Supporting Information

Synthesis of Pentameric Chlorotin Carboxylate Clusters for High Resolution EUV Photoresists Under Small Doses

Cheng-Dun Li,^a Ting-An Lin,^a Po-Hsiung Chen,^b Tsi-Sheng Gau^{b,c} Burn-Jeng Lin^{b,c} and Jui-Hsiung Liu^{*a}

Keywords: Pentameric chlorotin carboxylate clusters, negative-tone photoresists, high resolution patterns, e-beam and EUV lithograpgy, FTIR and HRXPS studies

Department of Chemistry,^a TSMC-NTHU Joint Research Center,^b Colleage of Semiconductor Research^c, National Tsing Hua University, Hsinchu 30013, Taiwan e-mail:rsliu@mx.nthu.edu.tw

Content:

1.	Representative Synthetic procedures	1
2.	SEM images for e-beam lithography patterns	2
3.	SEM images for EUV lithography patterns	- 5
4.	Spectral data of key compounds	-11
5.	X-ray crystallographic data of cluster 1	-11
6.	¹ H, ¹³ C and ¹¹⁹ Sn NMR of cluster 1	-26
7.	¹ H, ¹³ C, ¹⁹ F and ¹¹⁹ Sn NMR of cluster 2	-29

1. Representative synthetic procedures

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere inoven-dried glassware using standard syringe, cannula and septa apparatus. Dichloromethane and toluene were dried over CaH2 and distilled. Reagents were purchased from commercial sources and used without purification, unless otherwise stated. 1 H NMR and 13C NMR spectra were recorded on a Bruker 400 MHz and Bruker 500 MHz spectrometers using chloroform-d (CDCB) as the internal standard. The ESI-Mass were performed using JEOL JMS-700. The EA analysis was performed by elementar vario EL cube. The TGA were performed using Mettler-Toledo 2-HT. FTIR Spectroscopy of power samples was in a Bruker Vertex 80v spectrometer. The AFM measurements were using SEIKO SPA-300HV. Electron-beam lithography was done by utilizing Elionix ELS-7800 with an accelerating voltage of 80 kV and a beam current of 200 pA. The EUV-IL system at the Swiss Light Sources (SLS), Paul Scherrer Institute, utilizes 13.5 nm EUV light. HRXPS measurements were performed in a ULVAC-PHI Quantera II, with a monochromatic Al Kα source (energy of 1486.7 eV).

$Dose = 2080 \ \mu C/cm^2$					
Design HP = 50 nm, HP = 71 nm	Design HP = 40 nm, HP = 55 nm				
A 	ist 5.0kV 3.4mm x100k				
Design HP = 30 nm, HP = 42 nm	Design HP = 20 nm, HP = 29 nm				
As Yran 	Str. 5.0kV 3.4mm x100k				

2.SEM	image	of E-beam	lithography	patterns
-------	-------	-----------	-------------	----------

Figure S1. SEM images of E-beam lithography patterns on photoresist 3. Process parameter: 1.5 wt%, thickness 22.3 nm, Developer: 2-Heptanone 60 s, no PEB. (Dose = 2080, 2440 and 2720 μ C/cm²).

Figure S2. SEM images of E-beam lithography patterns on photoresist 3. Process parameter: 1.5 wt%, thickness 22.3 nm, Developer: 2-heptanone 60 s, PEB =80 °C, 60 s. (Dose = $800-2400 \,\mu\text{C/cm}^2$).

(3). SEM images of the EUV lithographic patterns

Figure S3. SEM images of EUV lithography patterns on photoresist (2') HP= 11-16 nm at different dose. Process parameter: 1.5 wt%, thickness 25.0 nm, Developer: 2-Heptanone 60 s, PEB= 160° C, 60 s.

Figure S4. SEM images of EUV lithography patterns on photoresist **3** with HP= 50, 35, 25, 22, 18, 16 nm at different dose. Process parameter: 1.5 wt%, thickness 22.3 nm, Developer: 2-Heptanone 60 s, PEB= 80° C, 60 s.(dose = 60-90 mJ/cm²).

Figure s5.. Band-shape fitting spectra of the C(1s) component of the TGA residues after heating at 450 °C.

4. Spectral data of key compounds.

cluster 1:

Cluster 1 was purified on recrystallization using DCM/hexane in low temperature. ¹H NMR (400 MHz, CDCb): δ 6.14-6.57 (m, 3 H), 1.22 (s, 18H); ¹³C NMR (125 MHz, CDCb): δ 184.8, 139.6, 134.2, 123.0, 38.5, 29.7, 27.3, 27.2, 27.0; ¹¹⁹Sn NMR (186 MHz, CDCb): δ -32.2. EA. calc. for C₃₆H₆₅CbO₁₆Sn₅. C, 28.36%; H, 4.30%; O, 16.79%. found: C, 29.39%; H, 4.42%; O, 16.89%.

