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1 Doping-dependent band structures
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Figure S1. Doping-dependent band structures along the I' — M high-symmetry line.

Fig. S1 illustrates DFT band structures obtained along the I' — M high-symmetry line, showing their
variation with respect to doping levels. We observed that at the doping level corresponding to the calculated
peak of AHC (i.e., at Fe 0.075), the Fermi energy resides just above the intersection of the gapped band
crossing. A decline in the AHC is observed in two distinct scenarios. First, when excluding states from
the lower section of the band crossing (evident at Fe 0.10), and second, when incorporating states from
the upper portion of the band crossing, which exhibit an opposite sign. This observation is consistent with
the momentum-dependent BC, as illustrated in Fig. 4.
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2 k,-dependent band structures and Berry curvature
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Figure S2. Momentum-resolved out-of-plane BC integrated up to —60meV below the Fermi energy evaluated in the (a)
k., =7/2 and (b) k, = m planes. Band structures evaluated in the (¢) k, = 7/2 and (d) k, = 7 planes.

Fig. S2 shows the BC and band structures depending on the out-of-plane crystal momentum k,. We
observed two peaks in the BC around the M-point when k, = 7/2, where gapped band crossings occur.

However, the BC is significantly suppressed for k, = m, suggesting that the BC is mainly contributed
around the k, = 0 plane.



WILEY-VCH

3 Momentum-resolved Berry curvature in k, = 0 plane

Figure S3. (a) Band structures around Fermi energy in the k, = 0 plane. (b) Momentum-resolved out-of-plane Berry
curvature (in AQ) integrated up to —60 meV below the Fermi energy.

We investigate the band structures and momentum-dependent Berry curvature in the k, = 0 plane,
presented in Fig. S3. We find four Weyl points in the k, = 0 plane, consistent with previous reports,'
and also find the peak in the Berry curvature at around the Weyl points. However, the value of the peak
is about 40 times smaller than those in the k, = 0 plane (=€, of 190 A? versus 7887 A?), and there is
a negative contribution present around the Weyl points with a peak value of —76 A2. Although there is
a net Berry curvature contributed around the Weyl points that are in line with previous literature, we
expect that the major contribution is from the gapped band crossing in the k, = 0 plane.
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4 Band structures and doping-dependent AHC using virtual crystal approx-
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Figure S4. AHC obtained by VCA compared with (a) experimental and (b) theoretical values calculated by chemical
potential shift. Band structures calculated by VCA for (c¢) Fe 0.075, (d) undoped, and (d) Ni 0.075 doped cases. We note
that there is a small difference between the CoSz band structures in panel (d) and Fig. 2 (b) since in the calculations with
VCA, Co pseudopotential without semicore s and p states are used.

In order to check the validity of treating the doping by chemical potential shifts (or equivalently changing
the electron number), the electronic structures and AHC using the VCA is calculated, which is a reasonable
way to include the effect induced by atomic species change given the similar atomic numbers between Fe,
Co, and Ni. We note that the previous DF'T calculations of Co;_,Fe, O, using the VCA give magnetization
values in good agreement with those from experiments and from supercell calculation.*® Fig. S4 (a-b) shows
the comparison between experimental and theoretical AHC calculated by chemical potential shifts and by
VCA. We find that the overall dependence of AHC on doping is maintained, especially the peak in the
AHC for the Fe-doped case. Moreover, the comparison between the band structures obtained by VCA
shows that the effect of the doping, within the limit of the VCA, is mainly considered as the rigid band
shift, providing support for treating the doping by chemical potential shifts. We note that around the
peak AHC value, the Fermi energy is located within the gapped band crossing around the M-point (Fig.
S4 (c)), consistent with those calculated by chemical potential shifts.
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5 Energy versus anomalous Hall conductivity calculated for CoS,
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Figure S5. Energy-dependent AHC calculated for CoSs obtained by integrating the Berry curvature up to the energy F.
The Fermi energy is set to zero.

