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Supplementary Methods
Data generation and processing

For complete detailed descriptions of methods used for sample preparation and multi-omics
data generation and processing at chemical analysis sites for this study, please see the
associated MoTrPAC publication1.

Randomization and Blinding
At all multi-omic analysis sites, an unblinded batching officer was responsible for randomization
of the samples across batches of appropriate size for the analysis platforms in place.
Randomized samples were blinded to all individuals involved in sample preparation, data
generation, and initial data processing. Downstream quality control and data analysis were not
performed blind to the conditions of the experiments.

RNA-sequencing
Total RNA was extracted from tissue lysates using a BiomekFx automation workstation. For
blood samples, total RNA was extracted using the Agencourt RNAdvance blood specific kit
(Beckman Coulter). RNA quantity and integrity was assessed with a Nanodrop (ThermoFisher
Scientific, #ND-ONE-W), Qubit assay (ThermoFisher Scientific), and either Bioanalyzer or
Fragment Analyzer. 500 ng of total RNA from each sample was used to generate libraries for
RNA sequencing using the Universal Plus mRNA-Seq kit (NuGEN/Tecan #9133) and prepared
with a Biomek i7 laboratory automation system (Beckman Coulter). Sequencing of pooled
libraries was performed through 100bp paired-end sequencing using the Illumina NovaSeq 6000
platform (Illumina), targeting a sequencing depth of 35 millions read pairs per sample.
Sequenced reads were demultiplexed with bcl2fastq2 (v2.20.0), adapters were trimmed with
cutadapt (v1.18), pre-alignment QC metrics generated with FastQC (v0.11.8) and reads aligned
using STAR (v2.7.0d). Quantification was performed using RSEM (v1.3.1).

LC-MS/MS proteomics and phosphoproteomics
Proteomics analyses were performed using clinical proteomics protocols described previously2,
with full details provided here1. scWAT samples were lysed and protein concentration was
determined using BCA assay. Protein lysates were reduced with 5 mM dithiothreitol (DTT,
Sigma-Aldrich) for 1 hour at 37 °C with shaking at 1000 rpm on a thermomixer, alkylated with
iodoacetamide (IAA, Sigma-Aldrich) in the dark for 45 minutes at 25 °C with shaking at 1000
rpm, and diluted 1:4 with Tris-HCl, pH 8.0. Proteins were first digested with LysC endopeptidase
(Wako Chemicals) at a 1:50 enzyme:substrate ratio (2 hours, 25 °C, 850 rpm), followed by
digestion with trypsin (Promega) at a 1:10 enzyme:substrate ratio (14 hours, 25 °C, 850 rpm).
Formic acid was added to a final concentration of 1% to quench digestion, after which peptides
were desalted using Sep-Pac C18 columns (Waters) and BCA assay was used to determine
final peptide concentrations.
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Peptide aliquots (400 μg per sample) were resuspended to a final concentration of 5 μg/μL in
200 mM HEPES, pH 8.5 for isobaric labeling. Samples were randomized across the first 10
channels of tandem mass tag (TMT) 11-plexes (ThermoFisher Scientific), and the last channel
(131C) of each multiplex was used for a common reference composed of a mix of peptides from
all samples. TMT reagent was added to each sample at a 1:1 peptide:TMT ratio, and labeling
proceeded for 1 hour at 25 °C with shaking at 400 rpm. After labeling QC checks, reactions
were quenched with hydroxylamine and samples within each multiplex were combined and
desalted with Sep-Pac C18 columns (Waters). Each combined TMT multiplex was then
fractionated using high pH reversed phase separation and concatenated into 24 fractions. 5% of
each fraction was removed for global proteome analysis, and the remaining 95% was further
concatenated to 12 fractions for phosphopeptide enrichment using immobilized metal affinity
chromatography (IMAC).

For mass spectrometry analysis of the global proteome, online separation was performed using
a nanoAcquity M-Class UHPLC system (Waters) and a 25 cm x 75 μm i.d. picofrit column
packed in-house with C18 silica (1.7 μm UPLC BEH particles, Waters Acquity). Samples were
analyzed with a Q Exactive HF mass spectrometer (ThermoFisher Scientific). For
phosphoproteome samples, online separation was performed with a Dionex Ultimate 3000
UHPLC system (ThermoFisher Scientific) and a 30 cm x 75 μm i.d. picofrit column packed
in-house with C18 silica (1.7 μm UPLC BEH particles, Waters Acquity). Samples were analyzed
with a Q-Exactive HFX mass spectrometer (ThermoFisher Scientific). Full information regarding
elution gradients and instrument settings for global proteomics and phosphoproteomics samples
is described elsewhere1.

