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Section 1: The design of GaN meta-atom for metasurface
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Fig. S1. GaN meta-atom specification. (a) Meta-atom for Moiré metalens consisting of GaN nano
cylinder and Al>03 sapphire substrate with 800 nm height (H) and 300 nm period (P). (b) Simulated

results of transmission and phase spectra with different meta-atom diameters.



Table S1. Transmission and phase shift of the cylinder meta-atoms with different diameter.

Diameter (D, nm) | Transmission Phase (°)
110 0.918 0
120 0.933 22.69
130 0.933 51.66
140 0.904 86.08
150 0.883 123.42
160 0.927 165.27
164 0.961 184.08
168 0.987 204.6
170 0.993 215.18
174 0.989 236.55
178 0.964 257.15
180 0.949 266.87
184 0.918 285.69
188 0.901 303.52
190 0.899 312.57
192 0.901 159.39
196 0.913 346.47

Section 2: Moiré metalens fabrication procedure
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Fig. S2. Fabrication procedure of the GaN Moiré metalens.

Section 3: Telecentric configuration of the meta-varifocal endo-microscopy

Figure S3 shows the experimental setup and measurement of telecentric configuration for the
endo-microscope. Figure S3 (a) shows the telecentric configuration for our endo-microscope. The
measurements of the endoscope's associated focal length and NA at various Moiré metalens
rotation angles are depicted in Figure S3 (b). To verify the invariant magnification property of our
endo-microscope, a resolution chart is placed at the different axial focal planes of the endoscope
probe depicted in Figure S3 (c). The resolution chart is shifted from the initial in focus plane (z =
0 pm) to z = 1500 pm plane with 300 um spacing, which changes from sharp images to blurred
images (top row of Figure S3 (c)). By rotating the Moiré metalens, with relative angles from 5° to
120°, the corresponding defocused image can be refocused to in-focus (bottom row of Figure S3

(c)). The results show that the telecentric design keeps both magnification and FOV as constant.
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Fig. S3. Experimental setup and measurement of the Moiré metalens based varifocal endo-
microscopy. (a) The telecentric setup of endo-microscopy, which includes a miniature objective
lens, rod achromatic doublet relay, Moiré metalens, and tube lens. (b) Experimental results of focal
length and the corresponding NA of the endoscope at different Moiré metalens rotation angles. (c)
The digital axial scanning for multi-plane images.

Section 4: Ray transfer matrix for the telecentric design
Ray transfer matrix calculation can help us confirm the constant magnification of the

telecentric design(1). In Figure S4, the focal length of the endoscope probe is fe. The 4-f relay lens
(R1 and R2) consists of focal lengths with fr1 and fro, and the lengths of the Moiré metalens and

tube lenses are fwmoire and fr, respectively. Ray transfer matrix for propagation (P) in a medium with

9

where d is the separation distance between two reference surfaces along the optical axis. We

a constant refractive index is given by

(S1)

assume that the optical lens components used in Figure S4 are all thin lenses, which can follow

lens transfer matrix (L)



L=|_1 4], (S2)

where f is the focal length of the optical lens. The ray transfer matrix of Moiré metalens based

varifocal endo-microscopy (M) can be determined as
M = Pr Ly X Pr _poire X Lnioire X Putoire-r, X Lr, X Pr,-Rr, X Lr, *Pr g XLg, (S3)

where the Pr-moire IS corresponding to the air propagation matrix from the Moiré metalens to the
tube lens. We can divide the entire transfer matrix M into several parts that include endoscope
probe matrix (Mg), 4-f relay lens matrix (Mgr), Moiré metalens matrix (Mwmoire) and tube lens matrix

(MT). These yield the following equations

1 0
M E = _i y (84)
fE
fro foo_ frofe
f Rt
— R1 R1
Mg 0 fa | (S5)
fro
1- f fr fro —# fr
Ms: = Moire Moire
Moire 1 fro 1 : (S6)
fMoire Moire
0 fr
Me=i_ 1 1 (S7)
fr
After multiplying all the matrices, the entire matrix can be written as
frafr  fr fro® fe — for® fuioire fr
fof fr fro fro
M = E 'R2 R1'R2 "Moire
0 fro fE ) (S8)
le fT

