

Supplementary Figure 1: GTEx eQTL, sQTL, ieQTL, and isQTL analysis of confident GWAS IBD genes. (a) Heatmap presentation of the presence or absence of GTEx eQTL, sQTL, ieQTL, and isoQTL across confident GWAS IBD genes² (n = 279, Bolton C. et al., Gastroenterology 2022, Supplementary Table 4: Genes included in the analysis of the intersection of monogenic IBD genes and polygenic IBD loci). (b) Pie chart presentation of numbers of confident GWAS IBD genes according to (a). Source data are provided as a Source Data file for Supplementary Figure 1a.

Supplementary Figure 2: LDlink linkage disequilibrium analysis of variants in *SBNO2* with GWAS-based association with IBD/CD.

Supplementary Figure 3: SBNO2 structural and phylogenetic analysis. (a) AF-Q9Y2G9-F1 alpha fold artificial intelligence-based prediction of the human SBNO2 ISO1 structure. The colour indicates the confidence of prediction. (b) Consurf-based prediction of SBNO2 phylogenetic conservation visualised on the AF-Q9Y2G9-F1 model. (c) Visualisation of SBNO2 NTP hydrolase domain (purple) and Helicase C domain (turquoise), and (d) visualisation of differences in SBNO2 ISO1 and SBNO2 ISO2 protein sequence using the AF-Q9Y2G9-F1 model. (e) Phylogenetic tree of SBNO2 isoforms across selected species. (f) Multiple sequence alignment of protein sequences of select SBNO2 isoforms according to (e). Amino acid 1 - 212 of human SBNO2 ISO1 (QY92G9) and corresponding residues of selected species are shown.

Supplementary Figure 4: Analyses of ectopic SBNO2 isoform expression and localization in HEK293 cells. (a-c) Confocal microscopy images of HEK293 cells expressing Myc-tagged SBNO2 ISO1 (cyan hot) (a), HA-tagged SBNO2 ISO2 (red) (b), and co-transfected HEK293 cells expressing both SBNO2 isoforms (c). Nuclear DAPI staining and co-transfected GFP fluorescence signals are shown in sepia and green colour respectively. Source data are provided as a Source Data file for Supplementary Figures 4a-c.

	No IBD			CD non inflamed			CD microscopic inflammation			CD macroscopic inflammation		
ĺ	Age	Sex	BMI	Age	Sex	BMI	Age	Sex	BMI	Age	Sex	BMI
Minimum	4.5		12.59	7.833		13.61	2.25		12.98	5.083		12.78
1st Quartile	10.44		16.52	10.38		14.29	10.77		16.03	10.67		14.69
Median	12.88		19.54	11.5		16.3	13.04		17.8	12.42		16.43
Mean	12.37		20.49	12.07		16.86	12.67		18.45	12.45		17.36
3rd Quartile	14.85		23.51	13.79		18.4	15.21		20.35	14.58		19.01
Maximum	18		33.24	16.58		23.75	16.92		25.27	16.83		36.46
Male		n=38			n=17			n=14			n=93	
Female		n=28			n=8			n=10			n=50	

Supplementary Table 1: RISK cohort patient information.

Supplementary Figure 5: *SBNO2* gene and isoform-level expression in intestinal biopsies from healthy individuals and patients with CD. (a) RNA sequencing-based estimation of *SBNO2* gene expression (non-parametric, two-sided, Kruskal-Wallis test) and (b) *SBNO2* isoforms expression in the RISK cohort data expressed as fragments per kilobase of exon per million mapped fragments (FPKM) (non-parametric, two-sided, Kruskal-Wallis test). Source data are provided as a Source Data file for Supplementary Figures 5a and b.

Supplementary Figure 6: Analyses of SBNO2 protein expression peripheral blood immune cells. Absolute protein copy numbers (log10) from high-sensitivity mass spectrometry quantification of SBNO2 in FACS-sorted peripheral blood immune cell types, in steady state and following stimulation (activated)²⁷. The grey ribbon corresponds to the interquartile range of protein expression for all analytes in each cell.

