Supplemental Material to Dose Optimization for Cancer Treatments with Considerations for Late-onset Toxicities

by Lucie Biard, Anaïs Andrillon, Rebecca B Silva and Shing M Lee

November 2023

Table S1: Simulations results for the idelalisib example: percent of recommendations of each dose level (D1 to D5) estimated over 10000 simulated trials, with a 4-week or 16-week observation window for toxicity, a total sample size of 30 patients, an accrual rate of 2 patients per month.

Hazard		D1	D2	D3	D4	D5	Duration		
16-week obs. window (8 patients per obs.window)									
Constant	True Probability of Toxicity		0.25	0.45	0.60	0.75			
	% recommended by TITE-CRM	19	66	15	0	0	76 weeks		
	% recommended by TITE-BOIN	15	71	13	1	0	100 weeks		
4 week obs. window (2 patients per obs.window)									
Decreasing	True Probability of Toxicity	0.077	0.196	0.364	0.501	0.650			
	% recommended by TITE-CRM	5	55	37	3	0	64 weeks		
	% recommended by TITE-BOIN	6	61	30	3	0	62 weeks		
Decreasing	True Probability of Toxicity	0.056	0.147	0.281	0.396	0.534			
	% recommended by TITE-CRM	1	28	52	17	1	64 weeks		
	% recommended by TITE-BOIN	1	37	47	13	1	62 weeks		
Constant	True Probability of Toxicity	0.026	0.069	0.139	0.205	0.293			
	% recommended by TITE-CRM	0	1	14	42	43	64 weeks		
	% recommended by TITE-BOIN	0	4	22	38	36	62 weeks		

Authors	Dose-finding objective	Recommends >1 dose	Preliminary toxicity-centered stage					
Binary outcomes								
Jin et al. (2014) ¹	MDD: dose maximizing a desirability function summarizing the toxicity/efficacy trade-off	No	No					
Liu & Johnson (2016) ²	MDD: dose with the highest utility function	No	No					
Rivière et al. (2018) ³	OD: lowest safe dose which maximizes efficacy	No	Ruled-based start-up stage until the first toxicity is observed					
Yan et al. (2019) ⁴	OD: dose with the highest efficacy among safe doses	Possibly	No					
Takeda et al. (2020) ⁵	OD: dose lower or equal to the MTD which maximizes efficacy	No	No					
Zhang & Zang (2021) ⁶	MDD:dose with the highest utility function	No	Yes					
Zhou et al. (2022) ⁷	MDD: dose with the highest utility among doses equal or lower to the MTD	No	No					
Time to event outcomes								
Yuan & Yin (2009) ⁸	OD: dose with the higher AUSC value while satisfying acceptable toxicity requirement	No	No					
Koopmeiners & Modiano (2014) ⁹	MDD: dose maximizing a desirability function summarizing the toxicity/efficacy trade-off	No	No					
Altzerinakou & Paoletti (2019) ¹⁰	OD: lowest dose, within a range of highly active doses, below or equal to the MTD	No	Ruled-based start-up stage followed by a Time-to-DLT CRM					
Biard et al. (2021) ¹¹	OD: dose with acceptable toxicity risk and minimum progression risk in terms of marginal rates of events	Possibly	Ruled-based start-up stage until the first toxicity is observed					
Zhang et al. (2021) ¹²	MDD: dose with the highest utility among an admissible set in terms of toxicity	Possibly	Yes					
Andrillon et al. (2022) ¹³	OD: dose equal or lower to the MTD with the minimum progression cumulative incidence	No	No					

Table S2: Dose-finding designs for late-onset toxicities incorporating toxicity and efficacy.