From the ray transfer matrix, magnification of the entire system can be described in the first term
of the matrix (Mq,1), which indicates that the system magnification does not depend on the focal
length of the Moiré metalens (fwoire) to satisfy the telecentric design. In addition, the axial position

of the focusing beam (F) can be computed as



fro” fe’

M
F= -2 = fE - 2 .
le fMoire

Mis (59)

The total axial displacement of the focusing beam (Az) in telecentric design can be calculated as

fR22 sz _ fR22 sz

Az = FMax - FMin = 2 2
le fMoire, Min le fMoire, Max

_ fro e 1 B 1
fRl2 fMoire,Min fMoire, Max ) (810)
fra” fe2Ac
RZ 2E (eMax - HMin )
le T
where Fumax, Fmin are the maximum and minimum axial position of the focusing beam, which can

be given by fvoire,min and fmoire Max, respectively.
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Fig. S4. The telecentric configuration of the Moiré metalens based varifocal endo-microscopy.



Section 5: The telecentric focusing measurement

In telecentric focusing measurement results, we make the laser beam source go through a
focus lens to generate the point source beam at the image plane. The point source pass through the
tube lens to become the parallel beam to illuminate moiré metalens. After the beam pass through
the endoscope probe can generate the focus point at focal plane. The corresponding focal length
of the endoscope probe can be tuned when the rotation angles of the moiré metalens are adjusted.
Finally, we set a CCD on a motorized linear stage to execute the axial scanning to measure
telecentric focusing measurement results as shown in Figure S5. Except for green wavelength, we
also measure the telecentric tuning distance under the blue (491 nm) and red (633 nm) wavelengths,
as shown in Figures S6 and S7. With the blue laser, the focal length of the endoscope probe can
be tuned from ~ 15.4 to ~ 20.6 mm (Az = 5.15 mm) at Moiré metalens rotation angle of 360°to
60°. The NA of endoscope probe changes from ~ 0.26 to ~ 0.19. The lateral and axial resolutions
vary from 1.15 to 1.54 um and 18.84 to 33.51 um, respectively. With the red laser, the focal length
of the endoscope probe can be tuned from ~ 15.7 to ~ 23.4 mm (Az = 7.68 mm) and the
corresponding NA values vary from ~ 0.26 to ~ 0.17. The lateral and axial resolutions vary from
1.51to0 2.25 um and 19.5 to 43.25 um, respectively. The experimental results show our system can

be operated for broad visible spectrum from 491 nm to 633 nm.
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Fig. S5. Telecentric focusing measurement setup.
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Section 6: HiL.o imaging principle

HiLo imaging process is a very efficient method to obtain optical sectioning images in wide-
field microscopy (2-5). For one HiLo optically sectioned image, it requires a pair of images in
distinct illumination situation: one is under the uniform illumination (luni), and the other is under
speckle illumination (Isp). luni can be represented as the combination of the in-focus component

(linf) and defocus component (Iger)
Lni (%, Y) = Ting (X, Y) + Tges (X, Y) , (S11)

where X, y represents the spatial coordinates at two-dimensional image plane.

"Iy content

I, content

Fig. S8. Uniform illumination image (luni) of mouse brain perivascular spaces.

Figure S8 shows the lyni image of mouse brain perivascular spaces. The high spatial frequencies

content (Iw;) of the HiLo optical sectioned image can be directly extract from the luni
IHi (X’ y) = Iuni (X, y) *GHPcut ) (S12)

where GHPy is the two dimensional Gaussian high-pass filter with certain cut-off frequency (cut).

On the other hand, the speckle illumination image (Isp) can then be decomposed as
Lsp (X, Y) = Ling (X YIM (X, ¥) + 1ges (X, Y) (S13)

where the M(x,y) is the modulation coefficient of the speckle illumination depicted in Figure SO.
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Fig. S9. Speckle illumination image (lsp).