Supplementary Figure 7: *SBNO2* gene and isoform level expression in primary human monocytes. (a) *SBNO2* gene expression, *SBNO2* ISO1 and *SBNO2* ISO2 expression, and *SBNO2* ISO1 and *SBNO2* ISO2 isoform usage in resting and 24 hrs LPS-stimulated primary human monocytes (n = 176, we applied the IsoformSwitchAnalyzeR tool to analyse isoform usage in naïve and treated monocytes with LPS. Isoform usage refers to the fraction value of the mean isoform expression given the mean expression of the corresponding gene in a setting with k biological replicates). (b) Example of a variant (rs12973759) with a tQTL specifically affecting *SBNO2* ISO1 expression in LPS-stimulated CD14⁺ monocytes. Box plots depict the interquartile range as the lower and upper bounds, respectively. The whiskers represent minimum and maximum, and the centre depicts the median. eQTL analysis was performed with the FastQTL and QTLtools using a linear regression. To allow comparison with output of the regression model the optimal number of PC was used to regress out expression changes attributable to the effect of the non-genetic covariates in local association plots. Source data are provided as a Source Data file for Supplementary Figures 7a and b.

Supplementary Table 2: Information on healthy individuals recruited via the Oxford Biobank (n = 176).

	Age	Sex	BMI
Minimum	31		17.43
1st Quartile	35		22.19
Median	49		24.29
Mean	47.22		25.19
3rd Quartile	57		26.98
Maximum	66		43.04
Male		n=60	
Female		n=116	

Supplementary Figure 8: WGCNA analysis of RNA-seq data generated from unstimulated, IL-10-, LPS, and LPS + aIL10R-stimulated MDM. (a) WGCNA soft power plot. (b) Cluster dendrogram. (c) Eigengene dendrogram including genes and transcripts of interest: *SBNO2*, *SBNO2* ISO1, and *SBNO2* ISO2.

IBD							
VARIABLE	TYPE	NGENES	BETA	BETA_STD	SE	Р	-LOG10(pvalue)
ME1	SET	918	0.091263	0.019998	0.031429	0.0018458	2.733815358
ME2	SET	235	0.05913	0.0066842	0.063221	0.17483	0.757384042
ME3	SET	252	0.080271	0.0093921	0.057515	0.081419	1.089274236
ME4	SET	305	-0.012925	-0.0016613	0.054697	0.5934	0.226652458
ME5	SET	53	0.23633	0.012752	0.13181	0.036496	1.437754732
ME6	SET	61	-0.0060427	-0.00034971	0.11719	0.52056	0.283529206
ME7	SET	118	-0.062614	-0.0050319	0.081982	0.77749	0.109305188
ME8	SET	50	-0.15116	-0.0079225	0.13264	0.87277	0.05910019
ME9	SET	120	0.21039	0.01705	0.089683	0.0094944	2.022532475
ME10	SET	153	0.13018	0.011902	0.077989	0.047542	1.322922552
