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1.1 Human movement models and data processing 
Great circle distance 
The geodesic distance between municipality centroids was calculated using the “distm” 
function in the geosphere R package. 
 
Gravity and radiation models 
Human movement between municipality 𝑖 and municipality 𝑗 (𝑀!→#) is calculated using a 
standard parameterised gravity and radiation models: 
 
Gravity: 

𝑀!→# = 𝜃$
𝑝!%𝑝#&
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Radiation: 	
𝑀!→# =	𝜃(
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where: 
𝑑!→#  = The geodesic distance (i.e. ignoring water bodies) between centroids of municipalities  𝑖 
and 𝑗 
𝑝!  = population of municipality 𝑖 
𝑠!#= total population living in municipalities whose centroid falls within the distance	𝑑!→#  of the 
centroid of patch 𝑖 
𝛼, 𝛽, 𝛾, 𝜃 = scaling parameters 
 
We choose the following scaling parameter values based on the fit of this gravity model to high 
resolution call data records that has previous been shown to generalise well across settings1. 
This model formulation and parameterisation has previously been shown to accurately 
represent human movement in a variety of international settings and predict the spread of 
infectious diseases and their mosquito vectors 2,3. 
 

Parameter Value 
𝛼 0.44 
𝛽 0.4 
𝛾 1.81 
𝜃$  0.01 
𝜃(  0.9 

Table SI 1. Gravity model parameters. 
 
Adjacency 
A binary adjacency matrix between municipalities was calculated using the “poly2nb” function 
in the spdep R package. Elements in this matrix take the value of 1 if municipalities share a 
border and 0 if they do not. 
 



Flight data 
Airline ticket sales data was extracted from the Global database of the International Air 
Transport Association (www.iata.org) to estimate domestic passenger numbers between all 
airport combinations in Mexico and Brazil. The total number of registered tickets between cities 
from January 2009 to December 2019 were aggregated to provide an estimate of the volume of 
people moving between each airport pair.  
 
To distribute traffic flows from airports to municipalities we follow Huber et al. 4 in using a Huff 
model. The probability of a resident living in municipality 𝑖 flying from airport 𝑗 is a function of 
the attractiveness of airport 𝑗 and the distance between the centroid of municipality 𝑖 and 
airport 𝑗. Airport attractiveness is estimated by total outbound passenger volume and, as in  4, 
we choose a distance exponent of (𝛽 = 2) and a maximum distance cut off of 500km to limit 
the catchment size of ground-based travel to and from the airport: 
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To estimate the relative number of travellers between municipalities we need to take into 
account the resident population (𝑅!) of each municipality and the range of airport options open 
to them:  

𝑇!# =
𝑅!𝑃!#
∑ 𝑃!#)
#*+

 

 
The relative distribution of passengers from any given airport across municipalities in their 
catchment areas can therefore be given by: 
 

𝐷!# =
𝑇!#

∑ 𝑇!#)
!*+

 

 
Which we use to distribute origin-destination traveller numbers between pairs of 
municipalities. 
 
Internal migration 
We used 2010, 5 year estimated internal migration flows from WorldPop 5 to characterise long 
term movement patterns. These datasets were only available at the state (admin 1) level, so 
were downscaled to municipality level assuming equal proportional flows between 
municipalities in each state. 
 
Travel time 
We use combine a global travel time “friction surface”6 with minimum route finding algorithms7 
to derive a point estimate of travel time by motorised transport between the most densely 
populated pixels in each municipality.   
 

http://www.iata.org/


Movement data processing 
To measure the association between risk of dengue spread and a range of connectivity metrics 
data transformations were applied to different human movement datasets to improve 
parameters estimates and interpretability at the modelling stage (Table SI 1).  
 

Feature Transformation 
Great circle distance log	(

1
𝑥) 

Gravity model log	(𝑥 + 1) 
Radiation model log	(𝑥 + 1) 
Adjacency 𝑥 
Flight log	(𝑥 + 1) 
Internal migration log	(𝑥 + 1) 
Travel time log	(

1
𝑥) 

Table SI 2. Transformation of movement features. 
  



