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Table S1: Simulations results for the idelalisib example: percent of recommendations of each dose level (D1
to D5) estimated over 10000 simulated trials, with a 4-week or 16-week observation window for toxicity, a
total sample size of 30 patients, an accrual rate of 2 patients per month.

Hazard D1 D2 D3 D4 D5 Duration

16-week obs. window (8 patients per obs.window)

Constant True Probability of Toxicity 0.10 0.25 0.45 0.60 0.75

% recommended by TITE-CRM 19 66 15 0 0 76 weeks

% recommended by TITE-BOIN 15 71 13 1 0 100 weeks

4 week obs. window (2 patients per obs.window)

Decreasing True Probability of Toxicity 0.077 0.196 0.364 0.501 0.650

% recommended by TITE-CRM 5 55 37 3 0 64 weeks

% recommended by TITE-BOIN 6 61 30 3 0 62 weeks

Decreasing True Probability of Toxicity 0.056 0.147 0.281 0.396 0.534

% recommended by TITE-CRM 1 28 52 17 1 64 weeks

% recommended by TITE-BOIN 1 37 47 13 1 62 weeks

Constant True Probability of Toxicity 0.026 0.069 0.139 0.205 0.293

% recommended by TITE-CRM 0 1 14 42 43 64 weeks

% recommended by TITE-BOIN 0 4 22 38 36 62 weeks
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Table S2: Dose-finding designs for late-onset toxicities incorporating toxicity and efficacy.

Authors Dose-finding objective Recommends
>1 dose

Preliminary
toxicity-centered stage

Binary outcomes

Jin et al. (2014)1 MDD: dose maximizing a desirability
function summarizing the toxicity/efficacy
trade-off

No No

Liu & Johnson
(2016)2

MDD: dose with the highest utility function No No

Rivière et al. (2018)3 OD: lowest safe dose which maximizes
efficacy

No Ruled-based start-up stage
until the first toxicity is
observed

Yan et al. (2019)4 OD: dose with the highest efficacy among
safe doses

Possibly No

Takeda et al. (2020)5 OD: dose lower or equal to the MTD which
maximizes efficacy

No No

Zhang & Zang
(2021)6

MDD: dose with the highest utility function No Yes

Zhou et al. (2022)7 MDD: dose with the highest utility among
doses equal or lower to the MTD

No No

Time to event outcomes

Yuan & Yin (2009)8 OD: dose with the higher AUSC value while
satisfying acceptable toxicity requirement

No No

Koopmeiners &
Modiano (2014)9

MDD: dose maximizing a desirability
function summarizing the toxicity/efficacy
trade-off

No No

Altzerinakou &
Paoletti (2019)10

OD: lowest dose, within a range of highly
active doses, below or equal to the MTD

No Ruled-based start-up stage
followed by a Time-to-DLT
CRM

Biard et al. (2021)11 OD: dose with acceptable toxicity risk and
minimum progression risk in terms of
marginal rates of events

Possibly Ruled-based start-up stage
until the first toxicity is
observed

Zhang et al. (2021)12 MDD: dose with the highest utility among
an admissible set in terms of toxicity

Possibly Yes

Andrillon et al.
(2022)13

OD: dose equal or lower to the MTD with
the minimum progression cumulative
incidence

No No
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Table S3: Dose-finding designs for late-onset toxicities incorporating toxicity and efficacy: statistical consid-
erations.

Authors Non-
monotone
dose-efficacy
relationship

Method for pending data Smallest
sample size
explored

Available software

Binary outcomes

Jin et al. (2014)1 Yes Data augmentation
process

N=48 None listed

Liu & Johnson
(2016)2

No Weighting scheme N=48 None listed

Riviere et al. (2018)3 Yes Weighting scheme N=36 R package dfmta

Yan et al. (2019)4 Yes Weighting scheme N=35 None listed

Takeda et al. (2020)5 Yes Weighting scheme N=36 SAS code upon request

Zhang & Zang
(2021)6

Yes Weighting scheme N=60 R code available on
GitHub CWL

Zhou et al. (2022)7 Yes Weighting scheme,
Imputation or Data
augmentation process

N=36 R shiny app
trialdesign.org

Right-censored outcomes

Yuan & Yin (2009)8 No Cure rate survival model N=48 None listed

Koopmeiners &
Modiano (2014)9

Yes Cure rate survival model N=30 None listed

Altzerinakou &
Paoletti (2019)10

Yes Probit time-to-DLT
model

N=15 None listed

Biard et al. (2021)11 Yes Exponential survival
model

N=50 R code upon request

Zhang et al. (2021)12 No Data augmentation
process

N=60 R code as supplementary
material

Andrillon et al.
(2022)13

No Exponential survival
model

N=45 R code upon request
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