ME11	SET	38	0.2006	0.0091689	0.14706	0.086274	1.064120066
ME12	SET	97	0.060824	0.0044344	0.094536	0.25999	0.585043356
ME13	SET	33	0.096503	0.0041109	0.18115	0.29712	0.527068114
ME14	SET	82	0.12018	0.0080594	0.11393	0.14575	0.836391437
ME15	SET	1438	0.1419	0.038324	0.026382	3.80E-08	7.419827998
ME16	SET	40	-0.041376	-0.0019401	0.14555	0.6119	0.213319547
ME17	SET	93	0.032885	0.0023478	0.095212	0.3649	0.437826137
			(D			
VARIABLE	TYPE	NGENES	BETA	BETA_STD	SE	Р	-LOG10(pvalue)
ME1	SET	918	0.070448	0.015439	0.030936	0.011394	1.943323785
ME2	SET	235	0.057781	0.0065328	0.062689	0.17834	0.748751238
ME3	SET	252	0.076924	0.0090019	0.055966	0.084657	1.072337126
ME4	SET	305	-0.023835	-0.003064	0.054534	0.66896	0.17459985
ME5	SET	53	0.063144	0.0034076	0.1295	0.31292	0.504566678
ME6	SET	61	-0.15992	-0.0092565	0.11426	0.91917	0.036604159
ME7	SET	118	-0.0050225	-0.0004037	0.081024	0.52471	0.280080659
ME8	SET	50	-0.01468	-0.00076951	0.13234	0.54416	0.264273385
ME9	SET	120	0.12528	0.010154	0.090237	0.082528	1.08339868
ME10	SET	153	0.076462	0.0069914	0.075688	0.1562	0.80631897
ME11	SET	38	0.1205	0.0055087	0.14354	0.2006	0.697669071
ME12	SET	97	0.18849	0.013744	0.0879	0.016008	1.795662924
ME13	SET	33	0.38933	0.016588	0.18343	0.016907	1.771933447
ME14	SET	82	0.0042318	0.00028383	0.10963	0.4846	0.31461659
ME15	SET	1438	0.09979	0.026956	0.026036	6.36E-05	4.196816111
ME16	SET	40	0.049797	0.0023354	0.15539	0.37431	0.42676857
ME17	SET	93	0.16664	0.011899	0.092567	0.035927	1.444579046
			ι	JC			
VARIABLE	TYPE	NGENES	BETA	BETA_STD	SE	Р	-LOG10(pvalue)
ME1	SEI	918	0.05496	0.012046	0.029513	0.031291	1.504580557
ME2	SEI	235	0.0060121	0.00067979	0.058251	0.4589	0.338281942
IVIE3	SEI	252	0.032884	0.0038485	0.052979	0.2674	0.572838597
ME4	SEI	305	0.04416	0.0056773	0.052271	0.19911	0.700906928
IVIE5	SEI	53	0.22172	0.011966	0.12522	0.038323	1.416540501
IVIED	SET	61	0.039947	0.0023124	0.10657	0.35389	0.451131709
IVIE/	SET	119	0.031/72	0.002554	0.078017	0.54300	0.40402991/
MEQ	SET	120	-0.13335	0.0081737	0.12374	0.89230	1 202127102
ME10	SET	120	0.14040	0.011380	0.003032	0.030317	1.255157195
ME10	SET	38	0.10037	0.0051785	0.072035	0.14544	0.837316134
ME12	SET	55 07	-0 11286	-0 0082303	0.1307	0.14344	0.037510134
MF13	SET	37	-0.11200	-0.0082303	0 17146	0.50205	0.229685668
MF14	SET	82	0 13138	0.0088125	0 10591	0 10741	0.968955283
ME15	SET	1438	0.078853	0.021302	0.024584	6 71F-04	3 17357531
ME16	SET	40	0.10553	0.0049498	0.1434	0.23089	0.636594876
ME17	SET	93	-0.00021387	-0.000015273	0.088658	0.50096	0.30019695

