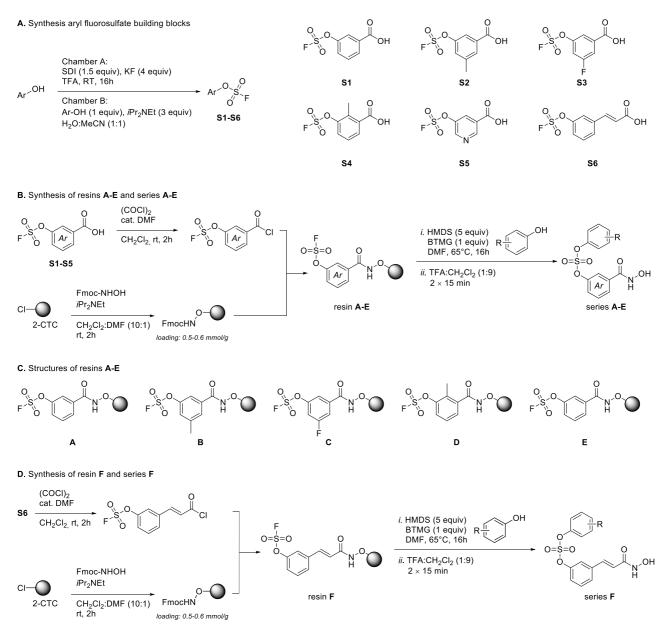
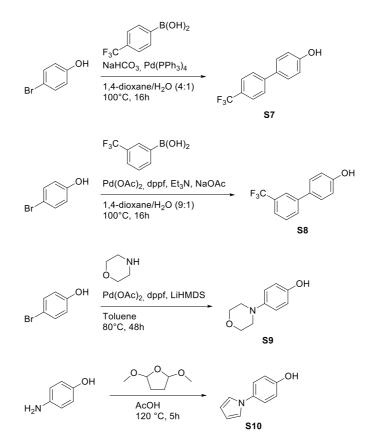
Supporting Information

Sulfur(VI) Fluoride Exchange Chemistry in Solid-Phase Synthesis of Compound Arrays: Discovery of Histone Deacetylase Inhibitors

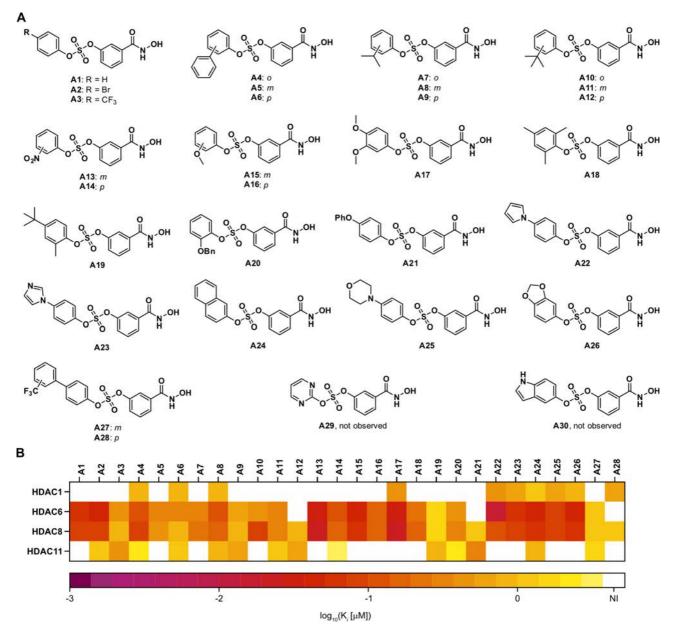
Tobias N. Hansen,[‡] Daniela Danková,[‡] Michael Bæk,[#] Linda Grlaš, Christian A. Olsen*

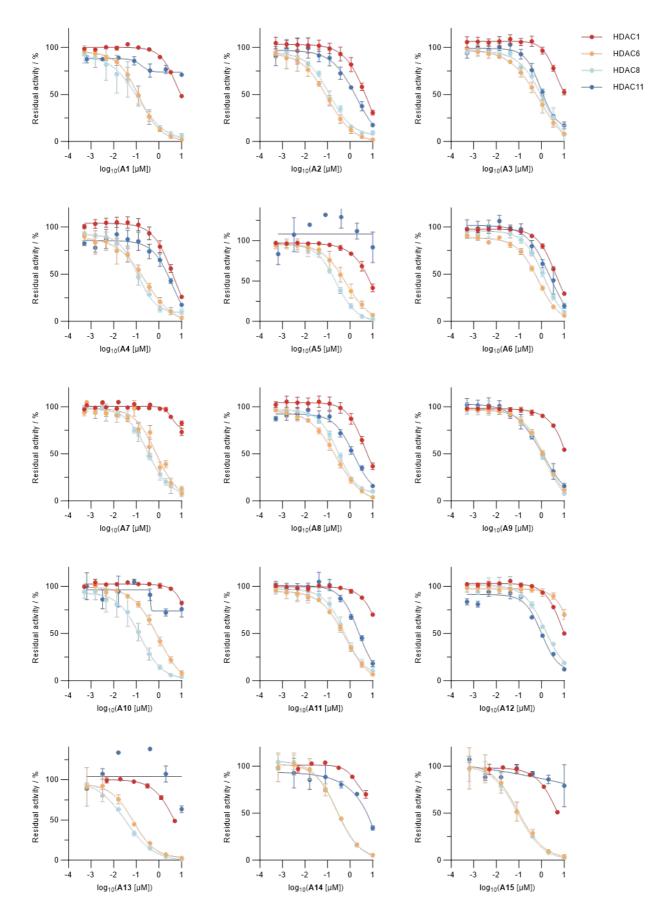

Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark. *Precent Adress: Lundbeck Pharma A/S, Ottiliavej 9, DK-2500 Valby, Denmark. *These authors contributed equally to the work.

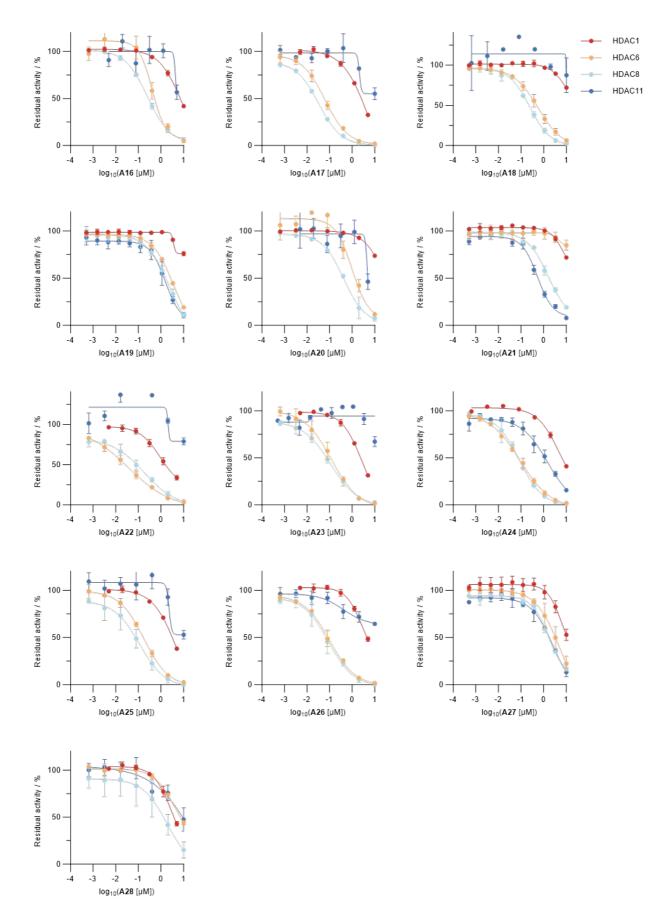
*Correspondence: cao@sund.ku.dk (C.A.O.)

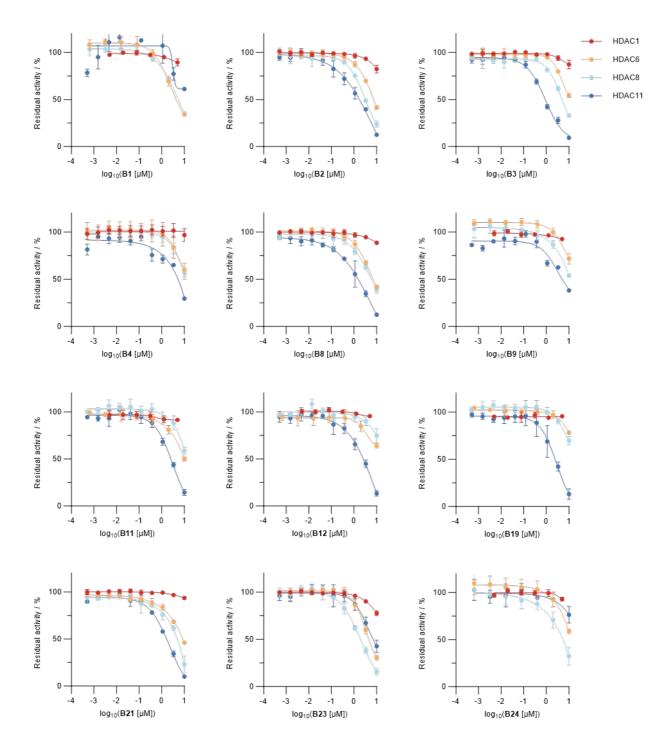

Table of Contents

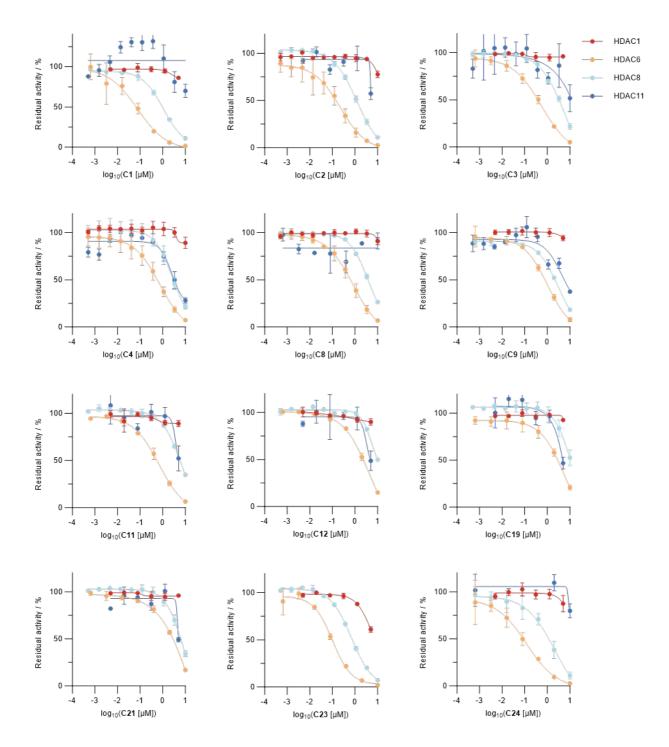
Supplementary Figures S1-S12 and Table S1-S2	3
Supplementary Fig S1	3
Supplementary Fig S2	4
Supplementary Fig S3	5
Supplementary Fig S4	6
Supplementary Fig S5	8
Supplementary Fig S6	9
Supplementary Fig S7	10
Supplementary Fig S8	11
Supplementary Fig S9	12
Supplementary Fig S10	13
Supplementary Fig S11	14
Supplementary Fig S12	15
Supplementary Fig S13	15
Supplementary Fig S14	16
Supplementary Fig S15	17
Supplementary Fig S16	18
Table S1	20
Table S1	
	22
Table S2	22
Table S2. Biochemical Methods	22
Table S2. Biochemical Methods HDAC Inhibition Assays	22
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation	22
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays	22
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays Cell culture	
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays Cell culture Cellular Thermal Shift Assay (CETSA).	
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays Cell culture Cellular Thermal Shift Assay (CETSA) Protein acetylation assays.	
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays Cell culture Cellular Thermal Shift Assay (CETSA) Protein acetylation assays. Chemical Stability Assays	
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays Cellular assays Cellular Thermal Shift Assay (CETSA) Protein acetylation assays Chemical Stability Assays Materials and Methods	
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays Cellular assays Cellular Thermal Shift Assay (CETSA) Protein acetylation assays Chemical Stability Assays Chemical Stability Assays Chemistry Materials and Methods Compound Synthesis and Characterization Data	
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays Cell culture Cellular Thermal Shift Assay (CETSA) Protein acetylation assays Chemical Stability Assays Chemistry Materials and Methods Compound Synthesis and Characterization Data Supplementary references	
Table S2. Biochemical Methods HDAC Inhibition Assays HDAC Inhibition Assays with Preincubation Cellular assays Cellular assays Cellular Thermal Shift Assay (CETSA) Protein acetylation assays Chemical Stability Assays Chemical Stability Assays Chemistry Materials and Methods Compound Synthesis and Characterization Data	

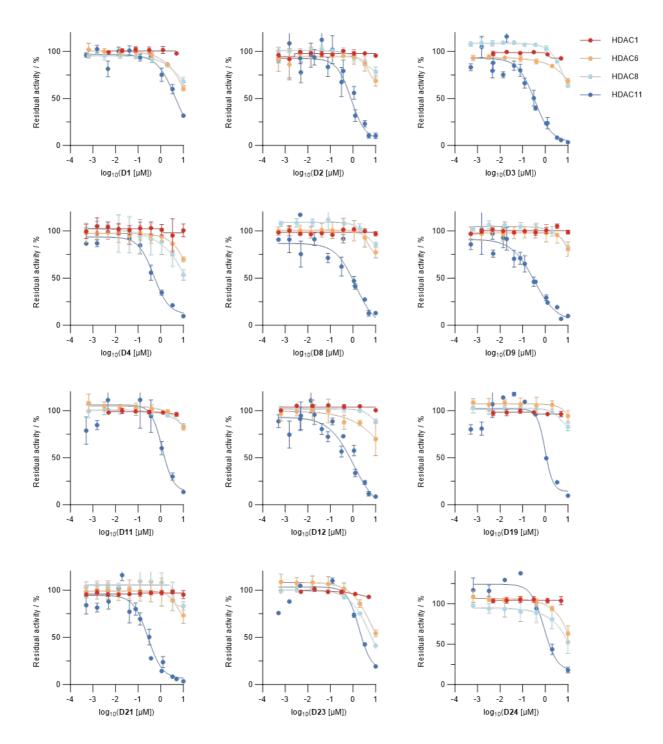

Supplementary Figures S1-S12 and Table S1-S2

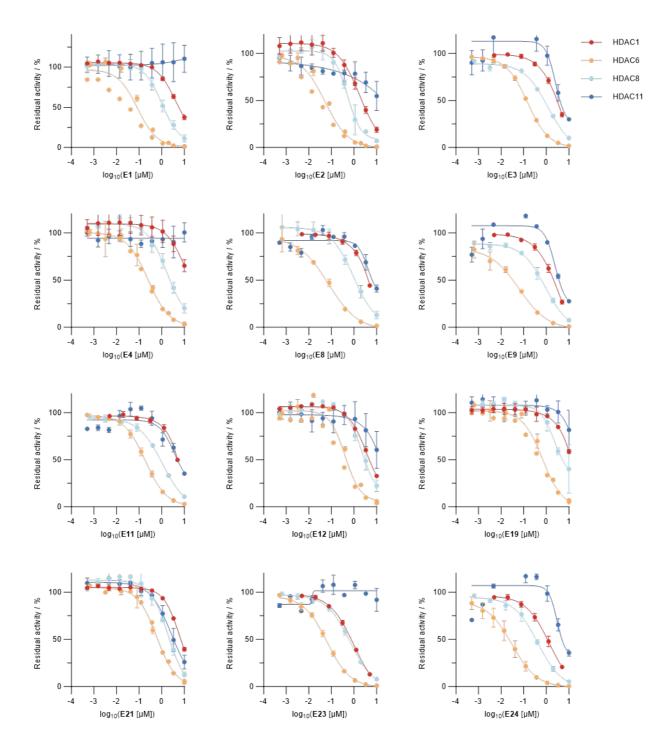

Supplementary Fig S1. A) Synthesis of aryl fluorosulfate building blocks **S1-S6**. B) Preparation of resins **A**–**E** an synthesis of series **A**–**E**. C) Structures of resins **A**–**E**. D) Preparation of resin **F** and synthesis of series **F**.

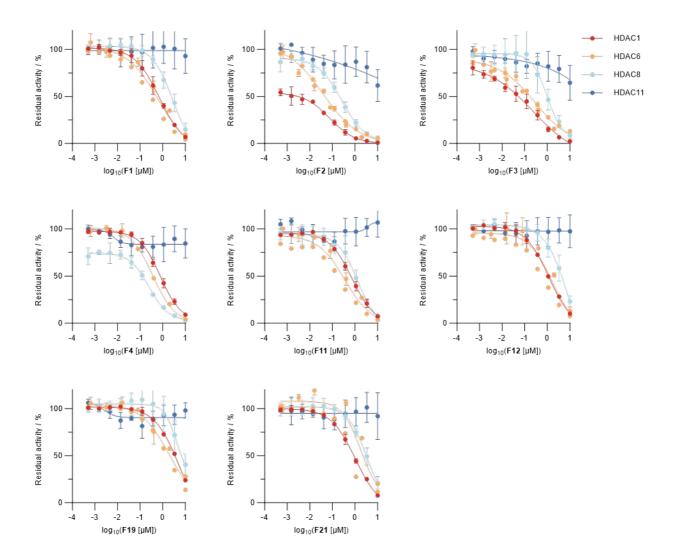

Supplementary Fig S2. Synthesis of phenols S7, S8, S9, and S10.

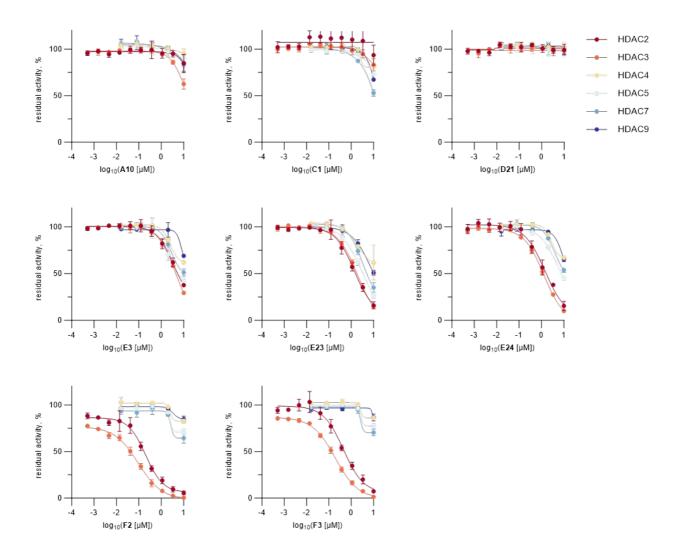

Supplementary Fig S3. Structures of compound series **A** and heatmap representing the obtained K_i values.

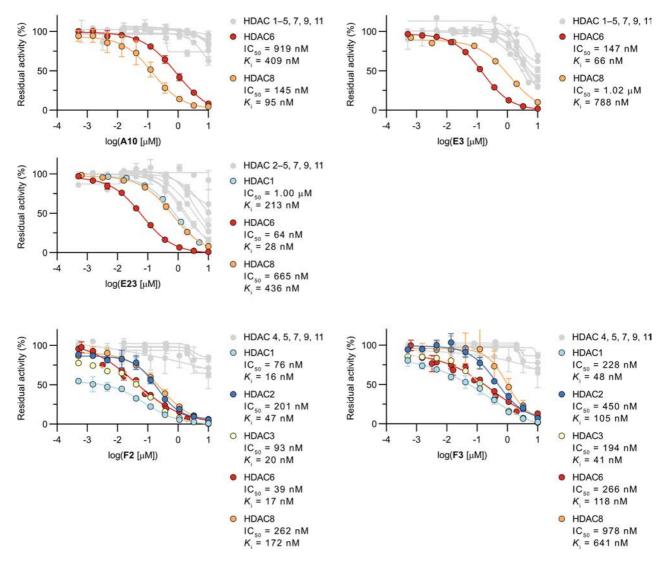

Supplementary Fig S4. Full dose-response curves of compound series A.

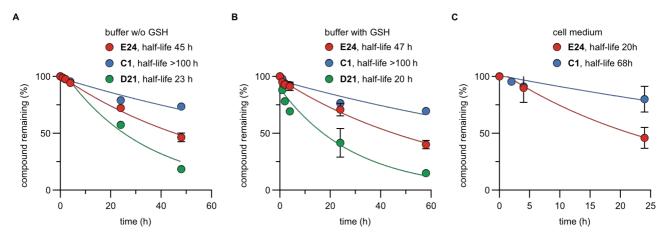

Supplementary Fig S4 continued. Full dose-response curves of compound series A.

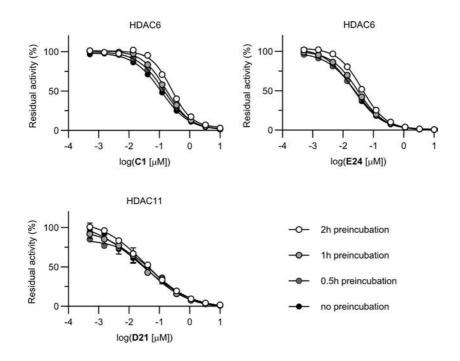

Supplementary Fig S5. Full dose-response curves of compound series B.

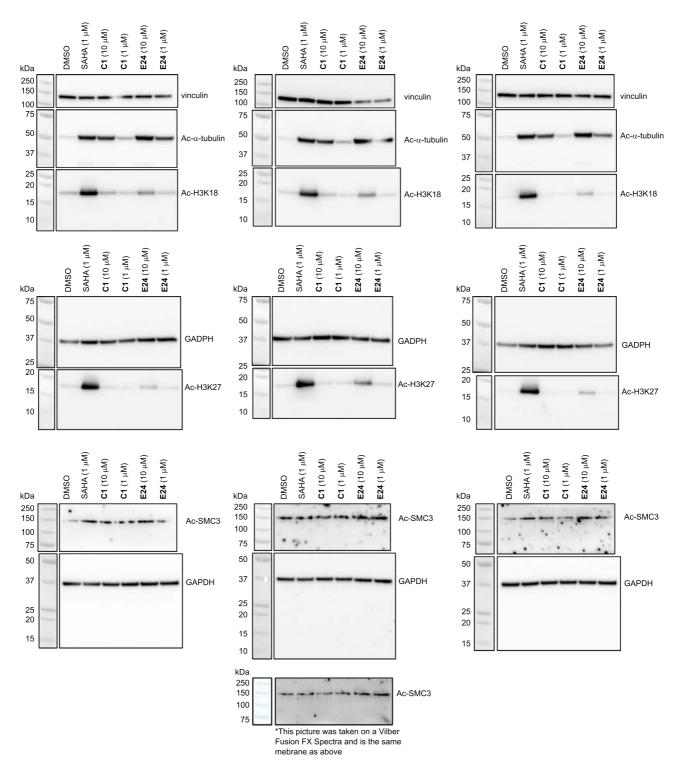

Supplementary Fig S6. Full dose-response curves of compound series C.

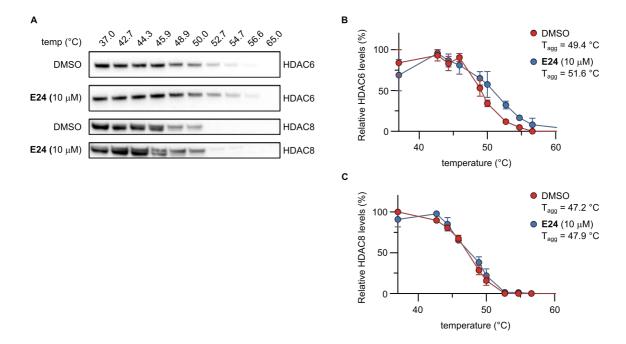

Supplementary Fig S7. Full dose-response curves of compound series D.

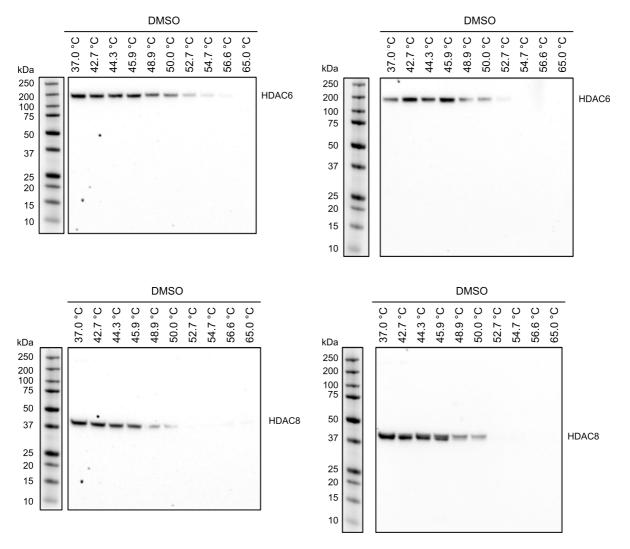

Supplementary Fig S8. Full dose-response curves of compound series E.

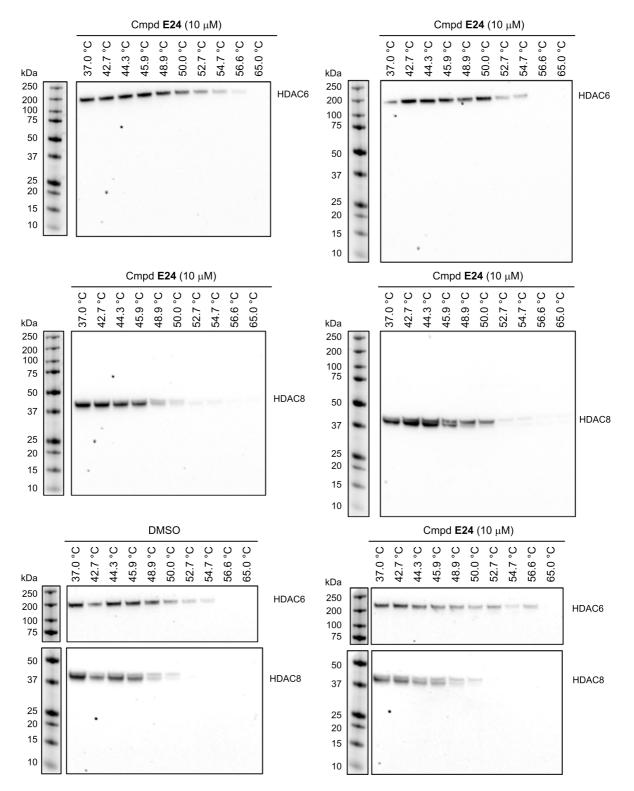

Supplementary Fig S9. Full dose–response curves of compound series F.


Supplementary Fig S10. Full dose–response curves of compounds A10, C1, D21, E3, E23, E24, F2, and F3 against HDACs 2, 3, 4, 5, 7, and 9.


Supplementary Fig S11. Additional selectivity curves for compounds A10, E3, E23, F2, and F3.


Supplementary Fig S12. Chemical stability of compounds **C1**, **D21**, and **E24** in A) buffer, B) buffer supplemented with reduced glutathione, and C) in DMEM.


Supplementary Fig S13. Preincubation HDAC assays for C1, E24 (HDAC6), and D21 (HDAC11).


Supplementary Fig S14. Full immunoblots for all replicates (n = 3) of the acetylation experiment. Immunoblots for the acetylation of α -tubulin, SMC3, H3K18, and H3K27 after treatment with inhibitor **C1** (1 or 10 μ M), **E24** (1 or 10 μ M), SAHA or vehicle (1% DMSO) for 5 h.

Supplementary Fig S15. Cellular target engagement of **E24**. A) Representative immunoblots for the thermal shift of HDAC6 and HDAC8 in HEK293T cells after 2 h of treatment with **E24** (10 μ M) or DMSO (1%) and following heat treatment (from 37–65 °C). B) Plots of the quantified data and calculated T_{agg} values (n = 3; see Supplementary Figure S16 for full blots and replicates). Images were quantified in ImageJ and T_{agg} values were calculated by fitting data to a dose–response curve with variable slope: relative HDAC level = Bottom + (Top–Bottom) × (1 + (T_{agg} × temp⁻¹)^h)⁻¹. Note, we did not achieve statistical significance on the Δ T_{agg} value, which may have required additional replicates.

Supplementary Fig S16. Full immunoblots for all replicates of the CETSA experiment. Immunoblots for the thermal shift of HDAC6 and 8 in HEK293T cells after treatment with inhibitor **E24** (10 μM) or vehicle (1% DMSO) at temperatures ranging from 37-65 °C.

Supplementary Fig S16 continued. Full immunoblots for all replicates of the CETSA experiment. Immunoblots for the thermal shift of HDAC6 and 8 in HEK293T cells after treatment with inhibitor **E24** (10 µM) or vehicle (1% DMSO) at temperatures ranging from 37-65 °C.

