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Fig. S1. GaN meta-atom specification. (a) Meta-atom for Moiré metalens consisting of GaN nano 

cylinder and Al2O3 sapphire substrate with 800 nm height (H) and 300 nm period (P). (b) Simulated 

results of transmission and phase spectra with different meta-atom diameters. 
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Table S1. Transmission and phase shift of the cylinder meta-atoms with different diameter. 

 
 

 

Section 2: Moiré metalens fabrication procedure 
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Fig. S2. Fabrication procedure of the GaN Moiré metalens. 

 

 

Section 3: Telecentric configuration of the meta-varifocal endo-microscopy 

Figure S3 shows the experimental setup and measurement of telecentric configuration for the 

endo-microscope. Figure S3 (a) shows the telecentric configuration for our endo-microscope. The 

measurements of the endoscope's associated focal length and NA at various Moiré metalens 

rotation angles are depicted in Figure S3 (b). To verify the invariant magnification property of our 

endo-microscope, a resolution chart is placed at the different axial focal planes of the endoscope 

probe depicted in Figure S3 (c). The resolution chart is shifted from the initial in focus plane (z = 

0 µm) to z = 1500 µm plane with 300 µm spacing, which changes from sharp images to blurred 

images (top row of Figure S3 (c)). By rotating the Moiré metalens, with relative angles from 5° to 

120°, the corresponding defocused image can be refocused to in-focus (bottom row of Figure S3 

(c)). The results show that the telecentric design keeps both magnification and FOV as constant. 
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Fig. S3. Experimental setup and measurement of the Moiré metalens based varifocal endo-

microscopy. (a) The telecentric setup of endo-microscopy, which includes a miniature objective 

lens, rod achromatic doublet relay, Moiré metalens, and tube lens. (b) Experimental results of focal 

length and the corresponding NA of the endoscope at different Moiré metalens rotation angles. (c) 

The digital axial scanning for multi-plane images. 

Section 4: Ray transfer matrix for the telecentric design 

Ray transfer matrix calculation can help us confirm the constant magnification of the 

telecentric design(1). In Figure S4, the focal length of the endoscope probe is fE. The 4-f relay lens 

(R1 and R2) consists of focal lengths with fR1 and fR2, and the lengths of the Moiré metalens and 

tube lenses are fMoire and fT, respectively. Ray transfer matrix for propagation (P) in a medium with 

a constant refractive index is given by  

                                                                        







=

10

1 d
P ,                                                          (S1) 

where d is the separation distance between two reference surfaces along the optical axis. We 

assume that the optical lens components used in Figure S4 are all thin lenses, which can follow 

lens transfer matrix (L)  
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where f is the focal length of the optical lens. The ray transfer matrix of Moiré metalens based 

varifocal endo-microscopy (M) can be determined as  

                          EERRRRRRMoireMoireMoireTTT LPLPLPLPLPM = −−−− 111222 ,        (S3) 

where the PT-Moire is corresponding to the air propagation matrix from the Moiré metalens to the 

tube lens. We can divide the entire transfer matrix M into several parts that include endoscope 

probe matrix (ME), 4-f relay lens matrix (MR), Moiré metalens matrix (MMoire) and tube lens matrix 

(MT). These yield the following equations 
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After multiplying all the matrices, the entire matrix can be written as  
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From the ray transfer matrix, magnification of the entire system can be described in the first term 

of the matrix (M1,1), which indicates that the system magnification does not depend on the focal 

length of the Moiré metalens (fMoire) to satisfy the telecentric design. In addition, the axial position 

of the focusing beam (F) can be computed as  
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The total axial displacement of the focusing beam (Δz) in telecentric design can be calculated as 
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where FMax, FMin are the maximum and minimum axial position of the focusing beam, which can 

be given by fMoire,Min and fMoire,Max, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. S4. The telecentric configuration of the Moiré metalens based varifocal endo-microscopy. 
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Section 5: The telecentric focusing measurement 

In telecentric focusing measurement results, we make the laser beam source go through a 

focus lens to generate the point source beam at the image plane. The point source pass through the 

tube lens to become the parallel beam to illuminate moiré metalens. After the beam pass through 

the endoscope probe can generate the focus point at focal plane. The corresponding focal length 

of the endoscope probe can be tuned when the rotation angles of the moiré metalens are adjusted. 