We calculate the energy-dependent AHC calculated for CoSs and find that there is a peak in the AHC
around -60 meV, with a peak value of 1056 Q 'cm™'. The overall features of AHC with respect to the
energy are consistent with the previous report.! From the energy dependence, we expect a large increase in
AHC with hole doping, consistent with both the experimentally measured and calculated doping-dependent
AHC, having a peak value as the amount of hole doping or negative chemical potential shift increases.
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6 Tight-binding analysis

In this section, we focus on elucidating the process of deriving BCs, which exhibit equal-signed peaks
across the entire BZ. This is achieved by integrating SOC into spin-polarized Dirac dispersions, wherein
the nodes are safeguarded by mirror symmetry. In order to encapsulate the fundamental characteristics of
CoS,, we construct a rudimentary conceptual model as outlined below. Initially, we contemplated a two-
dimensional (2D) rock-salt lattice structure, as exemplified in Fig. 5(b). This reflects the three-dimensional
(3D) rock-salt structural composition of CoS,. Given that the BC of CoSs manifests a peak at the k, =0
plane, contributing significantly to the AHE, we reduce the dimensions to two in order to describe the
effective 2D system positioned at the k, = 0 plane. Subsequently, based on the DFT calculations, we
utilize d,» and d,2_,» as the foundation orbitals at each lattice site. The final assumption is that the
model Hamiltonian is spin-polarized, reflecting that CoS, is half-metallic. We commence with a 4 x 4
tight-binding model on the 2D rock-salt lattice, excluding SOC, but hosting Dirac dispersions in proximity
to the Fermi level. This model comprises two sublattice sites, labeled A and B, where the two d-orbitals are
located. The corresponding Bloch Hamiltonian, which includes up to the next nearest hopping processes,

assumes the following form:
_ (haa(k) hap(k)
Holl) = (hBA(k) hep(k) )’ 1)

where haa, hap, and hgg are 2 X 2 matrices. The submatrices haa(k) = —egog + €4(k)o, + v(k)o, and
hgg(k) = €yoo + €q(k)o. + v(k)o, describe the hopping processes within the same sublattices, where
ea(k) = to(cos k; + cosk,) and v(k) = t;(cos k, — cosk,). We assume that A and B sites generally exhibit
different on-site potential +¢y. Moreover, for simplicity, we discard the term proportional to the I, 4 matrix
because it does not affect the BC. Conversely, the inter-sublattice hopping processes are represented as
follows:

st = iy = (00 1) @

where w(k) = ty + tye " Fethy) 4 tae=s 4 567y Here, a dimensionless real number « is introduced to
distinguish hopping processes between different d-orbitals.

By appropriately tuning the model parameters, we can identify four Dirac nodes along k, = £k,. These
Dirac points are protected by mirror symmetry with respect to the (11) and (1 — 1) planes. Notably, the
off-diagonal elements of haa and hpp disappear when k, = £k, because v(k,, £k,) = 0. In other words,
the Hamiltonian H, separates into two blocks corresponding to d.» and d,2_,2 orbitals, which possess
different mirror eigenvalues from each other. As a result, bands from different blocks can intersect each
other without gap-opening along k, = %k, giving rise to Dirac nodes, as illustrated in Fig. 5(b). The four
band dispersions along k, = £k, are stated as follows:

Ey+(k) =2tgcosk £ /et + di
(3)
Ey i (k) = 2tgcosk £+ /€3 + y2dZ,

where k = /k2 + k2 and dy = tycosk + 3.

We obtained the effective 2 x 2 linear Hamiltonian around the Dirac points as follows. We denote four
Dirac nodes as k(()l) = (ko, ko), k(()2) = (—ko, ko), k(()g) = (—ko, —ko), and k(()4) = (ko, —ko), where kq is a
positive number obtained from the band-crossing condition E (ko) = FEs_(ko). At each Dirac point,
the eigenvectors of the two bands crossing each other are of the form ng)(ko) = (ozgj),(), ﬁfj),O)T and
véj) = (O,ozgj )0, Béj))T. By projecting the original vector space described by Hy(k) onto the subspace
spanned by ng )(k:o) and ng )(k:g), we obtain four 2 x 2 effective Hamiltonians around the four Dirac nodes
given by

HY)e(q) = f9)(a)os + £ (a)o. (4)

