrix, two properties must be present: (1) decreasing fill, which means that 

the columns below and to the right should have fewer entries than the columns above and to 

the left; and (2) paired overlap, which implies that when an entry appears in the columns below 

and to the right, it should also appear in the columns above and to the left. The NODF measure 

is calculated by averaging these two properties across all pairs of an upper and lower row and 

a left and right column. For the comparison of each pair, if decreasing fill is not satisfied, the 

pair will contribute 0 to the total nestedness. Otherwise, the pair’s contribution is the 

percentage overlap in non-zero entries between the two rows or two columns. 

  



 

 

Supplementary Figures 

 
Supplementary Figure 1: Protein functions involved in determining ecological niches 
are postulated to have larger discrepancies between the normalized gene-level 
functional redundancy nFRg and normalized protein-level functional redundancy nFRp. 
nFRg (or nFRp) is the ratio between FRg (or FRp) and taxonomic diversity TD (= 1 − ∑ ('

-
' ). 

The hypothetical example used here is the same as Fig. 1. 



 

 

 
Supplementary Figure 2: Essential functions and niche functions are indistinguishable 
for a randomly sampled community without going through the community assembly. In 
this simulation, 20 specialist functions, 20 essential functions, and 20 ecological niche 
functions are modeled. 10,000 species are considered. 35 random species out of the 10,000 
species in the initial pool are sampled to form a random community. The abundances of those 
species are assumed to be the same as the abundances of survived species in the simulation 
in Fig. 2c. a-b, The comparison of network degree and functional redundancy respectively 
based on the GCN and PCN of the random community. The number of drawn species is equal 
to the number of survived species in Fig. 2c. FRg (or FRp) is the functional redundancy of each 
function on the gene level (or protein level). All points/functions are colored red (niche 
functions), green (essential functions), and blue (specialist functions) according to their types 
of functions in the model.  
 
  



 

 

 
Supplementary Figure 3: Three protein functional clusters (specialist function, essential 
function, and niche function) considered in the community assembly model form three 
distinct clusters when the network degree and functional redundancy are compared 
between the GCN and PCN in model-generated synthetic data. In this simulation, 100 
specialist functions, 100 essential functions, and 100 ecological niche functions are modeled. 
10,000 species are considered. Eventually all species are co-cultured together to simulate their 
ecological competition. a-b, The comparison of network degree and functional redundancy 
respectively based on the GCN and PCN of survived species in the model simulation. kGCN 
(or kPCN) is the network degree of each function in the GCN (or PCN). FRg (or FRp) is the 
functional redundancy of each function on the gene level (or protein level). The Gaussian 
mixture model with 3 clusters is used to identify 3 protein functional clusters. Ellipses around 
clusters cover areas one standard deviation away from their means. c-d, The comparison of 
network degree and functional redundancy respectively based on the GCN and PCN of 
randomly drawn species in equal abundances without running community assembly. The 
number of drawn species is equal to the number of survived species in panels a and b. All 
points/functions in panels c and d are colored red (niche functions), green (essential functions), 
and blue (specialist functions) according to their types of functions in the model. 
 



 

 

 
Supplementary Figure 4: Three protein functional clusters (specialist function, essential 
function, and niche function) considered in the community assembly model form three 
distinct clusters when the network degree is compared between the GCN and PCN in 
model-generated synthetic data. In this simulation, 100 specialist functions, 100 essential 
functions, and 100 ecological niche functions are modeled. 10,000 species are considered. 
Different initial probabilities of one niche (specialist, or essential) function being assigned to 
the species’ genome, i.e., (D ((E, or (F), are varied. kGCN (or kPCN) is the network degree of 
each function in the GCN (or PCN). kGCN and kPCN are linearly rescaled to maintain them 
between 0 and 1 so that they are visually easy to compare. The Gaussian mixture model with 
3 clusters is used to identify 3 protein functional clusters. Ellipses around clusters cover 
areas one standard deviation away from their means. All points/functions in all panels are 
colored red (niche functions), green (essential functions), and blue (specialist functions) 
according to their types of functions in the model. 

  



 

 

 
Supplementary Figure 5: Three protein functional clusters (specialist function, essential 
function, and niche function) considered in the community assembly model form three 
distinct clusters when the functional redundancy is compared between the GCN and 
PCN in model-generated synthetic data. In this simulation, 100 specialist functions, 100 
essential functions, and 100 ecological niche functions are modeled. 10,000 species are 
considered. Different initial probabilities of one niche (specialist, or essential) function being 
assigned to the species’ genome, i.e., (D ((E, or (F), are varied. FRg (or FRp) is the functional 
redundancy of each function in the GCN (or PCN). FRg and FRp are linearly rescaled to 
maintain them between 0 and 1 so that they are visually easy to compare. The Gaussian 
mixture model with 3 clusters is used to identify 3 protein functional clusters. Ellipses around 
clusters cover areas one standard deviation away from their means. All points/functions in all 
panels are colored red (niche functions), green (essential functions), and blue (specialist 
functions) according to their types of functions in the model. 