5. X-ray crystallographic data of cluster 1.

Ellipsoid contour % probability level = 50%

Experimental: The sample was dissolved in appropriate amount of DCM followed by the addition of n-hexane to furnish a saturated solution. Afterwards, the mixture was allowed to stand at low temperature (-4 °C) to form the crystals.

ORTEP diagram of cluster 1

Table s1 Crystal data and structure refinement for 221175lt_auto.

Identification code	221175lt_auto
Empirical formula	$C_{36}H_{63}C_{15}O_{16}S_{15}$
Formula weight	1522.56
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	P21/m
a/Å	11.92010(10)
b/Å	16.4662(2)
c/Å	14.64400(10)
a/°	90
β/°	103.9010(10)
γ/°	90
Volume/Å ³	2790.12(5)
Z	2
$\rho_{calc}g/cm^3$	1.812
μ/mm^{-1}	20.239
F(000)	1484.0
Crystal size/mm ³	$0.12\times0.1\times0.05$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.218 to 134.146
Index ranges	$-14 \le h \le 14, -19 \le k \le 19, -17 \le l \le 11$

Reflections collected	20553
Independent reflections	5167 [$R_{int} = 0.0471, R_{sigma} = 0.0272$]
Data/restraints/parameters	5167/258/406
Goodness-of-fit on F ²	1.090
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0595, wR_2 = 0.1573$
Final R indexes [all data]	$R_1 = 0.0608, wR_2 = 0.1584$
Largest diff. peak/hole / e Å-3	2.60/-2.47

Table s2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 221175lt_auto. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z.	U(eq)
C1	3684(11)	2500	2330(9)	48(4)
C2	2491(17)	2500	1684(14)	77(5)
C3	1570(14)	2500	2180 (13)	78(5)
C5	7208(8)	4456(6)	5213(7)	47(2)
C6	7754(9)	4674(7)	4581(8)	59(3)
C7	9607(9)	2500	5503(7)	27(2)
C8	10773(9)	2500	5277(8)	36(3)
C9	10950(8)	1732(7)	4736(7)	48(2)
C10	11663(11)	2500	6248(10)	64(5)
C11	9704(7)	4040(6)	7825(6)	39(2)
C16	9062(12)	2500	9896(9)	51(3)
C17	8475(12)	2500	10440(9)	58(4)
C18	6524(9)	3745(11)	7783(7)	81(5)
Cll	4412.3(17)	1413.4(15)	4988.0(14)	40.1(5)
C12	8319(2)	2500	3206.0(19)	42.3(7)
CB	6417(2)	1391.3(18)	1447.8(16)	52.8(6)
01	3776(7)	2500	3203(5)	37(2)
02	4518(7)	2500	1914(5)	43(2)
03	9174(4)	3177(4)	5619(4)	29.9(12)
04	8880(5)	4183(4)	7136(4)	40.2(14)