)
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where q is the momentum with respect to the Dirac point at the j-th quadrant of the BZ and o, is
the Pauli matrix. Here, fé’jm) = C1(84,j0x — Syjqy) and féQ = C5(S4,iqx + Syjqy), where C; and Cy are
real-valued coefficients determined by the band parameters, and s,; = —S,2 = —S;3 = Sz4 = Sy1 =

Sy2 = —Sy3 = —Sy4 = 1. As a result, the effective Hamiltonian satisfies Hé’lgﬁ(qx,qy) = Héi)ﬁ(—qm,qy) =

Héi)ﬁ(—qx, —qy) = Héi)ﬁ(qx, —qy), reflecting the mirror symmetry of the original Hamiltonian Hy(k). The

corresponding Dirac cones are illustrated in Fig. 5(b).

Next, we consider the SOC between d-orbitals. Note that the matrix elements corresponding to the
SOC between the considered d-orbitals, d,2_,2 and d.», vanish at the same site due to the selection rule for
the magnetic quantum number. However, when the SOC is introduced, finite hopping processes can occur
between d2_,2 and d» orbitals at different sites. When the SOC is included, these orbitals are mixed with
other ty4-orbitals at the same site and modified to

|Jm,a> ~ |dm,cr> + Z Cma,no’|dn,o’>7 (5)

n€tag,o’

as illustrated in Fig. 5(a), where m represents the two eg-orbitals and ¢poner = (dno'|Hsoc|dme) /(Em.e —
E, ). As a result, one can have a nonzero hopping parameter between d,2_,2 and d,2 orbitals at the
neighboring A and B sites. For example, the hopping interaction between d,2_,2 and d.2 orbitals at (0, 0)
and 0; = (a,a)/2 is given by

-y

iy = (A4 (0) ||y (81)), (6)
= 7 (0) Hold 1 (8)), 7)

where H = Hy + Hgoc is the full Hamiltonian that includes the SOC, A = —i(dyy+|Hsoc|dy2—,24), and
A = |Eys — E2_24|. Considering the half-metallicity of CoS,, we disregard the spin-flipping terms
appearing in Eq. 5, so Hsoc o< L,S,. Similarly, we denote the SOC-induced hopping interactions between
the A site at (0,0) and B sites at dy = (—a,a)/2, 85 = (—a,—a)/2, and d4 = (a,—a)/2 as uz, —uy, and
uy respectively. This mirrors the inversion symmetry of the system, as depicted in the middle panel of
Fig. 5(b). If the mirror symmetry is preserved, u; = us. Using the same projection procedure used to

obtain Héjgﬁc, we acquire four 2 x 2 effective SOC matrices around the four Dirac points, stated as

HéjO)C,eff = mé]c))cgyv (8)

up to the leading order, where
méj())c = Cgaj(l — COS ko), (9)
= (=1)7"*Csii (1 — cos ko). (10)

Here, the coefficient C3 is determined by the band parameters and {uy, tg, U3, 4} = {—uq, ug, —uy, us}. We
overlook the terms of Hé‘gc o linear in ¢, and ¢, because they don’t contribute to the leading terms of the
BC as demonstrated in the next paragraph. Note that the SOC gap exhibits a d-wave-like structure, which

flips its sign as we change the quadrant in momentum space as shown in the middle panel of Fig. 5(b).
The BC of a general 2 x 2 Hamiltonian of the form H(k) =) ho(k)o, is given by

a=z,y,z &

0.0 =~ (9, B0k) x 9,500 (1)
where
o ha(K)d o+ By (k)i + ha (k)2
hik) = Vha(K)? + hy(K)2 + Do (k) "2
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and h,’s are real-valued functions. Applying this formula to our effective Hamiltonian H, éﬁf) (q) = H, é{e)ﬂ(q) +

Hégc7eﬁ(q), the leading order of the BC corresponding to the massive Dirac dispersion in the j-th quadrant
is obtained as

()

Q) (q) ~ —2500 1) (q), (13)
z |m(J) |3
SOC
where
[0 (@ = o 0 _ 02 O 14
0 dq, Oq.  0Oq, Ogq,
= 201025337]'53/7]', (15)
=2(—1)7"tC1Cs. (16)

