iScience, Volume 27

Supplemental information

Single-cell transcriptomic-informed deconvolution

of bulk data identifies immune checkpoint blockade

resistance in urothelial cancer

Li Wang, Sudeh Izadmehr, John P. Sfakianos, Michelle Tran, Kristin G. Beaumont, Rachel Brody, Carlos Cordon-Cardo, Amir Horowitz, Robert Sebra, William K. Oh, Nina Bhardwaj, Matthew D. Galsky, and Jun Zhu

10-

-10-

В

10.

10 Ō Ó 0 UMAP_1

Evaluation by reconstituted bulk RNAseq

В **Evaluation of different marker selection strategies**

Evaluation by reconstituted bulk RNAseq in Pan Cancer

C

- NK/ILC_FGFBP2
- NK/ILC_GZMK
- NK/ILC_IL23R
- Luminal

- - T-CD8_FGFBP2
 - T-CD8_GZMK T-CD8_reactive
 - T-CD8-TRM_ITGA1

Figure S2

F

D

Cell frequency by scRNAseq observation

Evaluation of the two-phase gene variance modeling

D

Ε

Survival probability

Strata

Strata 📥 score=low

1.00 -

0.75

0.50

0.25 -

0.00

score=low 271 score=high 136

p = 0.1

40

22

40

80

Time

80

Time

1.00

Fibroblast-C7 abs_minor

📥 score=high

l probability

ival

Sur

Strata

Strata 📥 score=low

CheckMate 275 ProM

А

Distribution of Expression

Inferred single cell CNV for epithelial cells SI_651(22144)

IMvigor 010 ProM

Fibroblast-ECM abs_minor Strata 📥 score=Q1low 📥 score=Q2high

Α

Validation PD-L1 cohort: IMvigor 010

Figure S4

Pixel-level marker expression by IMC

Supplementary Figure Legends

Figure S1 Integrative analysis of UC single cell cohort; related to Figure 1 (A) QC plots for each sample in UC single cell cohort (B) UMAP of all cells before removing "batch effects" colored by different sorting techniques used. (C) UMAP of all cells after removing "batch effects" colored by different sorting techniques used. (D) UMAP of all cells after removing "batch effects" colored by cell types and split by the various sorting techniques.

Figure S2 Evaluation of ProM's deconvolution performance; related to Figure 2 (A) Deconvolution accuracies of different algorithms using reconstituted bulk RNAseq profiles in UC. Y-axis indicates Mean Square Error (MSE) between deconvoluted and reconstituted cell frequency averaged across allthe minor or major cell clusters. (B) Deconvolution accuracies when different numbers of cell markers were selected and different marker ranking strategies were employed in marker-based ProM deconvolution. (C) Deconvolution accuracies of ProM with and without cross-platform gene variation modeling. The x-axis represents different levels of cross-platform noise added to the reconstituted bulk profiles. (D) Deconvolution accuracies of different algorithms using reconstituted bulk RNAseq from pan cancer dataset. (E) Deconvolution accuracies of different deconvolution algorithms using paired single cell and bulk RNAseq data. The color in the heatmap represents the MSE between deconvoluted and observed frequency for particular cell subpopulations. The barplot above the heatmap indicates the average MSE across all cell subpopulations. (F) Scatter plot of ProM deconvoluted cell frequency form bulk RNAseq sample versus the observed cell frequency via matched scRNAseq sample for all 40 subpopulations.

Figure S3 Heterogeneity of fibroblast subpopulations; related to Figure 3 and Figure 4 (A) The copy number variation (CNV) for each cell inferred from its scRNAseg profile using R package inferCNV (http://github/broadinstitute/inferCNV) for scRNAseg sample SI 651 or the paired bulk sample 22144. The upper-panel is the inferred CNV for non-epithelial cells (immune and stromal cells), and the lower-panel is that for epithelial cells split into luminal and basal groups. (B) Mapping of Fibroblast-related cells in our scRNAseq cohort to fibroblast cell annotations in a pan-cancer scRNAseq study¹. Colors in the heatmap represent the percentage of a certain cell subpopulation (x-axis) predicted as the other cell subpopulations (y-axis) by the SciBet model. (C) The relative frequency of the five fibroblast-subpopulations by ProM deconvolution averaged within each tumor subtype in four UC bulk RNAseq datasets. (D)(E) Kaplan-Meier (KM) curves of overall survival for TCGA BLCA samples grouped by the frequency of each fibroblast subpopulation among all cells (D) or by the relative frequency of each fibroblast subpopulation among all five fibroblast subpopulations (E). Three different cutoffs, i.e., the lower tertiary vs. the median and higher tertiary, were used to split patients into low and high cell frequency group. The cutoff resulting in the most significant p-value (log rank test) was shown here. The p-value of likelihood ratio test is 0.20, 0.05, 0.8, 0.019 (D) and 0.11, 0.21, 0.37, 0.79 (E), respectively, when cell frequency was treated as continuous variable in Cox-regression model.