Table s2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 221175lt_auto. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Ζ	U(eq)
05	9825(5)	3403(4)	8320(4)	39.6(15)
06	7298(6)	3402(6)	8376(4)	68(3)
07	6456(5)	3760(5)	6903(4)	49.3(18)
08	6772(6)	2500	5381(5)	27.9(17)
09	8168(6)	2500	7003(5)	25.9(16)
O10	5918(4)	1728(4)	3478(3)	30.7(12)
Snl	7677.8(4)	3470.7(3)	6125.4(3)	28.09(19)
Sn2	5248.4(6)	2500	4354.1(4)	26.9(2)
Sn3	6322.1(6)	2500	2446.3(5)	29.8(2)
Sn4	8583.9(6)	2500	8410.9(5)	37.4(3)
C12	10627(17)	4630(15)	8207(14)	45(3)
C13	10471(19)	5321(14)	7494(15)	62(4)
C14	11810(15)	4252(14)	8370(18)	55(4)
C15	10471(18)	4942(14)	9148(14)	55(4)
C19	5840(16)	4543(15)	8001(14)	60(4)
C20	6350(20)	5368(18)	7910(20)	88(7)
C21	5670(20)	4290 (20)	9048(15)	64(5)
C22	4500(20)	4300 (20)	7430(20)	70(6)
C12A	10664(19)	4749(14)	8008(14)	45(3)
C13A	11147(18)	4859(14)	7131(13)	49(4)
C14A	11628(17)	4529(15)	8832(14)	49(4)
C15A	10094(19)	5545(14)	8161(16)	57(4)
C19A	5415(18)	3922(15)	8175(15)	66(4)
C20A	4830(30)	3200(19)	8470(30)	100(7)
C21A	6020(30)	4570(20)	9018(17)	68(6)
C22A	4740(20)	4619(18)	7410(20)	64(6)
C4A	2410(19)	2190(20)	743(16)	96(11)
C4	2450(30)	1410(30)	1470(30)	110(12)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	23(6)	96(12)	23(6)	0	2(5)	0
C2	57(8)	117(10)	56(8)	0	9(7)	0
C3	33(8)	133(14)	59(10)	0	-3(7)	0
C5	30(5)	50(6)	49(6)	-3(5)	-14(4)	8(4)
C6	43(6)	55(6)	64(7)	25(5)	-18(5)	-12(5)
C7	24(5)	40(6)	12(4)	0	-4(4)	0
C8	15(5)	74(9)	18(5)	0	0(4)	0
C9	29(5)	74(7)	44(5)	12(5)	18(4)	18(5)
C10	17(6)	136(16)	32(7)	0	-7(5)	0
C11	23(4)	65(6)	26(4)	-16(4)	1(3)	9(4)
C16	26(5)	96(8)	28(6)	0	-1(5)	0
C17	32(7)	121(12)	24(6)	0	11(5)	0
C18	32(5)	178(15)	27(5)	-40(7)	-7(4)	39(7)
Cll	23.8(9)	66.8(14)	28.0(10)	7.9(9)	2.8(8)	-7.8(9)
C12	23.5(13)	80(2)	20.6(13)	0	0.8(10)	0
CB	41.3(12)	85.2(18)	31.6(11)	-17.8(11)	8.4(9)	-2.2(12)
01	20(4)	70(6)	17(4)	0	-1(3)	0
02	23(4)	88(7)	14(4)	0	-5(3)	0
03	21(3)	50(3)	18(2)	4(2)	3(2)	1(2)
04	25(3)	51(4)	37(3)	-14(3)	-7(3)	2(3)
05	20(3)	74(5)	21(3)	-8(3)	-2(2)	4(3)
06	33(4)	148(8)	19(3)	-24(4)	0(3)	28(4)
07	22(3)	93(5)	26(3)	-22(3)	-7(2)	16(3)
08	24(4)	48(5)	8(3)	0	-3(3)	0
09	11(3)	51(5)	15(3)	0	2(3)	0
O10	20(3)	55(4)	15(2)	1(2)	1(2)	1(2)
Snl	18.9(3)	46.2(4)	16.5(3)	-3.1(2)	-0.98(19)	3.5(2)
Sn2	15.0(3)	51.0(5)	13.2(3)	0	0.1(3)	0
Sn3	21.4(4)	53.5(5)	14.0(3)	0	3.2(3)	0
Sn4	13.1(3)	89.6(7)	8.4(3)	0	0.2(2)	0
C12	32(5)	61(7)	40(7)	-9(5)	3(5)	-11(6)
C13	50(8)	71(9)	56(8)	2(7)	-4(7)	-19(7)

Table s3 Anisotropic Displacement Parameters (Å²×10³) for 221175lt_auto. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C14	26(7)	71(10)	61(10)	-14(8)	-1(7)	-13(6)
C15	48(8)	69(9)	46(7)	-13(7)	4(7)	-8(7)
C19	35(7)	100(11)	47(7)	-15(8)	12(6)	21(7)
C20	67(13)	100(14)	99(15)	-2(12)	26(12)	17(10)
C21	35(10)	116(14)	44(7)	-13(9)	15(7)	28(9)
C22	33(9)	116(15)	56(8)	-26(11)	0(8)	32(9)
C12A	33(6)	61(7)	37(7)	-9(6)	3(5)	-12(6)
C13A	45(8)	64(9)	37(7)	-4(7)	7(6)	-21(7)
C14A	34(7)	70(9)	38(7)	-1(7)	1(6)	-25(7)
C15A	55(8)	63(8)	51(9)	-8(7)	8(7)	-12(7)
C19A	37(8)	108(12)	55(7)	-20(8)	13(6)	24(7)
C20A	71(14)	122(16)	115(17)	-7(12)	35(13)	12(11)
C21A	55(12)	113(14)	38(8)	-14(9)	13(8)	30(9)
C22A	29(9)	109(14)	51(8)	-30(10)	1(8)	25(9)
C4A	36(10)	180(30)	56(12)	-44(14)	-24(9)	1(13)
C4	53(14)	170(30)	90(17)	-41(18)	-13(14)	-21(16)

Table s3 Anisotropic Displacement Parameters (Å²×10³) for 221175lt_auto. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table s4 Bond Lengths for 221175lt_auto.