Finally, we set a CCD on a motorized linear stage to execute the axial scanning to measure 

telecentric focusing measurement results as shown in Figure S5. Except for green wavelength, we 

also measure the telecentric tuning distance under the blue (491 nm) and red (633 nm) wavelengths, 

as shown in Figures S6 and S7. With the blue laser, the focal length of the endoscope probe can 

be tuned from ~ 15.4 to ~ 20.6 mm (Δz = 5.15 mm) at Moiré metalens rotation angle of 360°to 

60°. The NA of endoscope probe changes from ~ 0.26 to ~ 0.19. The lateral and axial resolutions 

vary from 1.15 to 1.54 µm and 18.84 to 33.51 µm, respectively. With the red laser, the focal length 

of the endoscope probe can be tuned from ~ 15.7 to ~ 23.4 mm (Δz = 7.68 mm) and the 

corresponding NA values vary from ~ 0.26 to ~ 0.17. The lateral and axial resolutions vary from 

1.51 to 2.25 µm and 19.5 to 43.25 µm, respectively. The experimental results show our system can 

be operated for broad visible spectrum from 491 nm to 633 nm. 

 

 

 

 

Fig. S5. Telecentric focusing measurement setup. 
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Fig. S6. Telecentric focusing behavior measurement of blue wavelength at 491 nm. 

 

 

Fig. S7. Telecentric focusing behavior measurement of red wavelength at 633 nm. 
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Section 6: HiLo imaging principle 

HiLo imaging process is a very efficient method to obtain optical sectioning images in wide-

field microscopy (2-5). For one HiLo optically sectioned image, it requires a pair of images in 

distinct illumination situation: one is under the uniform illumination (Iuni), and the other is under 

speckle illumination (Isp). Iuni can be represented as the combination of the in-focus component 

(Iinf) and defocus component (Idef) 

                                                      ),(),(),( fdefinuni yxIyxIyxI += ,                                     (S11) 

where x, y represents the spatial coordinates at two-dimensional image plane.  

 

Fig. S8. Uniform illumination image (Iuni) of mouse brain perivascular spaces.  

 

Figure S8 shows the Iuni image of mouse brain perivascular spaces. The high spatial frequencies 

content (IHi) of the HiLo optical sectioned image can be directly extract from the Iuni 

                                                           cutGHPyxIyxI = ),(),( uniHi ,                                     (S12) 

where GHPcut is the two dimensional Gaussian high-pass filter with certain cut-off frequency (cut).  

On the other hand, the speckle illumination image (Isp) can then be decomposed as  

                                               ),(),(),(),( fdefinsp yxIyxMyxIyxI += ,                                 (S13) 

where the M(x,y) is the modulation coefficient of the speckle illumination depicted in Figure S9. 
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Fig. S9. Speckle illumination image (Isp). 

 

In-focus area of the speckle illumination images has the highest contrast, while the defocus area 

has low values. Therefore, the low spatial frequencies content (ILo) of the HiLo image can be 

written as  

                                          cutGLPyxLSCyxIyxI = )],(),([),( uniLo ,                                (S14) 

where GLPcut is the two-dimensional Gaussian low-pass filter that has the identical cut-off 

frequency with GHPcut. LSC(x,y) is the local spatial contrast of the Isp, it can be calculated as 

                                                   
swsp

swsp

)(

)(
),(




=

IMV

ISTD
yxLSC ,                                              (S15) 

where the <MV(Isp)>sw and <STD(Isp)>sw represent the mean value and standard deviation of the 

Isp, which are computed with the sampling window (sw). Hence, the multiplication of Iuni(x,y) and 

LSC(x,y) is able to eliminate the defocus component and extract the in-focus component. Finally, 

Figure S10 shows the HiLo optical sectioned image (IHiLo(x,y)). IHiLo(x,y) is generated by merging 

both high spatial frequencies content (IHi) andlow spatial frequencies content (ILo) to obtain  the 

in-focus image with the entire spatial frequency range, and it can be expressed as 

                                             )],([),(),( LoHiHiLo yxIsfyxIyxI += .                                   (S16) 

The scaling factor (sf, typical values is the range 0.5 ~ 3) is able to balance the intensity distribution 

between the IHi(x,y) and ILo(x,y). Here, in our case the sf = 1 to obtain high-contrast image result. 