  



 

 

 
Supplementary Figure 6: An illustration showing why it is difficult to construct a species-
level FR based on current metaproteomic techniques.  

  



 

 

 
Supplementary Figure 7: Comparison of network degree and functional redundancy 
between GCN and PCN annotated by KEGG as KOs (KEGG Orthologies) for the subject 
HM454. We annotated inferred proteins in metagenome and metaproteome as KOs to 
construct the GCN and PCN respectively. kGCN (or kPCN) is the network degree of each KO in 
the GCN (or PCN). FRg (or FRp) is the functional redundancy of each KO.  Three clusters with 
three distinct colors (blue, red, and green) are predicted by the Gaussian mixture model with 
3 clusters fitted on synthetic data. The transparent large circles represent the centroids of three 
clusters. 



 

 

 
Supplementary Figure 8: Comparison of network degree and functional redundancy 
between GCN and PCN annotated as COGs for the subject HM455. kGCN (or kPCN) is the 
network degree of each COG in the GCN (or PCN). FRg (or FRp) is the functional redundancy 
of each COG.  Three clusters with three distinct colors (blue, red, and green) are predicted 
by the Gaussian mixture model with 3 clusters fitted on synthetic data. The transparent large 
circles represent the centroids of three clusters. 

  



 

 

 
Supplementary Figure 9: Comparison of network degree and functional redundancy 
between GCN and PCN annotated as COGs for the subject HM466. kGCN (or kPCN) is the 
network degree of each COG in the GCN (or PCN). FRg (or FRp) is the functional redundancy 
of each COG.  Three clusters with three distinct colors (blue, red, and green) are predicted 
by the Gaussian mixture model with 3 clusters fitted on synthetic data. The transparent large 
circles represent the centroids of three clusters. 

  



 

 

 
Supplementary Figure 10: Comparison of network degree and functional redundancy 
between GCN and PCN annotated as COGs for the subject HM503. kGCN (or kPCN) is the 
network degree of each COG in the GCN (or PCN). FRg (or FRp) is the functional redundancy 
of each COG.  Three clusters with three distinct colors (blue, red, and green) are predicted 
by the Gaussian mixture model with 3 clusters fitted on synthetic data. The transparent large 
circles represent the centroids of three clusters.  

  



 

 

 
Supplementary Figure 11: Comparison of genus composition, number of genera, 
Shannon diversity, mean FRg, and mean FRp across the four individuals in the dataset 
of human gut microbiome.  

 

 

 

 
  



 

 

 

 
Supplementary Figure 12: Distributions of protein-level functional redundancies FRp for 
different KO groups of the subject HM454. In all boxplots, the middle white dot is the median, 
the lower and upper hinges correspond to the first and third quartiles, and the black line ranges 
from the 1.5 × IQR (where IQR is the interquartile range) below the lower hinge to 1.5 × IQR 
above the upper hinge. All violin plots are smoothed by a kernel density estimator and 0 is set 
as the lower bound. 

  



 

 
 



 

 

Supplementary Figure 13: K-means clustering with K=3 applied to all comparisons of 
network degree and functional redundancy between the gene and protein level for the 
human gut microbiome from HM454. All points/functions in all panels are colored red 
(niche functions), green (essential functions), and blue (specialist functions) according to 
their types of functions in the model. 



 

 
 



 

 

Supplementary Figure 14: Quadratic discriminant analysis (QDA) applied to all 
comparisons of network degree and functional redundancy between the gene and 
protein level for the human gut microbiome from HM454. QDA was trained by taking the 
ABC-type transporters, ribosomal proteins, and PTS proteins as the niche functions, 
essential functions, and specialist functions respectively. All points/functions in all panels are 
colored red (niche functions), green (essential functions), and blue (specialist functions) 
according to their types of functions in the model. 

  



 

 

 
Supplementary Figure 15: Comparison of functional redundancy between the gene and 
protein level (FRg and FRp) for ABC-type transporters and ribosomal proteins from the 
human gut microbiome of HM454 when the protein or gene detection threshold 
changes. Protein Abundance Percentile Threshold (PAPT) is defined as the percentage of 
most abundant proteins being kept. Gene Abundance Percentile Threshold (GAPT) is 
defined as the percentage of most abundant genes being kept. 

  



 

 

 
Supplementary Figure 16: The protein profiles resulting from the introduction of more 
complex sugars display a greater variation compared to those observed at the initial 
time point. The Bray-Curtis dissimilarity of protein profiles between the current time and the 
initial time is measured for four cases with different sugars introduced (glucose, fructose, 
glucose + fructose, and kestose). 