Atom Atom		Length/Å	Atom Atom		Length/Å
C1	C2	1.51(2)	O2	Sn3	2.104(8)
C1	01	1.257(15)	03	Snl	2.145(5)
C1	02	1.285(15)	O4	Snl	2.145(6)
C2	C3	1.45(3)	05	Sn4	2.124(7)
C2	C4A	1.45(3)	06	Sn4	2.126(8)
C2	C4	1.82(4)	O7	Snl	2.108(6)
C5	C6	1.304(16)	08	Snl^1	2.084(4)
C5	Snl	2.091(10)	08	Snl	2.084(4)
C7	C8	1.503(15)	08	Sn2	2.061(7)
C7	O3 ¹	1.258(8)	09	Snl^1	2.047(4)
C7	03	1.258(8)	09	Snl	2.047(4)
C8	C91	1.534(13)	09	Sn4	2.001(7)

Table s4 Bond Lengths for 221175lt_auto.

Atom Atom		Length/Å	Atom Atom		Length/Å
C8	C9	1.534(12)	O10	Sn2	2.095(6)
C8	C10	1.556(16)	O10	Sn3	2.116(6)
C11	04	1.250(10)	Sn1	$Sn1^1$	3.1967(11)
C11	05	1.264(12)	C12	C13	1.53(2)
C11	C12	1.47(3)	C12	C14	1.51(2)
C11	C12A	1.61(3)	C12	C15	1.52(2)
C16	C17	1.18(2)	C19	C20	1.51(3)
C16	Sn4	2.112(13)	C19	C21	1.65(2)
C18	06	1.240(14)	C19	C22	1.66(2)
C18	07	1.272(12)	C12A	C13A	1.54(2)
C18	C19	1.62(2)	C12A	C14A	1.50(2)
C18	C19A	1.59(2)	C12A	C15A	1.52(2)
Cll	Sn2	2.345(2)	C19A	C20A	1.49(3)
C12	Sn3	2.373(3)	C19A	C21A	1.66(2)
CB	Sn3	2.359(3)	C19A	C22A	1.67(3)
01	Sn2	2.121(7)			

¹+X,1/2-Y,+Z

Table s5 Bond Angles for 221175lt_auto.

Atom Atom Atom		Atom	Angle/°	Atom Atom Atom			Angle/°
01	C1	C2	118.5(13)	08	Sn2	Cll	95.45(14)
01	C1	O2	126.5(11)	08	Sn2	Cl1 ¹	95.45(14)
02	C1	C2	115.0(12)	08	Sn2	01	174.6(3)
C1	C2	C4	95.2(12)	08	Sn2	O10 ¹	92.8(2)
C3	C2	C1	113.4(15)	08	Sn2	O10	92.8(2)
C3	C2	C4	95.1(15)	O10	Sn2	Cll	92.30(17)
C4A	C2	C1	115.8(16)	O10 ¹	Sn2	Cll	164.94(16)
C4A	C2	C3	126.1(17)	O10	Sn2	Cl1 ¹	164.94(16)
C6	C5	Snl	124.3(8)	O10 ¹	Sn2	Cl1 ¹	92.31(17)
03	C7	C8	117.4(5)	O10 ¹	Sn2	01	83.0(2)
O3 ¹	C7	C8	117.4(5)	O10	Sn2	01	83.0(2)

Table s5 Bond Angles for 221175lt_auto.