Compound	Compound HDAC1		HDAC6		HDAC8		HDAC11	
	LGKac		LGKac		LGKtfa		ETDKmyr	
	IC ₅₀ (µM) or inhibition	K _i (μΜ)	IC ₅₀ (µM) or inhibition	K _i (μΜ)	IC ₅₀ (μM) or inhibition	κ _i (μΜ)	IC ₅₀ (µM) or inhibition	κ _i (μΜ)
A1	52 % [10 µM]		0.132	0.059	0.118	0.077	29 % [10 µM]	
A2	6.297	1.339	0.099	0.044	0.122	0.080	1.907	1.056
A3	47 % [10 µM]		0.842	0.374	1.221	0.800	0.923	0.511
A4	4.449	0.946	0.253	0.113	0.111	0.073	4.003	2.216
A5	59 % [10 µM]		0.665	0.295	0.718	0.470	8 % [10 µM]	
A6	4.140	0.880	0.716	0.318	1.261	0.826	2.342	1.296
A7	22 % [10 µM]		0.755	0.335	0.317	0.208	9 % [500 nM]	
A8	4.340	0.923	0.240	0.107	0.290	0.190	1.433	0.793
A9	46 % [10 µM]		1.409	0.626	1.266	0.829	1.069	0.592
A10	18 % [10 µM]		0.919	0.409	0.145	0.095	24 % [10 µM]	
A11	30 % [10 µM]		0.620	0.276	0.557	0.365	2.393	1.325
A12	50 % [10 µM]		30 % [10 µM]		1.405	0.921	0.995	0.551
A13	51 % [5 µM]		0.072	0.032	0.034	0.022	37 % [10 µM]	
A14	30 % [5 µM]		0.269	0.119	0.259	0.169	6.090	3.371
A15	49% [5 µM]		0.092	0.041	0.088	0.058	21 % [10 µM]	
A16	8.338	1.773	0.413	0.183	0.255	0.167	43 % [5 µM]	
A17	2.372	0.504	0.063	0.028	0.033	0.022	45 % [10 µM]	
A18	28 % [10 µM]		0.557	0.248	0.244	0.160	13 % [10 µM]	
A19	24 % [10 µM]		3.577	1.590	2.255	1.477	1.556	0.861
A20	26 % [10 µM]		0.997	0.443	0.427	0.280	4.821	2.669
A21	28 % [10 µM]		15 % [10 µM]		1.593	1.044	0.538	0.298
A22	1.792	0.381	0.037	0.017	0.181	0.118	21 % [10 µM]	
A23	2.734	0.581	0.121	0.054	0.110	0.072	33 % [10 µM]	
A24	4.793	1.019	0.091	0.040	0.083	0.055	1.490	0.825
A25	3.023	0.643	0.178	0.079	0.114	0.075	47 % [10 µM]	
A26	4.384		0.102	0.045	0.091	0.060	35 % [10 µM]	
A27	47 % [10 µM]		3.100	1.378	1.581	1.036	2.567	1.421
A28	2.844	0.605	7.118	3.164	1.876	1.229	52 % [10 µM]	
B1	10 % [5 µM]		3.828	1.701	6.088	3.989	39 % [10 µM]	
B2	18 % [10 µM]		7.341	3.263	3.176	2.081	1.619	0.896
В3	13 % [10 µM]		45 % [10 µM]		4.517	2.959	0.910	0.504
B4	NI [10 μM]		40 % [10 µM]		13.480	8.832	5.772	3.195
B8	11 % [10 µM]		58 % [10 µM]		6.259	4.101	1.651	0.914
В9	7 % [5 µM]		28 % [10 µM]		46 % [10 µM]		6.939	3.841
B11	8 % [5 µM]		50 % [10 µM]		41 % [10 µM]		3.065	1.697
B12	NI [5 μM]		36 % [10 µM]		25 % [10 µM]		2.495	1.381
B19	NI [5 μM]		22 % [10 µM]		30 % [10 µM]		2.915	1.614
B21	6 % [10 µM]		54 % [10 µM]		4.707	3.084	2.287	1.266
B23	22 % [10 µM]		4.753	2.112	2.046	1.340	57 % [10 µM]	
B24	7 % [5 µM]		41 % [10 µM]		5.026	3.293	24 % [10 µM]	

Table S1. IC_{50} values and estimated K_i values against indicated HDAC enzymes.

 IC_{50} or values of %-inhibition, and calculated K_i of compounds against HDAC isoforms 1, 6, 8, and 11. Assays were performed as described in biochemical methods.

Compound	HDAC1		HDAC6		HDAC8	}	HDAC11	
	LGKac		LGKac		LGKtfa		ETDKmyr	
	IC ₅₀ (µM) or % inhibition	K _i (μM)	IC ₅₀ (µM) or %	<i>K</i> i (μM)	IC ₅₀ (µM) or % inhibition	<i>K</i> i (μM)	IC ₅₀ (µM) or % inhibition	K _i (μΜ)
C1	14 % [5 µM]	- u - /	0.077	0.034	1.066	0.698	30 % [10 µM]	u /
C2	22 % [10 µM]		0.225	0.100	1.208	0.791	43 % [5 µM]	
C3	12 % [5 µM]		0.564	0.251	3.130	2.051	48 % [10 µM]	
C4	11 % [10 µM]		0.746	0.332	2.620	1.717	4.409	2.441
C8	9 % [10 µM]		0.832	0.370	3.545	2.323	9 % [10 µM]	
C9	6 % [5 μM]		1.026	0.456	3.115	2.041	6.904	3.822
C11	11 % [5 μM]		0.696	0.309	6.957	4.558	48 % [5 µM]	
C12	10 % [5 µM]		2.099	0.933	9.502	6.225	51 % [5 μM]	
C19	7 % [5 μM]		3.214	1.428	10.300	6.748	53 % [10 µM]	
C21	NI [5 μM]		2.648	1.177	5.845	3.829	51 % [5 µM]	
C23	39 % [5 µM]		0.101	0.045	0.706	0.463	NI [5 μM]	
C24	13 % [5 µM]		0.119	0.053	1.264	0.828	20 % [10 µM]	
D1	NI [5 μM]		40% [10 µM]		32 % [10 µM]		4.507	2.495
D2	NI [10 μM]		31 % [10 µM]		22 % [10 µM]		0.826	0.457
D3	7 % [5 μM]		31 % [10 µM]		37 % [10 µM]		0.338	0.187
D4	NI [10 μM]		30 % [10 µM]		47 % [10 µM]		0.491	0.272
D8	NI [10 μM]		23 % [10 µM]		14 % [10 µM]		1.290	0.714
D9	NI [10 μM]		19 % [10 µM]		17 % [10 µM]		0.321	0.178
D11	NI [5 μM]		18 % [10 µM]		16 % [10 µM]		1.167	0.646
D12	NI [10 μM]		30 % [10 µM]		11 % [10 µM]		1.050	0.581
D19	NI [5 μM]		5 % [10 µM]		17 % [10 µM]		0.979	0.542
D21	NI [10 μM]		27 % [10 µM]		17 % [10 µM]		0.269	0.149
D23	7 % [5 µM]		46 % [10 µM]		6.204	4.065	1.865	1.032
D24	NI [5 μM]		37 % [10 µM]		48 % [10 µM]		0.827	0.458
E1	3.975	0.845	0.085	0.038	1.017	0.666	NI [10 μM]	
E2	1.805	0.384	0.053	0.024	0.516	0.338	45 % [10 µM]	
E3	2.922	0.621	0.147	0.066	1.203	0.788	3.966	2.195
E4	35 % [10 µM]		0.249	0.110	1.708	1.119	NI [10 μM]	
E8	4.253	0.904	0.074	0.033	0.960	0.629	59 % [10 µM]	
E9	2.059	0.438	0.063	0.028	0.894	0.586	3.764	2.084
E11	50 % [5 µM]		0.190	0.085	1.083	0.710	6.234	3.451
E12	3.580	0.761	0.405	0.180	2.216	1.452	39 % [10 µM]	
E19	41 % [10 µM]		0.688	0.306	5.001	3.277	18 % [10 µM]	
E21	6.263	1.332	0.603	0.268	1.881	1.232	2.695	1.492
E23	1.002	0.213	0.064	0.028	0.665	0.436	8 % [10 µM]	
E24	1.416	0.301	0.030	0.014	0.422	0.276	5.404	2.992
F1	0.719	0.153	0.614	0.273	2.744	1.798	7 % [10 µM]	
F2	0.076	0.016	0.039	0.017	0.262	0.172	38 % [10 µM]	
F3	0.228	0.048	0.266	0.118	0.978	0.641	35 % [10 µM]	
F4	0.778	0.165	0.243	0.108	0.251	0.164	15 % [10 µM]	
F11	0.735	0.156	0.358	0.159	1.269	0.831	NI [10 μM]	
F12	1.151	0.245	1.658	0.737	3.701	2.425	NI [10 μM]	
F19	3.186	0.677	1.960	0.871	6.608	4.329	NI [10 μM]	
F21	1.045	0.222	1.216	0.540	3.141	2.058	8 % [10 µM]	

 IC_{50} or values of %-inhibition, and calculated K_i values for compounds against HDAC isoforms 1, 6, 8, and 11. Assays were performed as described in biochemical methods.

Compound	HDAC2		HDAC3	5	HDAC4		
	LGKac		LGKac		LGKtfa		
	IC ₅₀ (µM) or % inhibition	Ki (µM)	IC ₅₀ (µM) or % inhibition	Ki (µM)	IC ₅₀ (µM) or % inhibition	Ki (µM)	
A10	15 % [10 µM]		37 % [10 µM]		NI [10 μM]		
C1	6 % [10 µM]		17 % [10 µM]		19 % [10 µM]		
D21	NI [10 μM]		NI [10 μM]		NI [10 μM]		
E3	5.607	1.310	4.257	0.905	38 % [10 µM]		
E23	1.366	0.319	1.906	0.405	38 % [10 µM]		
E24	1.456	0.340	1.284	0.273	33 % [10 µM]		
F2	0.201	0.047	0.093	0.020	17 % [10 µM]		
F3	0.450	0.105	0.194	0.041	14 % [10 µM]		

Table S2. Additional selectivity data for compounds A10, C1, D21, E3, E23, E24, F2, and F3

Compound	HDAC5		HDAC7	,	HDAC9	
	LGKtfa		LGKtfa		LGKtfa	
	IC ₅₀ (μM) or % inhibition	Ki (µM)	IC ₅₀ (μM) or % inhibition	Ki (µM)	IC ₅₀ (µM) or % inhibition	Ki (µM)
A10	10 % [10 µM]		16 % [10 µM]		15 % [10 µM]	
C1	27 % [10 µM]		47 % [10 µM]		33 % [10 µM]	
D21	NI [10 μM]		NI [10 μM]		NI [10 μM]	
E3	5.966	1.966	49 % [10 µM]		31 % [10 µM]	
E23	3.560	1.173	5.070	1.679	49 % [10 µM]	
E24	8.201	2.703	46 % [10 µM]		35 % [10 µM]	
F2	29 % [10 µM]		36 % [10 µM]		15 % [10 µM]	
F3	22 % [10 µM]		30 % [10 µM]		13 % [10 µM]	

 IC_{50} or values of %-inhibition, and calculated K_i values for compounds aginst HDAC isoforms 2, 3, 4, 5, 7, and 9. Assays were performed as described in biochemical methods.

Biochemical Methods

HDAC Inhibition Assays

Assays were performed as previously described and were performed in 96-well plates (Fischer Scientific, cat. #: 3686) in HEPES buffer (50 mM HEPES, 100 mM KCl, 0.001% Tween-20 (v/v), 0.2 mM TCEP, pH 7.4 at 25 °C; 25 μL/well final volume) added bovine serum albumin (BSA; Sigma-Aldrich #A3059; 0.5 mg/mL for HDAC1, HDAC6, HDAC8 and 0.05 mg/mL for HDAC11). Inhibitors (3- or 5-fold dilution series starting from concentrations at either 5 or 10 μ M) were incubated with enzyme (HDAC1 [5 nM], HDAC6 [1 nM], HDAC8 [0.25 nM], HDAC11 [0.5 nM]) and substrates (HDAC1, 2, 3 and 6: Ac-Leu-Gly-Lys(Ac)-AMC (20 µM), HDAC4, 5, 7, 8 and 9: Ac-Leu-Gly-Lys(TFA)-AMC (20 µM for HDAC4, 120 µM for HDAC5, 40 µM for HDAC7, 100 µM for HDAC8 and 80 µM for HDAC9), HDAC11: Ac-Glu-Thr-Asp-Lys(Myr)-AMC (50 μM) were incubated for 30 min at 37 °C (AMC = 7-amino-4-methylcoumarin) before a solution of trypsin (Sigma-Aldrich #T8003: 25 μ L, 0.4 mg/mL; final concentration 0.2 mg/mL) was subsequently added, and the assay was allowed to develop for 15 min at room temperature. Then fluorescence was recorded on a platereader (FLUOstar Omega) with excitation at 360 nm and detecting emission at 460 nm. Data was analysed to afford residual enzymatic activity relative to control wells and, assuming fast-on/fast-off mechanism, IC₅₀ values were obtained by fitting the results to the dose-response equation with a variable Hill-slope (Eq. 2). Inhibition K_i values were calculated from the Cheng-Prusoff equation (Eq. 3) and reported substrate $K_{\rm M}$ -values (HDAC1: $K_{\rm M}$ = 5.4 μ M¹, HDAC2: $K_{\rm M}$ = 6.1 μ M¹, HDAC3: $K_{\rm M}$ = 5.4 μ M¹, HDAC4: $K_{\rm M}$ = 10.3 μ M², HDAC5: $K_{\rm M}$ = 59 μ M², HDAC6 $K_{\rm M}$ = 16 μ M², HDAC7: $K_{\rm M}$ = 19.8 μ M², HDAC8 $K_{\rm M}$ = 190 μ M², HDAC9: $K_{\rm M}$ = 37 μ M², HDAC11 $K_{\rm M}$ = 62 μ M³). Assays were performed at least twice in technical dublicates, and data was analysed using GraphPad Prism. Enzyme source: HDAC1: BPS Bioscience #50051 (Full length with C-terminal His6 and FLAG tag); HDAC2: BPS Bioscience #50052 (Full length with C-terminal FLAG-tag); HDAC3: BPS Bioscience #50003 (Full length with C-terminal HIS-tag in complex with human NCOR2 395-489 with C-terminal GST-tag); HDAC4: BPS Bioscience #50004 (Catalytic domain (627-1084) with N-terminal GST-tag and Cterminal His-tag); HDAC5: BPS Bioscience #50005 (Catalytic domain (656-1122) with C-terminal His-tag); HDAC6: BPS Bioscience #50056 (Full length with C-terminal FLAG-tag); HDAC7: BPS Bioscience #50007 (Catalytic domain (518-end) with N-terminal GST-tag); HDAC8: BPS Bioscience #50008 (Full length with C-terminal His-tag); HDAC9: BPS Bioscience #50009 (Catalytic domain (604-1066) with C-terminal His-tag); HDAC11: BPS Bioscience #50021 (Full length untagged).

$$v_{i} = v_{bottom} + \frac{v_{top} - v_{bottom}}{1 + 10^{(\log IC_{50} - \log[I])h}}$$
Eq. 2

$$K_{\rm i} = \frac{\rm IC_{50}}{1 + \frac{\rm [S]}{K_{\rm M}}}$$
 Eq. 3

HDAC Inhibition Assays with Preincubation

Inhibitors (**C1**, **E24** and **D21**, 10 μ M–0.52 nM, 3-fold dilutions, 10 μ L) were incubated with enzyme (HDAC6 for **C1** and **E24** at 2.5 nM; HDAC11 for **D21** at 1.0 nM, 10 μ L) for 0, 0.5, 1 or 2 h at 37 °C followed by addition of a substrate (Ac-Leu-Gly-Lys(Ac)-AMC at 20 μ M for **C1** and **E24**; Ac-Glu-Thr-Asp-Lys(Myr)-AMC at 50 μ M for **D21**, 5 μ L). Total reaction volume was 25 μ L and all concentrations are reported for the 25 μ L reaction volume. The reactions were performed in HEPES buffer described above (0.5 mg/mL BSA for HDAC6 and 0.05 mg/mL for HDAC11). Following a 30 min incubation, a trypsin solution (0.4 mg/mL, 25 μ L) was added and the plate was left standing at room temperature for 15 min before fluorescence recording. All experiments were performed twice with internal replicate wells.

Cellular assays

Cell culture

HEK293T (ATCC, CRL-1573) cells were cultured at 37 °C under a humidified 5% CO₂ atmosphere in Dulbecco's modified Eagle's medium (DMEM, Thermo Scientific, 11965118) supplemented with 10% (v/v) fetal bovine serum (FBS, Thermo Fisher Scientific, 26140079), 1% penicillin-streptomycin (Sigma-Aldrich, P4333). Cells were sub-cultured every 2–4 days.

Cellular Thermal Shift Assay (CETSA)

Cellular thermal shifts were measured as previously described.⁴⁻⁵ In brief HEK293T cells were plated in 10 cm² dishes and incubated to 80–90% confluency, where medium was replaced with culture medium containing E24 (10 µM in 1% DMSO), or vehicle (1% DMSO). The cells were treated for 2 h before media was removed by aspiration and cells were collected in PBS (2 mL/treatment) by scraping, and pelleted by centrifugation (300 g, 5 min). Pellets were resuspended in PBS (2 mL) and pelleted by centrifugation before the washed pellets were suspended in PBS supplemented with cOmplete EDTA-free protease inhibitor cocktail (Sigma-Aldrich, COEDTAF-RO, 550 µL/cell treatment). Cell suspensions were aliquoted into PCR tubes (50 µL) and heated at temperatures ranging from 37.0 °C to 65.0 °C for 3 min followed by 3 min at 25 °C in a thermal cycler (Eppendorf Mastercycler Nexus Thermal Cycler). The cellular suspensions were then lysed by three freeze/thaw cycles, snap-freezing in a dry-ice/acetone bath followed by thawing at 25 °C in the thermal cycle. The suspensions were subjected to centrifugation (20,000 g, 20 min) at 4 °C and the supernatants were collected as whole-cell lysate and mixed with NuPAGE LDS sample buffer (ThermoFisher, NP0007) and sample reducing agent (ThermoFisher, NP0004) followed by heating to 95 °C for 10 min. Samples were then resolved by gel electrophoresis (SDS-PAGE) in NuPAGE gels (12 wells, 4-12% Bis-Tris, 1.0 mm, ThermoFisher, NP0322BOX) with MES running buffer (ThermoFisher, NP000202). Proteins were transferred to PVDF membranes (ThermoFisher, IB24001) using the iBlot2 system and blocked with 5% skim milk in tris-buffered saline with 0.1% tween-20 (TBST) at 25 °C for 1 h. Membranes were then washed with TBST (3×5 min), incubated with primary antibody (Anti-HDAC6, Cell Signaling Technology, #7558, 1:1000 or Anti-HDAC8, Cell Signaling Technology, #66042, 1:1000) in TBST with 5% BSA (4 °C, overnight), washed with TBST (3×5 min), incubated with HRPconjugated secondary antibody (Anti-rabbit IgG HRP-linked antibody, Cell Signaling Technology, CST-7074S, 1:10,000) in TBST with 2% skim milk (25 °C, 1 h), and washed with TBST (3×5 min) and TBS (1×5 min). Membranes were visualized using enhanced chemiluminescent reagents (Pierce ECL Western blotting substrate, ThermoFisher, 32106) on a syngene PXi4 image analysis system. Protein marker used: Precision Plus Protein All Blue Standard (BioRAD, 161-0373).

Protein acetylation assays

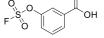
Protein acetylation levels were determined as previously described.⁵ In brief HEK293T cells were seeded in 6-well plates and grown to 70-80% confluency, before medium was replaced by culture medium containing C1 or E24 (1 or 10 µM) or SAHA (1 µM) or vehicle (DMSO). The cells were treated for 5 h at 37 °C after which the media was aspirated and the cells were washed with PBS (2 x 1 mL) and lysed with 100 µL of radioimmunoprecipitation assay (RIPA) buffer (150 mM NaCl, 50 mM Tris, 1% Triton, 0.5% sodium deoxycholate, 0.1% SDS, pH 8, complemented with cOmplete EDTA-free protease inhibitor cocktail (Sigma-Aldrich, COEDTAF-RO). Plates were stored at - 20 °C for >20 min and the cell lysates were then collected by scraping, sonicated with a Bandein Sonopuls mini20 (2 s on, 2 s off, 80% amplitude, 1 min) and centrifuged (14 000 g, 10 min, 4 °C). Supernatants were collected and their concetrations were determined by the bicinchoninic acid assay (Sigma-Aldrich; #BCA1). The concentration of the lysates were adjusted with PBS to 2 µg/µL and mixed with NuPAGE LDS sample buffer (ThermoFisher, NP0007) and sample reducing agent (ThermoFisher, NP0004) followed by heating to 95 °C for 10 min. Samples (20 µg) were then resolved by gel electrophoresis (SDS-PAGE) in NuPAGE gels (10 wells, 4–12% Bis-Tris, 1.0 mm, ThermoFisher, NW04120BOX) with MES running buffer (ThermoFisher, NP000202). Proteins were transferred to PVDF membranes (ThermoFisher, IB24001) using the iBlot2 system and blocked with 5% BSA in tris-buffered saline with 0.1% tween-20 (TBST) at 25 °C for 1 h. Membranes were then incubated

with primary antibody: Vinculin (E1E9V) XP (Cell Signaling Technology, #13901, 1:1000), acetylhistone H3 (Lys18) (D8Z5H, Cell Signaling Technology, #13998, 1:500), acetyl-histone H3 (K27) (Cell Signaling Technology, #4353, 1:500), acetyl-α-tubulin (Lys40) (Cell Signaling Technology, #5335, 1:500), Acetyl-SMC3 (Lys105/106) (MABE1073, Sigma-Aldrich, 1:250) or GAPDH (14C10, Cell Signaling Technology, #2118, 1:1000) in TBST with 5% BSA (4 °C, overnight), washed with TBST (3×5 min), incubated with HRPconjugated secondary antibody (Anti-rabbit IgG HRP-linked antibody, Cell Signaling Technology, CST-7074S, 1:10,000 or Anti-Mouse IgG HRP-linked antibody, Cell Signaling Technology, CST-7076S, 1:10,000) in TBST with 2% skim milk (25 °C, 1 h), and washed with TBST (3×5 min) and TBS (1×5 min). Membranes were visualized using enhanced chemiluminescent reagents (Pierce ECL Western blotting substrate, ThermoFisher, 32106) on a syngene PXi4 image analysis system. Protein marker used: Precision Plus Protein All Blue Standard (BioRAD, 161-0373).

Chemical Stability Assays

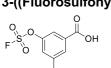
Inhibitors (50 μ M) were suspended in assay buffer (50 mM HEPES, 100 mM KCl, 0.001% Tween-20 (v/v), 0.2 mM TCEP, pH 7.4 at 25 °C), with or without glutathione (2 mM) or medium (unsupplemented DMEM) and incubated at 37 °C. Alliquots were taken at 0, 1, 2, 4, and 24 h and measured by UPLC using an Agilent 1260 Infinity II system equipped with a reverse phase C18 column (Poroshell, #695575-302, 3 x 100 mm) using a binary buffer system consisting of H₂O– MeCN–TFA (A, 95:5:0.1; B, 5:95:0.1) at 1.2 mL/min. The chemical stability was calculated based on the area under curve (AUC) (215 nm), relative to the time point 0 h.

Chemistry


Materials and Methods

All reagents and solvents were of analytical grade and used without further purification as obtained from commercial suppliers. Anhydrous solvents were obtained from a PureSolv-system or acquired as anhydrous from venors and stored in sealed bottles. Reactions were conducted under an atmosphere of nitrogen whenever anhydrous solvents were used. Reactions were monitored by thinlayer chromatography (TLC) using silica gel coated plates (analytical SiO₂-60, F-254) and by LC-MS. TLC plates were visualized under UV light or by dipping into a solution of potassium permanganate (10 g/L), potassium carbonate (67 g/L) and sodium hydroxide (0.83 g/L) in water. Evaporation of solvents was carried out under reduced pressure at a temperature below or equal to 40 °C. LC-MS analyses were performed on a Phenomenex Kinetex column (1.7 μm, 50×2.10 mm) using a Waters Acquity ultra high-performance liquid chromatography (UPLC) system. Gradient A with eluent I (0.1% HCOOH in H₂O) and eluent II (0.1% HCOOH in MeCN) rising linearly from 0% to 95% of II during t = 0.00-5.20 min was applied at a flow rate of 0.6 mL/min. Preparative reversephase HPLC purification was performed on a C8 or C18 Phenomenex Luna column (5 µm, 100 Å, 250×21.2 mm) using an Agilent 1260 LC system equipped with a diode array UV detector and an evaporative light scattering detector (ELSD). Gradient B with eluent III (H₂O/MeCN/TFA, 95:5:0.1, v:v) and eluent IV (0.1% TFA in MeCN) rising linearly from 0% to 95% of IV during t = 20-35 min at a flow rate of 20 mL/min was applied. Analytical HPLC was performed on a C18 Infinity Poroshell 120 column (2.7 μm, 100×3.0 mm) using an Agilent 1260 Infinity II series system equipped with a diode array UV detector. Analytical HPLC was performed using gradient B during either t = 1-11 min or t = 1-16 min was applied at a flow rate of 1.2 mL/min. High-resolution mass spectrometry (HRMS) measurements were recorded either on a maXis G3 quadrupole time-of-flight (TOF) mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with an electrospray ionization (ESI) source or on an Agilent 1290 UHPLC equipped with a diode array detector and coupled to Agilent 6550 QTOF mass spectrometer operated in positive electrospray or on a Bruker Solarix WR by either matrix assisted laser desorption/ionization, or ESI. Nuclear magnetic resonance (NMR) spectra were

recorded either on a Bruker Avance III HD equipped with a cryogenically cooled probe (¹H NMR and ¹³C NMR recorded at 600 and 151 MHz, respectively) or a Bruker Avance III (¹H NMR, ¹³C NMR and ¹⁹F NMR recorded at 400, 101 and 377 MHz, respectively). All spectra were recorded at 298 K. Chemical shifts are reported in ppm relative to deuterated solvent as internal standard (δ_{H} DMSO- d_{6} 2.50 ppm; δ_{C} DMSO- d_{6} 39.52 ppm; δ_{H} CDCl₃ 7.26 ppm; δ_{C} CDCl₃ 77.16 ppm δ_{H} MeOH- d_{4} 3.31; δ_{C} MeOH- d_{4} 49.00). Assignments of NMR spectra are based on 2D correlation spectroscopy (COSY, HSQC, and HMBC spectra). The concentrations of the compound stock solutions were determined by quantitative NMR (qNMR) using maleic acid (2H at 6.27 in DMSO- d_{6}) as an internal standard. Subsequently, the stock solutions were diluted to 5 mM, which were used in the assays.


Compound Synthesis and Characterization Data

3-((Fluorosulfonyl)oxy)benzoic acid (S1). Using general procedure 1 compound S1 was synthesized from 3-hydroxybenzoic acid (138 mg, 1.00 mmol) and isolated as a white powder (220 mg,

quantitative yield) without further purifications. ¹H NMR (400 MHz, DMSO- d_6) δ 13.56 (s, 1H, COO<u>H</u>), 8.10–8.06 (m, 1H, CHC<u>H</u>CCOOH), 8.05–8.02 (m, 1H, CC<u>H</u>C), 7.93–7.86 (m, 1H, CHCHCO), 7.79–7.69 (m, 1H, CHCHCH). ¹³C NMR (101 MHz, DMSO) δ 165.6, 149.5,

134.3, 131.3, 129.9, 125.3, 121.5. ¹⁹F NMR (376 MHz, DMSO) δ 39.0. In accordance with previously reported data.6 CAS-RN: 1796596-42-3.

3-((Fluorosulfonyl)oxy)-5-methylbenzoic acid (S2). Using general procedure 1 compound S2 was synthesized from 3-hydroxy-5-methylbenzoic acid (152 mg, 1.00 mmol) and isolated as a white powder (232 mg, 99%) after purification by flash column chromatography (0-50% EtOAc in heptane + 0.1% AcOH). ¹H NMR (600 MHz, DMSO) δ 13.50 (s, 1H), 7.90 (tt, J = 1.5, 0.8 Hz, 1H), 7.82 (t, J = 1.9 Hz, 1H), 7.72 (t, J = 2.2 Hz, 1H), 2.45 (s, 3H). ¹³C NMR

(151 MHz, DMSO) δ 166.2, 149.9, 142.4, 133.8, 130.9, 126.1, 119.1, 21.0. HRMS m/z 232.9925 ([M-H]-, C₈H₆O₅SF⁻, calcd. 232.9925). In accordance with previously reported data.⁷ CAS-RN: 2866335-05-7.

3-Fluoro-5-((fluorosulfonyl)oxy)benzoic acid (S3). Using general procedure 1 compound S3 was synthesized from 3-fluoro-5-hydroxybenzoic acid (156 mg, 1.00 mmol) and isolated as a white powder (160 mg, 67%) after purification by flash column chromatography (0-5% MeOH in CH₂Cl₂ + 0.25% AcOH). TLC (10% MeOH in CH₂Cl₂ and 0.25% AcOH): *R*f = 0.79. ¹H NMR (600 MHz, DMSO) δ 13.88 (br. s, 1H), 8.04 (dt, *J* = 8.5, 2.4 Hz, 1H), 7.95–7.92 (m, 1H), 7.86 (ddd, J = 8.6, 2.5, 1.3 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 164.56 (d, J =

3.1 Hz), 162.00 (d, J = 250.4 Hz), 149.49 (d, J = 11.5 Hz), 135.12 (d, J = 8.3 Hz), 118.17 (d, J = 3.5 Hz), 117.11 (d, J = 22.7 Hz), 114.22 (d, J = 26.6 Hz). ¹⁹F NMR (376 MHz, DMSO) δ 39.7, -107.3. HRMS m/z 236.9675 ([M-H]⁻, C₇H₄O₅SF₂⁻, calcd. 236.9674). CAS-RN: 2475192-21-1.

3-((fluorosulfonyl)oxy)-2-methylbenzoic acid (S4). Using general procedure 1 compound S4 was synthesized from 3-hydroxy-2-methylbenzoic acid (152 mg, 1.00 mmol) and isolated as a white powder (164 mg, 70%) after purification by flash column chromatography (0-5% MeOH in CH₂Cl₂ + 0.25% AcOH). TLC (10% MeOH in CH₂Cl₂ and 0.25% AcOH): Rf = 0.75. ¹H NMR (600 MHz, DMSO) δ 13.46–13.42 (br. s, 1H), 7.91 (dd, J = 7.8, 1.3 Hz, 1H), 7.76

(dd, J = 8.2, 1.5 Hz, 1H), 7.54–7.49 (m, 1H), 2.50 (s, 3H, overlaps with solvent peak). ¹³C NMR (151 MHz, DMSO) δ 167.4, 149.0, 134.3, 130.9, 130.5, 127.9, 124.4, 13.1. ¹⁹F NMR (376 MHz, DMSO) δ 40.45. HRMS m/z 232.9927 ([M-H]⁻, C₈H₆O₅SF⁻, calcd. 232.9925).

5-((Fluorosulfonyl)oxy)nicotinic acid (S5): Using general procedure 1 compound S5 was synthesized from 5-hydroxynicotinic acid (139.1 mg, 1.00 mmol) and isolated as a white powder (226 mg, 100%) after purification by flash column chromatography (0-5% MeOH in $CH_2Cl_2 + 0.25\%$ AcOH). ¹H NMR (400 MHz, DMSO) δ 14.00 (s, 1H), 9.18 (d, J = 1.7 Hz, 1H), 9.14 (d, J = 2.7 Hz, 1H), 8.53 (ddd, J = 2.6, 1.7, 0.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 164.6, 150.5, 146.6, 146.4, 130.0, 128.7. ¹⁹F NMR (376 MHz, DMSO) δ 40.1. In accordance with previously reported

data.7 CAS-RN: 2408958-14-3.