  



 

 

 

Supplementary Figure 17: Comparison of network degree and functional redundancy 
between the gene and protein level for ABC-type transporters and ribosomal proteins 
from the in-vitro culture of the human gut microbiome. a, Network degrees in GCN are 
larger than network degrees in PCN for most ABC-type transporter COGs. kGCN (or kPCN) is 
the network degree of each COG in the GCN (or PCN). b, FRg is larger than FRp for most 
ABC-type transporter COGs. c-d, The distribution of network degrees and functional 
redundancies (violin plots and boxplots) for ABC-type transporter COGs show a significantly 
huge reduction from kGCN to kPCN or from FRg to FRp. e, Network degrees in GCN are 
comparable with that in PCN for most ribosomal protein COGs. f, FRg is comparable with FRp 
for most ribosomal protein COGs. g-h, The distribution of network degrees and functional 
redundancies (violin plots and boxplots) for ribosomal protein COGs show no significant 
reduction from kGCN to kPCN or from FRg to FRp.  In all boxplots, the middle white dot is the 
median, the lower and upper hinges correspond to the first and third quartiles, and the black 
line ranges from the 1.5 × IQR (where IQR is the interquartile range) below the lower hinge to 
1.5 × IQR above the upper hinge. All violin plots are smoothed by a kernel density estimator 
and 0 is set as the lower bound. All statistical analyses were performed using the two-sided 
Mann-Whitney-Wilcoxon U Test with Bonferroni correction between genomic capacity (GCN) 
and protein functions (PCN). P values obtained from the test is divided into 5 groups: (1) (	 >
	0.05 (ns), (2) 0.01 < (	 ≤ 	0.05  (*), (3) 1023 < (	 ≤ 	0.01 (**), (4) 1024 < (	 ≤ 	1023 (***), and 
(5) (	 ≤ 	1024 (****). Network degree comparison of ABC transporters: ( = 	4.77 × 102G. 
Network degree comparison of ribosomal proteins: proteins: ( = 	0.27. Redundancy 
comparison of ABC transporters: ( = 	1.79 × 102H. Redundancy comparison of ribosomal 
proteins: ( = 	0.18. 



 

 

 
Supplementary Figure 18: The Pearson correlation between log2 fold changes of ABC-

type transporters 5 hours after different sugars are added. The Pearson correlation 
coefficients (O) and corresponding p values (p) for all pairs are shown across panels. 

 



 

 

 
Supplementary Figure 19: Microbes modify their expression for ABC-type transporters to 
adapt to different added sugars 1 hour, 12 hours, or 24 hours later. All heatmaps share 
the same color bar. Metaproteomic measurements 1 hour later were used to compare the 
intensity of each taxon-specific protein using the log2 fold change of each protein’s fraction (i.e. 
normalized intensity over each genus) from the treatment group divided by that from the control 
group.  



 

 

 
Supplementary Figure 20: Microbes modify their expression for ribosomal proteins to 
adapt to added sugars 5 hours later. All heatmaps share the same color bar shown in panel 
c. Log2 fold changes of ribosomal proteins were computed 5 hours after (a) glucose, (b) 
fructose, (c) kestose, or (d) glucose and fructose is added. We used the one-sample t-test to 
determine the significance of log2 fold changes and tested whether the mean of log2 fold 
changes from 3 experimental replicates differs from 0. Asterisks are added to positions where 
p values from the t-test are less than 0.05.  

  



 

 

 
Supplementary Figure 21: Same microbial strains have different expression levels of 
sugar-utilizing enzymes when different sugars are added to the glucose-free YCFA 
medium. We used log2 fold changes of sugar-utilizing enzymes 24 hours after the introduction 
of different sugars relative to the control where no sugar is added to the base medium to reflect 
the difference in expression. Black colors in all heatmaps denote no measured enzymes. a, 
Schematic of in-vitro cultures of single microbial strains. In the treatment group, one sugar is 
added to the community. Metaproteomic measurements 24 hours later were used to compare 
the intensity of each taxon-specific protein using the log2 fold change of each protein’s intensity 
from the treatment group divided by that from the control group. b, five sugar-utilizing enzymes 
involved in the metabolism of different sugars. Log2 fold changes of sugar-utilizing enzymes 
were computed 24 hours after (c) glucose, (d) kestose, or (e) sucrose is added.  

 



 

 

Supplementary Data Legends 

Supplementary Data 1: Table containing the network degrees (GCN and PCN), FR), 

and FR* for all annotated COGs of the subject HM454. 

Supplementary Data 2: Table containing the network degrees (GCN and PCN), FR), 

and FR* for all annotated COGs of the subject HM455. 

Supplementary Data 3: Table containing the network degrees (GCN and PCN), FR), 

and FR* for all annotated COGs of the subject HM466. 

Supplementary Data 4: Table containing the network degrees (GCN and PCN), FR), 

and FR* for all annotated COGs of the subject HM503. 

 