Aton	1 Atom	n Atom	Angle/°	Atom	n Aton	n Atom	Angle/°
03	C7	O3 ¹	125.0(10)	O10 ¹	Sn2	O10	74.7(3)
C7	C8	C91	111.3(6)	$Cl3^1$	Sn3	C12	95.65(8)
C7	C8	C9	111.3(6)	CB	Sn3	C12	95.65(8)
C7	C8	C10	105.2(9)	CB	Sn3	CB^1	101.43(14)
С9	C8	C9 ¹	111.1(10)	02	Sn3	C12	174.0(2)
C9	C8	C10	108.9(7)	02	Sn3	CB^1	88.13(15)
C91	C8	C10	108.9(7)	02	Sn3	CB	88.13(15)
04	C11	05	125.4(9)	02	Sn3	O10 ¹	82.9(2)
04	C11	C12	123.6(12)	02	Sn3	O10	82.9(2)
04	C11	C12A	112.8(11)	O10 ¹	Sn3	C12	92.30(15)
05	C11	C12	110.9(11)	O10	Sn3	C12	92.30(15)
05	C11	C12A	121.8(9)	O10	Sn3	CB^1	163.82(17)
C17	C16	Sn4	129.7(12)	O10	Sn3	CB	91.76(17)
06	C18	07	125.0(9)	O10 ¹	Sn3	CB^1	91.77(17)
06	C18	C19	123.9(11)	O10 ¹	Sn3	CB	163.81(17)
06	C18	C19A	112.0(12)	O10	Sn3	O10 ¹	73.8(3)
07	C18	C19	105.8(13)	C16	Sn4	O5 ¹	92.6(3)
07	C18	C19A	120.4(11)	C16	Sn4	05	92.6(3)
C1	01	Sn2	131.4(8)	C16	Sn4	O6 ¹	92.3(3)
C1	02	Sn3	131.5(7)	C16	Sn4	06	92.3(3)
C7	03	Snl	130.5(6)	O51	Sn4	05	88.9(3)
C11	O4	Snl	136.0(7)	05	Sn4	O6 ¹	175.2(2)
C11	05	Sn4	129.2(5)	05	Sn4	06	91.0(3)
C18	06	Sn4	138.2(6)	O5 ¹	Sn4	O6 ¹	91.0(3)
C18	07	Snl	131.2(6)	O51	Sn4	06	175.2(2)
\mathbf{Snl}^1	08	Snl	100.1(3)	06	Sn4	O6 ¹	88.6(5)
Sn2	08	Snl^1	129.55(15)	09	Sn4	C16	178.7(4)
Sn2	08	Snl	129.55(15)	09	Sn4	O5 ¹	86.5(2)
\mathbf{Snl}^1	09	Snl	102.7(3)	09	Sn4	05	86.5(2)
Sn4	09	Snl	127.58(16)	09	Sn4	06	88.7(2)
Sn4	09	Snl^1	127.58(16)	09	Sn4	O6 ¹	88.7(2)
Sn2	O10	Sn3	105.0(3)	C11	C12	C13	105.9(15)
C5	Sn1	03	94.1(3)	C11	C12	C14	111.9(17)

Table s5 Bond Angles for 221175lt_auto.

Aton	1 Atom	n Atom	Angle/°	Atom Atom Atom	Angle/°
C5	Snl	04	92.8(3)	C11 C12 C15	108.9(15)
C5	Snl	07	93.2(4)	C14 C12 C13	111.9(18)
C5	Snl	Sn1 ¹	140.9(3)	C14 C12 C15	108.0(17)
03	Snl	Sn1 ¹	76.98(16)	C15 C12 C13	110.2(18)
O4	Snl	03	83.6(2)	C18 C19 C21	98.8(18)
04	Sn1	$Sn1^1$	123.15(17)	C18 C19 C22	99.9(18)
07	Sn1	03	167.9(2)	C20 C19 C18	118.9(17)
07	Sn1	04	86.4(2)	C20 C19 C21	117(2)
O 7	Snl	Sn1 ¹	103.0(2)	C20 C19 C22	122(2)
08	Snl	C5	103.6(3)	C21 C19 C22	95.2(16)
08	Snl	03	90.9(3)	C13AC12AC11	109.8(15)
08	Snl	O4	163.1(2)	C14AC12AC11	109.7(16)
08	Snl	07	96.7(3)	C14AC12AC13A	109.4(17)
08	Snl	Sn1 ¹	39.93(14)	C14AC12AC15A	111.9(19)
09	Snl	C5	178.7(4)	C15AC12AC11	109.0(16)
09	Snl	03	84.6(2)	C15AC12AC13A	107.0(17)
09	Snl	04	87.2(2)	C18 C19AC21A	97.7(17)
09	Snl	07	88.1(3)	C18 C19AC22A	101.3(18)
09	Snl	08	76.3(2)	C20AC19AC18	116(2)
09	Snl	Sn1 ¹	38.65(15)	C20AC19AC21A	116(2)
Cll^1	Sn2	C11	99.44(12)	C20AC19AC22A	124(2)
01	Sn2	Cll ¹	88.00(15)	C21AC19AC22A	96.5(17)
01	Sn2	Cll	88.00(15)		

 $^{1}+X,1/2-Y,+Z$

Table s6 Torsion Angles for 221175lt_auto.

A	B	С	D	Angle/°	Α	В	С	D	Angle/°
C2	C1	01	Sn2	180.000(1)	05	C11	C12	C14	51.4(18)
C2	C1	02	Sn3	180.000(1)	05	C11	C12	C15	-67.8(17)
C8	C7	03	Snl	-170.6(6)	05	C11	C12A	AC13A	118.7(14)
01	C1	C2	C3	0.000(2)	05	C11	C12A	AC14A	-2(2)

Table s6 Torsion Angles for 221175lt_auto.