(E)-3-(3-((Fluorosulfonyl)oxy)phenyl)acrylic acid (S6): Using general procedure 1 compound S6 was synthesized from (E)-3-(3-hydroxyphenyl)acrylic acid (823 mg, 5.00 mmol) and isolated as a white powder (882 mg, 70%) after purification by flash column chromatography (0-ОН 5% MeOH in CH₂Cl₂ + 0.25% AcOH). ¹H NMR (600 MHz, DMSO) δ 12.57 (s, 1H), 8.02 (d, J = 2.0 Hz, 1H), 7.85 (td, J = 5.8, 3.1 Hz, 1H), 7.66–7.60 (m, 3H), 6.70 (d, J = 16.0

Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 167.2, 150.1, 141.6, 137.3, 131.3, 128.9, 122.3, 122.0, 120.4. ¹⁹F NMR (376 MHz, DMSO) δ 39.1.

Resin A: Using GP2 starting from S1 and general procedure 3, resin A was synthesized with a loading of 0.52 mmol/g.

Resin B: Using GP2 starting from S2 and general procedure 3, resin B was synthesized with a loading of 0.70 mmol/g.

Resin C: Using GP2 starting from S3 and general procedure 3, resin C was synthesized with a loading of 0.54 mmol/g.

Resin D: Using GP2 starting from S4 and general procedure 3, resin D was synthesized with a loading of 0.59 mmol/q.

Resin E: Using GP2 starting from S5 and general procedure 3, resin E was synthesized with a loading of 0.52 mmol/g.

Resin F: Using GP2 starting from S6 and general procedure 3, resin F was synthesized with a loading of 0.61 mmol/g.

4'-(Trifluoromethyl)-[1,1'-biphenyl]-4-ol (S7): 4-Bromophenol (100 mg, 0.578 mmol). (4-(trifluoromethyl)phenyl)boronic acid (329 mg, 1.73 mmol) and sodium carbonate (368 mg, 3.47 mmol) was suspended in a mixture of 1.4-dioxane and water (4:1, 2.8 mL) and degassed with nitrogen for 10 min before Pd(PPh₃)₄ (20 mg, 0.017 mmol) was added and the solution was degassed for another 10 min before it was heated to 100 °C overnight. After cooling to room temperature, the soltion was diluted with EtOAc (5 mL) and filtered

through celite. The filtrate was partitioned between H₂O and EtOAc and the organic layer was dried over Na₂SO₄ before volatiles were removed under reduced pressure. Purification by flash column chromatography (0-40 % EtOAc in heptane) afforded the title compound S7 (41 mg, 30 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 7.8 Hz, 1H, residual boronic acid), 7.79 (d, J = 7.8 Hz, 1H, residual boronic acid), 7.73-7.58 (m, 4H), 7.54–7.45 (m, 2H), 6.98–6.88 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3, -63.2. CAS-RN: 10355-13-2.

3'-(Trifluoromethyl)-[1,1'-biphenyl]-4-ol **(S8)**: 4-bromophenol (100 mg, 0.578 mmol), (3-(trifluoromethyl)phenyl)boronic acid (165 mg, 0.867 mmol), Pd(OAc)₂ (6.5 mg, 0.028 mmol), dppf (32 mg, 0.058 mmol), Et₃N (121 µL, 0.867 mmol) and sodium acetate (47 mg, 0.578 mmol) were all suspended in a mixture of 1,4-dioxane and water (9:1, 2.9 mL) which was then degassed with nitrogen for 20 min before it was heated to 100 °C

overnight. After cooling to room temperature, the soltion was diluted with EtOAc (5 mL) and filtered through celite. The filtrate was partitioned between H₂O and EtOAc and the organic layer was dried over Na₂SO₄ before volatiles were removed under reduced pressure. Purification by flash column chromatography (0-40 % EtOAc in heptane) afforded the title compound S8 (32 mg, 23 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (tt, J = 1.8, 0.9 Hz, 1H), 7.71 (dt, J = 7.2, 1.8 Hz, 1H), 7.59–7.47 (m, 4H), 7.00–6.90 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. CAS-RN: 191724-12-6.

4-Morpholinophenol (S9): 4-bromophenol (173 mg, 1.00 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol) and dppf (22

mg, 0.04 mmol) was added to a schlenk flask and evacuated three times followed by flushing with nitrogen. Toluene (5 mL) was added along with morpholine (95 µL, 1.1 mmol) and LiHMDS (1M in THF, 2.4 mL) before the reaction was heated to 80 °C for two days. The reaction was diluted with EtOAc and concentrated onto silica, before it was purified by flash

column chromatography (0-55 % EtOAc in heptane) to afford the title compound S9 (40 mg, 22%) as a yellow solid. ¹H NMR (600 MHz, MeOD) δ 6.89–6.83 (m, 2H), 6.75–6.69 (m, 2H), 3.83–3.79 (m, 4H), 3.01–2.97 (m, 4H). ¹³C NMR (151 MHz, MeOD) δ 153.0, 146.0, 119.7, 116.7, 68.0, 52.7. CAS-RN: 6291-23-2.

4-(1H-Pyrrol-1-yl)phenol (S10): 4-aminophenol (1.00 g, 9.16 mmol) was suspended in AcOH (25 mL) and heated to reflux before 2,5-dimethoxytetrahydrofuran (1.42 mL, 11.0 mmol) was added and OH the reaction was refluxed for 5 hours. After cooling to room temperature, the reaction mixture was poured into ice cold H₂O (400 mL) and precipitate was collected by filtration. The filtrate was purified by vacuum column chromatography (Isocratic with CH₂Cl₂) to afford the title compound (560 mg, 38%) as an off-white solid. ¹H NMR (600 MHz, DMSO) δ 9.47 (s, 1H), 7.34–7.30 (m, 2H), 7.16 (t, J = 2.2 Hz, 2H), 6.85–6.79 (m, 2H), 6.19 (t, J = 2.2 Hz, 2H). ¹³C NMR (151 MHz, DMSO) δ 155.2,

132.3, 121.2, 119.1, 115.9, 109.5. CAS-RN: 23351-09-9.

3-(Hydroxycarbamoyl)phenyl phenyl sulfate (A1): Using general procedure 4 on a 20 µmol scale using resin A and phenol, compound **A1** (1.5 mg, 24 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 9.22–9.19 (m, 1H), 7.86–7.73 (m, 2H), 7.67–7.52 (m, 4H), 7.50–7.41 (m, 3H). ¹³C NMR of

major rotamer (151 MHz, DMSO) δ 162.3, 149.9, 135.1, 130.8, 130.6, 128.3, 126.4, 123.8, 121.0, 119.5, 116.9. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 5.673 min (98%, UV_{215.4}). HRMS m/z 310.0378 ([M+H]⁺, C₁₃H₁₃NO₆S⁺, calcd. 310.0380).

4-Bromophenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A2): Using general procedure 4 on a 20 µmol scale using resin A and 4-bromophenol, compound **A2** (1.2 mg, 15 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 9.21 (s, 1H), 7.86–7.82 (m, 1H), 7.80–7.78 (m, 1H), 7.77–7.74 (m, 2H), 7.68–7.61 (m, 2H), 7.49–7.43 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 149.7,

148.9, 135.1, 133.5, 130.9, 126.5, 123.8, 123.4, 120.8, 119.4. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.482 min (>98%, UV_{215.4}). HRMS *m*/*z* 387.9496 ([M+H]⁺, C₁₃H₁₁NO₆SBr⁺, calcd. 387.9485).

3-(Hydroxycarbamoyl)phenyl (4-(trifluoromethyl)phenyl) sulfate (A3): Using general procedure 4 on a 20 μ mol scale using resin A and 4-(trifluoromethyl)phenol, compound **A3** (0.4 mg, 5 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), 7.96 (dd, J = 7.8, 1.4 Hz, 2H), 7.86–7.82 (m, 1H), 7.80 (s, 1H), 7.75–7.70 (m, 2H), 7.68–7.63 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 162.3, 152.3, 149.7, 135.2, 131.0, 128.7 (q, J = 32.5 Hz), 128.2 (q, J = 3.6 MC)

Hz), 126.7, 123.9, 123.6 (q, J = 271.8 Hz), 122.2, 119.5. ¹⁹F NMR (376 MHz, DMSO) δ -60.97, -73.41 (CF_{3,TFA}). Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.688 min (95%, UV_{215.4}). HRMS m/z 378.0254 ([M+H]⁺, C₁₄H₁₂F₃NO₆S⁺, calcd. 378.0253).

[1,1'-Biphenyl]-2-yl (3-(hydroxycarbamoyl)phenyl) sulfate (A4): Using general procedure 4 on a 20 µmol scale using resin A and [1,1'-biphenyl]-2-ol, compound A4 (3.8 mg, 49 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.40 (s, 1H), 9.19 (s, 1H), 7.78 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.67–7.35 (m, 12H). ¹³C NMR (151 MHz, DMSO) δ 162.3, 149.6, 146.8, 135.7, 134.5, 132.0, 130.7, 129.6, 129.0, 128.5, 128.0, 126.3, 123.6, 121.4, 119.4, 116.9, 116.4. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.902 min (97%, UV_{215.4}). HRMS *m*/z 386.0706 ([M+H]⁺, C₁₉H₁₆NO₆S⁺, calcd. 386.0693).

[1,1'-Biphenyl]-3-yl (3-(hydroxycarbamoyl)phenyl) sulfate (A5): Using general procedure 4 on a 20 μ mol scale using resin A and [1,1'-biphenyl]-3-ol, compound A5 (0.9 mg, 12 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), 7.87–7.80 (m, 2H), 7.80–7.75 (m, 1H), 7.72–7.61 (m, 6H), 7.53–7.45 (m, 3H), 7.45–7.40 (m, 1H). ¹³C NMR (151 MHz, DMSO) δ 162.3, 150.4, 149.8, 142.7, 138.2, 135.1, 131.1, 130.9, 129.2, 129.1, 128.8,

128.4, 126.9, 126.5, 123.9, 121.5, 119.8, 119.6, 119.1. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.210 min (90%, UV_{215.4}). HRMS *m*/*z* 386.0696 ([M+H]⁺, C₁₉H₁₇NO₆S⁺, calcd. 386.0693).

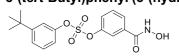
[1,1'-Biphenyl]-4-yl (3-(hydroxycarbamoyl)phenyl) sulfate (A6): Using general procedure 4 on a 20 μ mol scale using resin A and [1,1'-biphenyl]-4-ol, compound A6 (0.9 mg, 12 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), 9.21 (s, 1H), 7.87–7.79 (m, 4H), 7.72–7.63 (m, 4H), 7.57–7.45 (m, 4H), 7.44–7.39 (m, 1H). ¹³C NMR (151 MHz, DMSO) δ 162.3, 149.8, 149.3, 140.2, 138.6, 135.1, 130.9, 129.1, 128.8, 128.0, 126.9, 126.4,

123.8, 121.5, 119.5. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.264 min (95%, UV_{215.4}). HRMS *m*/*z* 386.0693 ([M+H]⁺, C₁₉H₁₇NO₆S⁺, calcd. 386.0693).

3-(Hydroxycarbamoyl)phenyl (2-isopropylphenyl) sulfate (A7). Using general procedure 4 on a 20 µmol scale using resin A and 2-isopropylphenol, compound A7 (1 mg, 14 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 `ОН (s, 1H), 9.20 (s, 1H), 7.88-7.75 (m, 2H), 7.68-7.56 (m, 2H), 7.52-7.45 (m, 1H), 7.43–7.32 (m, 3H), 3.12 (dhept, J = 13.6, 6.8 Hz, 1H), 1.14 (dd, J = 6.9, 4.2 Hz, 6H).

¹³C NMR (151 MHz, DMSO) δ 147.3, 140.3, 130.8, 128.45, 128.36, 127.9, 127.9, 127.7, 126.5, 124.0, 120.5, 119.7, 26.5, 22.7. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast guadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 8.787 min (96%, UV_{215.4}). HRMS *m*/*z* 374.0668 ([M+Na]⁺, C₁₆H₁₇NO₆SNa⁺, calcd. 374.0669).

3-(Hydroxycarbamoyl)phenyl (3-isopropylphenyl) sulfate (A8): Using general procedure 4 on a 20 µmol scale using resin A and 3-isopropylphenol, compound A8 (1.0 mg, 14 %) was И СН isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 9.20 (s, 1H), 7.83 (dt, J = 7.7, 1.3 Hz, 1H), 7.80–7.74 (m, 1H), 7.67–7.62 (m, 1H), 7.62–7.55 (m, 1H), 7.45 (dt, J = 9.9, 7.9 Hz, 1H),


7.37–7.29 (m, 1H), 7.29–7.21 (m, 2H), 3.01–2.87 (m, 1H), 1.18 (dd, J = 16.9, 6.9 Hz, 6H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 162.3, 158.8, 151.5, 150.0, 149.8, 135.1, 130.8, 130.4, 126.2, 123.8, 119.5, 118.8, 118.2, 33.2, 23.5. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.028 min (>98%, UV_{215.4}). HRMS *m*/z 352.0861 ([M+H]⁺, C₁₆H₁₈NO₆S⁺, calcd. 352.0849).

3-(Hydroxycarbamoyl)phenyl (4-isopropylphenyl) sulfate (A9). Using general procedure 4 on a 20 µmol scale using resin A and 4-isopropylphenol, compound A9 (2 mg, 28 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.43 (s, 1H), 9.20 (s, 1H), 7.83 (dt, *J* = 7.5, 1.4 Hz, 1H), 7.78 (t, *J* = 2.0 Hz, 1H), 7.66-7.56 (m, 2H), 7.43-7.38 (m, 2H), 7.38-7.33 (m, 2H), 3.00-

2.89 (m, 1H), 1.22–1.18 (m, 6H). ¹³C NMR (151 MHz, DMSO) δ 162.3, 149.7, 148.5, 147.9, 135.1, 130.8, 128.3, 126.3, 123.8, 120.8, 120.7, 119.5, 32.9, 23.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 9.144 min (97%, UV_{215.4}). HRMS m/z 352.0852 ([M+H]⁺, C₁₆H₁₈NO₆S⁺, calcd. 352.0849).

2-(tert-Butyl)phenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A10): Using general procedure 4 on a 20 µmol scale using resin A and 2-(tert-butyl)phenol, compound A10 (1.5 mg, 21 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 9.20 (s, 1H), 7.86–7.74 (m, 2H), 7.69–7.55 (m, 3H), 7.55–7.32 (m, 3H), 1.33 (d, J = 5.3 Hz, 9H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 162.3, 149.6, 140.2, 135.1, 130.8, 128.4, 128.3, 127.5, 126.5, 123.9, 119.9, 119.7, 117.1,

34.4, 30.0. Analytical UPLC gradient 40–70% eluent II in eluent I over 10 min (C18), t_R 7.210 min (97%, UV_{215.4}). HRMS m/z 366.1007 ([M+H]⁺, C₁₇H₂₁NO₆S⁺, calcd. 366.1006).

3-(tert-Butyl)phenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A11). Using general procedure 4 on a 20 µmol scale using resin A and 3-(tert-butyl)phenol, compound A11 (2 mg, 27 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.43 (s, 1H), 9.20 (br. s, 1H), 7.83 (dt, J = 7.7, 1.3 Hz, 1H), 7.78 (dd, J = 2.5, 1.5 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.59 (ddd, J

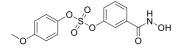
= 8.3, 2.6, 1.1 Hz, 1H), 7.50–7.42 (m, 2H), 7.31 (ddd, J = 2.3, 1.5, 0.7 Hz, 1H), 7.28 (dt, J = 6.6, 2.4 Hz, 1H), 1.27 (s, 9H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 153.9, 149.9, 149.8, 135.1, 130.8, 130.1, 126.3, 125.1, 123.7, 119.4, 117.9, 117.8, 34.7, 30.8. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 9.466 min (>98%, UV_{215.4}). HRMS *m/z* 366.1006 ([M+H]⁺, C₁₇H₂₀NO₆S⁺, calcd. 366.1006).

4-(tert-Butyl)phenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A12). Using general procedure 4 on a 20 µmol scale using resin A and 4-(tert-butyl)phenol, compound A12 (2 mg, 27 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major `OH rotamer (600 MHz, DMSO) δ 11.44 (s, 1H), 9.20 (s, 1H), 7.83 (dt, J = 7.5, 1.4 Hz, 1H), 7.78 (t, J = 2.0 Hz, 1H), 7.66–7.59 (m, 2H), 7.58–7.52 (m, 2H), 7.39– 7.34 (m, 2H), 1.30 (s, 9H). ^{13}C NMR of major rotamer (151 MHz, DMSO) δ

162.3, 150.8, 149.7, 147.7, 135.1, 130.8, 127.3, 126.4, 123.8, 120.5, 119.5, 34.5, 31.0. Analytical UPLC gradient 0-95% eluent II in eluent I over 15 min (C18), t_R 9.636 min (>98%, UV_{215.4}). HRMS m/z 366.1006 ([M+H]⁺, C₁₇H₂₀NO₆S⁺, calcd. 366.1006.

3-(Hydroxycarbamoyl)phenyl (3-nitrophenyl) sulfate (A13): Using general procedure 4 on a 20 µmol scale using resin A and 3-nitrophenol, compound A13 (1.0 mg, 14 %) was isolated т^н_он as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.44 (s, 1H), 9.23–9.20 (m, 1H), 8.32 (dddd, J = 15.4, 8.3, 2.2, 0.9 Hz, 1H), 8.26 (dt, J = 6.2, 2.3 Hz, 1H), 7.99 (dddd, J = 12.6, 8.3, 2.4, 0.9

Hz, 1H), 7.90–7.75 (m, 3H), 7.70–7.63 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 162.2 (from HMBC), 149.6, 149.4, 148.6, 132.1, 131.0, 127.9, 126.7, 123.9, 123.2, 119.5, 116.6. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 5.774 min (>98%, UV_{215.4}). HRMS m/z 377.0062 ([M+Na]⁺, C₁₃H₁₀N₂O₈SNa⁺, calcd. 377.0050).


3-(Hydroxycarbamoyl)phenyl (4-nitrophenyl) sulfate (A14): Using general procedure 4 on a 20 µmol scale using resin A and 4-nitrophenol, compound A14 (1.0 mg, 14%) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 9.22 (s, 1H), 8.45–8.37 (m, 2H), 7.87–7.75 (m, 4H), 7.69–7.64 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 162.2, 153.5, 149.6, 146.5, 135.2, 130.9, 126.7,

126.3, 123.8, 122.4, 119.5. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 5.834 min (>98%, UV_{215.4}). HRMS *m*/*z* 355.0229 ([M+H]⁺, C₂₆H₂₁N₄O₁₆S₂⁺, calcd. 355.0230.

3-(Hydroxycarbamoyl)phenyl (3-methoxyphenyl) sulfate (A15): Using general procedure 4 on a 20 µmol scale using resin A and 3-methoxyphenol, compound A15 (2.4 mg, 35 %) was scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so a point of the scale using 7.10 (1.1.1), so a point of the scale using resint A and 5-methoxyphenol, composing 7.10 (1.1.1), so Hz, 1H), 7.78 (t, J = 2.0 Hz, 1H), 7.67–7.57 (m, 2H), 7.49–7.42 (m, 1H), 7.07–

6.99 (m, 2H), 6.96 (dt, J = 13.2, 2.4 Hz, 1H), 3.79 (s, 3H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 162.3, 160.5, 150.6, 149.7, 131.0, 130.8, 126.4, 123.8, 119.5, 113.9, 112.7, 107.0, 55.7. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 5.908 min (>98%, UV_{215.4}). HRMS m/z 340.0496 ([M+H]⁺, C₁₄H₁₄NO₇S⁺, calcd. 340.0485).

3-(Hydroxycarbamoyl)phenyl (4-methoxyphenyl) sulfate (A16): Using general procedure 4 on a 20 µmol

scale using resin A and 4-methoxyphenol, compound A16 (1.1 mg, 16 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 9.21 (s, 1H), 7.82 (dt, J = 7.7, 1.3 Hz, 1H), 7.79–7.73 (m, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.59 (ddd, J = 8.3, 2.6, 1.2 Hz, 1H), 7.41–7.32

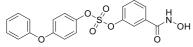
(m, 2H), 7.09–7.02 (m, 2H), 3.79 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 162.4, 158.5, 149.8, 143.2, 135.1, 130.8, 126.3, 123.8, 122.3, 119.5, 115.3, 55.7. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 5.840 min (>98%, UV_{215.4}). HRMS *m/z* 340.0497 ([M+H]⁺, C₁₄H₁₄NO₇S⁺, calcd. 340.0485).

3,4-Dimethoxyphenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A17): Using general procedure 4 on a 20 µmol scale using resin A and 3,4-dimethoxyphenol, compound A17 (3.1 mg, 42 h was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.43 (s, 1H), 9.20 (s, 1H), 7.82 (dt, *J* = 7.6, 1.4 Hz, 1H), 7.80-7.74 (m, 1H), 7.67–7.55 (m, 2H), 7.08–7.02 (m, 1H), 7.01–6.94 (m, 2H), 3.79 (s, 3H), 3.76 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 149.7, 149.5, 148.2, 143.2, 135.1, 130.8, 126.2, 119.5, 112.4,

111.9, 105.5, 102.1, 55.9, 55.9. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 5.532 min (97%, UV_{215.4}). HRMS *m*/*z* 370.0604 ([M+H]⁺, C₁₅H₁₆NO₈S⁺, calcd. 370.0591).

3-(Hydroxycarbamoyl)phenyl mesityl sulfate (A18): Using general procedure 4 on a 20 µmol scale using

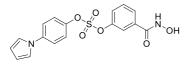
resin A and mesitol, compound A18 (0.5 mg, 7 %) was isolated as a colorless $^{\circ}$ s^o h fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), $^{\circ}$ 7.86–7.80 (m, 2H), 7.67–7.62 (m, 2H), 7.01 (s, 2H), 2.24 (d, J = 6.2 Hz, 9H). ¹³C NMR (151 MHz, DMSO) δ 162.4, 150.7, 149.7, 146.5, 135.0, 130.8, 129.6, 129.1,


126.4, 124.7, 124.0, 120.2, 119.6, 34.4, 31.1, 15.9. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 7.021 min (95%, UV_{215.4}). HRMS *m*/*z* 352.0849 ([M+H]⁺, C₁₆H₁₉NO₆S⁺, calcd. 352.0849).

4-(tert-Butyl)-2-methylphenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A19): Using general procedure 4 on a 20 µmol scale using resin A and 4-(tert-butyl)-2-methylphenol, compound A19 о s o h o h (0.8 mg, 11 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 7.86–7.78 (m, 2H), 7.67–7.58 (m, 2H), 7.42 (d, J = 2.5 Hz, 1H), 7.35 (dd, J = 8.7, 2.6 Hz, 1H), 7.28 (d, J = 8.6 Hz, 1H), 2.24 (s, 3H), 1.28 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 162.4, 150.7, 149.7, 146.5, 135.0, 130.8, 129.6, 129.1, 126.4, 124.7, 124.0, 120.2, 119.6, 34.4, 31.1, 15.9. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.782 min (98%, UV_{215.4}). HRMS *m*/*z* 380.1164 ([M+H]⁺, C₁₈H₂₃NO₆S⁺, calcd. 380.1162).

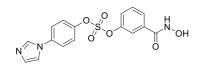
2-(Benzyloxy)phenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A20): Using general procedure 4 on a 20 umol scale using resin A and 2-(benzyloxy)phenol, compound A20 (1.6 mg, 1H), 7.79 (dt, J = 7.6, 1.3 Hz, 1H), 7.59 (ddd, J = 8.3, 2.5, 1.1 Hz, 1H), 7.55 (t, J = 7.9 Hz, 1H), 7.43–7.28 (m, 8H), 7.03 (dddd, J = 11.5, 8.1, 7.3, 1.6 Hz, 1H), 5.22 (d, J = 4.0 Hz, 2H). ¹³C

NMR of major rotamer (151 MHz, DMSO) δ 150.4, 150.3, 139.3, 136.7, 135.4, 131.0, 129.6, 128.9, 128.9, 128.4, 127.9, 126.7, 124.4, 123.0, 121.6, 115.7, 70.4. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.015 min (>98%, UV_{215.4}). HRMS *m*/z 416.0813 ([M+H]⁺, C₂₀H₁₈NO₇S⁺, calcd. 416.0798).


3-(Hydroxycarbamoyl)phenyl (4-phenoxyphenyl) sulfate (A21). Using general procedure 4 on a 20 µmol

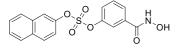
scale using resin A and 4-phenoxyphenol, compound A21 (2 mg, 25 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 9.21 (s, 1H), 7.83 (dt, *J* = 7.5, 1.4 Hz, 1H), 7.77 (t, J = 2.0 Hz, 1H), 7.67–7.60 (m, 2H), 7.50–7.46 (m, 2H), 7.46–7.41 (m, 2H),

7.20 (tt, J = 7.4, 1.1 Hz, 1H), 7.15–7.11 (m, 2H), 7.10–7.06 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 162.3, 156.3, 155.9, 149.8, 144.9, 135.1, 130.8, 130.28, 130.25, 126.4, 124.2, 123.8, 122.9, 122.8, 119.7, 119.5, 119.2. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 9.437 min (>98%, UV_{215.4}). HRMS m/z 402.0642 ([M+H]⁺, C₁₉H₁₆NO₇S⁺, calcd. 402.0642).


4-(1H-Pyrrol-1-yl)phenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A22): Using general procedure 4 on a 20

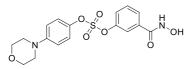
µmol scale using resin A and 4-(1H-pyrrol-1-yl)phenol, compound A22 (3.1 mg, 41 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.44 (s, 1H), 9.20 (s, 1H), 7.86-7.79 (m, 2H), 7.78-7.71 (m, 2H), 7.70-7.61 (m, 2H), 7.57-7.49 (m, 2H), 7.44-7.37 (m, 2H), 6.32-6.26 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 149.8, 146.7, 139.4, 135.1,

130.9, 126.5, 123.8, 122.4, 120.9, 119.3, 116.4, 111.0. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.703 min (>98%, UV_{215.4}). HRMS m/z 375.0658 ([M+H]⁺, C₁₇H₁₅N₂O₆S⁺, calcd. 375.0645).


4-(1H-Imidazol-1-yl)phenyl (3-(hydroxycarbamoyl)phenyl) sulfate (A23): Using general procedure 4 on a

20 µmol scale using resin A and 4-(1H-imidazol-1-yl)phenol, compound A23 (5.0 mg, 67 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.46 (s, 1H), 9.50 (dt, J = 16.0, 1.5 Hz, 1H), 8.23 (t, J = 1.7 Hz, 1H), 8.00–7.93 (m, 2H), 7.85 (pd, J = 4.8, 1.5 Hz, 1H), 7.81 (td, J = 2.3, 1.1 Hz, 2H), 7.79–7.73 (m, 3H), 7.69–7.58

(m, 2H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 158.8, 149.7, 149.5, 135.3, 134.7, 130.9, 126.5, 124.3, 123.8, 122.9, 120.7, 119.5, 116.9. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast guadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 3.936 min (>98%, UV_{215.4}). HRMS m/z 376.0611 ([M+H]⁺, C₁₆H₁₄N₃O₆S⁺, calcd. 376.0597).


3-(Hydroxycarbamoyl)phenyl naphthalen-2-yl sulfate (A24): Using general procedure 4 on a 40 µmol scale

using resin A and naphthalen-2-ol, compound A24 (1.6 mg, 11 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), 9.21 (s, 1H), 8.12 (d, J = 9.0 Hz, 1H), 8.08–8.03 (m, 3H), 7.88–7.81 (m, 2H), 7.69–7.55 (m, 5H). ¹³C NMR of major rotamer (151

MHz, DMSO) δ 162.3, 149.8, 147.4, 135.1, 133.1, 131.8, 130.9, 130.8, 128.0, 127.9, 127.5, 127.1, 126.4, 123.9, 119.7, 119.6, 118.6. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.956 min (98%, UV_{215.4}). HRMS *m*/*z* 360.0552 ([M+H]⁺, C₁₇H₁₄NO₆S⁺, calcd. 360.0536).

3-(Hydroxycarbamoyl)phenyl (4-morpholinophenyl) sulfate (A25): Using general procedure 4 on a 20

µmol scale using resin A and 4-morpholinophenol, compound **A25** (1.0 mg, 11 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 7.82 (dt, J = 7.7, 1.3 Hz, 1H), 7.77 (dd, J = 2.5, 1.5 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.58 (ddd, J = 8.3, 2.5, 1.1 Hz, 1H), 7.31–7.25 (m, 2H), 7.06–7.00 (m, 2H), 3.76–3.70 (m, 4H), 3.16–3.10 (m, 4H). ¹³C NMR

(151 MHz, DMSO) δ 150.5, 149.8, 142.2, 135.0, 130.8, 126.2, 123.7, 121.6, 119.4, 115.9, 66.0, 48.1. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 5.502 min (>98%, UV_{215.4}). 395.0922 ([M+H]⁺, C₁₇H₁₉N₂O₇S⁺, calcd. 395.0907).

Benzo[d][1,3]dioxol-5-yl (3-(hydroxycarbamoyl)phenyl) sulfate (A26): Using general procedure 4 on a 20 μ mol scale using resin A and benzo[d][1,3]dioxol-5-ol, compound **A26** (1.8 mg, 25 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.43 (s, 1H), 9.20 (s, 1H), 7.82 (dt, *J* = 7.6, 1.4 Hz, 1H), 7.79–7.73 (m, 1H), 7.67–7.58 (m, 2H), 7.13–7.07 (m, 1H), 7.02 (d, *J* = 8.5 Hz, 1H),

6.95–6.88 (m, 1H), 6.14 (s, 2H). ¹³C NMR (151 MHz, DMSO) δ 149.7, 148.2, 146.8, 143.8, 135.0, 130.8, 126.3, 123.8, 119.5, 114.1, 108.4, 103.2, 102.5. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 5.703 min (>98%, UV_{215.4}). HRMS *m/z* 354.0291 ([M+H]⁺, C₁₄H₁₂NO₈S⁺, calcd. 354.0278).

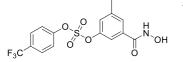
3-(Hydroxycarbamoyl)phenyl (3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl) sulfate (A27): Using general procedure 4 on a 20 µmol scale using resin A and 3'-(trifluoromethyl)-[1,1'-biphenyl]-4-ol, compound A27 (3.8 mg, 32 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.45 (s, 1H), 9.21 (s, 1H), 8.04–7.98 (m, 2H), 7.96–7.88 (m, 2H), 7.88–7.80 (m, 2H), 7.80–7.71 (m, 2H), 7.66 (dd, *J* = 4.6, 1.6 Hz, 2H), 7.62–7.53 (m, 2H).