Note that the quantity F(()j)(q), which is determined by the unperturbed Dirac Hamiltonian H (Qﬁ, has

odd symmetry according to the mirror operations with respect to x and y axes, as illustrated in the left
panel of Fig. 5(b). This is because the quantities 0, fé?o)l and J,, féfg are odd with respect to = and y axes,
respectively, while the unperturbed Hamiltonian Hé?gﬁ(q) respects mirror symmetry. Because both mé%c
and Féj )(q) have odd symmetry with respect to the mirror symmetries, BC, which is a product of them,
exhibits the same sign over the entire BZ.
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7 Magnetic property measurements
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Figure S6. (a) Field dependence of isothermal magnetization measured in H || a at 2K for Coy_,Fe,Ss (x = 0.05, 0.10,
0.15, and 0.25), CoSsz, and Co1_,Ni, Sy (y = 0.05 and 0.10) single crystals, respectively. (b) Mangetic susceptibility, M/H,
measured upon warming at poH = 0.1T after zero-field cooling in H || a. (c) Phase diagram of Curie temperature 7,.. FM
denotes the ferromagnetic interaction below 7.

In order to characterize the magnetic properties of Coi_,Fe,;Ss, CoSy, and Co;_,Ni, Sy single crys-
tals, field dependence of isothermal magnetization and temperature dependence of magnetic susceptibility,
M/ H, were measured, as shown in Figure S6(a) and (b), respectively. All the crystals manifest soft mag-
net behavior, as decribed in Figure S6(a). The saturated moment of CoS, is ~ 0.95 up in formula unit
(~0.95up/Co), and those of Fe0.15 and Fe0.25 reach ~ 1 up/Co, indicative of the half-metallic property.
Magnetic susceptibility measured upon warming at poH = 0.1T after zero-field colling in H || a exhibits
the ferromagnetic interaction obviously (Figure S6(b)). Upon increasing in Fe-doping, Curie temperature
Te increases, as displayed in Figure S6(c).

10
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8 Intrinsic and extrinsic contributions to the anomalous Hall conductivity
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Figure S7. (a) A comparison between the AHC and the magnetization of CoSsy at temperatures above 30 K. It specifically
illustrates how the temperature dependence of AHC correlates with magnetization. (b) Comparison of the inelastic part of
Hall conductivity with the square of the inelastic part of the resistivity.

We have expanded our approach beyond the simple log-scale plot presented in Figure 2(a). While the
initial data for CoSy and Fe0.05 in Figure 2(a) appears almost flat, indicating potential intrinsic behavior
within the moderate longitudinal conductivity range, we observed a deviation at higher temperatures. This
deviation, characterized by decreasing conductivity on the x-axis, is indicative of an extrinsic mechanism
and analyzes it in more detail.

In Figure S7(a), we presented a comparison between the temperature dependence of the AHC and
magnetization of CoSs. The observation that the AHC (black squares) decreases more rapidly than the

A

magnetization (red curve) upon warming up to the 7, indicates that the Hall factor (Sy = %) is not
constant within this temperature range.

In PNAS 2022, the authors attempted to distinguish between intrinsic and extrinsic components of the
AHE using the TYJ model with the relation p?x o (pzz)®.! Both the Karplus-Luttinger model that we
analyzed and the TYJ model assume a constant Hall factor.® Given this basis, it is reasonable to separate
the Hall factor into temperature-independent and temperature-dependent components of the Hall factor.
Ty (T oy (T)] 04:(40K)
M(T) — M(T) M(40K)
is plotted by the black squares. This component was derived by subtracting the temperature-independent

7, (40K) 7y (T)]
Hall factor ( ) from the overall Hall factor (W), based on the Checkelsky et al. (2008).7

M (40K)
This temperature-dependent Hall factor correlates closely with the square of the inelastic portion of the
resistivity (shown by the blue curve, representing (Ap(T))?=(p(T) — p(0))?). This correlation suggests that

electron-magnon scattering and similar inelastic scattering contribute to the decline in the Hall factor.

~—

In Figure S7(b), the temperature-dependent portion of the Hall factor (

11
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