In-focus area of the speckle illumination images has the highest contrast, while the defocus area
has low values. Therefore, the low spatial frequencies content (l.o) of the HiLo image can be

written as

ILo (% Y) =[lyni (X, y) < LSC(X, y)]* GLF ¢ , (S14)
where GLP¢t is the two-dimensional Gaussian low-pass filter that has the identical cut-off
frequency with GHPcyt. LSC(x,y) is the local spatial contrast of the Isp, it can be calculated as
_ <STD(lsp) >sw
T <MV(Ig) >y (S15)

LSC(x,y)

where the <MV(Isp)>sw and <STD(lsp)>sw represent the mean value and standard deviation of the
Isp, which are computed with the sampling window (sw). Hence, the multiplication of luni(X,y) and
LSC(x,y) is able to eliminate the defocus component and extract the in-focus component. Finally,
Figure S10 shows the HiLo optical sectioned image (lhiLo(X,Y)). lniLo(X,y) is generated by merging
both high spatial frequencies content (Ini) andlow spatial frequencies content (ILo) to obtain the
in-focus image with the entire spatial frequency range, and it can be expressed as

Ihico (X, ) = i (X, Y) +[sF x 1o (X, V)T (516)
The scaling factor (sf, typical values is the range 0.5 ~ 3) is able to balance the intensity distribution
between the Ini(x,y) and Io(X,y). Here, in our case the sf = 1 to obtain high-contrast image result.

12



Fig. S10. HiLo optical sectioned image (IHiLo).

Section 7: Varifocal optical sectioning endo-microscopy calibration

By rotating the angle between paired metasurfaces, the microspheres are imaged with a step size
(Az) of 0.3 um and their normalized intensity profiles are shown in Figure S11 (a). Intensity
variation at different depths is calculated at the same region of interest (ROI), and gray values
inside the ROI are averaged to measure sectioning capability. In Figure S11 (a), the full width at
half maximum (FWHM) under uniform illumination is ~ 100 um, and the FWHM of HiLo process
is ~ 35 um, which shows direct and solid evidence that HiLo imaging method empowers optical
sectioning capability.

To verify optical sectioning capability for biomedical tissue, ex-vivo fluorescently labeled
transparent mouse brains are imaged by the micro-endoscope. The water-soluble clearing reagent
(RapiClear ® 1.49, SunJin Lab Inc.) is utilized in the cleaning process, which makes the ex-vivo
mouse brain tissue transparent and clear for observing fine structures (the detailed preparation
process for fixed brain imaging is discussed in Materials and Methods). We adopt fluorescent
tracers that conjugate with Alexa Fluor™ 488 and Alexa Fluor™ 555 to observe the diffusion of
CSF in the brain via cisterna magna injection, and the tracers are able to influx into the perivascular
space. Detailed structures, labeled with Alexa Fluor™ 555 (central emission 4 ~ 600 nm), are
imaged using the green laser for excitation (image results of detailed structures, labeled with Alexa
Fluor™ 488, are shown in Section 8 of Supplementary Materials). The ex-vivo images (luni) of the
transparent brain tissue with a thickness of ~ 250 um under uniform illumination at two different
depths are shown in Figure S11 (b). By adjusting the angles of the Moiré metalens from 5°to 20°,
the focus plane is tuned with the range of 200 um. Due to the inherent scattering effect within the

volumetric brain tissue, out-of-focus haze background can be obviously observed under uniform

13



illumination. With HiLo imaging, the strong haze background can be significantly reduced to
obtain optically sectioned images. The fine structure around perivascular spaces is clearly imaged
in lHiLo, @s shown in bottom row of Figure S11 (b).

The 3D optical sectioning capability of our endo-microscopy is also evaluated by
sequentially imaging ex-vivo transparent brain tissue, along the axial direction, with a step size
(Az) of 10 um. Figure S11 (c) shows 3D images of various perivascular space locations with a
volume size of 750 pum x 750 um x 1 mm. In 3D lui images, strong background noise caused by
scattering severely degrades image quality, and thus the detailed structures of the brain tissue are
hardly to be resolved. Compared to luni images, the out-of-focus background noise is significantly
suppressed in lxiLo images, which provide 3D optical sectioning images with a high signal-to-noise
ratio. Our endo-microscopy demonstrates the ability to resolve clear detailed structures of ex-vivo
mouse brain tissue, such as the vessels deep in the perivascular space. According to the
specification of our electrically controlled rotation stage (GT45, Dima Inc.), the maximum rotation
speed is 140 RPM = 2.3 rev/second. Moreover, the max frame rate of our CCD (GE1650, Prosilica
Inc.) is 32 fps. The fundamental requirement of real-time imaging is about 20 fps, therefore based
on the specification of the rotation stage and CCD, our endoscopic system has high potential to
satisfy the 3D real-time imaging.