¹³C NMR (151 MHz, DMSO) δ 162.3, 149.8, 149.7, 139.7, 138.5, 135.1, 131.1, 130.9, 130.2, 129.86 (q, J = 31.8 Hz), 129.3, 126.5, 124.60 (d, J = 3.8 Hz), 123.82 (q, J = 272.6 Hz), 123.8, 123.44 (q, J = 3.9 Hz), 121.6, 119.5. ¹⁹F NMR (376 MHz, DMSO) δ -61.0, -73.6 (CF_{3,TFA}). Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.932 min (>98%, UV_{215.4}). 454.0585 ([M+H]⁺, C₂₀H₁₅NO₆F₃S⁺, calcd. 454.0566).


3-(Hydroxycarbamoyl)phenyl (4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl) sulfate (A28): Using general procedure 4 on a 20 μ mol scale using resin A and 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-ol, compound A28 (4.5 mg, 30 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.46 (s, 1H), 9.22 (s, 1H), 7.97–7.88 (m, 4H), 7.88–7.80 (m, 4H), 7.70–7.63 (m, 2H), 7.63–7.55 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 162.8, 150.4,

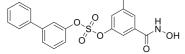
150.2, 143.1, 139.0, 135.6, 131.4, 129.8, 128.83 (q, J = 31.9 Hz), 128.3, 126.9, 126.36 (q, J = 3.8 Hz), 124.48 (d, J = 272.2 Hz), 124.3, 122.2, 120.0. ¹⁹F NMR (376 MHz, DMSO) δ -61.0, -73.5 (CF_{3,TFA}). Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.998 min (>98%, UV_{215.4}). HRMS *m*/*z* 454.0585 ([M+H]⁺, C₂₀H₁₅NO₆F₃S⁺, calcd. 454.0566).

3-(Hydroxycarbamoyl)-5-methylphenyl phenyl sulfate (B1): Using general procedure 4 on a 20 µmol scale using resin B and phenol, compound **B1** (3.4 mg, 53 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.37 (s, 1H), 9.17 (s, 1H), 7.67 (q, J = 1.2 Hz, 1H), 7.60–7.52 (m, 3H), 7.50–7.40 (m, 4H), 2.39 (d, J = 12.7 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 162.4, 158.9, 149.9, 149.6, 141.0, 134.7, 130.6, 128.2, 124.0, 121.1, 116.5, 20.7. Analytical


UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 7.572 min (97%, UV_{215.4}). HRMS *m*/*z* 324.0549 ([M+H]⁺, C₁₄H₁₄NO₆S⁺, calcd. 324.0536).

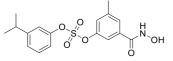
4-Bromophenyl (3-(hydroxycarbamoyl)-5-methylphenyl) sulfate (B2). Using general procedure 4 on a 20

μmol scale using resin B and 4-bromophenol, compound **B2** (1 mg, 12 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.37 (s, 1H), 9.17 (s, 1H), 7.79–7.72 (m, 2H), 7.69–7.65 (m, 1H), 7.58 (ddd, J = 2.3, 1.5, 0.7 Hz, 1H), 7.48–7.41 (m, 3H), 2.41 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 162.4, 149.6, 148.9, 141.1, 134.7, 133.4, 127.2, 124.0, 123.4, 120.8, 116.4, 20.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 8.793 min (>98%, UV_{215.4}). HRMS *m*/*z* 401.9642 ([M+H]⁺, C₁₄H₁₃NO₆SBr⁺, calcd. 401.9641).


3-(Hydroxycarbamoyl)-5-methylphenyl (4-(trifluoromethyl)phenyl) sulfate (B3). Using general procedure

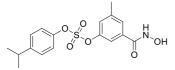
4 on a 20 µmol scale using resin B and 4-(trifluoromethyl)phenol, compound **B3** (0.7 mg, 8 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.38 (s, 1H), 9.17 (s, 1H), 8.00–7.93 (m, 2H), 7.76–7.71 (m, 2H), 7.70–7.67 (m, 1H), 7.60 (t, *J* = 2.0 Hz, 1H), 7.47 (d, *J* = 2.1 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 162.8, 152.7, 150.0, 141.6,

135.3, 129.2, 129.0, 128.6 (q, J = 3.8 Hz), 127.8, 125.0, 124.5, 123.2, 122.7, 116.9, 21.2. ¹⁹F NMR (376 MHz, DMSO) δ -60.97, -73.53 (CF_{3,TFA}). Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.025 min (>98%, UV_{215.4}). HRMS *m*/*z* 392.0414 ([M+H]⁺, C₁₅H₁₃NO₆F₃S⁺, calcd. 392.0410).


[1,1'-Biphenyl]-3-yl (3-(hydroxycarbamoyl)-5-methylphenyl) sulfate (B4): Using general procedure 4 on a 40 µmol scale µsing resin B and [1,1'-biphenyl]-3-ol, compound **B4** (1.9 mg

40 µmol scale using resin B and [1,1'-biphenyl]-3-ol, compound **B4** (1.9 mg, 12f %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.33 (s, 1H), 7.65–7.59 (m, 2H), 7.60–7.50 (m, 4H), 7.47–7.36 (m, 7H), 7.18–7.16 (m, 1H), 2.34 (d, J = 10.5 Hz, 3H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 158.9, 149.5, 146.8, 140.8, 135.7, 134.5,

131.9, 129.5, 129.0, 128.4, 128.0, 127.0, 123.7, 121.4, 116.4, 114.0, 20.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.195 min (91%, UV_{215.4}). HRMS *m*/*z* 400.0867 ([M+H]⁺, C₂₀H₁₈NO₆S⁺, calcd. 400.0849).

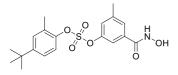

3-(Hydroxycarbamoyl)-5-methylphenyl (3-isopropylphenyl) sulfate (B8). Using general procedure 4 on a

20 µmol scale using resin B and 2-isopropylphenol, compound **B8** (0.8 mg, 11 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.37 (s, 1H), 9.16 (s, 1H), 7.68–7.64 (m, 1H), 7.60–7.56 (m, 1H), 7.47 (t, *J* = 7.9 Hz, 1H), 7.39 (s, 1H), 7.35 (ddt, *J* = 7.7, 1.5, 0.7 Hz, 1H), 7.27 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 7.24 (t, *J* = 2.1 Hz, 1H), 2.96 (hept, *J* = 7.0 Hz) 130 (dd, *J* = 6.9 Hz, 6H) ¹³C NMP (151 MHz, DMSO) δ 162.4, 151.5, 150.0

Hz, 1H), 2.40 (d, *J* = 0.8 Hz, 3H), 1.20 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (151 MHz, DMSO) δ 162.4, 151.5, 150.0, 149.7, 141, 134.7, 130.3, 127.0, 126.2, 124.0, 118.8, 118.3, 116.5, 33.1, 23.5, 20.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.376 min (>98%, UV_{215.4}). HRMS *m*/*z* 366.1004 ([M+H]⁺, C₁₇H₂₀NO₆S⁺, calcd. 366.1006).

3-(Hydroxycarbamoyl)-5-methylphenyl (4-isopropylphenyl) sulfate (B9): Using general procedure 4 on a

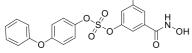
20 µmol scale using resin B and 4-isopropylphenol, compound **B9** (2.9 mg, 40 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.37 (s, 1H), 9.16 (s, 1H), 7.66 (t, *J* = 1.3 Hz, 1H), 7.60–7.56 (m, 1H), 7.46–7.31 (m, 5H), 2.95 (tq, *J* = 14.1, 6.9 Hz, 1H), 2.41–2.36 (m, 3H), 1.20 (dd, *J* = 12.8, 6.9 Hz, 6H). ¹³C NMR of major rotamer


(151 MHz, DMSO) δ 158.9, 149.8, 148.5, 147.9, 140.9, 130.9, 128.2, 124.8, 120.9, 114.0, 32.9, 23.7, 20.7. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 9.584 min (>98%, UV_{215.4}). HRMS *m*/*z* 366.1019 ([M+H]⁺, C₁₇H₂₀NO₆S⁺, calcd. 366.1006).

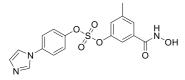
3-(tert-Butyl)phenyl (3-(hydroxycarbamoyl)-5-methylphenyl) sulfate (B11). Using general procedure 4 on a 20 µmol scale using resin B and 3-(*tert*-butyl)phenol, compound **B11** (1.1 mg, 14 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.37 (s, 1H), 9.16 (s, 1H), 7.66 (q, *J* = 1.2 Hz, 1H), 7.60–7.56 (m, 1H), 7.52–7.42 (m, 2H), 7.39 (ddd, *J* = 2.4, 1.5, 0.8 Hz, 1H), 7.32–7.30 (m, 1H), 7.28 (dt, *J* = 6.6, 2.4 Hz, 1H), 2.39 (d, *J* = 0.8 Hz, 3H), 1.27 (s, 9H). ¹³C

NMR (151 MHz, DMSO) δ 162.4, 153.9, 149.9, 149.7, 141.0, 134.7, 130.1, 127.0, 125.0, 123.9, 118.0, 117.8, 116.5, 34.7, 30.8, 20.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.678 min (>98%, UV_{215.4}). HRMS *m*/*z* 380.1164 ([M+H]⁺, C₁₈H₂₂NO₆S⁺, calcd. 380.1162).

4-(tert-Butyl)phenyl (3-(hydroxycarbamoyl)-5-methylphenyl) sulfate (B12). Using general procedure 4 on a 20 µmol scale using resin B and 4-(*tert*-butyl)phenol, compound **B12** (1.1 mg, 15 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.37 (s, 1H), 9.16 (s, 1H), 7.66 (q, *J* = 1.3 Hz, 1H), 7.58 (dd, *J* = 2.5, 1.4 Hz, 1H), 7.57–7.54 (m, 2H), 7.40 (ddd, *J* = 2.4, 1.5, 0.8 Hz, 1H), 7.38– 7.34 (m, 2H), 2.40 (s, 3H), 1.30 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 162.4, 150.8, 149.7, 147.6, 141.0, 134.7, 127.3, 127.1, 124.0, 120.5, 116.5, 34.4, 31.0, 20.7. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 7.793 min (>98%, UV_{215.4}). HRMS m/z 380.1163 ([M+H]⁺, C₁₈H₂₂NO₆S⁺, calcd. 380.1162).


4-(tert-Butyl)-2-methylphenyl (3-(hydroxycarbamoyl)-5-methylphenyl) sulfate (B19). Using general

procedure 4 on a 20 µmol scale using resin B and 4-(*tert*-butyl)-2-methylphenol, compound **B19** (0.8 mg, 10 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.37 (s, 1H), 9.16 (s, 1H), 7.67 (q, J = 1.1 Hz, 1H), 7.60 (t, J = 2.1 Hz, 1H), 7.43 (dd, J = 2.5, 0.8 Hz, 1H), 7.42-7.39 (m, 1H), 7.36 (ddd, J = 8.7, 2.6, 0.6 Hz, 1H), 7.29 (d, J = 8.6 Hz, 1H), 2.40 (d, J = 0.8 Hz, 3H), 2.25 (s, 3H), 1.28 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ


162.4, 150.6, 149.6, 146.4, 140.9, 134.7, 129.6, 129.0, 127.1, 124.6, 124.1, 120.2, 116.6, 34.3, 31.0, 20.7, 15.9. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 10.631 min (>98%, UV_{215.4}). HRMS *m*/z 394.1318 ([M+H]⁺, C₁₉H₂₄NO₆S⁺, calcd. 394.1319).

3-(Hydroxycarbamoyl)-5-methylphenyl (4-phenoxyphenyl) sulfate (B21). Using general procedure 4 on a 20 umol scale using resin B and 4-phenoxyphenol, compound **B21** (1.1 mg.

13 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.39–11.36 (m, 1H), 9.17 (d, J = 1.7 Hz, 1H), 7.66 (td, J = 1.5, 0.7 Hz, 1H), 7.57 (ddd, J = 2.3, 1.4, 0.6 Hz, 1H), 7.49–7.41 (m, 5H), 7.20 (tt, J = 7.5, 1.1 Hz, 1H), 7.15–7.11 (m, 2H), 7.10–7.07 (m, 2H),

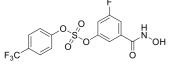
2.41 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 162.4, 156.2, 155.9, 149.6, 144.9, 141.0, 134.7, 130.3, 127.1, 124.2, 124.0, 122.9, 119.7, 119.2, 116.4, 20.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.621 min (>98%, UV_{215.4}). HRMS *m*/z 416.0799 ([M+H]⁺, C₂₀H₁₈NO₇S⁺, calcd. 416.0798).

4-(1H-Imidazol-1-yl)phenyl (3-(hydroxycarbamoyl)-5-methylphenyl) sulfate (B23). Using general procedure 4 on a 20 µmol scale using resin B and 4-(1H-imidazol-1-yl)phenol, compound B23 (1.6 mg, 21 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.40 (s, 1H), 9.39 (t, J = 1.4 Hz, 1H), 8.20 (t, J = 1.7 Hz, 1H), 7.99–7.93 (m, 2H), 7.79–7.72 (m, 3H), 7.69 (td, J = 1.6, 0.8 Hz, 1H), 7.60 (ddd, J = 2.3, 1.5, 0.7 Hz, 1H), 7.48 (ddd, J = 2.4, 1.5, 0.8 Hz, 1H), 2.42 (d, J = 0.8 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 149.6,

149.4, 141.1, 135.3, 134.8, 134.8, 127.2, 124.1, 124.0, 123.2, 122.9, 120.5, 116.5, 20.7. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 4.391 min (>98%, UV_{215.4}). HRMS m/z 390.0754 ([M+H]⁺, C₁₇H₁₆N₃O₆S⁺, calcd. 390.0754).

3-(Hydroxycarbamoyi)-5-methylphenyl naphthalen-2-yl sulfate (B24): Using general procedure 4 on a 40 µmol scale using resin B and naphthalen-2-ol, compound B24 (3.1 mg, 21 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.38 (s, 1H), 9.18 (s, 1H), 8.13 (d, J = 9.0 Hz, 1H), 8.09–7.99 (m, `ОН 3H), 7.69–7.51 (m, 5H), 7.49–7.45 (m, 1H), 2.42–2.36 (m, 3H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 162.4, 149.7, 147.4, 141.0, 134.7, 133.1,

131.8, 130.7, 128.0, 127.9, 127.5, 127.1, 124.1, 119.7, 118.6, 116.6, 114.1, 20.7. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 7.069 min (> 98%, UV_{215.4}). HRMS m/z 374.0709 ([M+H]⁺, C₁₈H₁₆NO₆S⁺, calcd. 374.0693).

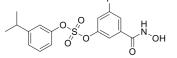

3-Fluoro-5-(hydroxycarbamoyl)phenyl phenyl sulfate (C1): Using general procedure 4 on a 40 µmol scale using resin C and penol, compound C1 (4.5 mg, 34 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.53 (s, 1H), 7.69 (dd, J = 8.0, 2.3 Hz, 2H), 7.65 (dt, J = 8.7, 2.3 Hz, 1H), 7.59–7.51 (m, 2H), 7.50– `ОН 7.43 (m, 3H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 161.94 (d, J = 248.7 Hz), 150.03 (d, J = 11.5 Hz), 149.8, 136.35 (d, J = 8.2 Hz), 130.6, 128.4, 121.1,

115.8, 113.69 (d, J = 22.9 Hz), 112.13 (d, J = 25.9 Hz). Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. ¹⁹F NMR (376 MHz, DMSO) δ -74.1 (CF_{3,TFA}), -108.1. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.017 min (96%, UV_{215.4}). HRMS m/z 328.0300 ([M+H]⁺, C₁₃H₁₁NO₆FS⁺, calcd. 353.0801).

4-Bromophenyl (3-fluoro-5-(hydroxycarbamoyl)phenyl) sulfate (C2). Using general procedure 4 on a 20 µmol scale using resin C and 4-bromophenol, compound C2 (1.0 mg, 12 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.53 (s, 1H), 9.33 (br. s, 1H), 7.79–7.72 (m, 2H), 7.69 (tt, J = 5.1, 2.1 Hz, 3H), 7.50–7.44 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 161.9 (d, J = 248.9 Hz), 161.0, 149.9 (d, J = 11.4 Hz), 148.9, 136.4 (d, J = 8.0 Hz), 133.5, 123.4, 120.9, 115.8 (d, J = 3.2 Hz), 113.8 (d, J = 23.1 Hz), 112.2 (d, J = 26.0 Hz). ¹⁹F

NMR (376 MHz, DMSO) δ -74.08 (CF_{3,TFA}), -108.06. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.786 min (>98%, UV_{215.4}). HRMS *m*/z 427.9211 ([M+Na]⁺, C₁₃H₉NO₆FSBrNa⁺, calcd. 427.9210).

3-Fluoro-5-(hydroxycarbamoyl)phenyl (4-(trifluoromethyl)phenyl) sulfate (C3). Using general procedure


4 on a 20 µmol scale using resin C and 4-(trifluoromethyl)phenol, compound C3 (0.9 mg, 11 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.53 (s, 1H), 9.33 (s, 1H), 8.00-7.90 (m, 2H), 7.78-7.68 (m, 5H). ¹³C NMR (151 MHz, DMSO) δ 161.95 (d, J = 248.6 Hz), 160.95, 152.14, 149.87 (d, J = 11.6 Hz), 136.40 (d, J = 8.1 Hz), 128.61 (d, J = 32.2 Hz),

128.11 (g, J = 3.8 Hz), 122.24, 115.85 (d, J = 3.1 Hz), 113.95 (d, J = 22.9 Hz), 112.27 (d, J = 26.0 Hz). The peak for CF3 was not visible in ¹³C NMR due to high coupling constant and overlap with neighbouring peaks. ¹⁹F NMR (376 MHz, DMSO) δ -60.99, -73.43 (CF_{3,TFA}), -108.00. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 8.932 min (>98%, UV_{215.4}). HRMS *m/z* 396.0157 ([M+H]⁺, C₁₄H₁₀NO₆F₄S⁺, calcd. 396.0159).

[1,1'-Biphenyl]-3-yl (3-fluoro-5-(hydroxycarbamoyl)phenyl) sulfate (C4): Using general procedure 4 on a 40 µmol scale using resin C and [1,1'-biphenyl]-3-ol, compound C4 (4.5 mg, 28 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.48 (s, 1H), 7.68–7.61 (m, 2H), 7.60–7.51 (m, 4H). 7.45–7.34 (m, 6H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 161.8 (d, J = 248.5 Hz), 161.2, 149.8 (d, J = 11.5 Hz), 146.7, 136.2 (d, J = 7.9 Hz),

135.5, 134.5, 132.0, 129.6, 129.0, 128.7, 128.4, 128.0, 121.6, 115.7, 113.5 (d, J = 22.7 Hz), 111.8 (d, J = 26.0 Hz). ¹⁹F NMR of major rotamer (376 MHz, DMSO) δ -74.6 (CF_{3,TFA}), -108.3. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.195 min (95%, UV_{215.4}). HRMS m/z 426.0418 ([M+Na]⁺, C₁₉H₁₄FNO₆SNa⁺, calcd. 426.0433).

3-Fluoro-5-(hydroxycarbamoyl)phenyl (3-isopropylphenyl) sulfate (C8). Using general procedure 4 on a 20 µmol scale using resin C and 3-isopropylphenol, compound C8 (2.1 mg, 28

%) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.51 (s, 1H), 9.32 (s, 1H), 7.69 (tt, J = 3.7, 1.4 Hz, 2H), 7.62 (dt, J = 8.7, 2.3 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 7.38–7.33 (m, 1H), 7.31–7.25 (m, 2H), 2.96 (hept, J = 6.9 Hz, 1H), 1.20 (d, J = 6.9 Hz, 6H). ¹³C NMR (151

MHz, DMSO) δ 161.9 (d, J = 248.6 Hz), 151.6, 150.1 (d, J = 11.5 Hz), 149.9, 136.3 (d, J = 8.0 Hz), 130.4, 126.3, 118.8, 118.3, 115.8, 113.6 (d, J = 23.3 Hz), 112.1 (d, J = 25.8 Hz), 33.1, 23.5. Peak for C(=O)NH was not visible in 13C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. ¹⁹F NMR (376 MHz, DMSO) δ -73.42 (CF_{3.TFA}), -108.25. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 9.487 min (>98%, UV_{215.4}). HRMS *m*/z 370.0754 ([M+H]⁺, C₁₆H₁₇NO₆FS⁺, calcd. 370.0755).

3-Fluoro-5-(hydroxycarbamoyl)phenyl (4-isopropylphenyl) sulfate (C9): Using general procedure 4 on a 40 µmol scale using resin C and 4-isopropylphenol, compound C9 (5.0 mg, 30 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.53 (s, 1H), 7.69 (dd, J = 8.6, 2.4 Hz, 2H), 7.62 (dt, J = 8.8, 2.3 Hz, 1H), 7.43–7.34 (m, 4H), 2.95 (tp, J = 13.6, 7.0 Hz, 1H), 1.23–1.16 (m, 6H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 161.93 (d, J = 248.6 Hz), 150.06 (d, J = 11.5 Hz), 148.7, 147.8, 136.33 (d, J = 7.9 Hz),

128.3, 120.9, 115.8, 113.64 (d, J = 23.0 Hz), 112.09 (d, J = 26.0 Hz), 32.9, 23.7. ¹⁹F NMR (376 MHz, DMSO) δ-74.3 (CF_{3.TFA}), -108.2. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.419 min (>98%, UV_{215.4}). HRMS *m*/z 370.0771 ([M+H]⁺, C₁₆H₁₇NO₆FS⁺, calcd. 370.0755).

3-(tert-Butyl)phenyl (3-fluoro-5-(hydroxycarbamoyl)phenyl) sulfate (C11). Using general procedure 4 on a 20 µmol scale using resin C and 3-*tert*-butylphenol, compound **C11** (1.2 mg, 15 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.52 (s, 1H), 9.32 (br. s, 1H), 7.69 (q, *J* = 4.1 Hz, 2H), 7.61 (dt, *J* = 8.9, 2.4 Hz, 1H), 7.52–7.45 (m, 2H), 7.33 (ddd, *J* = 2.3, 1.6, 0.6 Hz, 1H), 7.30 (ddd, *J* = 7.1, 2.5, 1.8 Hz, 1H), 1.27 (s, 9H). ¹³C NMR (151 MHz, DMSO)

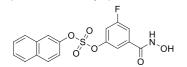
δ 161.9 (d, J = 248.8 Hz), 161.0, 153.9, 150.1 (d, J = 11.6 Hz), 149.8, 136.3 (d, J = 7.6 Hz), 130.2, 125.2, 118.0, 117.8, 115.8 (d, J = 3.3 Hz), 113.6 (d, J = 21.2 Hz), 112.1 (d, J = 25.1 Hz), 34.7, 30.8. ¹⁹F NMR (376 MHz, DMSO) δ -73.92 (CF_{3,TFA}), -108.24. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.652 min (>98%, UV_{215.4}). HRMS *m*/*z* 384.0909 ([M+H]⁺, C₁₇H₁₉NO₆FS⁺, calcd. 384.0911).

4-(tert-Butyl)phenyl (3-fluoro-5-(hydroxycarbamoyl)phenyl) sulfate (C12). Using general procedure 4 on a 20 μ mol scale using resin C and 4-*tert*-butylphenol, compound **C12** (2.5 mg, 33 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.53 (s, 1H), 9.33 (s, 1H), 7.70 (dd, *J* = 8.0, 2.3 Hz, 2H), 7.63 (dt, *J* = 8.7, 2.3 Hz, 1H), 7.59–7.53 (m, 2H), 7.42–7.36 (m, 2H), 1.30 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 161.9 (d, *J* = 248.7 Hz), 161.0, 150.9, 150.0 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.3 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, *J* = 11.6 Hz), 147.6, 136.8 (d, *J* = 7.8 Hz), 127.3, 120.5, 115.8, 113.7 (d, J) = 11.6 Hz), 147.6, 136.8 (d, J) = 11.6 Hz), 147.6 (d, J) =

23.2 Hz), 112.1 (d, J = 25.7 Hz), 34.4, 31.0. ¹⁹F NMR (376 MHz, DMSO) δ -73.81 (CF_{3,TFA}), -108.19. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 10.087 min (>98%, UV_{215.4}). HRMS *m*/*z* 384.0910 ([M+H]⁺, C₁₇H₁₉NO₆FS⁺, calcd. 384.0911).

4-(tert-Butyl)-2-methylphenyl (3-fluoro-5-(hydroxycarbamoyl)phenyl) sulfate (C19). Using general procedure 4 on a 20 µmol scale using resin C and 4-(*tert*-butyl)-2-methylphenol, compound C19 (1.1 mg, 14 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.52 (s, 1H), 9.32 (s, 1H), 7.73–7.67 (m, 2H), 7.63 (dt, *J* = 8.7, 2.3 Hz, 1H), 7.43 (dd, *J* = 2.5, 0.9 Hz, 1H), 7.36

(ddd, J = 8.7, 2.6, 0.6 Hz, 1H), 7.31 (d, J = 8.7 Hz, 1H), 2.26 (s, 3H), 1.28 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 161.9 (d, J = 248.7 Hz), 150.8, 150.0 (d, J = 11.6 Hz), 146.4, 136.3 (d, J = 7.9 Hz), 129.6, 129.1, 124.7, 120.3, 116.0, 113.7 (d, J = 22.9 Hz), 112.3 (d, J = 26.1 Hz), 34.3, 31.0, 15.9. ¹⁹F NMR (376 MHz, DMSO) δ -74.26 (CF_{3,TFA}), -108.26. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 10.575 min (>98%, UV_{215.4}). HRMS *m/z* 398.1068 ([M+H]⁺, C₁₈H₂₁NO₆FS⁺, calcd. 398.1068).


3-Fluoro-5-(hydroxycarbamoyl)phenyl (4-phenoxyphenyl) sulfate (C21). Using general procedure 4 on a 20 µmol scale using resin C and 4-phenoxyphenol, compound **C21** (2.6 mg, 31 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.53 (s, 1H), 9.32 (br. s, 1H), 7.72–7.67 (m, 2H), 7.65 (dt, *J* = 8.7, 2.3 Hz, 1H), 7.52–7.46 (m, 2H), 7.46–7.41 (m, 2H), 7.20 (tt, *J* = 7.3, 1.1 Hz, 1H), 7.15–7.11 (m, 2H), 7.11–7.06 (m, 2H). ¹³C NMR (151 MHz, 1H), 7.15–7.11 (m, 2H), 7.11–7.06 (m, 2H).

DMSO) δ 161.93 (d, *J* = 248.7 Hz), 156.35, 155.89, 150.03 (d, *J* = 11.5 Hz), 144.85, 136.34 (d, *J* = 8.1 Hz), 130.26, 124.23, 122.95, 119.67, 119.22, 113.68 (d, *J* = 23.0 Hz), 112.12 (d, *J* = 25.7 Hz). Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. ¹⁹F NMR (376 MHz, DMSO) δ -74.33 (CF_{3,TFA}), -108.16. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.589 min (>98%, UV_{215.4}). Impurity seen around 7.85 min originates from the column. HRMS *m*/*z* 420.0546 ([M+H]⁺, C₁₉H₁₅NO₇FS⁺, calcd. 420.0547).

4-(1H-Imidazol-1-yl)phenyl F (3-fluoro-5-(hydroxycarbamoyl)phenyl) sulfate (C23). Using general procedure 4 on a 20 µmol scale using resin C and 4-(1*H*-imidazol-1-yl)phenol, compound C23 (2.3 mg, 29 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.55 (s, 1H), 9.45 (s, 1H), 8.22 (t, *J* = 1.7 Hz, 1H), 7.99–7.95 (m, 2H), 7.82–7.76 (m, 3H), 7.74–7.70 (m, 3H). ¹³C NMR (151 MHz, DMSO) δ 162.0 (d, *J* = 248.7 Hz), 158.1 (q, *J* = 33.5 Hz, CO_{TFA}), 150.0 (d, *J* = 11.5 Hz), 149.4, 136.4 (d, *J* = 8.0 Hz), 135.3, 134.9

124.3, 123.0, 122.8, 120.6, 115.9, 113.8 (d, J = 23.0 Hz), 112.2 (d, J = 26.2 Hz). ¹⁹F NMR (376 MHz, DMSO) δ -74.14 (CF_{3,TFA}), -108.04. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 4.248 min (>98%, UV_{215.4}). HRMS *m*/*z* 394.0501 ([M+H]⁺, C₁₆H₁₃N₃O₆FS⁺, calcd. 394.0503).

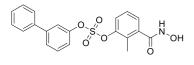
3-Fluoro-5-(hydroxycarbamoyl)phenyl naphthalen-2-yl sulfate (C24): Using general procedure 4 on a 40 µmol scale using resin C and naphthalen-2-ol, compound C24 (4.3 mg, 29 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.54 (s, 1H), 8.15–8.02 (m, 4H), 7.79–7.48 (m,

6H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 161.9 (d, J = 248.7 Hz), 150.0 (d, J = 11.6 Hz), 147.3, 136.4 (d, J = 8.2 Hz), 133.1, 131.9, 130.8, 128.1, ^HN_N H ^HN

DMSO) δ -74.5 (CF_{3,TFA}), -108.1. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.275 min (> 98%, UV_{215.4}). HRMS m/z 378.0458 ([M+H]⁺, C₁₇H₁₃FNO₆S⁺, calcd. 378.0442).

3-(Hydroxycarbamoyl)-2-methylphenyl phenyl sulfate (D1): Using general procedure 4 on a 40 µmol scale using resin D and phenol, compound D1 (6.5 mg, 50 %) was isolated as a colorless fluffy powder after

lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.01 (s, 1H), 7.60–7.53 (m, 2H), 7.47 (dtd, J = 7.1, 3.3, 1.8 Hz, 4H), 7.41 (t, J = 7.9 Hz, 1H), 7.35 (dd, J = 7.6, 1.3 Hz, 1H), 2.44 (s, 1H, minor rotamer), 2.24 (s, 2H, major rotamer). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 164.5, 149.8, 148.7, 137.7, 130.6, 128.8, 128.3, 127.6, 127.1,


122.1, 121.2, 12.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 7.209 min (>98%, UV_{215.4}). HRMS *m*/*z* 324.0549 ([M+H]⁺, C₁₄H₁₄NO₆S⁺, calcd. 324.0536).