 

 

13 

 

 

Fig. S10. HiLo optical sectioned image (IHiLo). 

 

Section 7: Varifocal optical sectioning endo-microscopy calibration 

By rotating the angle between paired metasurfaces, the microspheres are imaged with a step size 

(Δz) of 0.3 µm and their normalized intensity profiles are shown in Figure S11 (a). Intensity 

variation at different depths is calculated at the same region of interest (ROI), and gray values 

inside the ROI are averaged to measure sectioning capability. In Figure S11 (a), the full width at 

half maximum (FWHM) under uniform illumination is ~ 100 µm, and the FWHM of HiLo process 

is ~ 35 µm, which shows direct and solid evidence that HiLo imaging method empowers optical 

sectioning capability. 

To verify optical sectioning capability for biomedical tissue, ex-vivo fluorescently labeled 

transparent mouse brains are imaged by the micro-endoscope. The water-soluble clearing reagent 

(RapiClear ® 1.49, SunJin Lab Inc.) is utilized in the cleaning process, which makes the ex-vivo 

mouse brain tissue transparent and clear for observing fine structures (the detailed preparation 

process for fixed brain imaging is discussed in Materials and Methods). We adopt fluorescent 

tracers that conjugate with Alexa Fluor™ 488 and Alexa Fluor™ 555 to observe the diffusion of 

CSF in the brain via cisterna magna injection, and the tracers are able to influx into the perivascular 

space. Detailed structures, labeled with Alexa Fluor™ 555 (central emission λ ~ 600 nm), are 

imaged using the green laser for excitation (image results of detailed structures, labeled with Alexa 

Fluor™ 488, are shown in Section 8 of Supplementary Materials). The ex-vivo images (Iuni) of the 

transparent brain tissue with a thickness of ~ 250 µm under uniform illumination at two different 

depths are shown in Figure S11 (b). By adjusting the angles of the Moiré metalens from 5°to 20°, 

the focus plane is tuned with the range of 200 µm. Due to the inherent scattering effect within the 

volumetric brain tissue, out-of-focus haze background can be obviously observed under uniform 
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illumination. With HiLo imaging, the strong haze background can be significantly reduced to 

obtain optically sectioned images. The fine structure around perivascular spaces is clearly imaged 

in IHiLo, as shown in bottom row of Figure S11 (b).  

The 3D optical sectioning capability of our endo-microscopy is also evaluated by 

sequentially imaging ex-vivo transparent brain tissue, along the axial direction, with a step size 

(Δz) of 10 µm. Figure S11 (c) shows 3D images of various perivascular space locations with a 

volume size of 750 µm × 750 µm × 1 mm. In 3D Iuni images, strong background noise caused by 

scattering severely degrades image quality, and thus the detailed structures of the brain tissue are 

hardly to be resolved. Compared to Iuni images, the out-of-focus background noise is significantly 

suppressed in IHiLo images, which provide 3D optical sectioning images with a high signal-to-noise 

ratio. Our endo-microscopy demonstrates the ability to resolve clear detailed structures of ex-vivo 

mouse brain tissue, such as the vessels deep in the perivascular space. According to the 

specification of our electrically controlled rotation stage (GT45, Dima Inc.), the maximum rotation 

speed is 140 RPM = 2.3 rev/second. Moreover, the max frame rate of our CCD (GE1650, Prosilica 