Figure S4 Survival Analysis of UC treated with PD-1/PD-L1 blockade; related to Figure 5. (A)KM curves of overall survival for patients grouped by T-CD8_GZMK and T-CD8_reactive as estimated by ProM deconvolution in three PD-L1 clinical cohorts. **(B)** Using the same training datasets (IMvigor210 and CheckMate275) and the same criteria as in ProM analysis, the other nine deconvolution methods detected a total of five subpopulations significantly associated with overall survival (four by CibersortX_batchB and one by MuSiC). None of the findings by CibersotX_batchB and MuSiC can be replicated in the validation dataset (IMvigor010).

Figure S5 Exploratory study of MM_SPP1 using Imaging Mass Cytometry; related to Figure 5.

Visualization of pixel-level intensity of immune cell markers(upper), stromal cell markers(middle) and MM subpopulation markers(lower) within region of interest (ROI) from one patient sensitive (left) or resistant (right) to CPI.

Supplementary Reference

1. Qian, J., Olbrecht, S., Boeckx, B., Vos, H., Laoui, D., Etlioglu, E., Wauters, E., Pomella, V., Verbandt, S., and Busschaert, P. (2020). A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell research *30*, 745-762.

Supplementary Tables

Table S1 samples in the paired single cell and bulk RNAseq cohort: related to Figure 1

Patient ID	scRNAseq						
	Sample ID	Cell sorting	Specimen	Published	Sample ID		
PI_21	SI_357	10x_CD45_neg	TURBT	PMID: 32111252 PMID: 36129800	17760		
PI_22	SI_359	10x_CD45_neg	TURBT	PMID: 32111252 PMID: 36129800	17766		
PI_7	SI_454	10x_CD45_neg	TURBT	PMID: 36099881 PMID: 36129800	19639		
PI_8	SI_457	10x_CD45_neg	Cystectomy	PMID: 36099881 PMID: 36129800	18418		
PI_21	SI_358	10x_CD45_pos	TURBT	PMID: 36129800	17760		
PI_22	SI_360	10x_CD45_pos	TURBT	PMID: 36129800	17766		
PI_1	SI_385	10x_CD45_pos	TURBT	PMID: 36099881 PMID: 36129800	18763		
PI_2	SI_394	10x_CD45_pos	TURBT	PMID: 36099881 PMID: 36129800	NA		
PI_3	SI_397	10x_CD45_pos	TURBT	PMID: 36099881 PMID: 36129800	18859		
PI_4	SI_421	10x_CD45_pos	TURBT	PMID: 36099881 PMID: 36129800	19425		
PI_4	SI_422	10x_tumor_NK	TURBT	NA	NA		
PI_4	SI_423	10x_tumor_CD8	TURBT	NA	NA		
PI_4	SI_424	10x_tumor_CD4	TURBT	NA	NA		
PI_5	SI_434	10x_CD45_pos	TURBT	PMID: 36099881 PMID: 36129800	16877		
PI_6	SI_435	10x_CD45_pos	Cystectomy	PMID: 36099881 PMID: 36129800	NA		
PI_7	SI_453	10x_CD45_pos	TURBT	PMID: 36099881 PMID: 36129800	19639		
PI_8	SI_456	10x_CD45_pos	Cystectomy	PMID: 36099881 PMID: 36129800	18418		
PI_15	SI_584	10x_unsorted	Cystectomy	PMID: 33837006 PMID: 36099881	NA		
PI_15	SI_585	10x_unsorted	Adjacent Normal	PMID: 33837006	NA		
PI_9	SI_595	10x_unsorted	Cystectomy	PMID: 33837006 PMID: 36099881	NA		
PI_9	SI_596	10x_unsorted	Adjacent Normal	PMID: 33837006	NA		
PI_14	SI_603	10x_unsorted	TURBT	PMID: 33837006	21753		
PI_17	SI_604	10x_unsorted	TURBT	PMID: 33837006	21783		