4-Bromophenyl (3-(hydroxycarbamoyl)-2-methylphenyl) sulfate (D2). Using general procedure 4 on a 20 µmol scale using resin D and 4-bromophenol, compound D2 (1.7 mg, 21 %) was т М_он isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.00 (d, J = 1.7 Hz, 1H), 9.20 (d, J = 1.7 Hz, 1H), 7.79–7.73 (m, 2H), 7.50 (dd, J = 8.3, 1.3 Hz, 1H), 7.48–7.44 (m, 2H), 7.41 (ddd, J = 8.2, 7.6, 0.7 Hz,

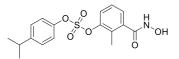
1H), 7.35 (dd, J = 7.6, 1.3 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 164.4, 148.9, 148.6, 137.7, 133.5, 128.8, 127.6, 127.1, 123.5, 122.1, 120.8, 12.7. Analytical UPLC gradient 0-95% eluent II in eluent I over 15 min (C18), t_R 8.382 min (>98%, UV_{215.4}). HRMS *m*/z 401.9638 ([M+H]⁺, C₁₄H₁₃NO₆SBr⁺, calcd. 401.9641).

3-(Hydroxycarbamoyl)-2-methylphenyl (4-(trifluoromethyl)phenyl) sulfate (D3). Using general procedure 4 on a 20 µmol scale using resin D and 4-(trifluoromethyl)phenol, compound D3 (1.8 mg, 23 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.01 (d, J = 1.7 Hz, 1H), 9.21 (d, J = 1.7 Hz, 1H), 8.00-7.93 (m, 2H), 7.76-7.71 (m, 2H), 7.54 (dd, J = 8.3, 1.2 Hz, 1H), 7.42 (ddd, J = 8.2, 7.6, 0.7 Hz, 1H), 7.36 (dd, J = 7.6, 1.2 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 164.4, 152.2, 148.6, 137.7, 128.8, 128.6 (q, J = 32.8 Hz), 128.1 (q, J = 3.7 Hz), 127.7, 127.2, 123.6 (q, J = 272.5 Hz), 122.3, 122.1, 12.7. ¹⁹F NMR (376 MHz, DMSO) δ -60.98. Analytical UPLC gradient 0-95% eluent II in eluent I over 15 min (C18), t_R 8.652 min (>98%, UV_{215.4}). HRMS *m*/z 392.0407 ([M+H]⁺, C₁₅H₁₃NO₇F₃S⁺, calcd. 392.0410).

[1,1'-Biphenyl]-3-yl (3-(hydroxycarbamoyl)-2-methylphenyl) sulfate (D4): Using general procedure 4 on a

40 µmol scale using resin D and [1,1'-biphenyl]-3-ol, compound D4 (3.2 mg, 20 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR 7.50–7.44 (m, 4H), 7.43–7.39 (m, 1H), 7.31–7.24 (m, 2H), 7.19–7.12 (m, 1H), 2.11 (s, 3H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 164.4, 148.5,

146.8, 137.5, 135.8, 134.5, 131.9, 129.5, 129.1, 128.7, 128.5, 128.5, 128.0, 127.4, 126.9, 121.9, 121.6, 12.5, Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.034 min (> 98%, UV₂₁₅₄). HRMS m/z 400.0867 ([M+H]⁺, C₂₀H₁₈NO₆S⁺, calcd. 400.0849).

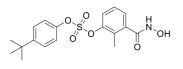

3-(Hydroxycarbamoyl)-2-methylphenyl (3-isopropylphenyl) sulfate (D8). Using general procedure 4 on a

́т^ну́он

20 µmol scale using resin D and 3-isopropylphenol, compound D8 (1.5 mg, 20 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 10.99 (s, 1H), 9.19 (br. s, 1H), 7.50-7.43 (m, 2H), 7.42-7.38 (m, 1H), 7.37–7.32 (m, 2H), 7.31–7.25 (m, 2H), 2.97 (hept, J = 6.9 Hz, 1H), 2.22

(s, 3H), 1.20 (d, J = 6.9 Hz, 6H). ¹³C NMR (151 MHz, DMSO) δ 164.5, 151.5, 149.9, 148.6, 137.7, 130.3, 128.8, 127.6, 127.0, 126.2, 122.0, 118.9, 118.5, 33.2, 23.5, 12.7. Analytical UPLC gradient 0-95% eluent II in eluent I over 15 min (C18), t_R 9.198 min (>98%, UV_{215.4}). HRMS m/z 366.1002 ([M+H]⁺, C₁₇H₂₀NO₆S⁺, calcd. 366.1006).

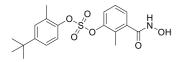
3-(Hydroxycarbamoyl)-2-methylphenyl (4-isopropylphenyl) sulfate (D9). Using general procedure 4 on a


20 µmol scale using resin D and 4-isopropylphenol, compound D9 (1.7 mg, 23 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.00 (s, 1H), 9.19 (s, 1H), 7.47 (dd, J = 8.3, 1.3 Hz, 1H), 7.44-7.32 (m, 6H), 2.96 (hept, J = 6.9 Hz, 1H), 2.22 (s, 3H), 1.21 (d, J = 6.9 Hz, 6H). ¹³C NMR (151 MHz, DMSO) δ 164.5, 148.7, 148.6, 147.8, 137.7, 128.8, 128.2,

127.6, 127.0, 122.0, 121.0, 32.9, 23.7, 12.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 9.320 min (>98%, UV_{215.4}). HRMS *m*/*z* 366.1004 ([M+H]⁺, C₁₇H₂₀NO₇S⁺, calcd. 366.1006).

3-(tert-Butyl)phenyl (3-(hydroxycarbamoyl)-2-methylphenyl) sulfate (D11): Using general procedure 4 on a 40 µmol scale using resin D and 3-(tert-butyl)phenol, compound D11 (6.9 mg, ,^H N∖OH 45 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.00 (s, 1H), 7.53-7.43 (m, 3H), 7.43-7.37 (m, 2H), 7.34 (dd, J = 7.6, 1.4 Hz, 1H), 7.28 (ddd, J = 7.3, 2.5, 1.7 Hz, 1H), 2.21 (s, 3H), 1.28 (s,

9H). ¹³C NMR (151 MHz, DMSO) δ 164.5, 153.9, 149.9, 148.7, 137.7, 130.1, 128.8, 127.6, 127.0, 125.1, 122.0, 118.2, 118.0, 34.7, 30.8, 12.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 9.642 min (>98%, UV_{215.4}). HRMS *m*/*z* 380.1177 ([M+H]⁺, C₁₈H₂₂NO₆S⁺, calcd. 380.1162).

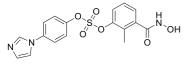

4-(tert-Butyl)phenyl (3-(hydroxycarbamoyl)-2-methylphenyl) sulfate (D12). Using general procedure 4 on

a 20 µmol scale using resin D and 4-(tert-butyl)phenol, compound D12 (2.0 mg, 26 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.00 (s, 1H), 9.19 (br. s, 1H), 7.59–7.53 (m, 2H), 7.47 (dd, J = 8.3, 1.3 Hz, 1H), 7.42–7.39 (m, 1H), 7.39–7.35 (m, 2H), 7.34 (dd, J = 7.6, 1.3 Hz, 1H), 2.22 (s, 3H), 1.30 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 164.5, 150.8,

148.7, 147.6, 137.7, 128.8, 127.6, 127.3, 127.00, 122.0, 120.6, 34.4, 31.0, 12.7. Analytical UPLC gradient 0-95% eluent II in eluent I over 15 min (C18), t_R 9.803 min (>98%, UV_{215.4}). HRMS m/z 380.1160 ([M+H]⁺, C₁₈H₂₂NO₆S⁺, calcd. 380.1162).

4-(tert-Butyl)-2-methylphenyl (3-(hydroxycarbamoyl)-2-methylphenyl) sulfate (D19): Using general

procedure 4 on a 40 µmol scale using resin D and 4-(tert-butyl)-2-methylphenol, compound D19 (7.1 mg, 45 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.01 (s, 1H), 7.47–7.37 (m, 3H), 7.37–7.32 (m, 2H), 7.27 (d, J = 8.6 Hz, 1H), 2.28 (s, 3H), 2.25 (s, 3H), 1.28 (d, J = 2.2 Hz, 9H). ¹³C NMR (151 MHz, DMSO) δ 164.5,


150.7, 148.6, 146.4, 137.7, 129.7, 129.0, 128.9, 127.5, 127.1, 124.6, 122.3, 120.5, 34.3, 31.0, 15.9, 12.7. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 10.253 min (95%, UV_{215.4}). HRMS *m*/*z* 394.1336 ([M+H]⁺, C₁₉H₂₄NO₆S⁺, calcd. 394.1319).

3-(Hydroxycarbamoyl)-2-methylphenyl (4-phenoxyphenyl) sulfate (D21). Using general procedure 4 on a 20 µmol scale using resin D and 4-phenoxyphenol, compound D21 (1.5 mg,

N_NOH

18 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.00 (s, 1H), 9.20 (br. s, 1H), 7.50-7.46 (m, 3H), 7.45–7.39 (m, 3H), 7.34 (dd, J = 7.6, 1.3 Hz, 1H), 7.20 (tt, J = 7.4, 1.1 Hz,

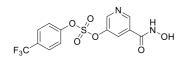
1H), 7.16–7.12 (m, 2H), 7.10–7.05 (m, 2H), 2.24 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 164.5, 156.3, 156.0, 148.7, 144.9, 137.7, 130.3, 128.8, 127.6, 127.0, 124.2, 123.0, 122.0, 119.7, 119.1, 12.7. Analytical UPLC gradient 0-95% eluent II in eluent I over 15 min (C18), t_R 9.575 min (>98%, UV_{215.4}). HRMS m/z 416.0796 ([M+H]⁺, C₂₀H₁₈NO₇S⁺, calcd. 416.0798).

4-(1H-Imidazol-1-yl)phenyl (3-(hydroxycarbamoyl)-2-methylphenyl) sulfate (D23): Using general procedure 4 on a 20 µmol scale using resin D and 4-(1H-imidazol-1-vl)phenol. compound D23 (4.9 mg, 63 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR, major rotamer (600 MHz, DMSO) δ 11.02 (s, 1H), 9.51 (dt, J = 24.4, 1.4 Hz, 1H), 8.25 (dt, J = 9.4, 1.7 Hz, 1H), 8.01-7.95 (m, 2H), 7.85–7.72 (m, 4H), 7.52 (ddd, J = 29.5, 8.3, 1.3 Hz, 1H), 7.45–7.34 (m,

2H), 2.27 (s, 3H). ¹³C NMR, major rotamer (151 MHz, DMSO) δ 164.4, 159.9, 149.4, 148.7, 137.7, 135.3, 134.7, 128.8, 127.7, 127.2, 124.3, 123.0, 122.2, 120.7, 12.8. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 3.922 min (97%, UV_{215.4}). HRMS *m/z* 390.0768 ([M+H]⁺, C₁₇H₁₆N₃O₆S⁺, calcd. 390.0754).

3-(Hydroxycarbamoyl)-2-methylphenyl naphthalen-2-yl sulfate (D24): Using general procedure 4 on a 40 μ mol scale using resin D and naphthalen-2-ol, compound **D24** (3.4 mg, 23 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.01 (s, 1H), 8.14–8.11 (m, 1H), 8.09–8.03 (m, 3H), 7.66–7.61 (m, 2H), 7.61–7.52 (m, 2H), 7.42 (t, J = 7.9 Hz, 1H), 7.36 (dd, J = 7.7, 1.2)

Hz, 1H), 2.25 (s, 3H).. ¹³C NMR of major rotamer (151 MHz, DMSO) δ 164.5, 148.7, 147.3, 137.7, 133.1, 131.8, 130.7, 128.8, 128.0, 127.9, 127.8, 127.6, 127.5, 127.1, 122.2, 119.8, 118.7, 12.8. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.881 min (98%, UV_{215.4}). HRMS *m/z* 374.0710 ([M+H]⁺, C₁₈H₁₆NO₆S⁺, calcd. 374.0693).

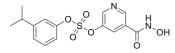

6-(Hydroxycarbamoyl)pyridin-2-yl phenyl sulfate (E1): Using general procedure 4 on a 100 µmol scale using resin F and phenol, compound E1 (2.9 mg, 9 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.61 (s, 1H), 8.98 (d, *J* = 1.7 Hz, 1H), 8.86 (d, *J* = 2.7 Hz, 1H), 8.20 (t, *J* = 2.2 Hz, 1H), 7.57 (dtd, *J* = 9.1, 7.1, 2.1 Hz, 2H), 7.53–7.45 (m, 3H). ¹³C NMR of major

rotamer (151 MHz, DMSO) δ 149.8, 147.1, 146.6, 144.9, 130.7, 130.0, 128.4, 127.4, 121.1. C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 5.140 min (>98%, UV_{215.4}). HRMS *m*/*z* 311.0331 ([M+H]⁺, C₁₂H₁₁N₂O₆S⁺, calcd. 311.0332).

4-Bromophenyl (6-(hydroxycarbamoyl)pyridin-2-yl) sulfate (E2): Using general procedure 4 on a 85 µmol scale using resin F and 4-bromophenol, compound **E2** (9.0 mg, 27 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.61 (s, 1H), 8.99 (d, *J* = 1.7 Hz, 1H), 8.89 (d, *J* = 2.7 Hz, 1H), 8.22 (dd, *J* = 2.7, 1.7 Hz, 1H), 7.80–7.72 (m, 2H), 7.54–7.46 (m, 2H). ¹³C NMR (151)

MHz, DMSO) δ 160.6, 148.9, 147.2, 146.6, 144.8, 133.5, 130.0, 127.4, 123.5, 121.0. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 5.929 min (>98%, UV_{215.4}). HRMS *m*/*z* 388.9439 ([M+H]⁺, C₁₂H₁₀N₂O₆SBr⁺, calcd. 388.9437).

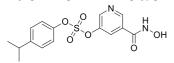
5-(Hydroxycarbamoyl)pyridin-3-yl (4-(trifluoromethyl)phenyl) sulfate (E3): Using general procedure 4 on


a 40 µmol scale using resin E and 4-(trifluoromethyl)phenol, compound **E3** (1.5 mg, 10 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.62 (s, 1H), 9.40 (s, 1H), 9.00 (d, *J* = 1.9 Hz, 1H), 8.97–8.91 (m, 1H), 8.25 (t, *J* = 2.4 Hz, 1H), 7.98 (d, *J* = 8.5 Hz, 2H), 7.77 (dd, *J* = 12.0, 8.6 Hz, 2H). ¹³C NMR (151 MHz, DMSO) δ 160.6, 152.1, 147.4, 146.6,

144.9, 130.1, 128.14 (q, *J* = 3.8 Hz), 127.5, 122.3, 122.2. ¹⁹F NMR (376 MHz, DMSO) δ -61.0, -73.9 (CF_{3,TFA}). Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 7.765 min (96%, UV_{215.4}). HRMS *m*/*z* 379.0221 ([M+H]⁺, C₁₃H₁₀N₂O₆F₃S⁺, calcd. 379.0206).

[1,1'-Biphenyl]-2-yl (6-(hydroxycarbamoyl)pyridin-2-yl) sulfate (E4): Using general procedure 4 on a 85 µmol scale using resin F and [1,1'-biphenyl]-2-ol, compound **E4** (13.8 mg, 42 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.57 (s, 1H), 8.92 (d, *J* = 1.7 Hz, 1H), 8.62 (d, *J* = 2.7 Hz, 1H), 8.01 (dd, *J* = 2.7, 1.7 Hz, 1H), 7.72–7.66 (m, 1H), 7.62–7.51 (m, 3H), 7.44–7.41 (m, 2H), 7.41–7.37 (m, 2H), 7.37–7.33 (m, 1H). ¹³C NMR (151 MHz, DMSO) δ 146.9, 146.7, 146.5, 144.5, 135.5, 134.5, 132.0, 129.8, 129.6, 129.0, 128.8, 128.4,

128.0, 127.0, 121.7. C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.391 min (>98%, UV_{215.4}). HRMS *m*/*z* 387.0648 ([M+H]⁺, C₁₈H₁₅N₂O₆S⁺, calcd. 387.0645).


5-(Hydroxycarbamoyl)pyridin-3-yl (3-isopropylphenyl) sulfate (E8): Using general procedure 4 on a 40

μmol scale using resin E and 3-isopropylphenol, compound **E8** (2.1 mg, 15 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.62 (s, 1H), 8.95 (dd, J = 1.7 Hz, 1H, both rotamers), 8.78 (d, J = 2.7 Hz, 1H, both rotamers), 8.19 (dd, J = 2.7, 1.7 Hz, 1H, major rotamer), 7.99

(dd, J = 2.7, 1.7 Hz, 0H, minor rotamer), 7.50–7.43 (m, 1H), 7.38–7.26 (m, 3H), 3.02–2.89 (m, 1H), 1.19 (dd, J = 16.6, 6.9 Hz, 6H). ¹³C NMR (151 MHz, DMSO) δ 157.2, 151.7, 149.9, 147.1, 146.7, 144.9, 130.4, 126.4, 124.4, 118.9, 118.3, 33.2, 23.5. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.524min (>98%, UV_{215.4}). HRMS *m/z* 353.0814 ([M+H]⁺, C₁₅H₁₇N₂O₆S⁺, calcd. 353.0801).

5-(Hydroxycarbamoyl)pyridin-3-yl (4-isopropylphenyl) sulfate (E9): Using general procedure 4 on a 40

µmol scale using resin E and 4-isopropylphenol, compound E9 (2.6 mg, 18 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.61 (s, 1H), 9.38 (s, 1H), 8.98 (d, J = 1.7 Hz, 1H), 8.86 (d, J = 2.7 Hz, 1H), 8.20 (dd, J = 2.7, 1.7 Hz, 1H), 7.45–7.36 (m, 4H), 3.01–2.90 (m, 1H), 1.20 (dd, J = 14.2, 6.9 Hz, 6H). ¹³C NMR of major rotamer

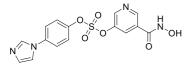
(151 MHz, DMSO) δ 158.2, 157.2, 148.8, 147.8, 147.1, 146.7, 128.3, 124.3, 120.9, 32.9, 23.7. Peak for C(=O)NH was not visible in 13C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 6.609 min (97%, UV_{215.4}). HRMS *m*/*z* 353.0817 ([M+H]⁺, C₁₅H₁₇N₂O₆S⁺, calcd. 353.0801).

3-(tert-Butyl)phenyl (5-(hydroxycarbamoyl)pyridin-3-yl) sulfate (E11): Using general procedure 4 on a 40 µmol scale using resin E and 3-(tert-butyl)phenol, compound E11 (2.2 mg, 15 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.61 (s, 1H), 9.39 (s, 1H), 8.98 (d, *J* = 1.8 Hz, 1H), 8.84 (d, *J* = 2.7 Hz, 1H), 8.18 (t, *J* = 2.2 Hz, 1H), 7.53–7.44 (m, 2H), 7.38–

7.28 (m, 2H), 1.28 (s, 9H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 154.0, 149.8, 147.0, 146.7, 144.8, 130.2, 130.0, 127.3, 125.3, 118.0, 117.9, 34.7, 30.8. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 8.771 min (>98%, UV_{215.4}). HRMS *m*/*z* 367.0972 ([M+H]⁺, C₁₆H₁₉N₂O₆S⁺, calcd. 367.0958).

4-(tert-Butyl)phenyl (6-(hydroxycarbamoyl)pyridin-2-yl) sulfate (E12): Using general procedure 4 on a 100 µmol scale using resin F and 4-(tert-butyl) phenol, compound E12 (4.8 mg, 13 β_{0}° , $\beta_{$

8.20 (t, J = 2.2 Hz, 1H), 7.59–7.52 (m, 2H), 7.43–7.36 (m, 2H), 1.30 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 151.0, 147.6, 147.1, 146.7, 144.9, 130.0, 127.4 (2C), 120.5, 34.5, 31.0. C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 7.040 min (>98%, UV_{215.4}). HRMS m/z 367.0959 ([M+H]⁺, C₁₆H₁₉N₂O₆S⁺, calcd. 367.0958).


4-(tert-Butyl)-2-methylphenyl (6-(hydroxycarbamoyl)pyridin-2-yl) sulfate (E19): Using general procedure 4 on a 85 µmol scale using resin F and 4-(tert-butyl)-2-methylphenol, compound E19 (1.0 mg, 3 %) was isolated as a colorless fluffy powder after lyophilization. **E19** (1.0 mg, 3 %) was isolated as a coloress field, performing performing J^{H}_{OH} ¹H NMR (600 MHz, DMSO) δ 11.61 (s, 1H), 8.99 (d, J = 1.7 Hz, 1H), 8.87 (d, J ¹H NMR (600 MHz, DMSO) δ 11.61 (s, 1H), 7.44 (dt J = 2.2, 0.8 Hz, 1H), 7.39– = 2.7 Hz, 1H), 8.21 (dd, J = 2.7, 1.7 Hz, 1H), 7.44 (dt, J = 2.2, 0.8 Hz, 1H), 7.39-7.31 (m, 2H), 2.25 (d, J = 0.7 Hz, 3H), 1.29 (s, 9H). ¹³C NMR (151 MHz, DMSO)

δ 160.6, 150.9, 147.2, 146.6, 146.4, 145.0, 129.9, 129.5, 129.1, 127.5, 124.7, 120.3, 34.3, 31.0, 15.9. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 7.307 min (96%, UV_{215.4}). HRMS *m*/*z* 381.1115 ([M+H]⁺, C₁₇H₂₁N₂O₆S⁺, calcd. 381.1114).

6-(Hydroxycarbamoyl)pyridin-2-yl (4-phenoxyphenyl) sulfate (E21): Using general procedure 4 on a 85 µmol scale using resin F and 4-phenoxyphenol, compound E21 (1.2 mg, 4 н N_́он %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 11.62 (s, 1H), 8.98 (d, J = 1.7 Hz, 1H), 8.87 (d, J = 2.7 Hz, 1H), 8.21-8.17 (m, 1H), 7.55-7.48 (m, 2H), 7.46-7.40 (m, 2H), 7.24-

7.16 (m, 1H), 7.15–7.11 (m, 2H), 7.11–7.06 (m, 2H). ¹³C NMR (151 MHz, DMSO) δ 156.4, 155.9, 147.1, 146.7, 144.8, 130.3, 130.0, 127.4, 124.3, 123.0, 122.9, 119.7, 119.2. C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 6.854 min (97%, UV_{215.4}). HRMS m/z 403.0597 ([M+H]⁺, C₁₈H₁₅N₂O₇S⁺, calcd. 403.0594).

4-(1H-Imidazol-1-yl)phenyl (5-(hydroxycarbamoyl)pyridin-3-yl) sulfate (E23): Using general procedure 4

on a 40 µmol scale using resin E and 4-(1H-imidazol-1-yl)phenol, compound E23 (1.7 mg, 11 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.65 (s, 0H), 9.48 (d, *J* = 11.5 Hz, 1H), 8.97 (dd, *J* = 35.4, 1.7 Hz, 1H), 8.86 (dd, *J* = 75.5, 2.7 Hz, 1H), 8.27–8.19 (m, 1H), 8.04 (dd, J = 2.7, 1.7 Hz, 1H), 8.02–7.94 (m, 2H), 7.86–7.78 (m, 3H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 157.3, 149.5, 147.3, 146.8, 145.4, 142.9, 134.9, 130.1, 127.5, 126.3, 124.5, 122.9. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 3.525 min (>98%, UV_{215.4}). HRMS *m/z* 377.0565 ([M+H]⁺, C₁₅H₁₃N₄O₆S⁺, calcd. 377.0550).

5-(Hydroxycarbamoyl)pyridin-3-yl naphthalen-2-yl sulfate (E24): Using general procedure 4 on a 40 µmol

scale using resin E and naphthalene-2-ol, compound E24 (2.7 mg, 19 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 11.63 (s, 1H), 9.00 (d, J = 1.7 Hz, 1H), 8.93 (d, J= 2.7 Hz, 1H), 8.28 (dd, J = 2.7, 1.8 Hz, 1H), 8.16–8.11 (m, 2H), 8.09–8.03 (m,

2H), 7.68–7.57 (m, 3H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 147.3, 147.2, 146.7, 144.9, 133.1, 131.9, 130.8, 130.0, 128.1, 127.9, 127.5, 127.5, 127.2, 119.7, 118.7. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 15 min (C18), t_R 7.831 min (>98%, UV_{215.4}). HRMS m/z 383.0326 ([M+Na]⁺, C₁₆H₁₂N₂O₆SNa⁺, calcd. 383.0308).

(E)-3-(3-(Hydroxyamino)-3-oxoprop-1-en-1-yl)phenyl phenyl sulfate (F1): Using general procedure 4 on a

100 µmol scale using resin F and phenol, compound F1 (4.8 mg, 14 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 10.81 (s, 1H), 7.79-7.72 (m, 2H), 7.71-7.64 (m, 2H), 7.58 (td, J = 8.2, 1.3 Hz, 1H), 7.54–7.43 (m, 5H), 6.57–6.52 (m, 1H). ¹³C

NMR (151 MHz, DMSO) δ 150.2, 149.0, 137.6, 136.5, 133.4, 131.1, 127.1, 123.4, 121.6, 121.4, 120.8, 119.7. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴Nnuclei. Analytical UPLC gradient 0-95% eluent II in eluent I over 10 min (C18), t_R 7.774 min (>98%, UV_{215.4}). HRMS *m*/*z* 336.0539 ([M+H]⁺, C₁₅H₁₄NO₆S⁺, calcd. 336.0536).

(E)-4-Bromophenyl (3-(3-(hydroxyamino)-3-oxoprop-1-en-1-yl)phenyl) sulfate (F2): Using general procedure 4 on a 100 µmol scale using resin F and 4-bromophenol, compound **F2** (6.4 mg, 16 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major roatamer (600 MHz, DMSO) δ 10.80 (s, 1H), lyophilization. ¹H NMR of major roatamer (600 MHz, DMSO) δ 10.80 (s, 1H), 7.69–7.61 (m, 2H), 7.60–7.53 (m, 3H), 7.53–7.47 (m, 1H), 7.47–7.42 (m, 1H), 7.39–7.32 (m, 2H), 6.54 (d, *J* = 15.8 Hz, 1H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 150.7,

150.3, 147.7, 138.9, 137.5, 131.0, 127.3, 127.0, 121.6, 121.3, 120.5, 119.6. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast guadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0– 95% eluent II in eluent I over 10 min (C18), t_R 6.900 min (>98%, UV_{215.4}). HRMS m/z 413.9645 ([M+H]⁺, C₁₅H₁₃NO₆SBr⁺, calcd. 413.9641).

(E)-3-(3-(Hydroxyamino)-3-oxoprop-1-en-1-yl)phenyl (4-(trifluoromethyl)phenyl) sulfate (F3): Using general procedure 4 on a 40 µmol scale using resin F and 4-→^Н,он (trifluoromethyl)phenol, compound **F3** (3.5 mg, 22 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 10.81 (s, 1H), 7.99–7.92 (m, 2H), 7.73 (dt, J = 9.5, 2.0 Hz,

2H), 7.70–7.64 (m, 2H), 7.59 (t, J = 8.0 Hz, 1H), 7.54–7.46 (m, 2H), 6.55 (d, J = 15.8 Hz, 1H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 162.2, 152.2, 150.2, 137.6, 136.5, 131.1, 128.57 (q, J = 32.5 Hz), 128.06 (q, J = 3.5 Hz), 127.1, 123.58 (q, J = 272.3 Hz), 122.2, 121.7, 121.4, 119.8. ¹⁹F NMR (376 MHz, DMSO) δ -61.0, -73.4 (CF_{3,TFA}). Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.058 min (>98%, UV_{215.4}). HRMS *m*/z 404.0416 ([M+H]⁺, C₁₆H₁₃NO₆F₃S⁺, calcd. 404.0410).

(E)-[1,1'-Biphenyl]-2-yl (3-(3-(hydroxyamino)-3-oxoprop-1-en-1-yl)phenyl) sulfate (F4): Using general procedure 4 on a 100 µmol scale using resin F and [1,1'-biphenyl]-2-ol, compound F4 (5.3 mg, 12 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 10.81 (s, 1H), 7.64 (dt, J = 8.1, 1.4 т М_он Hz, 1H), 7.60–7.52 (m, 4H), 7.50–7.37 (m, 8H), 7.22 (dd, J = 8.2, 2.4 Hz, 1H), 6.49 (d, J = 15.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 150.1, 146.8, 137.4, 135.7, 134.4, 131.9, 130.9, 129.6, 129.0, 128.5, 128.4, 128.0, 126.9, 121.5,

121.4, 121.2, 119.4. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.245 min (>98%, UV_{215.4}). HRMS *m*/z 412.0850 ([M+H]⁺, C₂₁H₁₈NO₆S⁺, calcd. 412.0849).

(*E*)-3-(*tert*-Butyl)phenyl (3-(3-(hydroxyamino)-3-oxoprop-1-en-1-yl)phenyl) sulfate (F11): Using general procedure 4 on a 40 µmol scale using resin F and 3-(*tert*-butyl) phenol, compound F11 (4.2 mg, 27 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 10.80 (s, 1H), 7.65 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.62–7.56 (m, 2H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.65 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.62–7.56 (m, 2H), 7.50 (dt, *J* = 8.4 Hz, 1H), 7.50 (dt, J) = 8.4 Hz, 1H), 7.50 (dt, J)

1H), 7.49–7.46 (m, 2H), 7.43 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 7.28 (td, J = 3.1, 1.8 Hz, 2H), 6.53 (d, J = 15.8 Hz, 1H), 1.26 (s, 9H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 153.8, 150.3, 149.9, 137.5, 136.5, 131.0, 130.1, 127.0, 125.0, 121.6, 121.3, 119.5, 118.0, 117.8, 34.7, 30.8. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.673 min (>98%, UV_{215.4}). HRMS *m*/*z* 392.1162 ([M+H]⁺, C₁₉H₂₂NO₆S⁺, calcd. 392.1162).

(*E*)-4-(*tert*-Butyl)phenyl (3-(3-(hydroxyamino)-3-oxoprop-1-en-1-yl)phenyl) sulfate (F12): Using general procedure 4 on a 40 μmol scale using resin F and 4-(*tert*-butyl) phenol, compound F12 (4.2 mg, 27 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR of major rotamer (600 MHz, DMSO) δ 7.69–7.61 (m, 2H), 7.60–7.53 (m, 3H), 7.53–7.48 (m, 1H), 7.44 (ddd, *J* = 8.2, 2.6,

1.0 Hz, 1H), 7.39–7.32 (m, 2H), 6.54 (d, J = 15.9 Hz, 1H), 1.30 (s, 9H). ¹³C NMR of major rotamer (151 MHz, DMSO) δ 162.2, 150.7, 150.3, 147.6, 137.5, 136.5, 131.0, 127.3, 127.0, 121.6, 121.3, 120.5, 119.6, 34.4, 31.0. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.794 min (>98%, UV_{215.4}). HRMS *m*/z 414.0984 ([M+Na]⁺, C₁₉H₂₁NO₆SNa⁺, calcd. 414.0981).