Α	B	С	D	Angle/°	A	В	С	D	Angle/°
O1 C	21	C2	C4A	-157.3(17)	05	C11 0	C12A	C15A	-124.4(14)
O1 C	21	C2	C4	-97.9(16)	06	C18	07	Snl	-14(3)
O1 C	21	02	Sn3	0.000(2)	06	C18	C19	C20	87(2)
O2 C	21	C2	C3	180.000(1)	06	C18	C19	C21	-41(2)
O2 C	21	C2	C4A	22.7(17)	06	C18	C19	C22	-138.1(19)
O2 C	21	C2	C4	82.1(16)	06	C18	C19A	C20A	-60(2)
O2 C	21	01	Sn2	0.000(2)	06	C18	C19A	C21A	64(2)
O31C	27	C8	С9	30.0(12)	06	C18	C19A	C22A	162.6(16)
O3 C	27	C8	С9	-154.4(8)	O 7	C18	06	Sn4	-18(3)
O3 ¹ C	27	C8	C9 ¹	154.4(8)	07	C18	C19	C20	-68(2)
O3 C	27	C8	C9 ¹	-30.0(12)	07	C18	C19	C21	163.8(14)
O3 C	27	C8	C10	87.8(8)	07	C18	C19	C22	66.9(18)
O3 ¹ C	27	C8	C10	-87.8(8)	07	C18	C19A	C20A	102(2)
O31C	27	03	Snl	4.7(15)	07	C180	C19A	C21A	-133.2(19)
O4 C	211	05	Sn4	-15.9(12)	07	C180	C19A	C22A	-35(2)
O4 C	211	C12	C13	-10.5(19)	C12	C11 0	04	Snl	158.5(10)
O4 C	211	C12	C14	-132.7(16)	C12	C11 0	05	Sn4	159.9(9)
O4 C	211	C12	C15	108.1(16)	C19	C180	06	Sn4	-168.2(12)
O4 C	211	C12A	C13A	-58.9(16)	C19	C180	07	Snl	140.3(10)
O4 C	211	C12A	C14A	-179.2(14)	C12A	AC11 (04	Snl	151.4(10)
O4 C	211	C12A	C15A	57.9(17)	C12A	AC11 (05	Sn4	166.7(10)
O5 C	211	04	Snl	-26.2(14)	C19A	AC180	06	Sn4	143.7(13)
O5 C	211	C12	C13	173.6(13)	C19A	AC180	07	Snl	-174.5(13)

 $^{1}+X,1/2-Y,+Z$

Table s7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ⁴)	10 ³)
for 221175lt_auto.	

Atom	x	У	Z	U(eq)
H3A	1532.31	3033.25	2468.13	116
H3B	1725.88	2082.13	2670.58	116
H3C	831.18	2384.63	1734.84	116

Table s7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 221175lt_auto.

Atom	x	У	Z.	U(eq)
H5	6552.26	4766.04	5262.66	56
H6A	8412.59	4377.93	4512.45	71
H6B	7493.19	5129.4	4188.41	71
H9A	10889.47	1251.87	5116.41	71
H9B	11716.81	1747.17	4602.38	71
H9C	10356.76	1706.91	4143.15	71
H10A	12427.16	2646.88	6161.6	96
H10B	11696.22	1957.56	6528.49	96
H10C	11424.81	2895.56	6664.72	96
H16	9870.11	2500	10166.93	61
H17A	7657.48	2500	10222.28	70
H17B	8820.52	2500	11096.28	70
H13A	10318.11	5096.08	6856.54	93
H13B	11175.71	5650.78	7612.51	93
H13C	9818.05	5661.3	7555.13	93
H14A	11865.25	3796.27	8808.86	82
H14B	12397.67	4658.73	8635.82	82
H14C	11935.65	4055.05	7770.73	82
H15A	9665.9	5106.81	9081.15	83
H15B	10980.44	5408.79	9347.48	83
H15C	10667.34	4509.8	9619.76	83
H20A	5757.31	5785.78	7892.54	132
H20B	6613.92	5390.81	7325.95	132
H20C	7001.97	5465.09	8447.43	132
H21A	6420.42	4319.51	9507.77	96
H21B	5379.56	3729.17	9026.31	96
H21C	5123.76	4657.01	9231.15	96
H22A	3974.08	4396.18	7837.62	105
H22B	4475.62	3724.43	7252.56	105
H22C	4269.97	4633.57	6861.87	105
H13D	11909.8	5116.61	7312.35	74
H13E	10622.39	5203.02	6673.25	74

Table s7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 221175lt_auto.