1.2 Geospatial model hyperparameters 
 

Model Hyperparameters Tuned 
Logistic regression (glm) NA 

Lasso regression (glmnet) Lambda – Range (log-10 transformed scale):  [-10, 0]  
Ridge regression (glmnet) Lambda – Range (log-10 transformed scale):  [-10, 0] 

Elastic net (glmnet) Lambda – Range (log-10 transformed scale):  [-10, 0]; 
Alpha:  Range [0, 1] 

 
Decision tree (rpart) 

Cost_Complexity – Range (log-10 transformed scale):  [-10, -1]; 
Tree_Depth – Range:  [1, 15]; 

Min_N – Range:  [2, 40] 
 

Random forest (ranger) 
MTry – Range:  [1, 16]; 

Min_N – Range:  [2, 40]; 
Trees – Range:  [1, 2000] 

 
 
 

Gradient boosted decision 
trees (XGBoost)  

Min_N – Range[2, 40]; 
Tree_Depth –  Range[1, 15]; 

Learn_Rate – Range (log-10 transformed scale):  [-10, -1]; 
Loss_Reduction – Range (log-10 transformed scale):  [-10, -1.5]; 

Trees – Range[1, 2000]; 
Sample_Size – Range:  [0.5, 0.99]; 

Stop_Iter – 8 (fixed);  
MTry – Range:  [1,16] 

K-nearest neighbours (kknn) Neighbours – Range:  [3,5,7,9, 17, 33, 69, 97, 183, 211] 
 
 

Multilayer perceptron (keras) 

Hidden_Units – Range[1, 10]; 
Dropout – Range[0, 1]; 

Penalty – Range (log-10 transformed scale):  [-10, 0]; 
Learn_Rate – Range (log-10 transformed scale):  [-10, -1]; 

Epochs – left as default (20); 
Activation – left as default (softmax) 

Table SI 3. Hyperparameters tuned during geospatial model selection.  Each model was tested 
over the same 5 random seeds, with the training set (75% of full dataset) split into five-folds for 
cross-validation for hyperparameter tuning.  All hyperparameters were explored over their 
default ranges in the Dials package, except for KNN.  Maximum entropy grids of between 25 
and 125 combinations (5 per parameter when there are multiple parameters to tune up until 3 
due to computational constraints were tested) of hyperparameters were explored during grid 
searches.  Classification thresholds (between 0 and 0.99 by increments of 0.01)) were set to 
minimize the difference between specificity and sensitivity in the training set. 
  



 
Country XGBoost Hyperparameter Values 

 
 
 

Mexico 

Min_N – 4; 
Tree_Depth – 14; 

Learn_Rate – 0.04653296; 
Loss_Reduction – 6.311998e-10; 

Trees – 1623; 
Sample_Size – 0.7782342; 

Stop_Iter – 15;  
MTry – 8 

 
 
 

Brazil  

Min_N – 3; 
Tree_Depth – 15; 

Learn_Rate – 0.03023025; 
Loss_Reduction – 0.05793492; 

Trees – 1495; 
Sample_Size – 0.8824715; 

Stop_Iter – 18;  
MTry – 15; 

Table SI 4. Hyperparameters for XGBoost models used in experiments.  Once XGBoost was 
selected as the geospatial model of choice, hyperparameters were trained in 10-fold cross 
validation using a 75% training set with maximum entropy grids of up to 125 different 
combinations of hyperparameter values (due to computational constraints).  These were the 
hyperparameters subsequently used across experiments (e.g. across time-series cross 
validation, historical reconstruction, future projection) in combination with the temporal model 
for thresholding.  
 
  