Log2 TMT ratios to the universal reference were used as quantitative values for all proteomics
features (full details of raw MS/MS data processing are described by the MoTrPAC Study
Group1). Contaminant identifications and features not fully quantified in at least 2 TMT
multiplexes were excluded from downstream analysis. Sample normalization was performed by
median-centering and mean absolute deviation (MAD)-scaling within each sample, after which
TMT multiplex batch effects were removed using the limma::removeBatchEffect function in R3,4.

Untargeted metabolomics
Hydrophobic interaction liquid chromatography (HILIC) analyses of polar metabolites in the
positive ionization mode were conducted at the Broad Institute of MIT and Harvard. 10 mg of
cryopulverized tissue was homogenized in 300 μL of 10/67.4/22.4/0.018 v/v/v/v
water/acetonitrile/methanol/formic acid containing stable isotope–labeled internal standards,
and centrifuged at 9,000 x g for 10 min. Supernatants were injected onto a HILIC column
(Waters) and analyzed using a Q-Exactive hybrid quadrupole Orbitrap mass spectrometer
(ThermoFisher Scientific) operating in the positive mode. Raw data was processed for targeted
peak integration using TraceFinder software (ThermoFisher Scientific) and with Progenesis QI
software (Nonlinear Dynamics, Waters) for peak detection and integration of both metabolites
with known identity and unknowns.
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Reverse-phase and ion pairing profiling of polar metabolites was conducted at the University of
Michigan. Non-pulverized tissue samples were weighed and homogenized in 1:1:1:1
methanol:acetonitrile:acetone:water (at a ratio of 1 mL per 50 mg tissue) using a sonicator.
Samples were incubated on ice for 10 minutes followed by centrifugation at 15,000 x g for 10
minutes. Supernatant (300 μL) was dried in a nitrogen blower and reconstituted in
water:methanol (8:2 v:v) for LC-MS analysis. Reverse phase analyses were performed on an
Agilent 1290 Infinity II/ 6545 qTOF MS system with a Jetstream ESI source (Agilent
Technologies) using a Waters Acquity HSS T3 column (Waters). Each sample was analyzed in
both the positive and negative mode. Ion pairing analyses were performed on an
identically-configured LC-MS system with an Agilent Zorbax Extend C18 1.8 μm RRHD column
equipped with a matched guard column. Mass spectrometry analysis was conducted in the
negative ion mode. Profinder (v8.0) software (Agilent) was used for targeted compound
detection and relative quantitation, while custom scripts were used for non-targeted feature
detection. Agilent Mass Profiler Pro (v8.0) and Masshunter Qualitative Analysis were used for
feature alignment and recursive feature detection. Features with > 50% missing values across
samples in a batch or > 30% missing values in QC samples were removed, after which data
reduction was performed using Binner5 and normalized using the “Systematic Error Removal
Using Random Forest” approach6.

Untargeted lipidomics
For untargeted lipidomics analysis, 10 mg of tissue was homogenized in 400 μL isopropanol
containing stable isotope-labeled internal standards from Avanti Polar Lipids (Alabaster) using
freeze-thaw cycles in liquid nitrogen and sonication. Samples were centrifuged for 5 minutes at
21,000 x g and supernatants were used for LC-MS on a Vanquish chromatography system with
an Accucore C30 column (2.1 x 150 mm, 2.6 μm particle size) coupled to a Q-Exactive HF mass
spectrometer (ThermoFisher Scientific). Full details on elution gradients and instrument settings
are provided elsewhere1. Raw LC-MS data was processed with Compound Discoverer v3.0
(ThermoFisher Scientific). Peak area was corrected for QC sample peak area across the batch
and filtered with background and QC filters. Features absent in > 50% of the QC pooled
injections with a coefficient of variation < 30% were removed from the dataset. Feature
annotation was based on mass and relative abundance, retention time and MS2 patterns.