Atom	x	У	z	U(eq)
H13F	11217.76	4327.37	6848.86	74
H14D	11972.9	4013.46	8707.03	73
H14E	11324.76	4474.36	9394.78	73
H14F	12217.45	4956.57	8934.72	73
H15D	10673.77	5979.02	8277.51	86
H15E	9753.61	5494.28	8704.65	86
H15F	9486.55	5676.33	7599.89	86
H20D	5405.41	2852.05	8878.85	150
H20E	4433.62	2892.97	7912.58	150
H20F	4263.22	3381.58	8814.29	150
H21D	5434.78	4781.52	9318.7	102
H21E	6374.28	5015.95	8745	102
H21F	6621.41	4285.48	9487.22	102
H22D	4338.03	4351.83	6824.41	96
H22E	5300.56	5007.59	7281.23	96
H22F	4169.81	4906.46	7679.03	96
H4AA	3178.85	2195.15	612.55	143
H4AB	1889.82	2541.07	285.93	143
H4AC	2107.2	1638.17	694.54	143
H4A	1781.68	1275.73	956.39	165
H4B	2373.51	1122.4	2044.68	165
H4C	3159.62	1235.94	1308.39	165

Table s8 Atomic Occupancy for 221175lt_auto.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H3A	0.5	5 H3B	0.5	5 H3C	0.5
H10A	0.5	5 H10B	0.5	5 H10C	0.5
C12	0.510(13)	C13	0.510(13)) H13A	0.510(13)
H13B	0.510(13)	H13C	0.510(13)	C14	0.510(13)
H14A	0.510(13)	H14B	0.510(13)) H14C	0.510(13)
C15	0.510(13)	H15A	0.510(13)	H15B	0.510(13)

Table s8 Atomic Occupancy for 221175lt_auto.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H15C	0.510(13)	C19	0.511(14)	C20	0.511(14)
H20A	0.511(14)	H20B	0.511(14)	H20C	0.511(14)
C21	0.511(14)	H21A	0.511(14)	H21B	0.511(14)
H21C	0.511(14)	C22	0.511(14)	H22A	0.511(14)
H22B	0.511(14)	H22C	0.511(14)	C12A	0.490(13)
C13A	0.490(13)	H13D	0.490(13)	H13E	0.490(13)
H13F	0.490(13)	C14A	0.490(13)	H14D	0.490(13)
H14E	0.490(13)	H14F	0.490(13)	C15A	0.490(13)
H15D	0.490(13)	H15E	0.490(13)	H15F	0.490(13)
C19A	0.489(14)	C20A	0.489(14)	H20D	0.489(14)
H20E	0.489(14)	H20F	0.489(14)	C21A	0.489(14)
H21D	0.489(14)	H21E	0.489(14)	H21F	0.489(14)
C22A	0.489(14)	H22D	0.489(14)	H22E	0.489(14)
H22F	0.489(14)	C4A	0.52(2)	H4AA	0.52(2)
H4AB	0.52(2)	H4AC	0.52(2)	C4	0.48(2)
H4A	0.48(2)	H4B	0.48(2)	H4C	0.48(2)

Experimental

Single crystals of $C_{36}H_{63}Cl_5O_{16}Sn_5$ [221175lt_auto] were []. A suitable crystal was selected and [] on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at 100.01(10) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [221175lt_auto]

Crystal Data for C₃₆H₆₃Cl₅O₁₆Sn₅ (M =1522.56 g/mol): monoclinic, space group P2₁/m (no. 11), a = 11.92010(10) Å, b = 16.4662(2) Å, c = 14.64400(10) Å, $\beta = 103.9010(10)^{\circ}$, V = 2790.12(5) Å³, Z = 2, T = 100.01(10) K, μ (Cu K α) = 20.239 mm⁻¹, *Dcalc* = 1.812 g/cm³, 20553 reflections measured (6.218° $\leq 2\Theta \leq 134.146^{\circ}$), 5167 unique ($R_{int} = 0.0471$, $R_{sigma} = 0.0272$) which were used in all calculations. The final R_1 was 0.0595 (I > 2 σ (I)) and wR_2 was 0.1584 (all data).