1.3 Historical sources of infection for Brazil 
Sources from case report data 
To identify possible origins of pre-2000 dengue spread in Brazil we examined a global dengue 
occurrence database assembled by Messina and colleagues detailing occurrence records 
between 1960 and 20128. This database collates records of dengue occurrence from peer-
reviewed literature and case reports and informal online sources. As an opportunistic sample of 
dengue occurrence (i.e. not incidence) this database is not comparable to the case database 
from 2001 onwards in Brazil and cannot be used to infer patterns of spread, however it can be 
useful for identifying possible origins. Occurrence records in Brazil and neighbouring countries 
between 1986 (first Brazilian record in this database) and 2001 (the beginning of our case 
dataset for Brazil) are displayed in SI Figure 6. It is noted that an earlier outbreak did occur in 
Boa Vista in 1981/82, but as this did not lead to ongoing spread, it was excluded as a possible 
source of wider spread9,10. Based on a visual inspection of geographic trends over time we 
identified four potential geographically unique introductions that are more likely to have 
occurred via international than domestic spread. These included the initial outbreaks in 
Fortaleza and Rio de Janeiro in 1986 that continue to persist and spread within their respective 
regions in all subsequent years. We also propose a novel geographic introduction into northern 
Sao Paulo state as the cause of the 1990 epidemic with the largest town in the region (Ribeiro 
Preto as the chosen source for our analysis). While Ribeiro Preto is relatively geographically 
close to Rio de Janeiro in the Brazilian context, the absence of reported cases in many larger 
climatically suitable cities closer to Rio de Janeiro led us to believe that a potential international 
introduction to Ribeiro Preto in 1990 was worth testing in our spread model simulations. 
Finally, an independent international introduction to the Amazonian city of Manaus in 1996 was 
proposed based on regular reporting of cases in countries to the North of Brazil (particularly 
Venezuela and French Guiana) since 1990, Manaus’s role as a regional hub for international 
river-based traffic and the occurrence of dengue in many rural areas in the east of the country 
post 1996 that could not easily be explained without a source in Manaus. 
 
Sources from genetic data and phylogeographic analysis 

To investigate the evolutionary origins of dengue virus lineages in Brazil, we analysed publicly 
available serotype-specific dengue virus genetic datasets using spatiotemporal phylogenetic 
approaches. First, we downloaded complete and near complete dengue virus sequences (³8000 
base pairs, bp) from GenBank/NCBI 11(28 June 2022). Many of the earlier sequences from Brazil 
correspond to the E gene codifying for the envelop protein (1485 bp). Thus, to capture earlier 
dengue lineages circulating in Brazil, we also downloaded all sequences from Brazil with length 
³1000 bp. We removed identical sequences and sequences without information on country of 
origin, Brazilian region of origin (for Brazilian sequences only), or year of collection.  

The number of assembled dengue sequences was as follows: DENV1 (n=3998 sequences), 
DENV2 (n=3441), DENV3 (n=1782) and DENV4 (n=1223). Sequence alignments were performed 
with minimap2 v2.24 12 and gofasta v1.1.0 13, using DENV NCBI RefSeq genomes as references. 
Untranslated genomic regions were trimmed from the alignments. Maximum-likelihood (ML) 
phylogenetic trees were then inferred from each alignment with IQ-Tree v2.1.2 14, under the 



GTR+F+I+G4 model 15,16. Shimoidara-Hasegawa like approximate likelihood ratio test 17 was 
used to estimate branch statistical support. 

From the ML trees, we identified the clades corresponding to the genotypes that have been 
identified so far in Brazil: DENV1 genotype I (DENV1-I); DENV2 genotype III (DENV2-III); DENV3 
genotype III (DENV3-III); and DENV4 genotype II (DENV4-II). Separate datasets for each of these 
genotypes were then assembled, and novel ML phylogenies were inferred as described above. 
We used TempEst v1.5.3 18 to assess the temporal signal of the datasets and identify-and-
remove temporal outliers, defined as sequences that deviate more than two times the 
interquartile range of the residuals’ root-to-tip regression distribution. After these quality 
control steps, the number of assembled sequences was as follows: DENV1-I (n=736 sequences), 
DENV2-III (n=941 sequences), DENV3-III (n=755 sequences) and DENV4-II (n=283 sequences). 
Visual inspection of our ML trees identified 9 phylogenetic clades (n=20 sequences) with a 
majority of sequences from Brazil and supported by SH-aLTR between 74 and 100 (Table SI 5). 