Targeted metabolomics and lipidomics
Branched-chain keto acids, acyl-CoAs and nucleotides were measured by targeted assays at
Duke University. For analysis of branched-chain keto acids, 10 μL of plasma or 200 μL of tissue
homogenate was extracted using ethyl acetate as previously described7. For Acyl-CoA
extraction, 500 μL tissue homogenate was used as reported previously for liquid8 and solid9

phase extractions. Nucleotides were extracted as previously described10,11. Extractions were
centrifuged at 14,000 x g for 5 minutes, and supernatants were analyzed by LC-MS/MS using a
Xevo TQ-S triple quadrupole mass spectrometer (Waters). Endogenous levels were quantified
by spiking tissue homogenates (acyl-coAs and nucleotides) or fetal bovine serum (keto acids)
with authentic analytes (Sigma-Aldrich).
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Amino acids and amino metabolites, TCA cycle metabolites, ceramides, and acylcarnitines were
measured by targeted assays at the Mayo Clinic. For amino acid and amino metabolites, 5 mg
of tissue homogenate was extracted and analyzed as previously described12,13. Ceramides and
sphingolipids were extracted from 5 mg of tissue homogenate as previously described14,15;
acylcarnitines were also extracted from 5 mg using previously described methods16,17. TCA
metabolites were extracted from 5 mg of tissue and quantified using GC-MS18, with minor
modifications as reported elsewhere1.

Targeted lipidomics analysis was performed at Emory University using 10 mg of cryopulverized
tissue, homogenized in 100 μL PBS and diluted with 100 μL 20% methanol and spiked with 1%
BHT solution according to previously used methods19,20. Homogenates were centrifuged at
14,000 x g for 10 minutes and supernatants were loaded onto C18 SPE columns and eluted
with 400 μL methyl formate. External standards were purchased from Cayman Chemical.
Samples were analyzed by LC-MS/MS using an ExionLC (SCIEX™) chromatography system
equipped with an AccucoreTM C18 column (ThermoFisher) coupled to a SCIEX™ QTRAP 5500
mass spectrometer. Mobile phase A was water with 10 mM ammonium acetate, and mobile
phase B was acetonitrile with 10 mM ammonium acetate. Details on the gradient program and
subsequent mass spectrometry analysis are provided elsewhere1; raw data was processed
using SCIEX™ OS (AB SCIEX™, v1.6.1).

Metabolomics data processing and normalization
All metabolomics datasets were partitioned into named compounds (for analytes that were
confidently identified) and unnamed compounds (for those without a standard chemical name).
Only named metabolites were included in this analysis. Data was log2-transformed, and
analytes with > 20% missing values were removed. For targeted datasets with > 12 analytes,
and for all untargeted datasets, missing values were imputed using K-nearest neighbors (k =
10). Median sample–sample correlation was used to identify outlier samples, which were
manually reviewed by the metabolomics sites. Untargeted datasets were normalized using
sample median-centering.

Due to the overlap in the coverage of different metabolomics and lipidomics assays, some
metabolites/lipids were measured in multiple platforms. Redundant annotated features were
defined as the metabolites/lipids that share the same annotation or the same standardized
name according to the Metabolomics Workbench RefMet database21. Of the 1286 annotated
metabolites/lipids, 353 were identified as redundant (i.e., measured in multiple platforms),
representing 144 unique metabolites/lipids. These redundant metabolites/lipids were curated by
taking into consideration their properties (polarity, solubility, etc.) and their respective assay
methodologies (extraction solvent, elution solvent, column, etc.). The exact curation steps are
as follows:

1. Internal standards were removed.
2. Measures from targeted assays were selected over untargeted assays.
3. For lipids (3 LPCs, 4 PCs) measured by HILIC and reverse-phase metabolomics,

reverse-phase was selected.
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4. For lipids that were measured by both the positive and negative modes within the
untargeted lipidomics assays, positive mode measurements were selected for lipids that
contain a positively charged head group: PC, PE, LPC, LPE, SM.

5. For lipids measured by both positive and negative modes within the untargeted
lipidomics assay, or by both positive and negative modes within reverse-phase
metabolomics assay, negative mode measurements were selected for lipids that contain
a negatively charged head group: phosphatidylinositol (PI), phosphatidylserine (PS),
phosphatidic acid (PA), and free fatty acids (FFA).