Inc.) is 32 fps. The fundamental requirement of real-time imaging is about 20 fps, therefore based 

on the specification of the rotation stage and CCD, our endoscopic system has high potential to 

satisfy the 3D real-time imaging. 
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Fig. S11. Varifocal optical sectioning endo-microscopy calibration. (a) Normalized intensity 

distribution of fluorescent microspheres along the axial direction. Blue and red data points are 

measured using uniform illumination and HiLo imaging process, respectively (dots: measured raw 

data, curve: Gaussian curve fitting). (b) Two different depths of ex-vivo transparent mouse brain 

tissue (250 µm thickness) tagged with Alexa Fluor™ 555 in both wide-field (i.e. Iuni) and HiLo 

(IHiLo) imaging results. (c) 3D reconstruction volume images of mouse brain various perivascular 

space locations in uniform illumination and HiLo process (each 3D image is 750 µm × 750 µm × 

1 mm). 

 

Section 8: Ex-vivo mouse brain imaging results 

For the brain tissue dyed with Alexa Fluor 488, a blue laser operated at 491 nm (Cobolt 

Calypso 200) is used to excite the green fluorescence, with central wavelength of 525 nm. Ex-vivo 

images of the transparent mouse brain tissue with the thickness of 250 µm under uniform 

illumination for two different depths are shown in Figure S12 (a). Two images, separated with 

distance of 200 µm in depths, are obtained by tuning mutual angles of the two metasurfaces at 5° 

and 20°, respectively. Figure S12 (b) shows the corresponding HiLo optical sectioning images. 

From the comparison of intensity cross-sections in Figure S12 (c), high-contrast optically 

sectioned images are obtained by the HiLo method. 
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Fig. S12. Comparison results of Alexa Fluor 488 labeled ex-vivo transparent mouse brain. (a) 

Wide-field images, (b) HiLo optical sectioning images, and (c) comparison of normalized intensity 

profile. 

We have performed ex-vivo image of the thicker transparent mouse brain tissue (500 µm 

thickness) dyed with Alexa Fluor 488 as shown in Figure S13. Compared with the uniform 

illumination image (Figure S13 (a)), the HiLo imaging (Figure S13 (b)) significantly suppresses 

out-of-focus background noise. Figure S13 (c) shows comparison of the intensity profile of central 

hollow structures of brain tissue indicated by the dashed lines. 

 

 

 

 

Fig. S13. Comparison results of Alexa Fluor 488 labeled ex-vivo transparent mouse brain 

tissue. (a) Wide-field images, (b) HiLo optical sectioning images, and (c) comparison of 

normalized intensity profile. 
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Section 9: RCNN DL model for optical sectioning endo-microscopy 

 

Fig. S14. Randomly selected data of five different types of fluorescent samples with 2800 training 

and 700 validation dataset image pairs. 

 

 

 

Section 10: Original U-net model architecture 

 

Figure S15 demonstrates the architecture of the original U-net model. The original U-Net model 

for HiLo optical sectioning images includes 19 convolutional layers. Both the size of the input and 

output image are 256×256 pixels. In the encoder part, 10 convolutional layers and 4 max pooling 

layers are used to make the input image can gradually down-sampling from 256×256 to 16×16 

pixels. The kernel size in the encoder of each convolutional layer is set to 4×4, and the activation 

function of each convolutional layer is chosen as a leaky rectified linear unit (LReLU) with a slope 

of 0.2. In the decoder path, 9 convolutional layers (4×4 kernel size) and 4 transpose convolution 

layers (blue arrows in Figure S15) are utilized to up-sampling and regress the image from 16×16 

to 256×256 pixels. The activation function for decoder in each convolutional layer is rectified 
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linear unit (ReLU). For the last layer, the activation function is applied the tanh. Between the 

encoder and decoder, the skip connection is used to concatenate the features that match between 

the down-sampling and up-sampling processes. 

 

 
Fig. S15. Original U-net model for HiLo optical sectioning images. 