AzZ=0pum (6 =5") Az = 200 pm (6 = 20°)

(a)

—HilLo_curve_fit
1 — Uni_curve_fit

SN y

Normalized intensity

’Unl

’HILO
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Fig. S11. Varifocal optical sectioning endo-microscopy calibration. (a) Normalized intensity
distribution of fluorescent microspheres along the axial direction. Blue and red data points are
measured using uniform illumination and HiLo imaging process, respectively (dots: measured raw
data, curve: Gaussian curve fitting). (b) Two different depths of ex-vivo transparent mouse brain
tissue (250 um thickness) tagged with Alexa Fluor™ 555 in both wide-field (i.e. luni) and HiLo
(IHiLo) imaging results. (c) 3D reconstruction volume images of mouse brain various perivascular
space locations in uniform illumination and HiLo process (each 3D image is 750 pm x 750 pm x

1 mm).

Section 8: Ex-vivo mouse brain imaging results

For the brain tissue dyed with Alexa Fluor 488, a blue laser operated at 491 nm (Cobolt
Calypso 200) is used to excite the green fluorescence, with central wavelength of 525 nm. Ex-vivo
images of the transparent mouse brain tissue with the thickness of 250 pum under uniform
illumination for two different depths are shown in Figure S12 (a). Two images, separated with
distance of 200 um in depths, are obtained by tuning mutual angles of the two metasurfaces at 5°
and 20°, respectively. Figure S12 (b) shows the corresponding HiLo optical sectioning images.
From the comparison of intensity cross-sections in Figure S12 (c), high-contrast optically

sectioned images are obtained by the HiLo method.

(a)
Uniform (/) (b)
Az=0pum (6=5")

HiLo(/iLo)

(c)

Normalized intensity
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Az =200 pm (8=20") HiLo(/yyi.0)
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Fig. S12. Comparison results of Alexa Fluor 488 labeled ex-vivo transparent mouse brain. (a)
Wide-field images, (b) HiLo optical sectioning images, and (c) comparison of normalized intensity
profile.

We have performed ex-vivo image of the thicker transparent mouse brain tissue (500 pm
thickness) dyed with Alexa Fluor 488 as shown in Figure S13. Compared with the uniform
illumination image (Figure S13 (a)), the HiLo imaging (Figure S13 (b)) significantly suppresses
out-of-focus background noise. Figure S13 (c) shows comparison of the intensity profile of central
hollow structures of brain tissue indicated by the dashed lines.

(a) (b)

Normalized intensity

1
r ll*
0 y - ~ “J\”yl _SES

0 50 100 150 200 250

Transverse position (pixel size)

Fig. S13. Comparison results of Alexa Fluor 488 labeled ex-vivo transparent mouse brain
tissue. (a) Wide-field images, (b) HiLo optical sectioning images, and (c) comparison of

normalized intensity profile.
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Section 9: RCNN DL model for optical sectioning endo-microscopy

Basswood
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brain tissue beads

Corn stem Lily anther
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Uniform (/)
Input

HiLo(liLo)
Ground truth

Validation

Uniform (/)
Input

HiLo(/yiLo)
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Fig. S14. Randomly selected data of five different types of fluorescent samples with 2800 training

and 700 validation dataset image pairs.

Section 10: Original U-net model architecture

Figure S15 demonstrates the architecture of the original U-net model. The original U-Net model
for HiLo optical sectioning images includes 19 convolutional layers. Both the size of the input and
output image are 256x256 pixels. In the encoder part, 10 convolutional layers and 4 max pooling
layers are used to make the input image can gradually down-sampling from 256x256 to 16x16
pixels. The kernel size in the encoder of each convolutional layer is set to 4x4, and the activation
function of each convolutional layer is chosen as a leaky rectified linear unit (LReLU) with a slope
of 0.2. In the decoder path, 9 convolutional layers (4x4 kernel size) and 4 transpose convolution
layers (blue arrows in Figure S15) are utilized to up-sampling and regress the image from 16x16

to 256x256 pixels. The activation function for decoder in each convolutional layer is rectified
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linear unit (ReLU). For the last layer, the activation function is applied the tanh. Between the
encoder and decoder, the skip connection is used to concatenate the features that match between

the down-sampling and up-sampling processes.