(*E*)-4-(*tert*-Butyl)-2-methylphenyl (3-(3-(hydroxyamino)-3-oxoprop-1-en-1-yl)phenyl) sulfate (F19): Using general procedure 4 on a 40 µmol scale using resin F and 4-(*tert*-butyl)-2-methylphenol, compound F19 (1.3 mg, 8 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 10.79 (s, 1H), 7.68–7.62 (m, 2H), 7.58 (t, *J* = 7.9 Hz, 1H), 7.53–7.47 (m,

1H), 7.45 (ddd, J = 8.1, 2.6, 1.0 Hz, 1H), 7.43–7.39 (m, 1H), 7.37–7.33 (m, 1H), 7.29 (dd, J = 8.6, 2.0 Hz, 1H), 6.54 (d, J = 15.8 Hz, 1H), 2.24 (s, 3H), 1.28 (s, 9H). ¹³C NMR (151 MHz, DMSO) δ 150.6, 150.2, 146.4, 137.4, 136.5, 131.0, 129.6, 129.0, 127.1, 124.7, 121.8, 121.3, 120.3, 119.7, 34.3, 31.0, 15.9. C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 8.116 min (95%, UV_{215.4}). HRMS *m/z* 406.1322 ([M+H]⁺, C₂₀H₂₄NO₆S⁺, calcd. 406.1319).

(*E*)-3-(3-(Hydroxyamino)-3-oxoprop-1-en-1-yl)phenyl (4-phenoxyphenyl) sulfate (F21): Using general procedure 4 on a 100 µmol scale using resin F and 4-phenoxyphenol, compound F21 (7.6 mg, 17 %) was isolated as a colorless fluffy powder after lyophilization. ¹H NMR (600 MHz, DMSO) δ 10.80 (s, 1H), 7.65 (d, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.54–7.40 (m, 6H), 7.20 (t, J = 8.2 Hz, 7.58 (t, J = 7.8 Hz, 7.58 (t, J = 7.8 Hz, 7.58 (t, J = 7.8 Hz,

7.4 Hz, 1H), 7.15–7.10 (m, 2H), 7.10–7.05 (m, 2H), 6.54 (d, J = 15.7 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 156.2, 155.9, 150.3, 144.9, 137.5, 131.0, 130.3, 127.0, 124.2, 122.9, 121.6, 121.4, 119.6, 119.6, 119.2. Peak for C(=O)NH was not visible in ¹³C NMR, probably due to fast quadrupolar relaxation vi the nearby ¹⁴N-nuclei. Analytical UPLC gradient 0–95% eluent II in eluent I over 10 min (C18), t_R 7.613 min (>98%, UV_{215.4}). HRMS *m*/*z* 428.0808 ([M+H]⁺, C₂₁H₁₈NO₇S⁺, calcd. 428.0798).

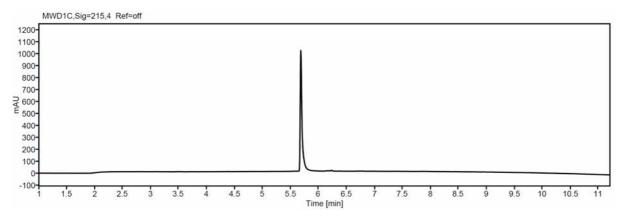
Supplementary references

1. Moreno-Yruela, C.; Olsen, C. A., Determination of Slow-Binding HDAC Inhibitor Potency and Subclass Selectivity. *ACS Med. Chem. Lett.* **2022**, *13* (5), 779-785.

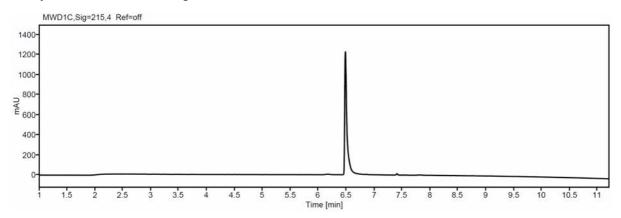
2. Bradner, J. E.; West, N.; Grachan, M. L.; Greenberg, E. F.; Haggarty, S. J.; Warnow, T.; Mazitschek, R., Chemical Phylogenetics of Histone Deacetylases. *Nat. Chem. Biol.* **2010**, *6* (3), 238-243.

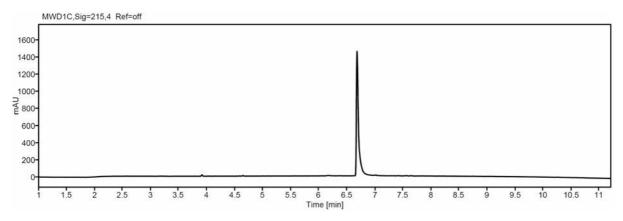
3. Moreno-Yruela, C.; Galleano, I.; Madsen, A. S.; Olsen, C. A., Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. *Cell Chem. Biol.* **2018**, *25* (7), 849-856.e8.

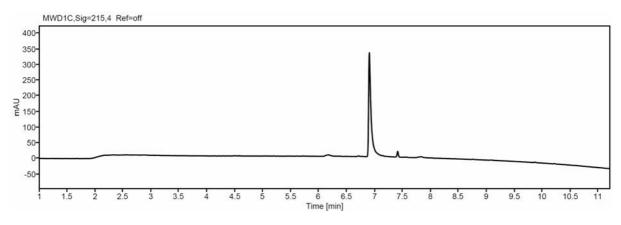
4. Rajabi, N.; Hansen, T. N.; Nielsen, A. L.; Nguyen, H. T.; Baek, M.; Bolding, J. E.; Bahlke, O. O.; Petersen, S. E. G.; Bartling, C. R. O.; Stromgaard, K.; Olsen, C. A., Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme. *Angew. Chem. Int. Ed.* **2022**, e202115805.

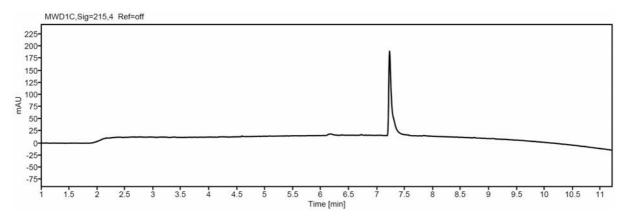

5. Bolding, J. E.; Nielsen, A. L.; Jensen, I.; Hansen, T. N.; Ryberg, L. A.; Jameson, S. T.; Harris, P.; Peters, G. H. J.; Denu, J. M.; Rogers, J. M.; Olsen, C. A., Substrates and Cyclic Peptide Inhibitors of the Oligonucleotide-Activated Sirtuin 7. *Angew. Chem. Int. Ed.* **2023**, *62* (49), e202314597.

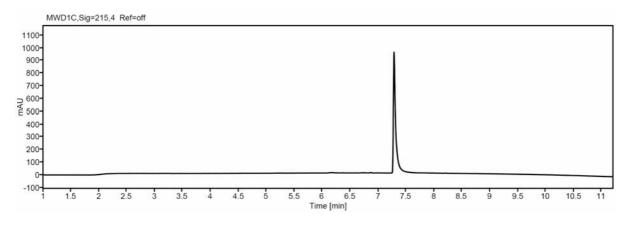
6. Baranczak, A.; Liu, Y.; Connelly, S.; Du, W. G.; Greiner, E. R.; Genereux, J. C.; Wiseman, R. L.; Eisele, Y. S.; Bradbury, N. C.; Dong, J.; Noodleman, L.; Sharpless, K. B.; Wilson, I. A.; Encalada, S. E.; Kelly, J. W., A Fluorogenic Aryl Fluorosulfate for Intraorganellar Transthyretin Imaging in Living Cells and in *Caenorhabditis elegans. J. Am. Chem. Soc.* **2015**, *137* (23), 7404-14.

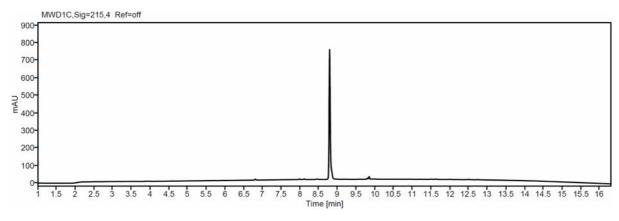

7. Bolding, J. E.; Martin-Gago, P.; Rajabi, N.; Gamon, L. F.; Hansen, T. N.; Bartling, C. R. O.; Stromgaard, K.; Davies, M. J.; Olsen, C. A., Aryl Fluorosulfate Based Inhibitors That Covalently Target the SIRT5 Lysine Deacylase. *Angew. Chem. Int. Ed.* **2022**, *61* (47), e202204565.

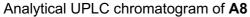

Analytical UPLC Chromatograms of Final Compounds

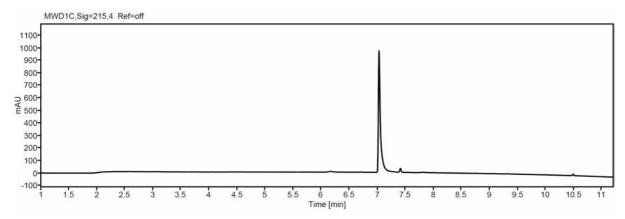

Analytical UPLC chromatogram of A1

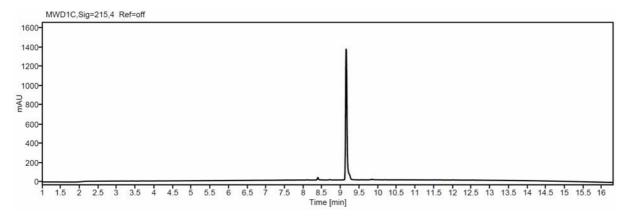

Analytical UPLC chromatogram of A2

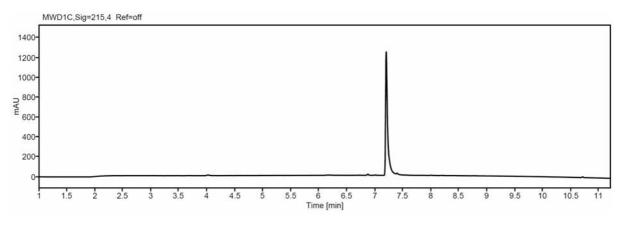


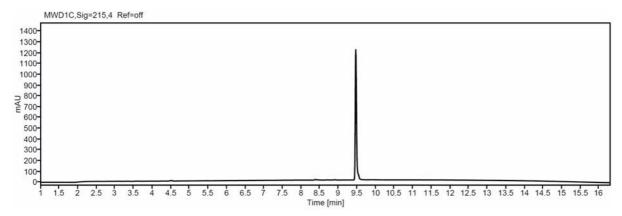


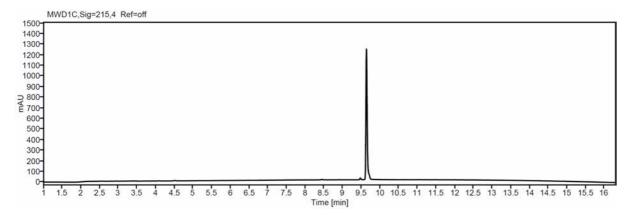


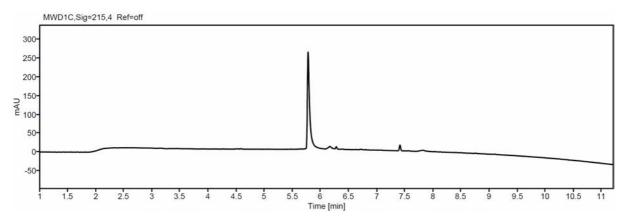


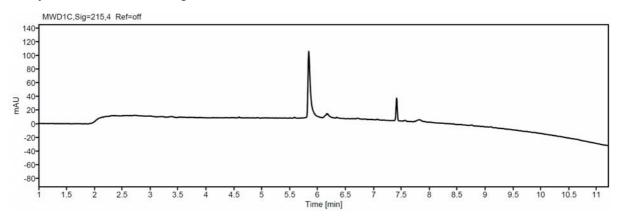


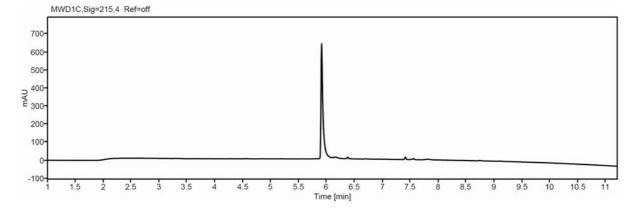


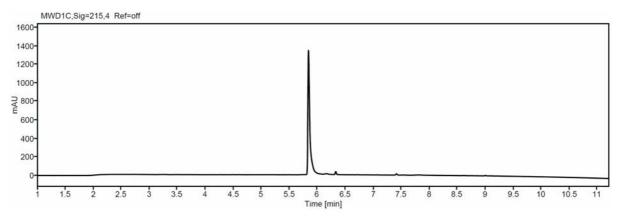




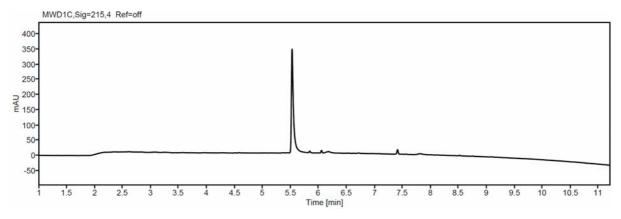


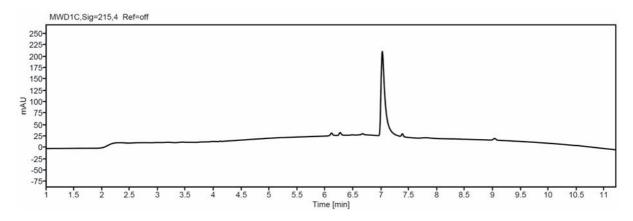


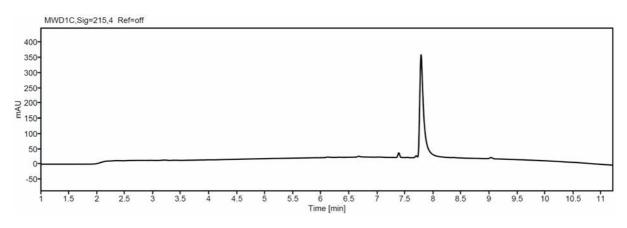


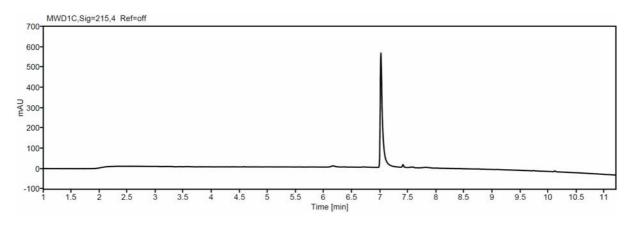

*Peak at 6.2 and ~7.45 min arises from an impurity on the column.

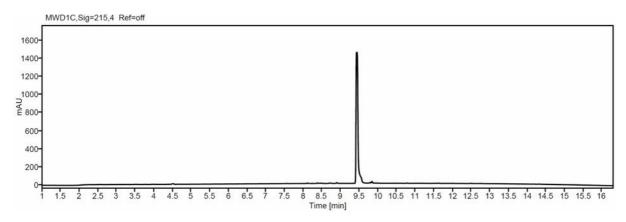
Analytical UPLC chromatogram of A14

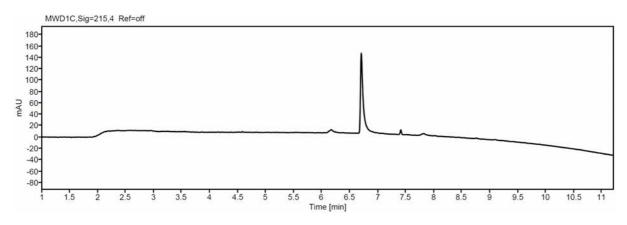



*Peak at 6.2 and ~7.45 min arises from an impurity on the column.

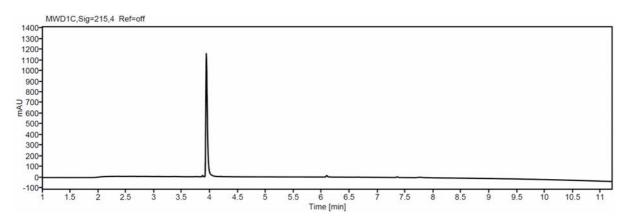


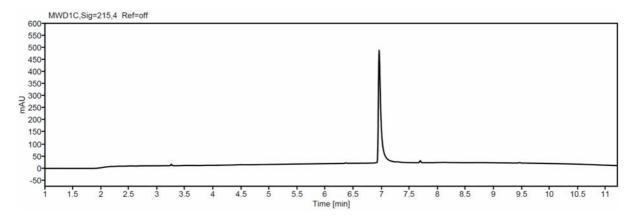


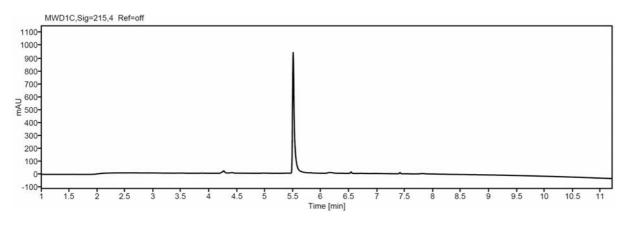




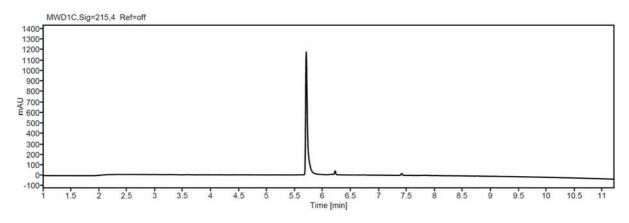
Analytical UPLC chromatogram of A20

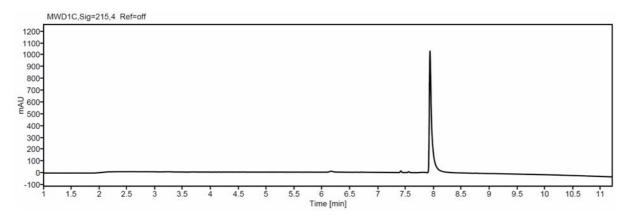


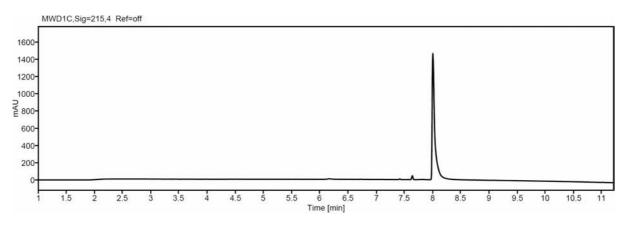


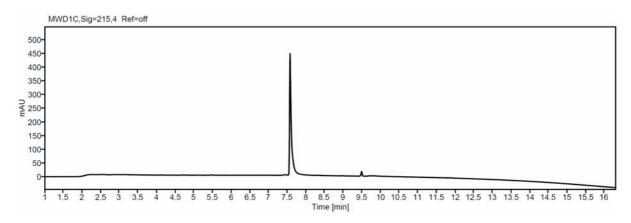


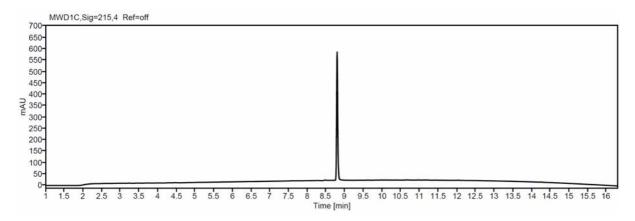
*Peak at 6.2 and ~7.45 min arises from an impurity on the column.