We next investigated the spatiotemporal origins of each Brazilian lineage using a Bayesian 
phylogeographic framework in BEAST v.1.10.5 19. We used the HKY+G4 nucleotide substitution 
model 16,20, an uncorrelated relaxed clock model 21 and a flexible Skygrid demographic tree 
prior with number of grids corresponding the number of years between the time of the most 
recent common ancestor (TMRCA) estimated using TemPest 22. We used the new Hamiltonian 
Monte Carlo Skygrid operator 23 and ML starting trees. All other operators and priors were set 
as default. For each dataset, we performed at least two Markov Chain Monte Carlo (MCMC) 
runs of 200 million generations sampling every 20,000 steps with BEAGLE v4 24 library to 
enhance computational speed. We used Tracer v1.7.1 25 to inspect mixing and convergence of 
chains (effective sample size > 200 for all parameters). Following previous work 26, we used 
Logcombiner v1.10.5 19 to obtain a sample of 1,000 empirical dated trees from each dataset. 
We then estimated time-scaled geographically annotated trees under an asymmetric discrete 
phylogeographic model 27. Two spatial discrete traits were reconstructed: Brazilian region (n=5) 
and Brazilian state (n=27). A robust counting approach was used to estimate the number and 
directionality of location-exchange transitions inferred along the posterior distribution of dated 
trees 28–30. MCMC chains for phylogeographic analyses were run 50 million generations, 
sampling every 5,000 steps. We used TreeAnnotator v1.10.5 19 to infer maximum clade 
credibility summary trees. The results are sumamrised in Table SI 5 with the XML and summary 
maximum clade credibility tree files used for the phylogenetic analyses available in the Github 
repository (https://github.com/obrady/DenSpread_public). 

 

 

 

 

 

https://github.com/obrady/DenSpread_public


 
DENV 

Serotype 
DENV Lineage 

(n>20) 
DENV Lineage Size tMRCA of DENV lineage Location (region/state) of DENV lineage Temporal range of DENV lineages 

DENV Lineage Phylogenetic 
Support 

n 
(Brazil) 

n 
(total) Median Lower Upper 

Region of 
intro 

PP 
region 

State of 
intro 

PP 
state  

Oldest tip 
(Brazil) 

Youngest tip 
(Brazil) PP node SH-aLRT 

DENV1 

BR1 (Genotype I) 48 48 
1983-09-

29 
1982-01-

01 
1985-02-

16 Southeast 0.9933 
Rio de 
Janeiro 0.9826 1986 2002 1 99.4 

BR2 (Genotype I) 89 91 
1998-01-

11 
1996-03-

29 
1998-12-

22 North 0.9994 Roraima 0.9988 2000 2019 1 100 

BR3 (Genotype I) 60 61 
2005-12-

30 
2005-05-

25 
2006-08-

02 North 0.9923 Roraima 0.9904 2007 2019 0.1729 100 

BR4 (Genotype I) 81 87 
2009-05-

02 
2008-10-

23 
2009-11-

09 Southeast 0.9559 
Rio de 
Janeiro 0.9551 2010 2019 1 74 

DENV2 

BR1 (Genotype III) 48 52 
1989-02-

02 
1988-05-

11 
1989-08-

02 Southeast 0.9323 
Rio de 
Janeiro 0.9643 1990 2006 1 99.9 

BR2 (Genotype III) 124 153 
2005-03-

27 
2004-11-

09 
2005-07-

17 Northeast 0.68 Piaui 0.998 2006 2019 1 93.7 

BR3 (Genotype III) 237 237 
2013-07-

28 
2012-09-

20 
2014-04-

07 Southeast 0.9722 
Minas 
Gerais 0.9066 2016 2020 1 100 

DENV3 BR1* (Genotype III) 99 104 
1999-10-

21 
1999-04-

27 
2000-02-

21 Northeast 0.7423 Pernambuco 0.9996 2001 2009 0.9948 99.8 

DENV4 BR1 (Genotype II) 182 193 
2009-09-

23 
2008-08-

28 
2010-05-

26 Southeast 0.57 Roraima 0.8762 2010 2015 0.9698 100 

 
Table SI 5. - Origins of dengue spread in Brazil from phylogenetic analyses of dengue virus 
sequence data. Summary of Bayesian phylogeographic results, assuming region and state as 
discrete traits (clades with more than 20 sequences). DENV = dengue virus, tMRCA = time to 
most recent common ancestor, PP = posterior probability, SH-aLRT = Shimodaira–Hasegawa 
approximate likelihood ratio test. 

 

 

  



1.4 Historical and future projection of climate and mobility features 
Each of the observed climate features included in our analysis were only available for the time 
period 2000-2015 (TCB and TCW 2000-2014, Land use 2002-2012) which covered the majority 
of years of the dengue datasets in Mexico and Brazil but was unsuitable for historical 
reconstruction or future projection purposes. We therefore project expected values of each of 
these features before 2000 and after 2015 based on the national trend in the most relevant 
matched variable included in the Tier-1 CMIP6 future projection scenarios31 (Table SI 6). This 
approach was not intended as a highly accurate projection of each of the variables used in our 
study, but to obtain a reasonable range of projected values that are in keeping with the trends 
in contemporary and projected climate variables. 
 