PI_18	SI_613	10x_unsorted	TURBT	PMID: 33837006 PMID: 36099881	NA
PI_14	SI_651	10x_unsorted	Cystectomy	PMID: 33837006 PMID: 36099881	22144
PI_23	SI_656	10x_unsorted	Cystectomy	PMID: 33837006 PMID: 36099881	22171
PI_16	SI_659	10x_unsorted	Cystectomy	NA	NA
PI_24	SI_695	10x_unsorted	TURBT	PMID: 33837006 PMID: 36099881	22605
PI_25	SI_696	10x_mixed	TURBT	NA	NA
PI_26	SI_697	10x_mixed	Lymph Node	NA	22612

Table S2 Patient clinical information: related to Figure 1

Patient ID	Gender	Age	Stage	Race
PI_1	М	50-60	cT2N0M0	White
PI_2	М	70-80	cT0N0M0	White
PI_3	М	60-70	cT3N0M0	White
PI_4	F	80-90	cTaN0M0	White
PI_5	М	60-70	pT4bN3M0	White
PI_6	М	80-90	pT3bN0M0	White
PI_7	М	80-90	cT2N0M0	White
PI_8	М	60-70	yT4N2M0	Asian.Indian
PI_9	М	70-80	pT2N0M0	White
PI_14	F	40-50	cT2N0M0	Asian
PI_15	М	60-70	pT4N0M0	White
PI_16	М	60-70	pT0N0M0	White
PI_17	F	70-80	cT2N0M0	White
PI_18	F	80-90	cT3N0M0	White
PI_21	F	80-90	cT2N0M0	White
PI_22	М	50-60	cT2N0M0	White
PI_23	М	70-80	pT3bN2M0	White
PI_24	М	60-70	cT2N0M0	White
PI_25	F	70-80	pT0N0M0	Unknown
PI_26	М	60-70	pT3aN2M0	White

	Reconstituted bulk: CD45-sorted Reference scRNAseq: unsorted			Reconstituted bulk: unsorted Reference scRNAseq: CD45-sorted			Paired scRNAseq and bulk RNAseq		TCGA (by Methylation)			
	Minor cluster		Major cluster		Minor cluster		Major cluster		Minor cluster		Major cluster	
Comparison with ProM	t-stat*	p-value*	t-stat	p-value	t-stat	p-value	t-stat	p-value	t-stat	p-value	t-stat	p-value
ProM_profileOnly	2.41	1.0E-02	0.87	2.0E-01	1.48	7.3E-02	1.08	1.5E-01	4.25	6.4E-05	2.36	2.8E-02
ProM_markerOnly	2.72	4.8E-03	2.08	2.9E-02	2.50	8.4E-03	2.93	5.8E-03	0.26	4.0E-01	2.87	1.4E-02
CibersortX_batchB	4.58	2.3E-05	2.48	1.4E-02	3.34	9.2E-04	3.95	8.3E-04	2.41	1.0E-02	2.59	2.1E-02
CibersortX	4.85	1.0E-05	2.90	6.2E-03	4.01	1.3E-04	3.01	5.0E-03	2.36	1.2E-02	2.91	1.3E-02
BayesPrism	3.89	1.9E-04	3.17	3.7E-03	3.61	4.3E-04	2.75	8.2E-03	4.54	2.7E-05	3.18	9.6E-03
MuSiC	5.59	9.7E-07	2.98	5.3E-03	5.67	7.5E-07	3.10	4.2E-03	4.91	8.4E-06	2.90	1.4E-02
CibersortX_batchS	7.09	8.1E-09	3.00	5.1E-03	7.31	4.0E-09	4.30	4.3E-04	5.54	1.1E-06	4.61	1.8E-03
BisqueRNA	8.92	3.0E-11	3.91	9.0E-04	6.85	1.7E-08	4.99	1.2E-04	5.25	2.9E-06	3.37	7.5E-03
DeconRNASeq	9.11	1.7E-11	3.93	8.7E-04	8.82	3.9E-11	7.46	2.4E-06	6.36	8.3E-08	4.32	2.5E-03
nnls	10.65	2.1E-13	4.45	3.3E-04	8.82	4.0E-11	8.05	1.0E-06	5.96	3.0E-07	4.27	2.6E-03
DSA	12.27	2.9E-15	4.90	1.4E-04	8.36	1.6E-10	12.50	6.4E-09	8.31	1.8E-10	4.82	1.5E-03

Table S3 Comparison between ProM and other deconvolution methods; related to Figure 2

*Pearson's correlation coefficient (PCC) between deconvolution results and "ground truth" was calculated for each cell subpopulation (40 minor cell clusters and 15 major clusters).Paired t-test was conduct to compare the difference of PCC between ProM and the other method across all cell subpopulations (sample size = 40 for minor cluster and 15 for major cluster). The t-statistic and one-sided p-value was shown in the table.