Uni, Iy,

Output
‘ 32 132 (Model prediction)

‘za,dﬂ ‘7’,41'

64 154

Conv 3x3

v
lMax pooling 2x2 l
128 1‘1 28
tConv transpose 3x3 |
Concatenate J Prg :
o
Conv 1x1, tanh i 1256

o

Fig. S15. Original U-net model for HilLo optical sectioning images.

Section 11: Residual convolutional neural network (RCNN) model architecture

Figure S16 shows the structure of the RCNN model to obtain optical sectioning images
from the wide-field. Both input and output images are 256x256 pixels. The RCNN model is based
on the U-net architecture that includes the encoder and decoder part(6, 7). In the encoder, 4 residual
down-sampling blocks are used to make the input image gradually down-sampled from 256x256
to 16x16 pixels to generate different size of feature maps. Each residual down-sampling block
includes two convolutional layers (yellow square), shortcut connections (black arrow) and max
pooling layer (red arrow) depicted in Figure S17 (a). In the decoder path, 4 residual up-sampling
blocks are utilized to up-sampling and regress the image from 16x16 to 256x256 pixels. One
residual up-sampling block consists of two convolutional layers (yellow square), shortcut
connections (black arrow) and up-sampling layer (blue arrow) depicted in Figure S17 (b). Detailed

parameters of each layer for the encoder and decoder are listed in Tables S2 and S3, respectively.
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The kernel size for each convolutional layer is set to 3x3 with stride (1,1) and the leaky rectified
linear unit (LReLu) with slope 0.5 is chosen to be the corresponding activation function. The
shortcut connection is operated by utilizing the identity shortcuts that use 3x3 convolutional filters
with stride (1,1) to make the input and output have the same dimensions to add together. For the
last layer, the tanh activation function is applied. Between the encoder and decoder, the skip
connection is used to concatenate the features that match between the down-sampling and up-
sampling processes. This step can make the down-sampling low level features directly pass to the
high level layers in up-sampling, which is helpful for image transformation. In addition, the
dropout layer and batch normalization layer are applied to the model, which can induce more
stabilization in training process and performance. With the help of the shortcut connection
operations, the model turns into the counterpart residual version of inputs. It solves
vanishing/exploding gradients and degradation issue of the conventional convolutional neural

network.

Uni, Iy, _16 16 1

} »~ i
i 32 32' (Model prediction)

1"" ‘y""

i s4 64 t
Residual Downsampling block g o
Concatenate l 1287 128'
Residual Upsampling block .
Conv 1x1, tanh >

b 256 '

Fig. S16. RCNN model for HiLo optical sectioning images.
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Fig. S17. Detailed architecture of the RCNN model. (a) Residual down-sampling block for

encoder. (b) Residual up-sampling blocks for decoder.

Table S2. The encoder architecture of the RCNN model

Input Output Output shape Tvpe
INnputs INnputs (256.,256,1) Input iMmage
Inputs Convi1__1 (256,.256,16) Conv2Z2D 3x<3
Convi1__1 Convil_2 (256,256,16) ConvzD 3x<3
Inputs Shortcut__ 1 (256.256.16) Convz2D 3x<x3

Convil_ 2, Shortcut__ 1 Sum__1 (256.256,16) Add
Sum__1 Pool1 (128,128,16) MaxPooling2D
Pool1 Conv2_ 1 (128.128.32) ConvZ2D 3x<3
Conv2_ 1 Conv2_2 (128,128,.32) ConvZ2D 3x<x3
Pool1 Shortcut__2 (128,128,32) Convz2D 3x<3
Conv2 2, Shortcut_ 2 Sum_ 2 (128,128.,32) Add
Sum_2 Pool2 (64.,64,32) MaxPooling2D
Pool2 Conv3_ 1 (64.64.64) Conv2D 3x<3
Conv3__ 1 Conv3_ 2 (64,64 ,64) Convz2ZD 3x<3
Poolz2 Shortcut_3 (64.64.64) Convz2D 3x<x3
Conv3_2, Shortcut_ 3 Sum_3 (64.,64,64) Add
Sum_3 Pool3 (32.32.64) MaxPooling2D
Pocol3 Conv4a 1 (32.32.128) Convz2D 3x<3
Conv4a__ 1 Conva__2 (32.32.,128) ConvZD 3x<3
Pool3 Shortcut_4 (32.32.128) ConvzD 3x<3