We obtained the mean predictions from five general circulation models (gfdl-esm4, ipsl-cm6a-
lr, mpi-esm1-2-hr, mri-esm2-0, ukesm1-0-ll) under representative concentration pathway (RCP) 
scenario 3.70 for the variables temperature, humidity and precipitation (all daily min, mean and 
max) from31. The Malaria Atlas Project (MAP) features used in our main analysis were paired 
with the most relevant RCP features (Table SI 6).  
 

Contemporary features RCP feature to assume future trend from 
Mean night time temperature Annual mean monthly minimum temperature 
SD daytime temperature Annual standard deviation of monthly maximum 

temperature 
Mean day time temperature Annual mean monthly mean temperature 
SD EVI Annual standard deviation of monthly mean humidity 
Mean EVI Annual mean of monthly mean humidity 
SD night time temperature Annual standard deviation of monthly minimum 

temperature 
SD TCW Annual standard deviation of monthly mean 

precipitation 
Table SI 6. Chosen features to match trend for future projection. RCP = Representative 
Concentration Pathway. SD = Stand Deviation. EVI = Enhanced Vegetation Index, TCW = 
Tasselled Cap Wetness.  
 
Annual mean values for Mexico and Brazil were then extracted from all feature rasters for each 
calendar year. A generalised linear model was then fit for each variable and country with fixed 
effects for year (linear trend), data source (MAP or RCP) in addition to an intercept. This 
allowed the between-year trend in the RCP feature values to inform projected past and future 
MAP feature values despite having different numeric values for some variables. The fit of linear 
models fit to MAP features only, RCP features only and all data combined (and predicted for 
MAP or RCP data types) showed a consensus on direction and magnitude of nearly all variables, 
with the exception of mean daytime temperature in Mexico for which models fit to MAP data 
suggest decreasing values while RCP data suggests increasing values. Given the limited 
timespan of the MAP data and a general consensus that temperature is likely to increase over 
time we rely on the predictions of the model fit to both datatypes. 



 
We then use the trend identified in the models fit to RCP and MAP data (predicting for MAP 
data values) to project past and present values of each feature. For future values we use the 
raw RCP predictions plus the coefficient estimate for the RCP datatype in the RCP+MAP model. 
This aligns RCP datapoints to the scale of the MAP data but retains the between-year variation 
estimated by the GCMs. To capture appropriate between-year variation in historical feature 
values we first predict a linear trend from the RCP+MAP model, then add additional randomly 
sampled noise based on a random sample without replacement of the RCP+MAP model 
residuals. The resultant projected values for each feature are shown in SI Figure 7. 
 
The values in SI Figure 7 were then used to generate variable, year and country-specific scalar 
values that informed how each variable changed pre-2000 and post 2015. The feature raster for 
the year 2005 (the year closest to the average of 2000-2015 conditions) was then multiplied by 
this scalar value to estimate historical and future trends in each feature. 
 
Projection of mobility variables followed a similar approach. At aggregate levels, movement 
volumes correlate with population growth and growth in income32. We obtained annual 
national total population estimates and projections from the United Nations World Population 
prospects 202233 and annual national Gross Domestic Product (GDP) estimate and projections 
from the Organisation for Economic Co-operation and Development (OECD) GDP long term 
forecast34. We converted each indicator into a relative proportionate change since the year 
2010 then took an annual average between indicators to provide a year-specific multiplier to 
increase or decrease human movement variables by. This approach does not account for 
specific year-on-year changes in mobility nor account for sub-national differences in the rate of 
change over time, but is intended to provide a rough approximation of changing travel volumes 
over time and their realistic impact on future trends of dengue spread. 
 
 
  



 
 
 

 
 
SI Figure 1 – Optimal thresholds for defining invasion.   
Plots show the trade-off between persistence after invasion (y-axis) and proportion of 
municipalities defined as invaded (x-axis) for different case-based (A and C) and incidence-
based (B and D) thresholds for Brazil (A and B) and Mexico (C and D). Dotted red lines show the 
persistence and proportion invaded for the most optimal point. 
  