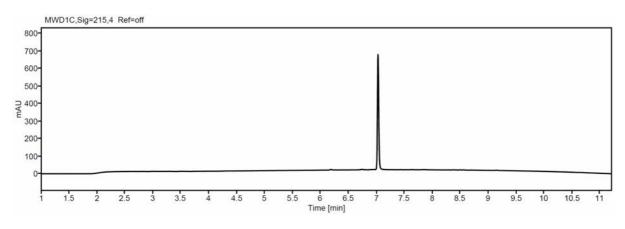

Analytical UPLC chromatogram of A23

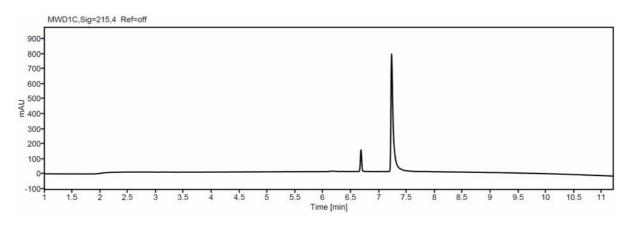


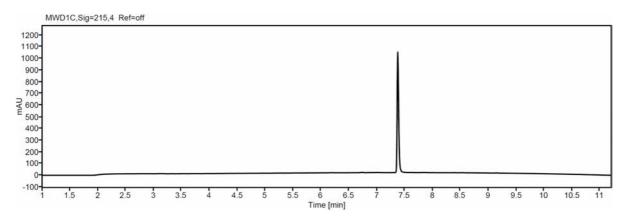


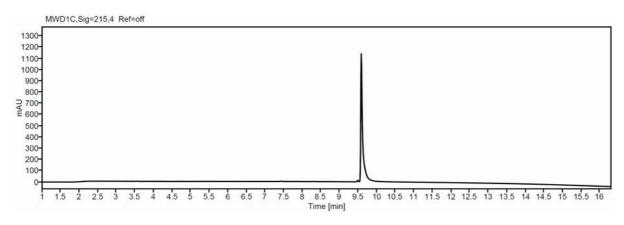


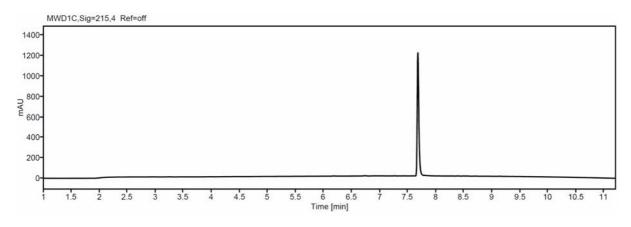

Analytical UPLC chromatogram of A27

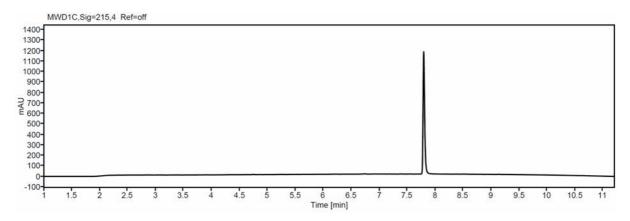


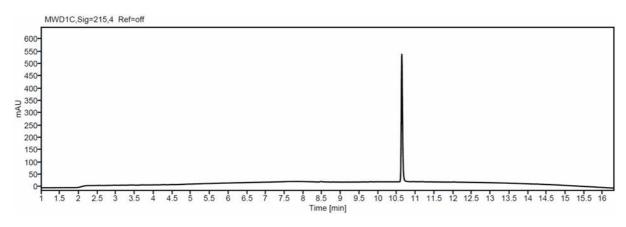

Analytical UPLC chromatogram of B1

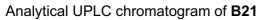


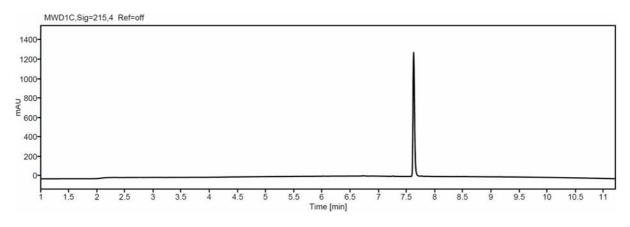


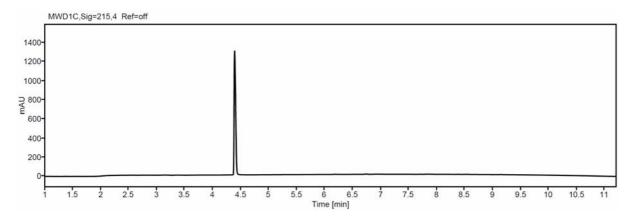

Analytical UPLC chromatogram of B4

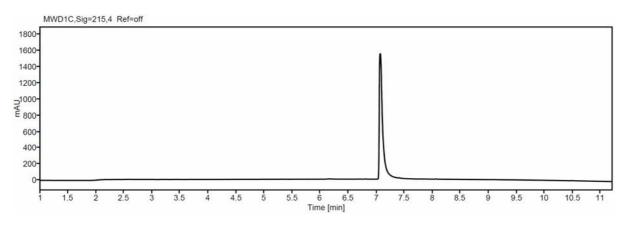


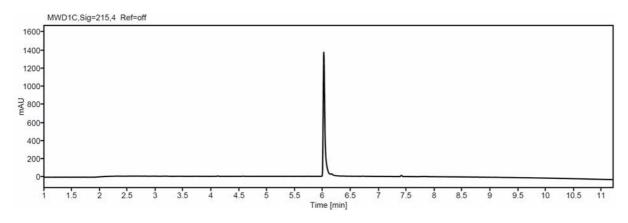


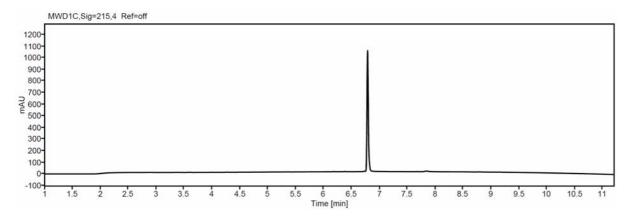


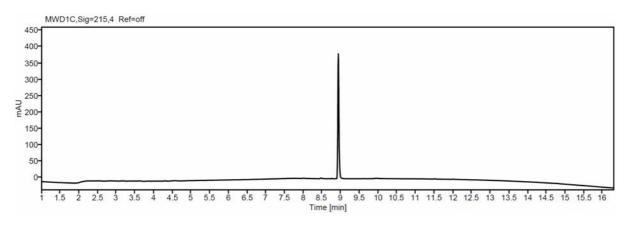

Analytical UPLC chromatogram of B11

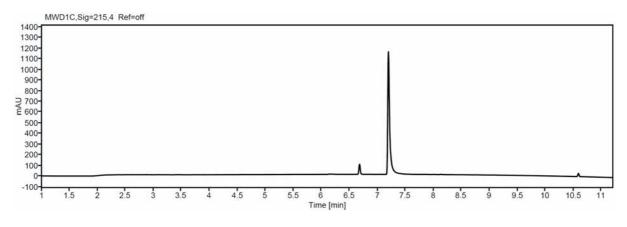


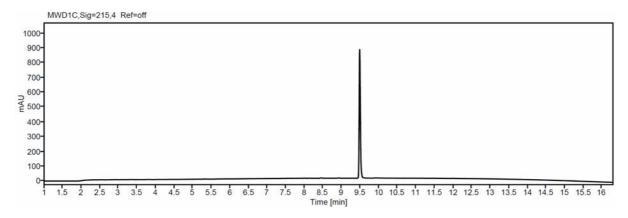


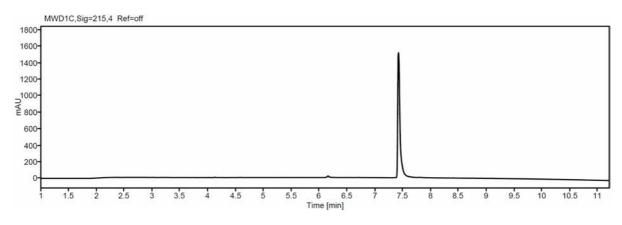


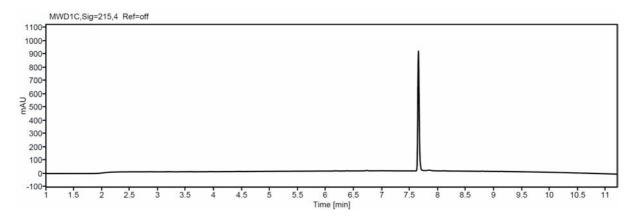


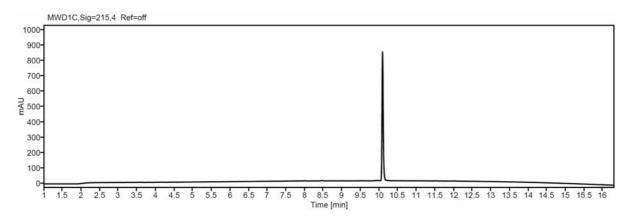


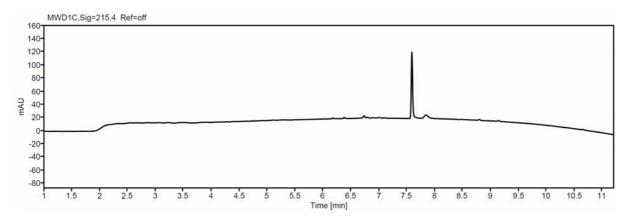

Analytical UPLC chromatogram of C1

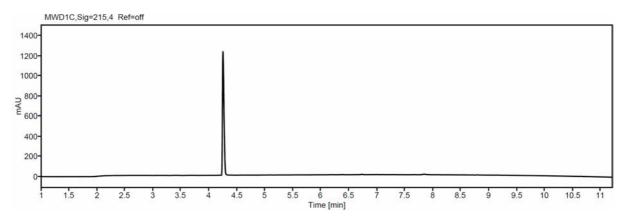


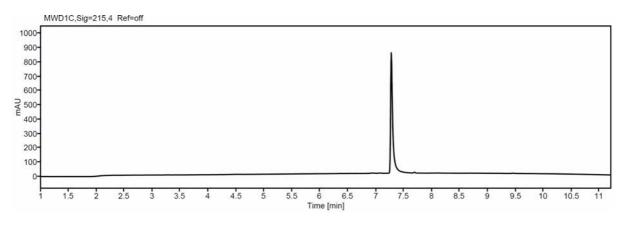


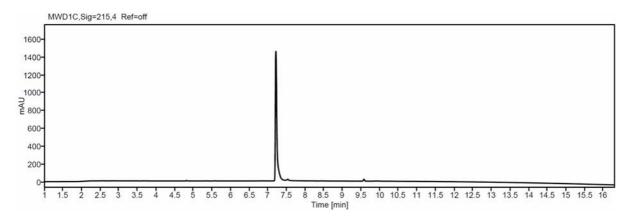

Analytical UPLC chromatogram of C4

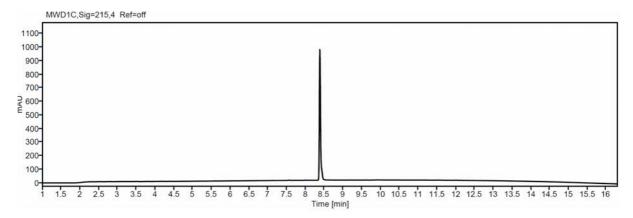


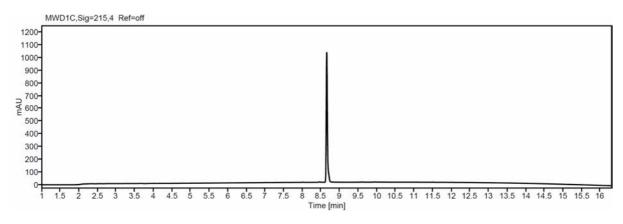


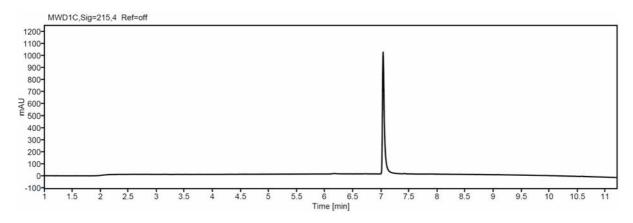


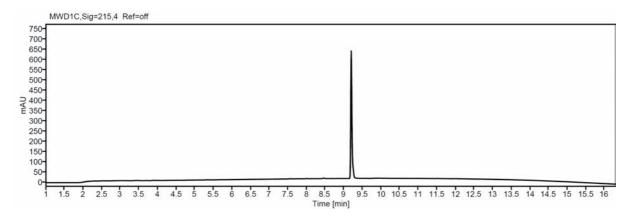


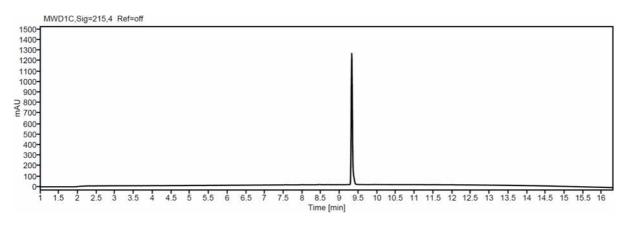

Analytical UPLC chromatogram of C21

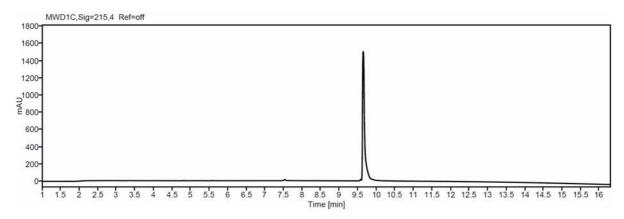


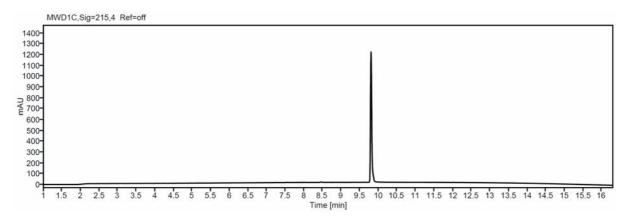


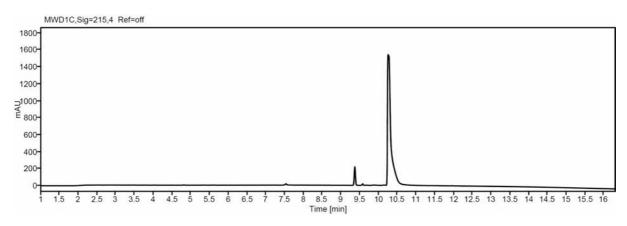

Analytical UPLC chromatogram of D1

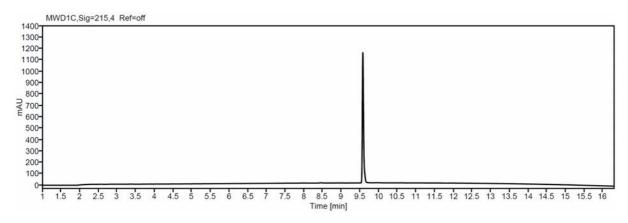


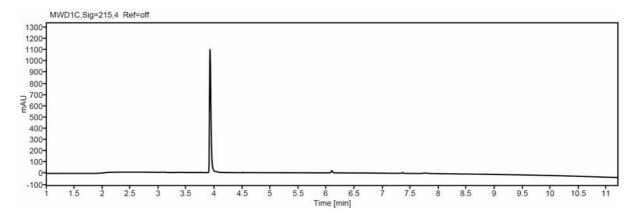


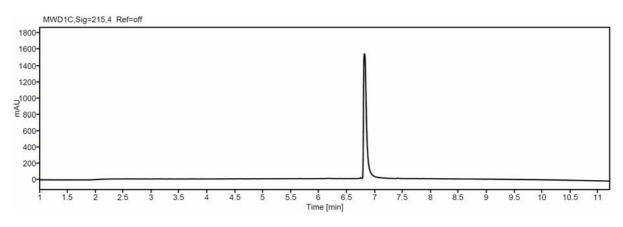




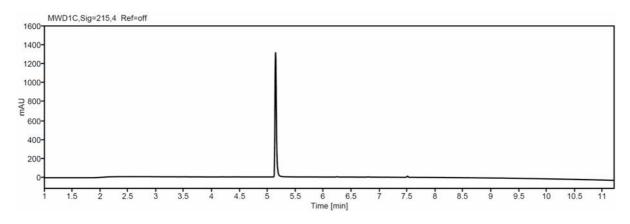


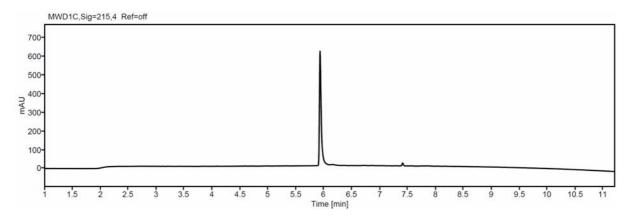


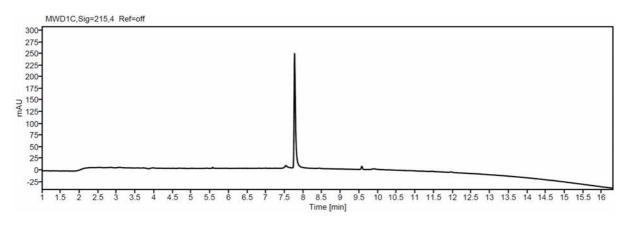


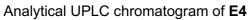


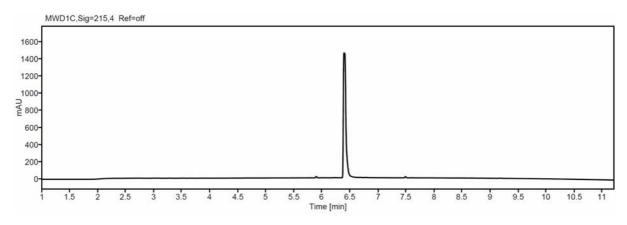
*Peak at ~9.4 min arises from an impurity on the column.

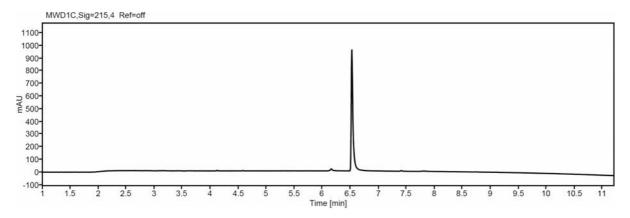

Analytical UPLC chromatogram of D21

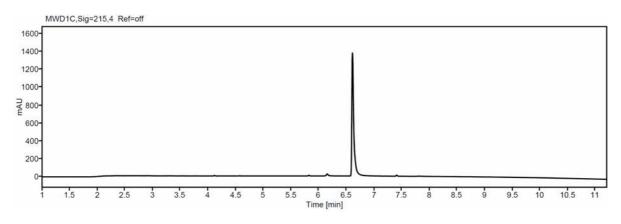


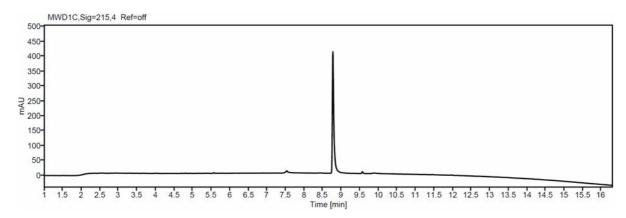


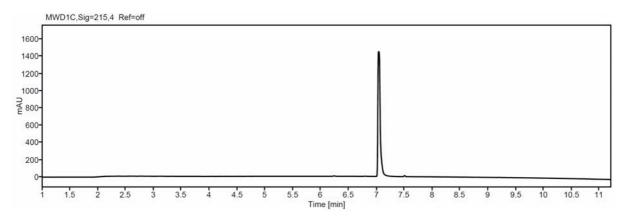


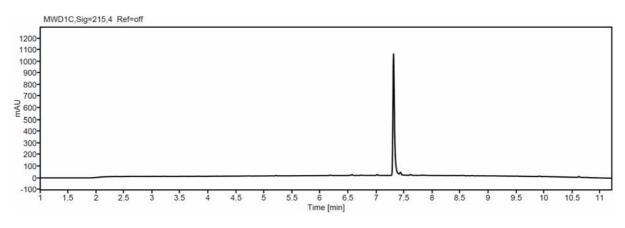

Analytical UPLC chromatogram of E1

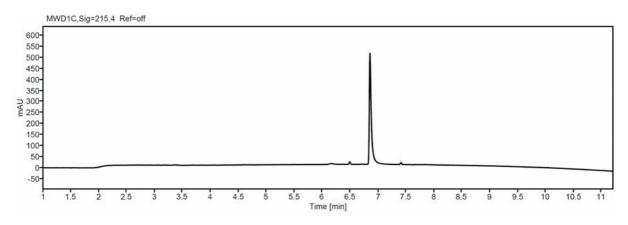


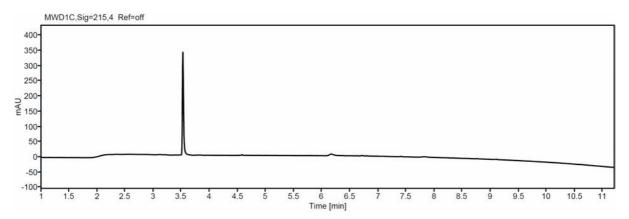


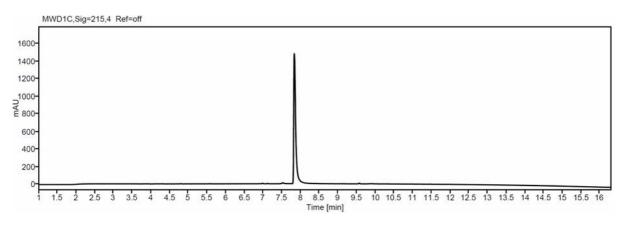


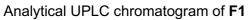

Analytical UPLC chromatogram of E8

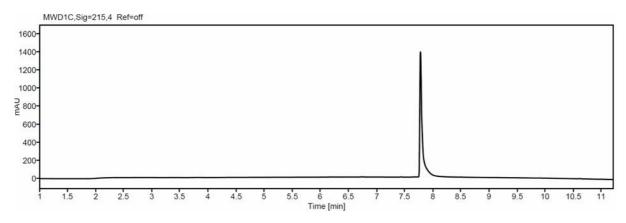


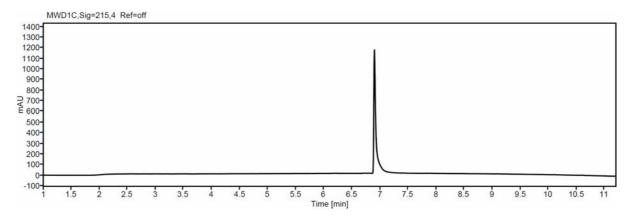

Analytical UPLC chromatogram of E11

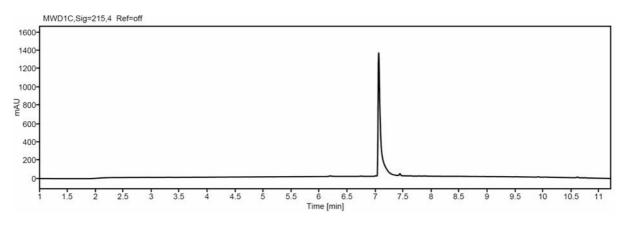


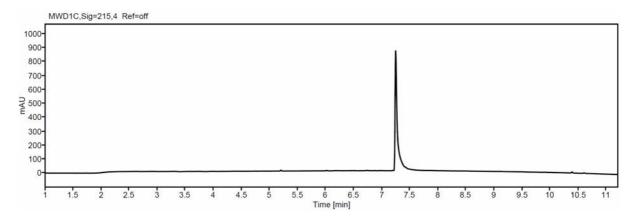


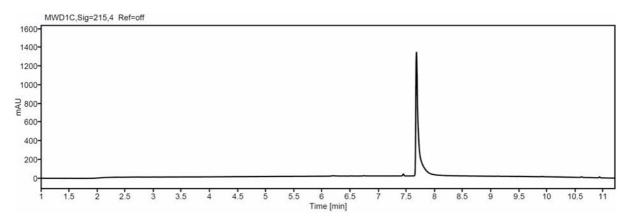


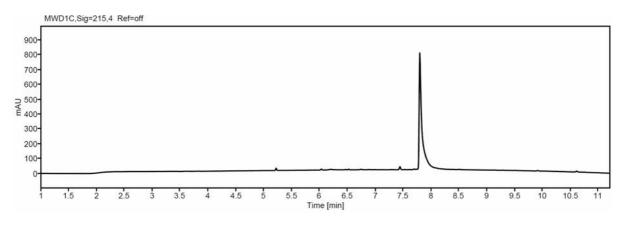

Analytical UPLC chromatogram of E21

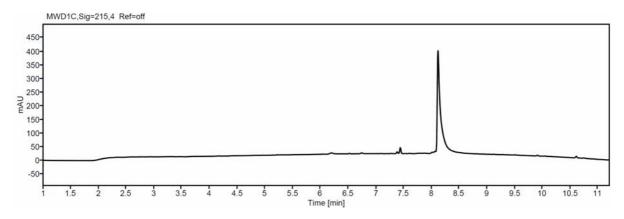


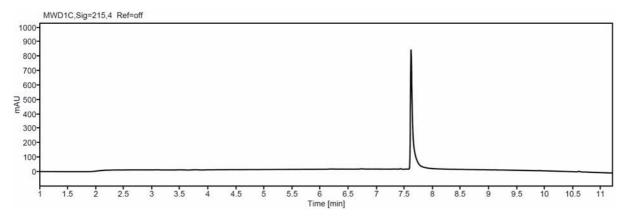


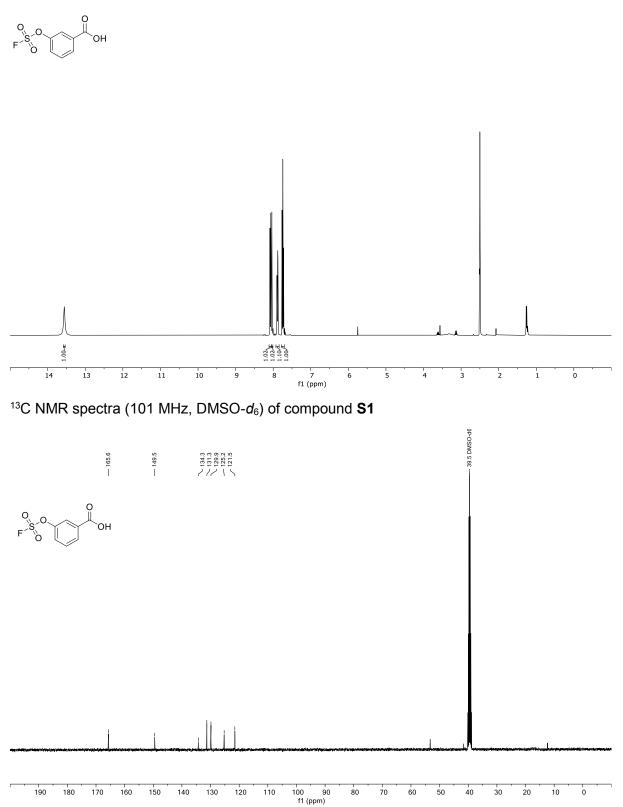




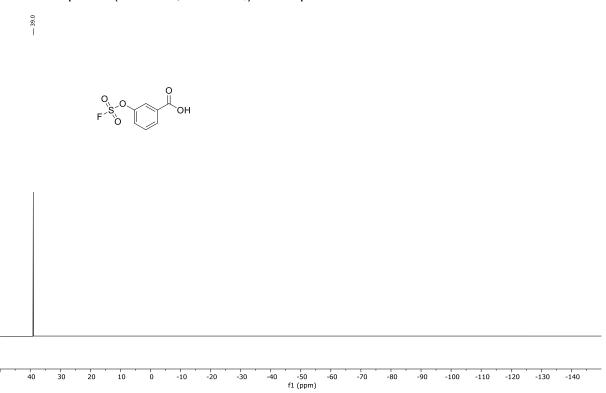


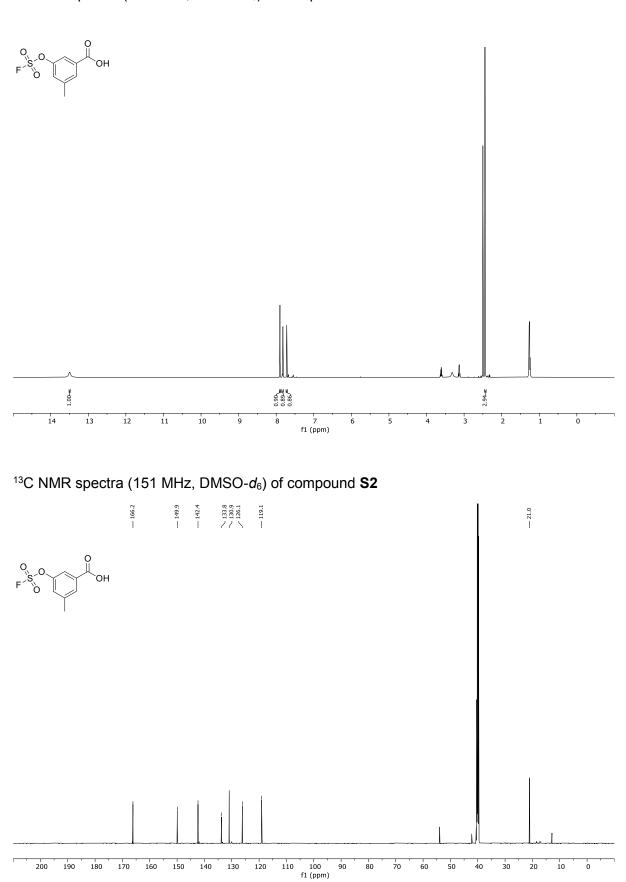

Analytical UPLC chromatogram of F4



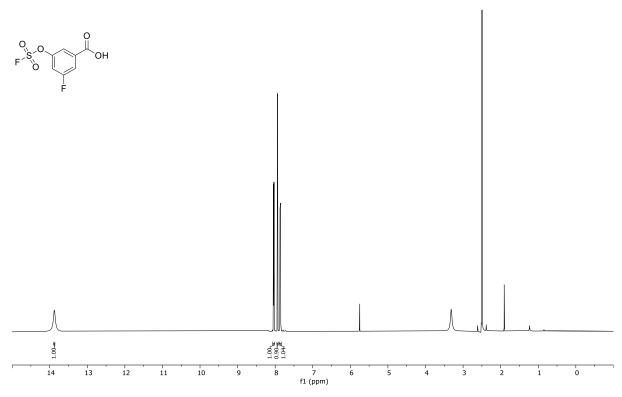


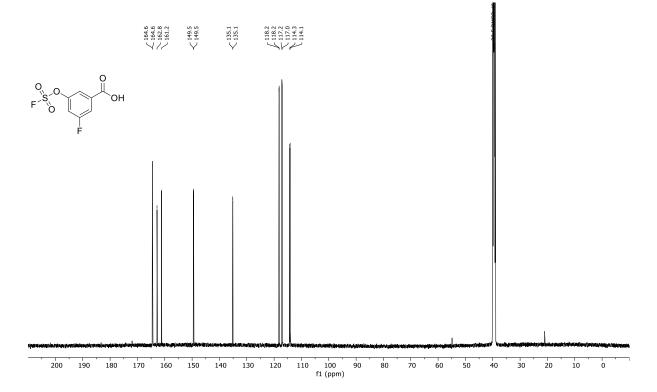
Analytical UPLC chromatogram of F19

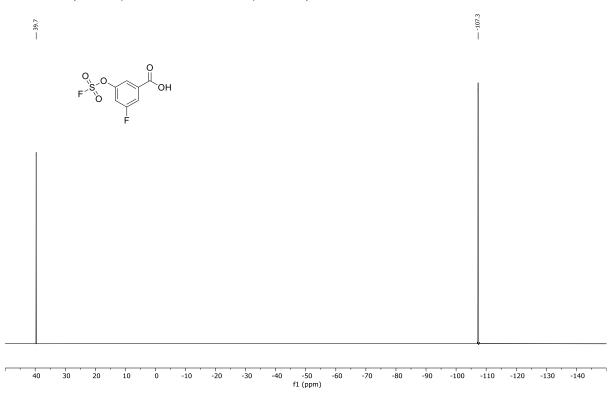




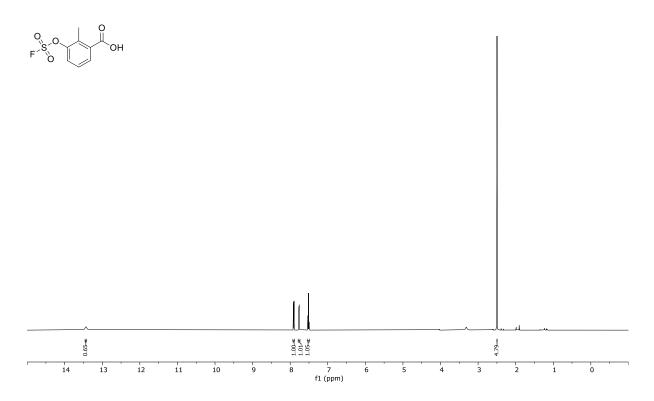
NMR spectra ¹H NMR spectra (400 MHz, DMSO-*d*₆) of compound **S1**

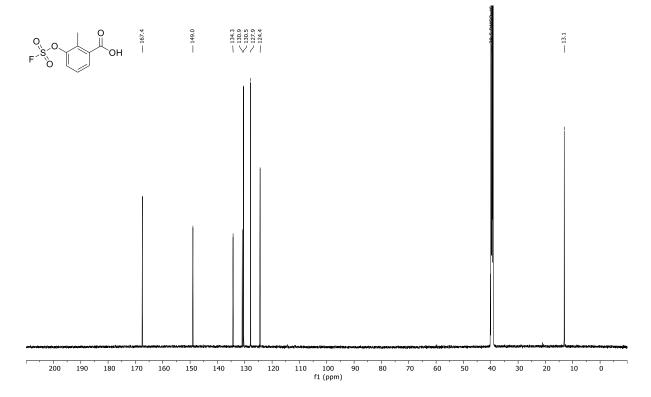


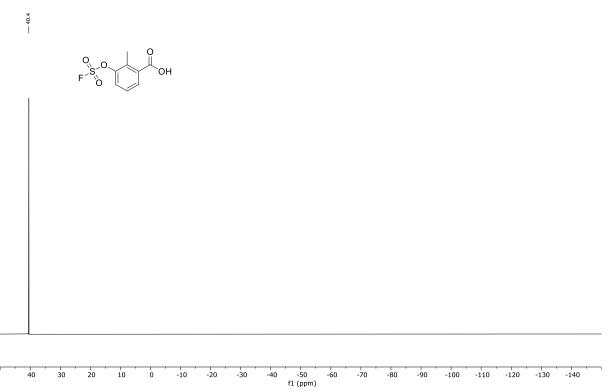

¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of compound **S1**

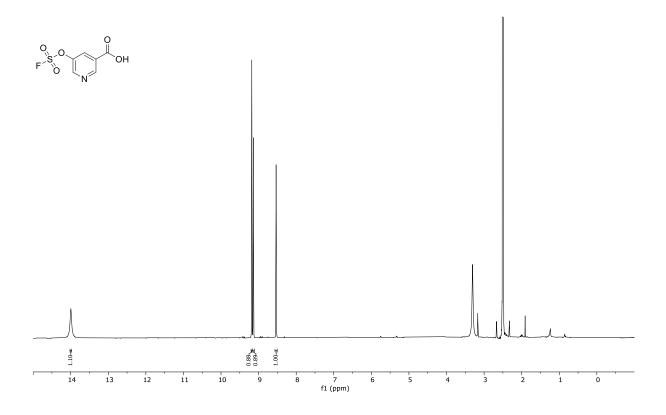


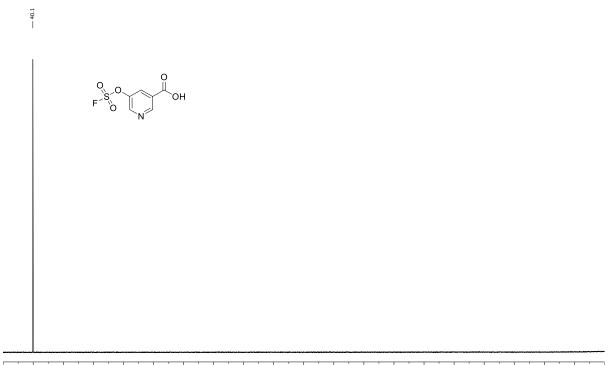
¹H NMR spectra (600 MHz, DMSO- d_6) of compound **S2**

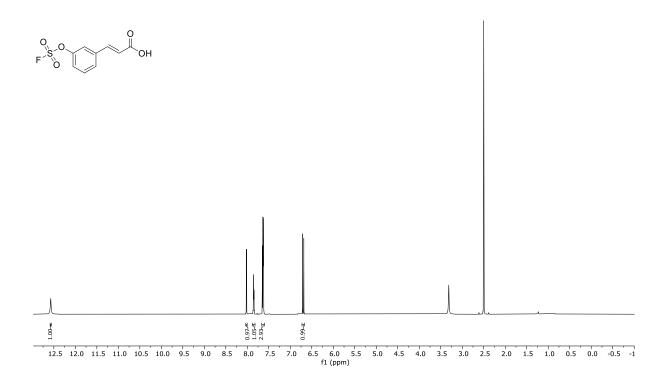


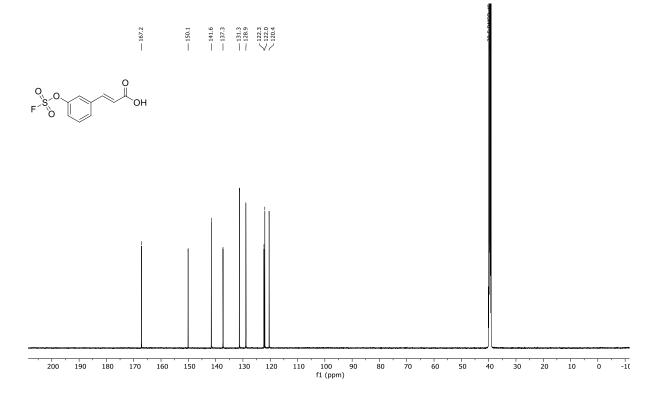

¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of compound **S3**

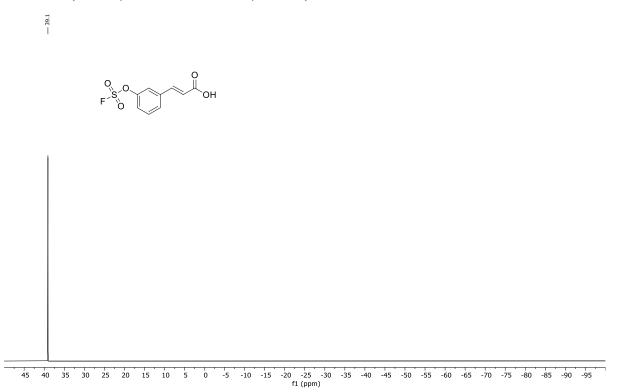

¹H NMR spectra (600 MHz, DMSO- d_6) of compound **S4**

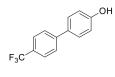

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **S4**

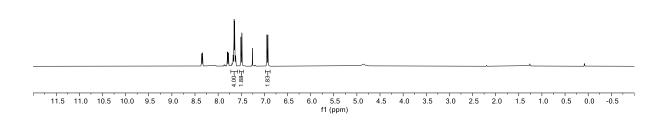

¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of compound **S4**





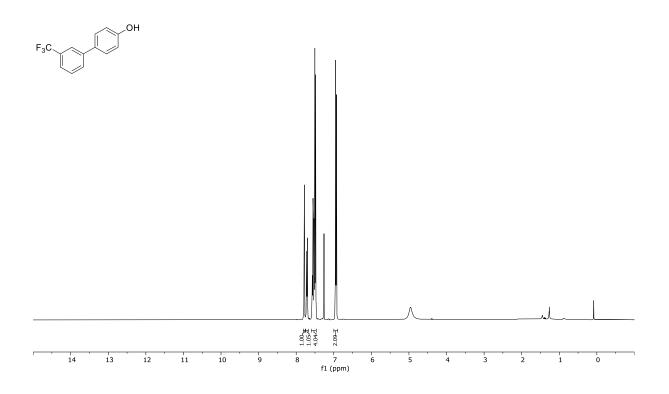

40 30 20 -40 -50 f1 (ppm) -60 10 0 -10 -20 -30 -70 -80 -90 -100 -110 -120 -130 -140