Authors	Non- monotone dose-efficacy relationship	Method for pending data	Smallest sample size explored	Available software				
Binary outcomes								
Jin et al. (2014) ¹	Yes	Data augmentation process	N=48	None listed				
Liu & Johnson (2016) ²	No	Weighting scheme	N=48	None listed				
Riviere et al. (2018) ³	Yes	Weighting scheme	N=36	R package dfmta				
Yan et al. (2019) ⁴	Yes	Weighting scheme	N=35	None listed				
Takeda et al. (2020) ⁵	Yes	Weighting scheme	N=36	SAS code upon request				
Zhang & Zang (2021) ⁶	Yes	Weighting scheme	N=60	R code available on GitHub <mark>CWL</mark>				
Zhou et al. (2022) ⁷	Yes	Weighting scheme, Imputation or Data augmentation process	N=36	R shiny app trialdesign.org				
Right-censored outcomes								
Yuan & Yin (2009) ⁸	No	Cure rate survival model	N=48	None listed				
Koopmeiners & Modiano (2014) ⁹	Yes	Cure rate survival model	N=30	None listed				
Altzerinakou & Paoletti (2019) ¹⁰	Yes	Probit time-to-DLT model	N=15	None listed				
Biard et al. (2021) ¹¹	Yes	Exponential survival model	N=50	R code upon request				
Zhang et al. (2021) ¹²	No	Data augmentation process	N=60	R code as supplementary material				
Andrillon et al. (2022) ¹³	No	Exponential survival model	N=45	R code upon request				

Table S3: Dose-finding designs for late-onset toxicities incorporating toxicity and efficacy: statistical considerations.

References

- Jin IH, Liu S, Thall PF et al. Using data augmentation to facilitate conduct of phase I–II clinical trials with delayed outcomes. *Journal of the American Statistical Association* 2014; 109(506): 525– 536.
- [2] Liu S and Johnson VE. A robust Bayesian dose-finding design for phase I/II clinical trials. *Bio-statistics* 2016; 17(2): 249–263.
- [3] Riviere MK, Yuan Y, Jourdan JH et al. Phase I/II dose-finding design for molecularly targeted agent: plateau determination using adaptive randomization. *Statistical methods in medical research* 2018; 27(2): 466–479.
- [4] Yan D, Tait C, Wages NA et al. Generalization of the time-to-event continual reassessment method to bivariate outcomes. *Journal of Biopharmaceutical Statistics* 2019; 29(4): 635–647.
- [5] Takeda K, Morita S and Taguri M. TITE-BOIN-ET: time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes. *Pharmaceutical Statistics* 2020; 19(3): 335–349.

- [6] Zhang Y and Zang Y. CWL: A conditional weighted likelihood method to account for the delayed joint toxicity–efficacy outcomes for phase I/II clinical trials. *Statistical Methods in Medical Research* 2021; 30(3): 892–903.
- [7] Zhou Y, Lin R, Lee JJ et al. Tite-boin12: A Bayesian phase I/II trial design to find the optimal biological dose with late-onset toxicity and efficacy. *Statistics in medicine* 2022; 41(11): 1918–1931.
- [8] Yuan Y and Yin G. Bayesian dose finding by jointly modelling toxicity and efficacy as time-toevent outcomes. Journal of the Royal Statistical Society: Series C (Applied Statistics) 2009; 58(5): 719–736.
- [9] Koopmeiners JS and Modiano J. A Bayesian adaptive phase I–II clinical trial for evaluating efficacy and toxicity with delayed outcomes. *Clinical Trials* 2014; 11(1): 38–48.
- [10] Altzerinakou MA and Paoletti X. An adaptive design for the identification of the optimal dose using joint modeling of continuous repeated biomarker measurements and time-to-toxicity in phase I/II clinical trials in oncology. *Statistical methods in medical research* 2020; 29(2): 508–521.
- [11] Biard L, Lee SM and Cheng B. Seamless phase I/II design for novel anticancer agents with competing disease progression. *Statistics in medicine* 2021; 40(21): 4568–4581.
- [12] Zhang Y, Cao S, Zhang C et al. A Bayesian adaptive phase I/II clinical trial design with late-onset competing risk outcomes. *Biometrics* 2021; 77(3): 796–808.
- [13] Andrillon A, Chevret S, Lee SM et al. Surv-CRM-12: A Bayesian phase I/II survival CRM for right-censored toxicity endpoints with competing disease progression. *Statistics in Medicine* 2022; 41(29): 5753–5766.