 

 

Section 11: Residual convolutional neural network (RCNN) model architecture 

Figure S16 shows the structure of the RCNN model to obtain optical sectioning images 

from the wide-field. Both input and output images are 256×256 pixels. The RCNN model is based 

on the U-net architecture that includes the encoder and decoder part(6, 7). In the encoder, 4 residual 

down-sampling blocks are used to make the input image gradually down-sampled from 256×256 

to 16×16 pixels to generate different size of feature maps. Each residual down-sampling block 

includes two convolutional layers (yellow square), shortcut connections (black arrow) and max 

pooling layer (red arrow) depicted in Figure S17 (a). In the decoder path, 4 residual up-sampling 

blocks are utilized to up-sampling and regress the image from 16×16 to 256×256 pixels. One 

residual up-sampling block consists of two convolutional layers (yellow square), shortcut 

connections (black arrow) and up-sampling layer (blue arrow) depicted in Figure S17 (b). Detailed 

parameters of each layer for the encoder and decoder are listed in Tables S2 and S3, respectively.  
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The kernel size for each convolutional layer is set to 3×3 with stride (1,1) and the leaky rectified 

linear unit (LReLu) with slope 0.5 is chosen to be the corresponding activation function. The 

shortcut connection is operated by utilizing the identity shortcuts that use 3×3 convolutional filters 

with stride (1,1) to make the input and output have the same dimensions to add together. For the 

last layer, the tanh activation function is applied. Between the encoder and decoder, the skip 

connection is used to concatenate the features that match between the down-sampling and up-

sampling processes. This step can make the down-sampling low level features directly pass to the 

high level layers in up-sampling, which is helpful for image transformation. In addition, the 

dropout layer and batch normalization layer are applied to the model, which can induce more 

stabilization in training process and performance. With the help of the shortcut connection 

operations, the model turns into the counterpart residual version of inputs. It solves 

vanishing/exploding gradients and degradation issue of the conventional convolutional neural 

network. 

 

 

Fig. S16. RCNN model for HiLo optical sectioning images. 
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Fig. S17. Detailed architecture of the RCNN model. (a) Residual down-sampling block for 

encoder. (b) Residual up-sampling blocks for decoder. 

Table S2. The encoder architecture of the RCNN model 
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Table S3. The decoder architecture of the RCNN model 
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Section 12: Prediction results of RCNN model validation dataset 

The left column of Figure S18 is the absolute error between the Iuni and the IHiLo, while the right 

column is the difference between the 𝐼HiLo and IHiLo. Therefore, the predicted images (𝐼HiLo) shows 

optical sectioning images, which is comparable to the ground truth (IHiLo). The absolute error maps 

demonstrate that the trained RCNN model significantly suppresses out-of-focus background noise 

and enhances signal-to-noise ratio of in-focus plane images. 

 

Fig. S18. Comparison of inputs, ground truths, and predictions from validation dataset. 

Absolute error maps on the left column show difference between the input and the ground truth 
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images. Absolute error maps on the right column show the difference between the prediction and 

ground truth images. 

Section 13: Prediction results of RCNN model training dataset  

To test the generality of trained RCNN model, we compared the input, ground truth, and 

prediction images from the training dataset depicted in Figure S19, which shows similar results as 

the validation dataset (Figure S18). Our model removes the background noise and increases the 

signal-to-noise ratio of the predicted images. 

 

Fig. S19. The comparison results of the inputs, ground truths, and predictions from the 

training dataset. (a) Resultant images of five different types of fluorescent samples that include 

ex-vivo mouse brain tissue, fluorescent beads, corn stem, lily anther, and basswood stem taken by 
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training dataset. (b) Left column of absolute error maps are the difference between the input and 

the ground truth images. Right column of absolute error maps is the difference between the 

prediction and ground truth images. 