6. For acylcarnitines with ≤ 12 carbons, HILIC was selected over reverse-phase
metabolomics or untargeted lipidomics; for acylcarnitines with > 12 carbons, the
selection was made according to the following hierarchy: untargeted lipidomics > HILIC >
reverse-phase metabolomics.

7. For SMs, untargeted lipidomics was selected over reverse-phase metabolomics, and
positive mode was selected over negative mode within untargeted lipidomics. That is,
positive untargeted lipidomics > negative untargeted lipidomics > reverse-phase
metabolomics.

8. The rest of the features were visually inspected and selection was made case-by-case.

A detailed list of the 353 redundant metabolites/lipids can be found in Supplementary Table 9.

Software
Statistical Analyses
The R programming language4 was used to perform all statistical analyses and generate most
figures. The following R/Bioconductor22 packages formed the core of what was used:
ComplexHeatmap23 (v2.12.0), edgeR24 (v3.40.1), emmeans25 (v1.8.5), fgsea26 (v1.26.0), limma3

(v3.54.0), msigdbr27 (v7.5.1), tidyverse28 (v2.0.0), andWGCNA29 (v.1.71).

Data and analysis tools for the MoTrPAC landscape paper1 are also provided through the
MotracRatTraining6moData30 and MotrpacRatTraining6mo31 R packages, respectively
(github.com/MoTrPAC/MotrpacRatTraining6moData,
github.com/MoTrPAC/MotrpacRatTraining6mo); the former package was used to access data
for MotrpacRatTraining6moWATData
(github.com/PNNL-Comp-Mass-Spec/MotrpacRatTraining6moWATData).

Gene Set Network Diagram
We utilized Cytoscape (v3.9.1)32 to generate a network diagram (Fig. 2D) of the top significantly
enriched biological processes (BH-adjusted33 p-value < 0.05) from the SED male versus SED
female proteomics FGSEA results. The combined Jaccard and overlap coefficient34 was used to
calculate edge weights, and only edge weights ≥ 0.25 were retained. Clusters of nodes were
manually assigned summary descriptors, and only the top enriched groups are shown.

mTOR Diagram
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Figure 3F was created with BioRender.com (www.biorender.com). The leading edge
phosphosites were mapped to the human reference phosphoproteome1 and indicated in pink.

Statistical Analyses
Differential Analysis
While -omics analyses were only performed for 5–6 animals per experimental group, limma
does not partition the data into subsets to perform comparisons3, so the residual degrees of
freedom (d.f.) for each feature are (60 samples - 10 experimental groups) = 50 d.f. for
proteomics and phosphoproteomics, (50 samples - 2 outliers - 10 groups - 4 covariates) = 34
d.f. for transcriptomics, and (50 samples - 10 groups) = 40 d.f. for metabolomics. Additionally,
limma moderates the standard errors of the estimated fold-changes by shrinking them toward a
common value or a global trend. The resulting moderated t-statistics follow t-distributions with
augmented degrees of freedom, thereby increasing stability and power to detect differences35,36.
This is further improved by our use of sample quality weights37 and choice of inbred F344 rats
as the model organism—we expect less within-group variation than if we had used outbred rats.

Fast Gene Set Enrichment Analysis
FGSEA was performed with fgsea::fgseaMultiLevel (v1.24.0)26 in R. This employs an adaptive
multi-level split Monte Carlo scheme for the estimation of arbitrarily small p-values26. GSEA and,
by extension, FGSEA, is especially useful when too few or too many genes meet the threshold
for statistical significance after correcting for multiple hypothesis testing38. The ranking metric we
chose is similar to the moderated t-statistic, but the values are more readily interpretable (e.g. a
value of 2 means a positive mean difference with a p-value of 10-2 = 0.01).

A total of 10,000 permutations were used for the preliminary estimation of enrichment p-values
and to calculate normalized enrichment scores (NES), and p-values were adjusted across
groups of related contrasts within each -ome and feature set collection (e.g., across all
proteomics GO:MF results) using the BH procedure33. The enrichment heatmaps (Figs. 3, S3,
S5) display the terms with the highest -log10-transformed adjusted p-value in any contrast. The
circles are scaled such that the lowest adjusted p-value in each row is of maximum area; this is
to prevent one or more feature sets with extremely low adjusted p-values from dominating the
heatmaps. NES in [-1, 1] are essentially noise26,38, so those circles are not shown.