 
 
 
SI Figure 2- Expanding window time-series cross validation of the 
survival model in Brazil (A and B) and Mexico (C and D).  
Plots A and B show the rank of survival models fit with different functional forms (exp = 
Exponential, gengamma = Generalised Gamma, llogis = Log-Logistic, lnorm = Log-Normal, spline 
= 1 knot spline) to data prior to the prediction year and evaluated against the prediction year 
and all subsequent years, as evaluated by Root Mean Squared Error (RMSE, rank 1 = best 
fitting). Plots B and D show the risk predictions of the best fitting survival model for each 
prediction year (only models with at least 3 years of evaluation data shown). Only predictions 
for the years after the fitting data are shown. Consistent with the future projection analysis, 
predictions for 2020 onwards are only shown for the five models fitted to the most years of 
data. Predictions for all years are shown for model fit to all of the training data as it is used for 
both historical reconstruction and future projection. 
  



 

 
SI figure 3 – Geospatial model selection heatmap.  
Values and colours show the values of sensitivity (SN), specificity (SP) and area under the 
receiver operating characteristic curve (AUC). All metrics range between 0-1 with higher values 
(darker colours) indicating superior model predictive performance. Each model was tested over 
the same 5 random seeds, with the training set (75% of full dataset) split into five-folds for 
cross-validation for hyperparameter tuning.  Classification thresholds (between 0 and 0.99 by 
increments of 0.01) were set to minimize the difference between specificity and sensitivity in 
the training set. 
  



 
 
SI Figure 4 Geospatial model predictive performance over time.  
Panels A and B show the correlation between predicted and observed year of arrival of dengue 
for Mexico (A) and Brazil (B) based on a combined temporal and geospatial model fit to data 
from all years but only initialised using infected municipalities from 1996 (Mexico) or 2001 
(Brazil) (Simulation). Solid lines show the median prediction with shaded areas ndicating the 
interquartile range of the predicted year of invasion. Figures C and D show the yearly Area 
Under the (receiver operating characteristic) Curve (AUC), Sensitivity (SN) and Specificity (SP) 
for the Simulation model, a naïve repeated 75-25 train test split of the data (Naïve) and an 
expanding window time series cross validation where observed infection sources for the year t 
– 1 are given to the model when predicting for year t (Hindcast). 
  

A
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Simulation

Hindcast

Simulation

NaiveNaive



 
SI Figure 5 – Variable importance 
Plots show the average number of times each feature (row) is selected in to split the dat ain 
XGBoost models for Mexico (A) and Brazil (B). Variable importance was assessed using XGBoost 
models fit to data from all years. Temp. = temperature, Std dev = Standard deviation, EVI = 
environmental vegetation index. 
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SI Figure 6 – Geospatial model country cross-validation.   
Panel A shows year-over-year performance metrics when the geospatial model is trained on all 
spread data from Brazil, initialised with observed source locations in Mexico in 1996, then 
tested on Mexico spread data 1997-2019. Panel B shows year-over-year performance metrics 
when the geospatial model is trained on all spread data from Mexico, initialised with observed 
source locations in Brazil in 2001, then tested on Brazil spread data 2002-2019. Tables B and D 
summarise the mean annual performance between the default simulation model and country 
cross validated geospatial models for Mexico and Brazil respectively. AUC = Area Under the 
Curve, SP= specificity, SN = sensitivity. 
  

Country 
cross-

validation 
simulation 

model

Simulation 
model

Metric

0.8000.958AUC

0.8880.981SP

0.5140.507SN

Country 
cross-

validation 
simulation 

model

Simulation 
model

Metric

0.7420.939AUC

0.7890.862SP

0.4540.896SN

A

C

B

D



 
 

SI Figure 7 – Possible origins of dengue spread in Brazil from sporadic 
outbreak reports.  
Red dots show reported dengue occurrences in each year within Brazil and border areas of 
neighbouring countries. Purple circles show the potential origins of spread from case data used 
in this analysis. Data from Messina et al.16. 
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SI Figure 8 – Projection of model features in keeping with climate 
scenario.  
EVI = Enhanced Vegetation Index, TCW = Tasselled Cap Wetness. MAP = Malaria atlas project 
covariates, RCP = Representative concentration pathway covariates. 
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