 

Section 14: Quantitative evaluation metrics for model 

The performance of the RCNN model can be quantitatively accessed by two different kinds 

of evaluation metrics(8). First is the peak signal to noise ratio (PSNR), which can indicate the 

quality of the images to quantify the model’s reconstruction quality. PSNR is defined by the 

difference between two images and it can be computed as follows 

                                                          












=

MSE

MAX
PSNR I

10log20 ,                                          (S17) 

where the MAXI means the maximum value of the image. MSE is the mean squared error that can 

be written as 
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where Im is the input (Iuni) or model predict images (𝐼HiLo). The X and Y represent the width and 

height of one sectioning image, and x and y are the spatial pixel coordinates in each sectioning 

image. If the PSNR is higher, it means that the predicted images by the RCNN model have 

comparable image quality with the ground truth images (IHiLo). 

 Structural similarity (SSIM) is the second evaluation metric, and it can quantify the 

similarity between the model prediction and ground truth images. SSIM can be calculated as  

( ) ( ) ( ) ( ) ],,,[, m2m1m2m1m2m1m2m1


IIstIIcnIIluIISSIM = ,             (S19) 

where the Im1 and Im2 are the two images to be compared. The Im1 represents the input or model 

predict image and Im2 is the ground truth images. The lu, cn, and st are the luminance, contrast, and 

structure, respectively. α, β, and γ mean the weighting factors for corresponding parameters, and 

here we set it to unity. 

Table S4 shows PSNR and SSIM values for input and predicted images from the validation 

dataset. Compared to the input images, the average PSNR and SSIM values from the RCNN 

predicted images is improved ~ 14 dB and 4.5 times, respectively. From Table S4, both PSNR and 
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SSIM in the RCNN model offer the highest values, which demonstrates that our RCNN has better 

performance and advantages than the conventional U-net due to shortcut connections. 

Table S4. Quantitative comparison of the input and DL predicted images 

 

 

Section 15: Ex-vivo mouse brain imaging prediction from the RCNN model 

Figure S20 (a) shows ex-vivo images of Iuni, IHiLo and 𝐼HiLo, at different depths. Due to the lack of 

transparent process, the brain tissue generates much more scattered background noise signal, 

making the fluorescent tracer inside the brain tissue hard to observe clearly under the uniform 

illumination. With the well-trained RCNN model, the wide-field images (i.e. Iuni) can directly 

transfer into corresponding optical sectioning images (i.e. 𝐼HiLo). In Figure S20 (a), fine features of 

perivascular space are clearly observed. The absolute error maps in Figure S20 (b) demonstrate 

that predicted 𝐼HiLo have comparable optical sectioning images with the HiLo images (i.e. IHiLo). 

The predicted average PSNR and SSIM metrics of ex-vivo brain images at three different depths 

are 31.61 dB and 0.82, which match the validation dataset values. 
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Fig. S20. Images comparison results for the ex-vivo mouse brain. a, With corresponding Moiré 

metalens rotation angles, Iuni, IHiLo and 𝐼 HiLo fluorescent images at three different depths. b, 

Absolute error maps in the left column show the difference between Iuni and IHiLo, while absolute 

error maps in the right column show the difference between 𝐼HiLo and IHiLo. 

 

Section 16: In-vivo imaging prediction from the RCNN model  

To demonstrate the well-trained RCNN model for the in-vivo preclinical applications, we have 

taken high-contrast optical sectioning images of both right and left side of in-vivo mouse brain, as 

shown in Figure S21 and S22. With our RCNN model, 𝐼HiLo demonstrate high-contrast optical 

sectioning images, and background noise is significantly suppressed, which is evident from the 

absolute error maps in Figure S21 (b) and S22 (b). 

 

Fig. S21. In-vivo fluorescence images of right side of mouse brain. a, In-vivo images of wide-

field, ground truth, and model predictions at three different depths. b, Absolute error maps 

comparison results on the left column show the difference between Iuni and IHiLo, while absolute 

error maps on the right column show the difference between 𝐼HiLo and IHiLo. 
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Fig. S22. In-vivo fluorescence images of left side of mouse brain. a, In-vivo images of wide-

field, ground truth, and model predictions at three different depths. b, Absolute error maps 

comparison results on the left column show the difference between Iuni and IHiLo, while absolute 

error maps on the right column show the difference between 𝐼HiLo and IHiLo. 
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