Convd_ 2, Shortcut_ 4 Sum_ 4 (32.32.128) Add
Sum_ 4 Pool4 (16.16.128) MaxPooling2D
Poold Conv5s_ 1 (16,16,.256) ConvZ2D 3x<3

Conv5s_ 1

Convs_2

(16.16,256)

ConvzZD 3x3

Pool4

Shortcut_ 5

(16,16,256)

ConvzD 3x<3

Conv5_2, Shortcut__

5 Sum_5

(16.16.256)

Add
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Table S3. The decoder architecture of the RCNN model

Input Output Output shape Type
Sum_5 Up_1 (32,32,256) UpSampling2D
Sum_4, Up_1 Merge_1 (32,32,384) Concatenate
Merge 1 Conv6_1 (32,32,128) Conv2D 3x3
Conv6 1 Conv6 2 (32,32,128) Conv2D 3x3
Merge 1 Shortcut 6 (32,32,128) Conv2D 3x3
Conv6_2, Shortcut_6 Sum_6 (32,32,128) Add
Sum_6 Up 2 (64,64,128) UpSampling2D
Sum_3,Up 2 Merge 2 (64,64,192) Concatenate
Merge 2 Conv7_1 (64,64,64) Conv2D 3x3
Conv7_1 Conv7_2 (64,64,64) Conv2D 3x3
Merge 2 Shortcut_7 (64,64,64) Conv2D 3x3
Conv7_2, Shortcut_7 Sum_7 (64,64,64) Add
Sum_7 Up_ 3 (128,128,64) UpSampling2D
Sum 2, Up 3 Merge 3 (128,128,96) Concatenate
Merge 3 Conv8 1 (128,128,32) Conv2D 3x3
Conv8_1 Conv8_2 (128,128,32) Conv2D 3x3
Merge_ 3 Shortcut_8 (128,128,32) Conv2D 3x3
Conv8_2, Shortcut_8 Sum_8 (128,128,32) Add
Sum_8 Up 4 (256,256,32) UpSampling2D
Sum_1, Up_4 Merge 4 (256,256,48) Concatenate
Merge 4 Conv9_1 (256,256,16) Conv2D 3x3
Conv9_1 Conv9 2 (256,256,16) Conv2D 3x3
Merge 4 Shortcut_9 (256,256,16) Conv2D 3x3
Conv9_2, Shortcut_9 Sum_9 (256,256,16) Add
Sum_9 Conv10_1 (256,256,1) Conv2D 1x1
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Section 12: Prediction results of RCNN model validation dataset

The left column of Figure S18 is the absolute error between the luni and the IniLo, While the right
column is the difference between the TniLo and IniLo. Therefore, the predicted images (IniLo) shows
optical sectioning images, which is comparable to the ground truth (IniLo). The absolute error maps
demonstrate that the trained RCNN model significantly suppresses out-of-focus background noise
and enhances signal-to-noise ratio of in-focus plane images.

Absolute error maps

I’uni_ IHiLoI IiHiLo_ lHiLoI
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100 pm
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Fig. S18. Comparison of inputs, ground truths, and predictions from validation dataset.

Absolute error maps on the left column show difference between the input and the ground truth
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images. Absolute error maps on the right column show the difference between the prediction and
ground truth images.
Section 13: Prediction results of RCNN model training dataset

To test the generality of trained RCNN model, we compared the input, ground truth, and
prediction images from the training dataset depicted in Figure S19, which shows similar results as
the validation dataset (Figure S18). Our model removes the background noise and increases the

signal-to-noise ratio of the predicted images.

(a) (b)
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Fig. S19. The comparison results of the inputs, ground truths, and predictions from the
training dataset. (a) Resultant images of five different types of fluorescent samples that include

ex-vivo mouse brain tissue, fluorescent beads, corn stem, lily anther, and basswood stem taken by
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training dataset. (b) Left column of absolute error maps are the difference between the input and
the ground truth images. Right column of absolute error maps is the difference between the

prediction and ground truth images.