Supplementary Table 3: Summary of MAGMA³³-based gene-set heritability analysis.

		-log10 P-value	Top Module Eigengenes
Lysosome – Vesicle-mediated transport – cytoplasmic translation – endocytosis – Neutrophil degranulation –	ME1	-100 10 F=value 40 20	COLGALT1, HK1, SLC8B1, IMMT, CALHM2, GPR21, SCAMP4, ARHGAP4, CTBP1, ZNF592, GDE1, HADHB
translation –			· · · · · · · · · · · · · · · · · · ·
regulation of autophagy – myeloid cell apoptotic process – apoptotic signaling pathway – Neutrophil degranulation – maintenance of synapse structure – RHOH GTPase cycle –	ME2		GALNT1, SLC12A6, UBXN7, WIPI2, MAPK1, ABHD4, CYHR1, EIF4EBP2, SLC38A2, IP6KI, KCTD20, PITPNM1
Cellular responses to stimuli – Response to metal ions – covalent chromatin modification – NIK>noncanonical NF-kB signaling – regulation of chromatin organization – macroautophagy –	ME3		MT1H, MT1F, MT1G, BA21B, PPP2R5D, MAP7D1, DYNLL2, MT1E, MT1X, H1-0, LAMC1, PSMD3
Golgi vesicle transport – PTEN Regulation – skeletal system development –	ME4		SLAIN2, HIF1AN, FAF2, EDEM3 MMADHC MARCHE6
proteolysis involved in cellular protein catabolic process – Signal transduction by L1 – HIV Infection –			LCP1, APLP2, CENPBD1P1, TRIM41, HDAC1, ARSD
Infyroid hormone synthesis – lipid storage – cellular monovalent inorganic cation homeostasis – negative regulation of leukocyte differentiation – regulation of response to endoplasmic reticulum stress –	ME5		PAX8-AS1, ERP29, TRABD, SLFN11, ANP32A, WASHC2A, TMEM109, TOR3A, GSTK1, SCAMP3, PLEC, MGA
giycerophospholipid biosynthetic processing			
mRNA surveillance pathway – peptidyl-lysine modification – mRNA polyadenylation – Intra-Golgi and retrograde Golgi-to-ER traffic cellular response to glucose stimulus –	MEO		LSM14A, PPID, GCC1, IWS1, CASC3, R3HDM4, MFAP1, TM9SF4, MRPL28, MAP3K11, TFIP11, YTHDC1
Deactivation of the beta-catenin transactivating complex – N-glycan trimming in the ER and Calnexin/Calreticulin cycle – proteasomal protein catabolic process – Hh mutants are degraded by ERAD – alpha-Linolenic acid metabolism –	ME7		EMC7, AFTPH, PEF1, H2AC19, TMBIM4, TMEM167B, NFE2L1, QSOX1, ACTN4, MT2A. HEXIM1, DCAF5
negative regulation of DNA-templated transcription, elongation – Deactivation of the beta-catenin transactivating complex – Protein processing in endoplasmic reticulum – regulation of protein-containing complex disassembly – positive regulation of inflammatory response –	ME8		PTPA, GNPTAB, CES1, ENTPD1, SIL1, C1QA, ADAMDEC1, ATP6AP1, CTSC,
regulation of proteolysis involved in cellular protein catabolic process — Spliceosome —			C6orf47, ARPC5, OSCAR
Staphylococcus aureus infection – positive regulation of immune response – Neutrophil degranulation – Complement cascade – regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation – oxidative phoshocylation –	ME9		CTSS, CNDP2, ABCD1, FGD2, HLA-DRB1, C1QB, LAMP2, HLA-DRA, SERPING1, LGALS9, ACTG1, HLA-DPA1
L13a-mediated translational silencing of Ceruloplasmin expression – Translation initiation complex formation – ribonucleoprotein complex biogenesis – ribosomal large subunit biogenesis – regulation of translation – mitochondrial transmort	ME1	0	SLC52A2, RPL18A, RPS15, RPL10A, EIF4A1, ABCG1, RP55, RP58, RPL5, GUSB, RPL14, RPL12
	MF1	1	
lysosome organization — regulation of cell-cell adhesion — Formation of the ternary complex, and subsequently, the 43S complex — receptor metabolic process — Antigen processing and presentation —			CD4, IFI30, CD81, HSP90AB1, EIF3C, TSPAN4, NAGLU, GNPTG, HLA-DMA, CFD, LYZ, LRPAP1
Macroautophagy – Ubiquitin mediated proteolysis – Autophagy - animal – Signaling by Receptor Tyrosine Kinases – cellular monovalent inorganic cation homeostasis – endoalsenic resticulum to Cellui vasilesmediated traesport –	ME1:	2	NAV1, FCHSD2, CARM1, HSBP1, BNIP3L, PTGES3, TNFRSF1A, EIF3D, XRCC5, CAP1, PCBP2, HSPB1
cellular pigmentation —	ME1	3	
negative regulation of mitotič cell cycle — Adaptive Immune System — Hemostasis — regulation of cell development — positive regulation of myoblast fusion —		-	PNKD, BCL6, KIF3C, LIAR1, TLR1, DCTN2, NIBAN2, CTDSP2, PLIN3, PHC2, H3-3A, EFHD2
Jak-STAT signaling pathway — sulfur compound biosynthetic process — Acute myeloid leukemia — RHOB GTPase cycle — cellular response to interfeukin-6 - Cytokine Signaling in Immune system —	ME1	4	DSE, SLC2A3, STAT3, SOCS3, CD53, SBN02 , BACH1, PTPN2, PPP1CB, APIP, HNRNPH2, UBE2J1
Interferon Signaling – Class I MHC mediated antigen processing & presentation – viral process – Cellular responses to stress – cytokine-mediated signaling pathway –	ME1	5	SETD5, CYLD, CDC42SE1, N4BP1, BAZ2A, B4GALT1, E2F3, DESI1, MSC, C15orf48, SRC, COPG1
regulation of actin cytoskeleton organization -	MEA	e	
positive regulation of focal adhesion assembly – Pathogenic Escherichia coli infection – regulation of mRNA metabolic process – regulation of intrinsic apoptotic signaling pathway – muscle cell migration –	MET	0	RBM3, CGGBP1, SFPQ, FASTK, MFSD10, ABCA1, SLC35F5, TMBIM6, ACBD5, ARFGAP1, TPT1, DIDO1
ubiquitin-dependent protein catabolic process – dosage compensation by inactivation of X chromosome – regulation of cell growth involved in cardiac muscle cell development – nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay – generation of precursor metabolites and energy –	ME1	7	CTDP1, MON1B, UBE2J2, PIGG, DLST, ILF2, NIPA2, AREL1, NR2C2, MYO1C, EIF31, KCNN4
Maturation of nucleoprotein —			·