Refinement model description

Number of restraints - 258, number of constraints - unknown.

```
Details:
```

1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Rigid bond restraints C12, C13, C14, C15, C12A, C13A, C14A, C15A with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01 C19, C20, C21, C22, C19A, C20A, C21A, C22A with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01 C4, C4A with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01 3. Uiso/Uaniso restraints and constraints C12 \approx C13 \approx C14 \approx C15 \approx C12A \approx C13A \approx C14A \approx C15A: within 2A with sigma of 0.01 and sigma for terminal atoms of 0.02 within 2A C19 \approx C20 \approx C21 \approx C22 \approx C19A \approx C20A \approx C21A \approx C22A: within 2A with sigma of 0.01 and sigma for terminal atoms of 0.02 within 2A C4 \approx C4A: within 2A with sigma of 0.01 and sigma for terminal atoms of 0.02 within 2A Uanis(C2) ≈ Ueq, Uanis(C3) ≈ Ueq, Uanis(C7) ≈ Ueq, Uanis(C16) ≈ Ueq, Uanis(C17) \approx Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.02 4. Same fragment restrains {C12, C13, C14, C15} sigma for 1-2: 0.02, 1-3: 0.04 as in {C12A, C13A, C14A, C15A} {C19, C20, C21, C22} sigma for 1-2: 0.02, 1-3: 0.04 as in {C19A, C20A, C21A, C22A} 5. Others Sof (C19A) =Sof (C20A) =Sof (H20D) =Sof (H20E) =Sof (H20F) =Sof (C21A) =Sof (H21D) = Sof(H21E) = Sof(H21F) = Sof(C22A) = Sof(H22D) = Sof(H22E) = Sof(H22F) = 1 - FVAR(1)Sof(C19)=Sof(C20)=Sof(H20A)=Sof(H20B)=Sof(H20C)=Sof(C21)=Sof(H21A)=Sof(H21B)= Sof(H21C)=Sof(C22)=Sof(H22A)=Sof(H22B)=Sof(H22C)=FVAR(1) Sof(C12A)=Sof(C13A)=Sof(H13D)=Sof(H13E)=Sof(H13F)=Sof(C14A)=Sof(H14D)= Sof(H14E)=Sof(H14F)=Sof(C15A)=Sof(H15D)=Sof(H15E)=Sof(H15F)=1-FVAR(2)

Sof(C12)=Sof(C13)=Sof(H13A)=Sof(H13B)=Sof(H13C)=Sof(C14)=Sof(H14A)=Sof(H14B)= Sof(H14C)=Sof(C15)=Sof(H15A)=Sof(H15B)=Sof(H15C)=FVAR(2) Sof(C4A) = Sof(H4AA) = Sof(H4AB) = Sof(H4AC) = 1 - FVAR(3)Sof(C4) = Sof(H4A) = Sof(H4B) = Sof(H4C) = FVAR(3)Fixed Sof: H3A(0.5) H3B(0.5) H3C(0.5) H10A(0.5) H10B(0.5) H10C(0.5) 6.a Aromatic/amide H refined with riding coordinates: C5(H5), C16(H16) 6.b X=CH2 refined with riding coordinates: C6(H6A, H6B), C17(H17A, H17B) 6.c Idealised Me refined as rotating group: C3(H3A,H3B,H3C), C9(H9A,H9B,H9C), C10(H10A,H10B,H10C), C13(H13A,H13B,H13C), C14(H14A,H14B,H14C), C15(H15A,H15B,H15C), C20(H20A,H20B,H20C), C21(H21A,H21B, H21C), C22(H22A,H22B,H22C), C13A(H13D,H13E,H13F), C14A(H14D,H14E,H14F), C15A(H15D,H15E,H15F), C20A(H20D,H20E,H20F), C21A(H21D,H21E,H21F), C22A(H22D, H22E, H22F), C4A(H4AA, H4AB, H4AC), C4(H4A, H4B, H4C) This report has been created with Olex2, compiled on 2022.04.07 svnrca3783a0 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Figure S7. ¹³C NMR of cluster 1

NAME	liou240105.001	
EXPNO	2	
PROCNO	1	
Date	20240108	
Time	23.10	h
INSTRUM	spect	
PROBHD	z119470 0234 (
PULPROG	zaroa	
TD	65536	
SOLVENT	CDC13	
NS	8000	
DS	0	
SWH	750000.000	Hz
FIDRES	22.888184	Hz
AQ	0.0437407	sec
RG	191.01	
DW	0.667	usec
DE	6.50	usec
TE	299.8	K
D1	2.00000000	sec
D11	0.03000000	sec
TDO	1	
SF01	186.5128250	MHz
NUC1	119Sn	
P1	15.00	usec
SI	32768	
SF	186.5128038	MHz
WDW	EM	
SSB	0	
LB	100.00	Hz
GB	0	
PC	1.00	

-188.73

CI-Sn-

-32.99

Figure S9. ¹H NMR of cluster 2

Figure S10. ¹³C NMR of cluster 2

Sara-118

Figure S11. ¹⁹F NMR of cluster 2

-467.335

Figure S12. 119 Sn NMR of cluster 2

Sara-118