The MSigDB C5:GO collections were chosen, in part, because they have been filtered to reduce
inter-set redundancy using a method similar to the one described by Liberzon et al.39; the exact
method is outlined in sections 3.2 and 3.7 of the v7.0 MSigDB Release Notes on the Broad
Institute’s website
(https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/MSigDB_v7.0_Release
_Notes). After filtering each set to the genes from a particular -ome, they were required to have
retained at least 85% of their original members and to contain at least 15 and no more than 300
genes. The high membership percentage cutoff was imposed due to the high proteome (9964
proteins) and transcriptome (16404 transcripts) coverage that was observed for white adipose
tissue. The same 85% membership filter was applied to the MitoCarta 3.0 sets, though they
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were only required to contain at least 5 and no more than 300 genes due to their already small
sizes; this resulted in 68 sets for testing. Since the RefMet chemical subclasses are disjoint and
homogenous, they were not filtered based on a membership percentage, though each subclass
was required to contain at least 10 metabolites. Set size was restricted because smaller sets
are less reliable (more variable) while larger sets are less interpretable.

Kinase–Substrate Enrichment Analysis
As with previous FGSEA, a total of 10,000 permutations were used for the preliminary
estimation of KSEA p-values and NES, and p-values were adjusted across all kinases with the
BH procedure33.

The KSEA approach discussed in the Methods is similar to that of Ochoa et al.40, though with
several notable improvements owing to the more sophisticated FGSEA algorithm and up-to-date
kinase–substrate relationship data. Namely, enrichment p-values are now based on normalized
enrichment scores, which account for differences in feature set size, and they are no longer
bounded by 0.001 (requiring at least 1/1000 permutation scores to be more extreme).
Furthermore, we are able to impose limits on set size to exclude smaller, less reliable sets. This
analysis is still limited by the coverage of PSP, however, as the kinases of only 1,074 of the
19,173 phosphosites were known, and only 121 out of a possible 379 kinases passed the size
filter for testing.

Weighted Gene Co-expression Network Analysis
Signed adjacency matrices were constructed from the pairwise protein, metabolite, or transcript
biweight midcorrelations using a soft-thresholding power of 25 for transcriptomics and 12 for
both proteomics and metabolomics/lipidomics. Additionally, transcriptomics count data was
converted to log2 TMM-normalized counts per million reads with edgeR::cpm, per the workflow
described by Law et al.41 (Differential Analysis Methods). No other processing was performed
prior to WGCNA.

Average linkage hierarchical clustering was performed on the dissimilarity matrices–computed
from unsigned topological overlap matrices–to define the protein, metabolite/lipid, and transcript
modules. A total of 6 metabolites and 2587 transcripts were not co-expressed (assigned to
“grey” modules) and subsequently discarded. The remaining 1057 metabolites/lipids were
assigned to 7 modules of size 30 to 415, the 9964 quantified proteins to 7 modules of size 165
to 3984, and the 13817 transcripts to 14 modules of size 33 to 4683.

For an in-depth overview of WGCNA, including descriptions of biweight midcorrelation and
module eigengenes (which we more generally refer to as eigenfeatures), we recommend
Weighted Network Analysis: Applications in Genomics and Systems Biology42.

Spearman correlations between metabolomics/lipidomics and other -omics MEs and between
the MEs and select sample measures, as well as their significance, were assessed with
stats::cor.test4. P-values were adjusted within each individual heatmap using the BH procedure33

to control the FDR.
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WGCNA Module Over-Representation Analysis
Since the p-value histograms resulting from ORA exhibited peaks near both 0 and 1 (the latter
indicating under-represented sets), and there appeared to be an association between p-value
and feature set size, p-values were not adjusted to control the FDR. Instead, an overlap ratio
(equation (1)) was calculated by dividing the cardinality of the intersection between each module
and feature set by one plus the cardinality of the module-wise maximum intersection. (Adding 1
to the denominator penalizes small maximum intersections.)

The over-representation p-values were then log10-transformed, multiplied by their associated
overlap ratio, and back-transformed. This removed the association between set size and
p-value, and the histograms of these scaled p-values appeared left-skewed. A small scaled
p-value indicates that a feature set is over-represented in a particular module and explains it
well relative to all terms that were tested.
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