Section 14: Quantitative evaluation metrics for model

The performance of the RCNN model can be quantitatively accessed by two different kinds
of evaluation metrics(8). First is the peak signal to noise ratio (PSNR), which can indicate the
quality of the images to quantify the model’s reconstruction quality. PSNR is defined by the

difference between two images and it can be computed as follows

(S17)

v MSE

where the MAX; means the maximum value of the image. MSE is the mean squared error that can

PSNR = 20-Ioglo( MAX, J

be written as
X Y

MSE:ZZ(Im(X’y)_ IHiLO (X’ y))z , (818)

x=1 y=1
where I is the input (luni) or model predict images (TwiLo). The X and Y represent the width and
height of one sectioning image, and x and y are the spatial pixel coordinates in each sectioning
image. If the PSNR is higher, it means that the predicted images by the RCNN model have
comparable image quality with the ground truth images (IniLo).

Structural similarity (SSIM) is the second evaluation metric, and it can quantify the
similarity between the model prediction and ground truth images. SSIM can be calculated as

SSIM(Imll ImZ)Z[IU(Iml’ |m2)a 'Cn(|m1’ |m2)ﬂ 'St(|m17 |m2)7] , (S19)

where the Im1 and Imz are the two images to be compared. The Im1 represents the input or model
predict image and Im2 is the ground truth images. The lu, cn, and st are the luminance, contrast, and
structure, respectively. a, g, and y mean the weighting factors for corresponding parameters, and
here we set it to unity.

Table S4 shows PSNR and SSIM values for input and predicted images from the validation
dataset. Compared to the input images, the average PSNR and SSIM values from the RCNN
predicted images is improved ~ 14 dB and 4.5 times, respectively. From Table S4, both PSNR and
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SSIM in the RCNN model offer the highest values, which demonstrates that our RCNN has better
performance and advantages than the conventional U-net due to shortcut connections.

Table S4. Quantitative comparison of the input and DL predicted images

Input with ground truth 18.60 dB 0.18
U-net with ground truth 25.94 dB 0.66
RCNN with ground truth 32.27 dB 0.81

Section 15: Ex-vivo mouse brain imaging prediction from the RCNN model

Figure S20 (a) shows ex-vivo images of luni, lniLo and ThiLo, at different depths. Due to the lack of
transparent process, the brain tissue generates much more scattered background noise signal,
making the fluorescent tracer inside the brain tissue hard to observe clearly under the uniform
illumination. With the well-trained RCNN model, the wide-field images (i.e. luni) can directly
transfer into corresponding optical sectioning images (i.€. ThiLo). In Figure S20 (a), fine features of
perivascular space are clearly observed. The absolute error maps in Figure S20 (b) demonstrate
that predicted IniLo have comparable optical sectioning images with the HiLo images (i.€. IniLo).
The predicted average PSNR and SSIM metrics of ex-vivo brain images at three different depths

are 31.61 dB and 0.82, which match the validation dataset values.

(a) (b)
Uniform (/) HiLo (/4iLo) RCNN (/yio) Absolute error maps
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Fig. S20. Images comparison results for the ex-vivo mouse brain. a, With corresponding Moiré
metalens rotation angles, luni, IniLo and I wiLo fluorescent images at three different depths. b,
Absolute error maps in the left column show the difference between luni and IniLo, while absolute

error maps in the right column show the difference between TniLo and lnio.

Section 16: In-vivo imaging prediction from the RCNN model

To demonstrate the well-trained RCNN model for the in-vivo preclinical applications, we have
taken high-contrast optical sectioning images of both right and left side of in-vivo mouse brain, as
shown in Figure S21 and S22. With our RCNN model, TiLo demonstrate high-contrast optical
sectioning images, and background noise is significantly suppressed, which is evident from the

absolute error maps in Figure S21 (b) and S22 (b).
(a) (b)
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Fig. S21. In-vivo fluorescence images of right side of mouse brain. a, In-vivo images of wide-
field, ground truth, and model predictions at three different depths. b, Absolute error maps
comparison results on the left column show the difference between luni and IniLo, While absolute

error maps on the right column show the difference between IniLo and luiLo.
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Fig. S22. In-vivo fluorescence images of left side of mouse brain. a, In-vivo images of wide-

field, ground truth, and model predictions at three different depths. b, Absolute error maps

comparison results on the left column show the difference between luni and lniLo, While absolute

error maps on the right column show the difference between IniLo and luiLo.
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