Supplementary Figure 9: Pathway analysis of WGCNA gene modules identified in unstimulated, IL-10-, LPS, and LPS + aIL10R-stimulated MDM. Metascape enrichment of KEGG, Reactome, and GO pathway terms based on those gene modules that were identified in unstimulated MDM and 8 hrs IL-10 (100 ng/mL), LPS (200 ng/mL), or LPS + aIL-10R (200 ng/mL, 10 μ g/mL) stimulated MDM (hypergeometric test, Bonferroni correction, padj<0.05). Genes listed on the right represent the respective top 12 correlated module eigengenes. Source data are provided as a Source Data file for Supplementary Figure 9.

Supplementary Figure 10: siRNA-mediated knockdown of SBNO2 in primary human MDM. (a and b) RT-qPCR analysis of SBNO2 ISO1 (a) and SBNO2 ISO1/ISO2 (b) expression in primary human MDM shown as relative expression to RPLPO (left) and fold change to control siRNA-treated MDM (right) (Independent experiments/donors: n = 6/13; nonnparametric, two-sided, Friedman test). (c and d) Venn diagrams show the numbers of significantly (\log_2 fold change > 0.25, padj<0.05, FDR) differentially up-regulated (c) and down-regulated (d) genes upon knockdown of SBNO2 in MDM (n=3) comparing unstimulated (CTRL), IL-10- (100 ng/mL), LPS- (200 ng/mL), or LPS+aIL-10R-treated (200 ng/mL, 10 µg/mL) conditions by RNA-seq and DESeq2 (n=3). (e) STRING functional enrichment analysis showing the top 10 enriched pathways (GO Biologic Process, KEGG Pathways, Reactome Pathways) with dual distribution based on DESeq2 differential expression ranking and functional enrichment analysis false discovery rate. Each one selected pathway is highlighted. The respective top 5 SBNO2 knockdown upregulated and top 5 SBNO2 knockdown downregulated (FDR) pathway genes are listed and the distribution according to log₂ fold change expression across the dataset visualized. Source data are provided as a Source Data file for Supplementary Figures 10a and b.

Supplementary Figure 11: Ectopic expression and CRISPR-Cas9-mediated knockout of SBNO2 in the THP-1 cell line. (a and b) RT-qPCR analysis of (a) *SBNO2* ISO1/ISO2, and (b) *SBNO2* ISO1 expression in lentivirus transduced, GFP⁺-sorted, and PMA-differentiated THP-1 MDM (Independent experiments/replicates: n = 2/6, non-parametric, two-sided, Kruskal-Wallis test). (c) Agarose gel image showing the results from a PCR amplification of genomic DNA of the CRSPR-Cas9-targeted *SBNO2* region in WT THP-1 monocytes and a THP-1 single cell clone (1C9). (d) Expression of *OCSTAMP*, *DCSTAMP*, *TNFRSF11A*, and *BMP6* in lentivirus-transduced (empty vector (eV), SBNO2 ISO1 (ISO1), and SBNO2 ISO2 (ISO2)) THP-1 MDM in steady state or following 8 hrs stimulation with 200 ng/mL LPS measured by RNA-seq (n = 2). (e) Expression of *DMP1*, *CTSK*, *TMEM119*, and *BMP4* according to (d) (n = 2). Source data are provided as a Source Data file for Supplementary Figures 11a-e.