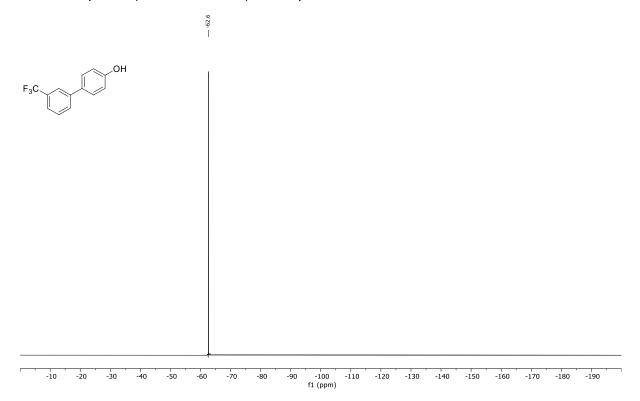


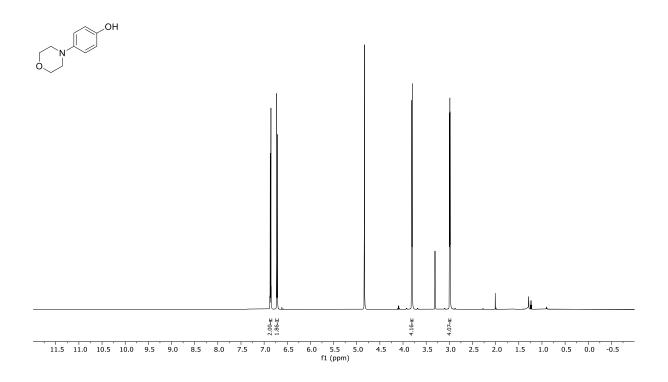


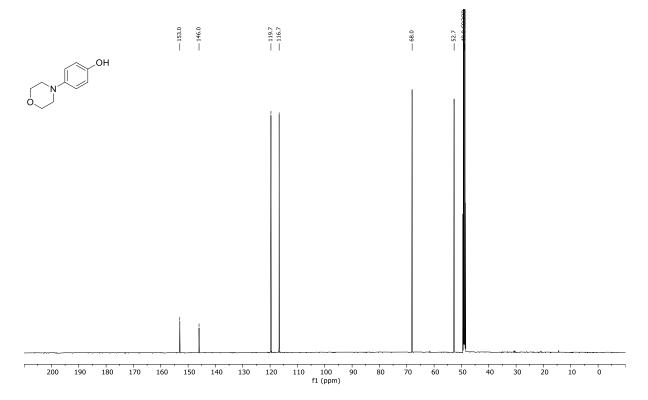
¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of compound **S6**

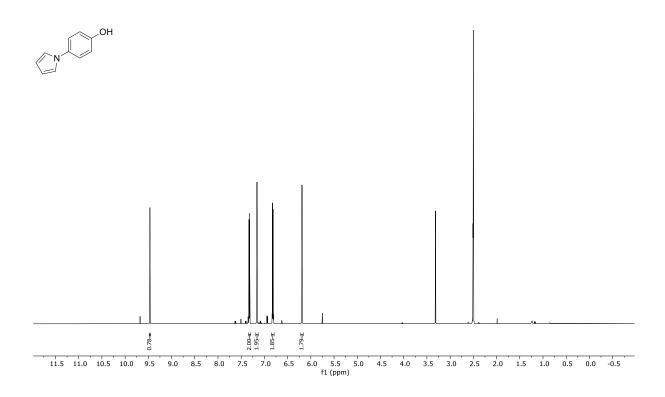
¹H NMR spectra (400 MHz, CDCl₃) of compound **S7**

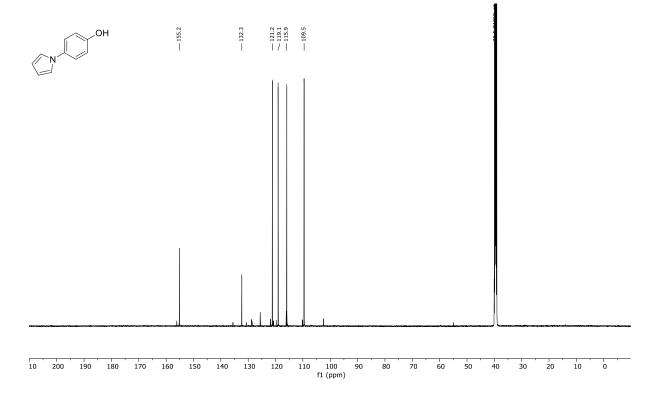


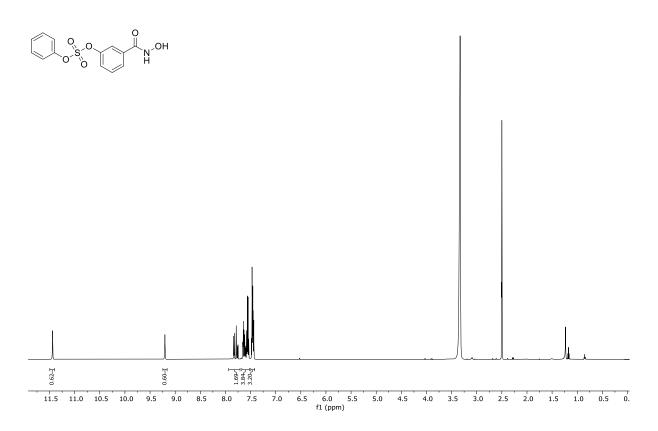

^{19}F NMR spectra (376 MHz, CDCl_3) of compound S7

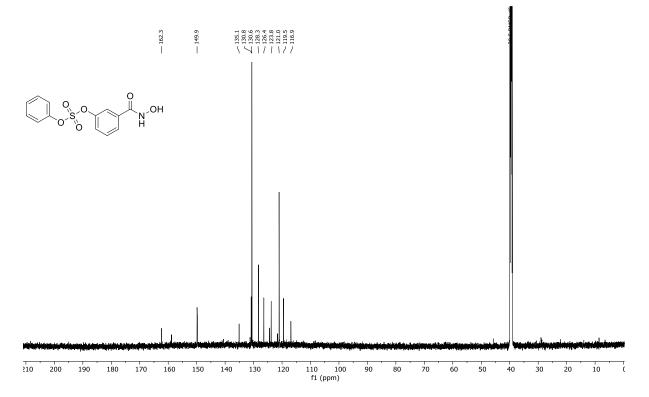


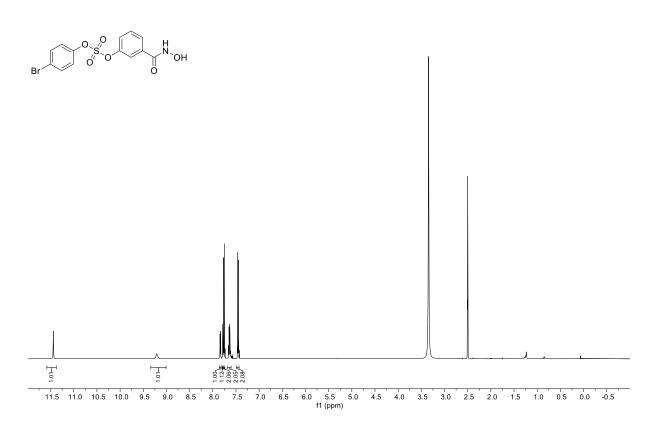

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

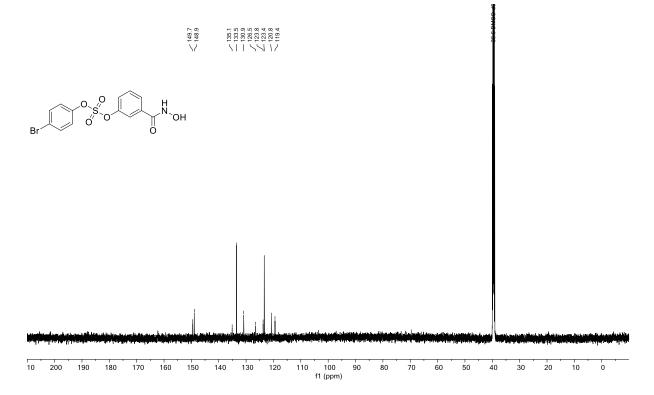


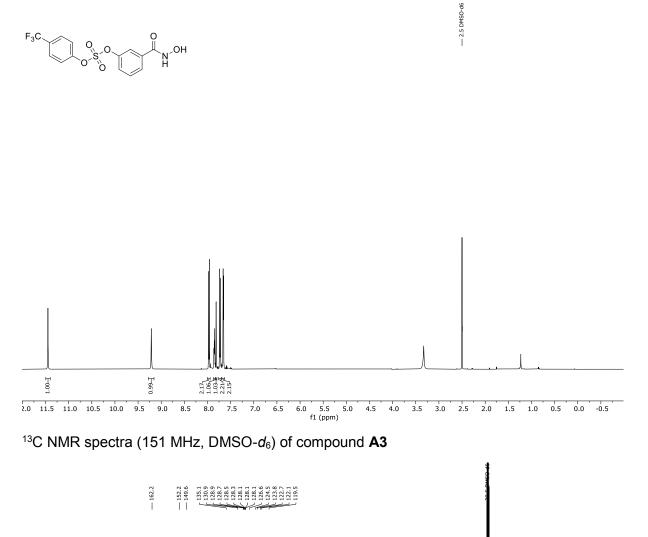

 ^{19}F NMR spectra (376 MHz, CDCl_3) of compound S8

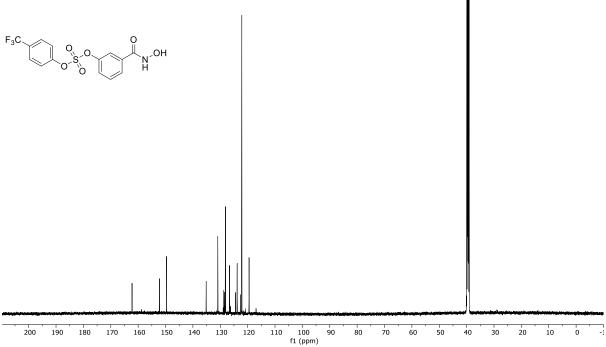


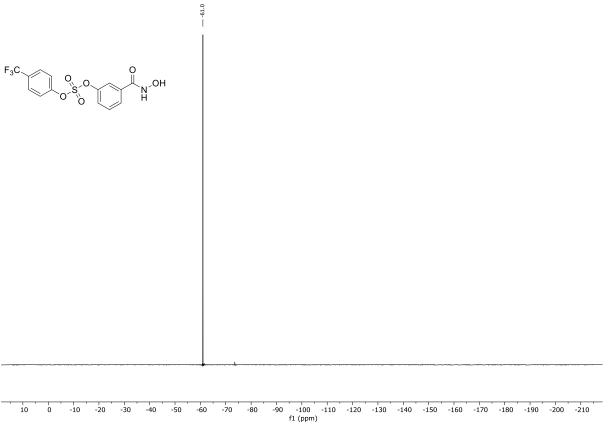


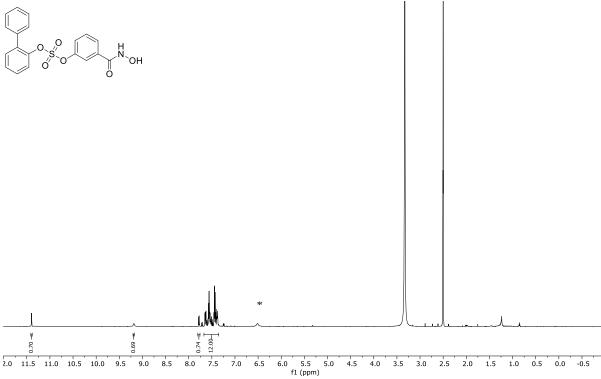


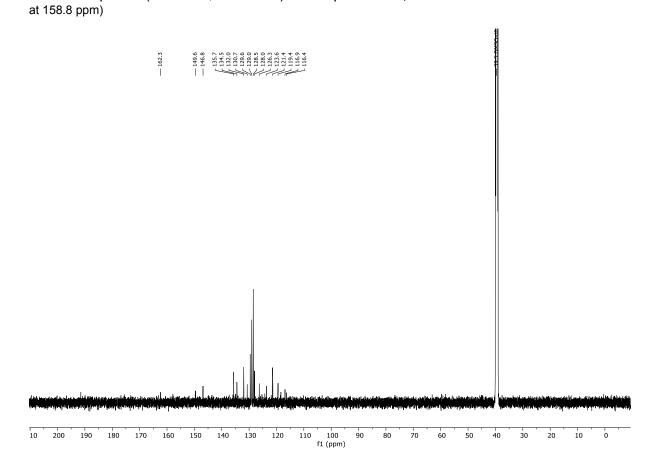




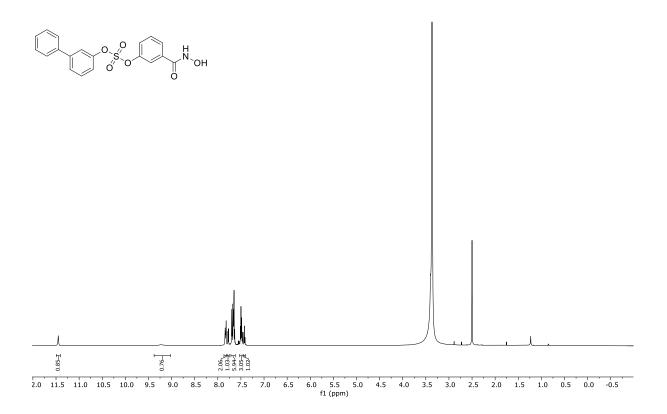

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **A1** (minor contamination with TFA is observed at 158.8 ppm)

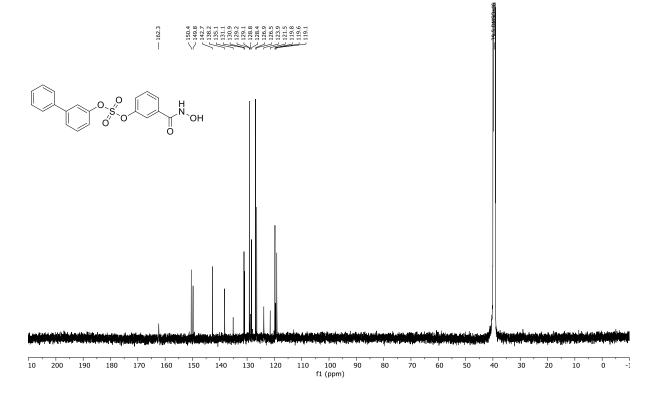


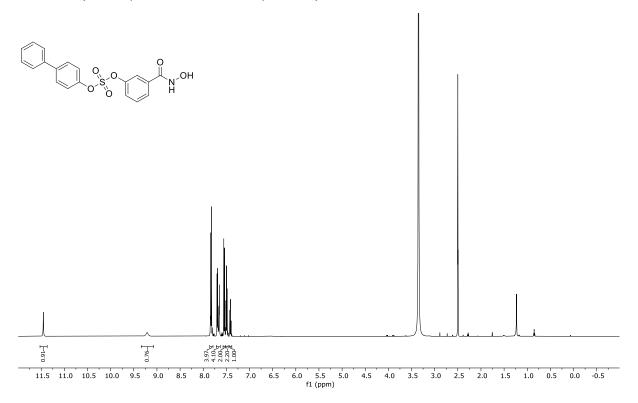


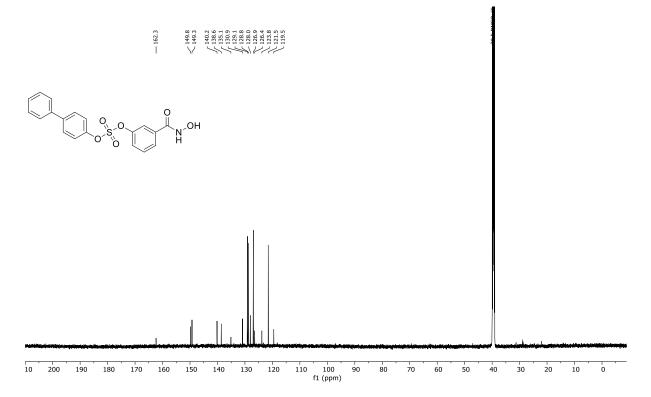


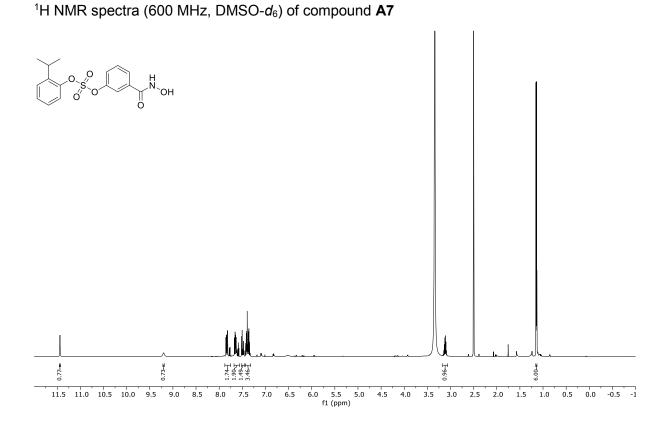
$^{19}\mathsf{F}$ NMR spectra (376 MHz, CDCl_3) of compound A3

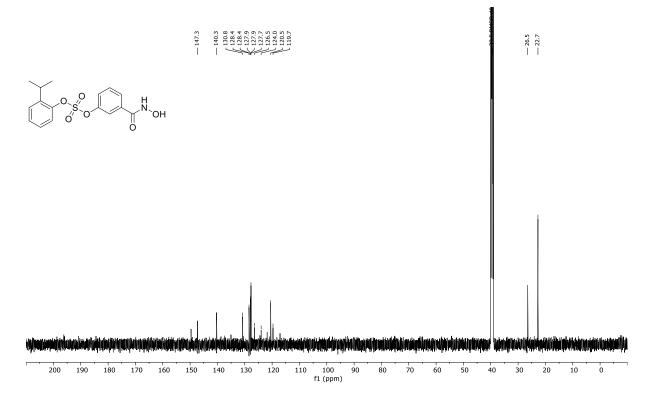


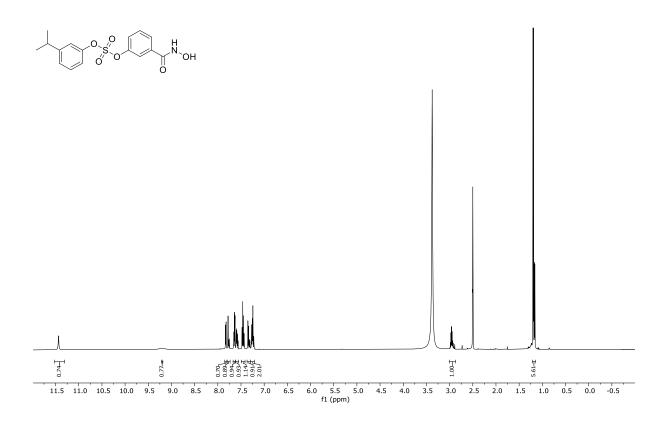


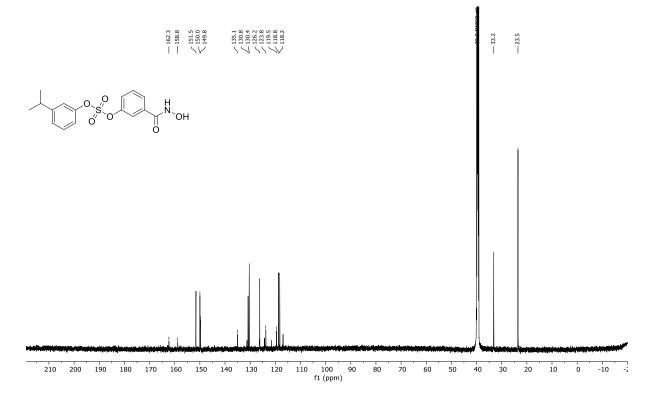

^{f1 (ppm)} ¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **A4** (minor contamination with TFA is observed

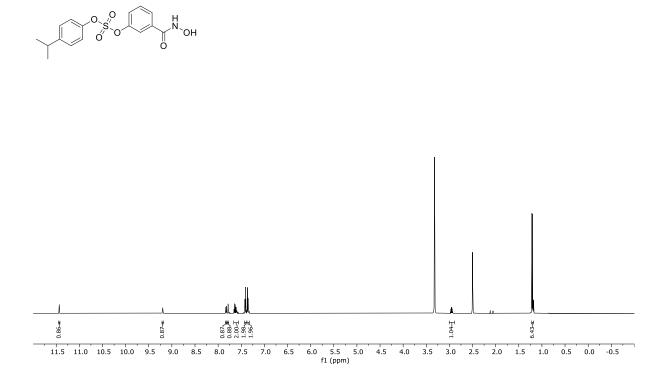


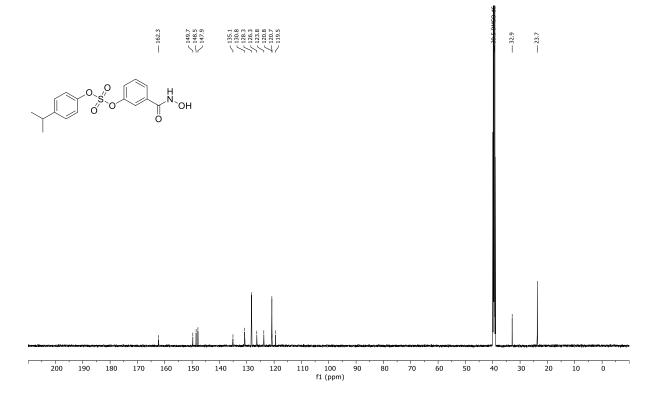

¹H NMR spectra (600 MHz, DMSO-*d*₆) of compound **A4** (* unidentified impurity)

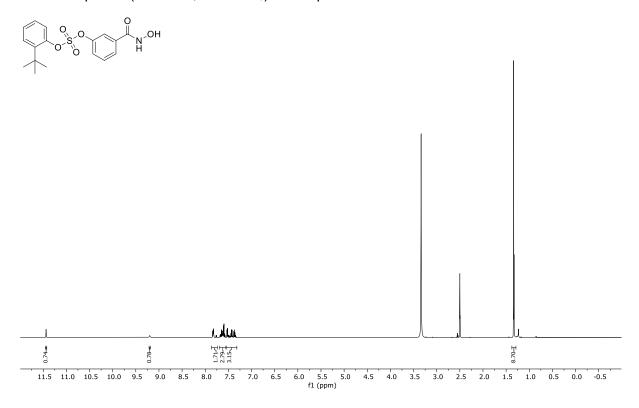


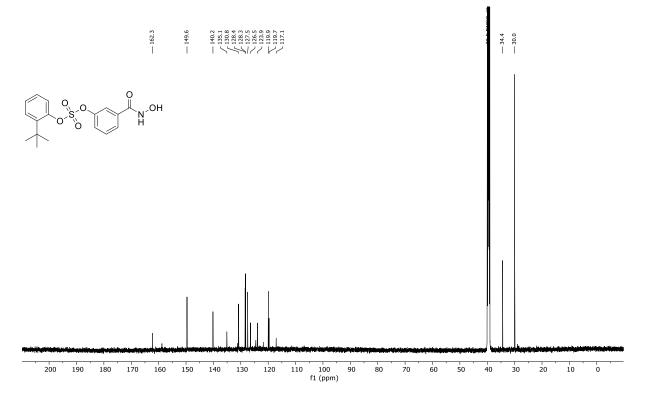


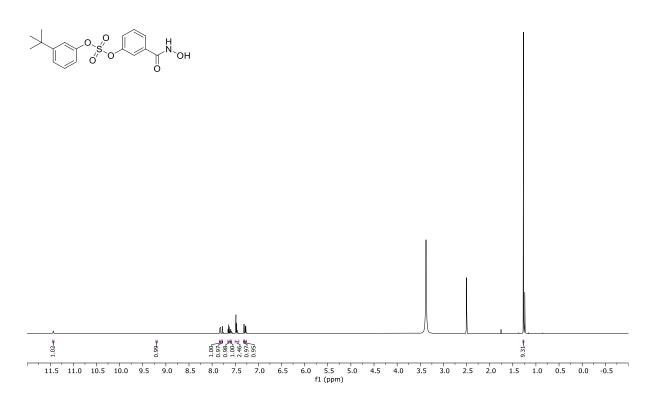


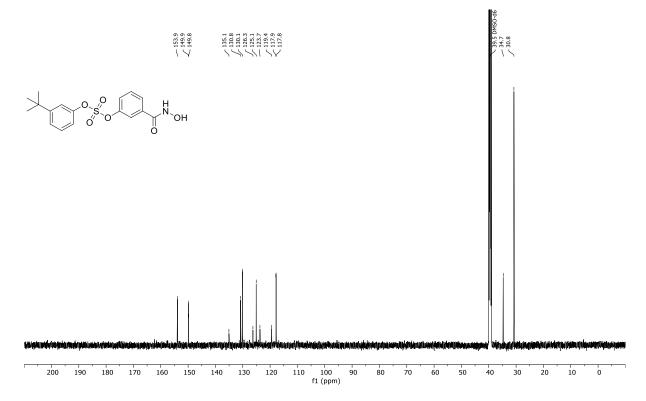


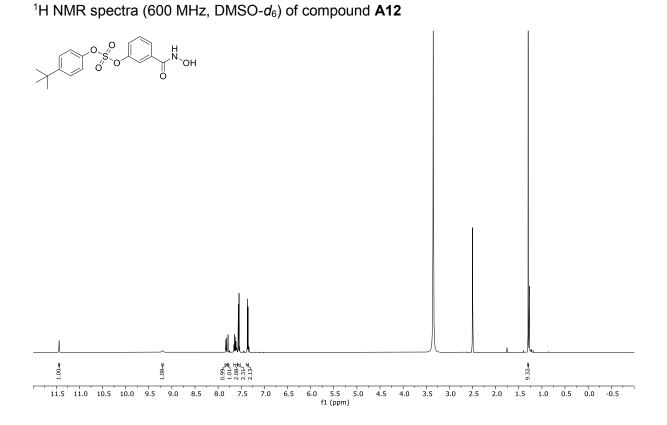


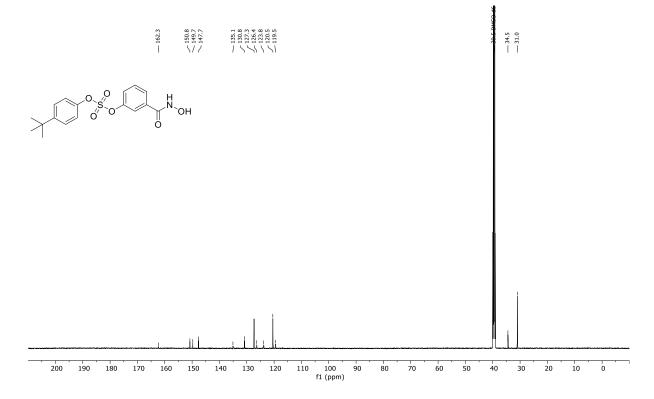


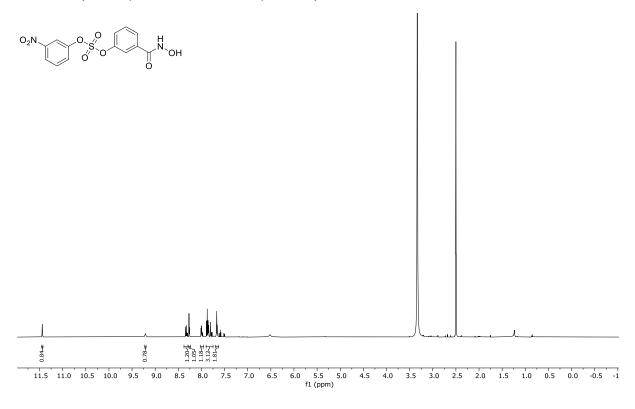


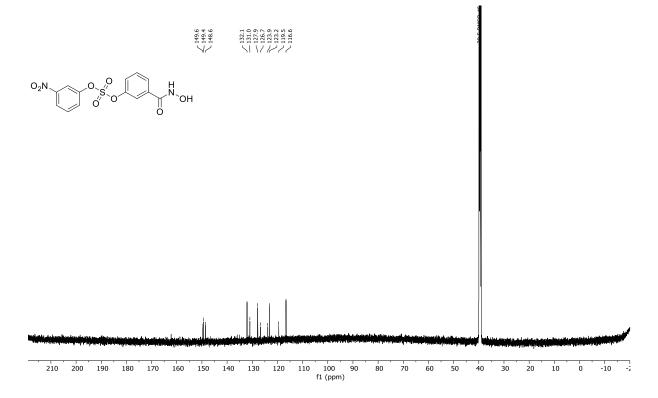


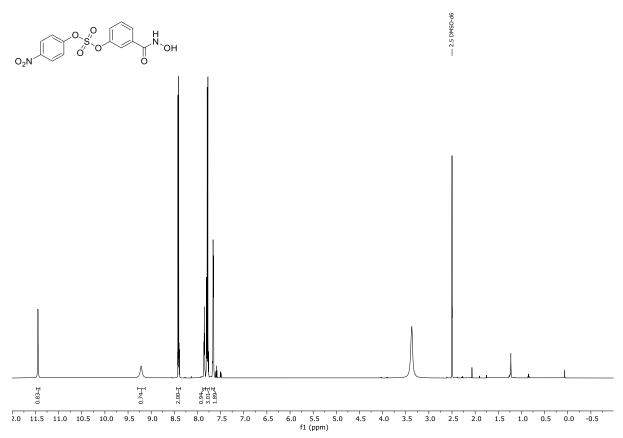


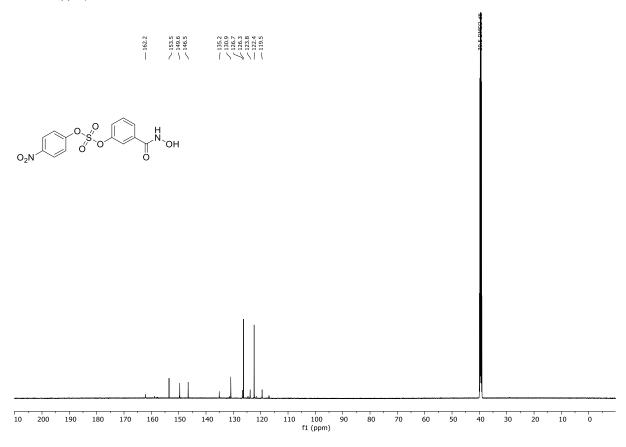


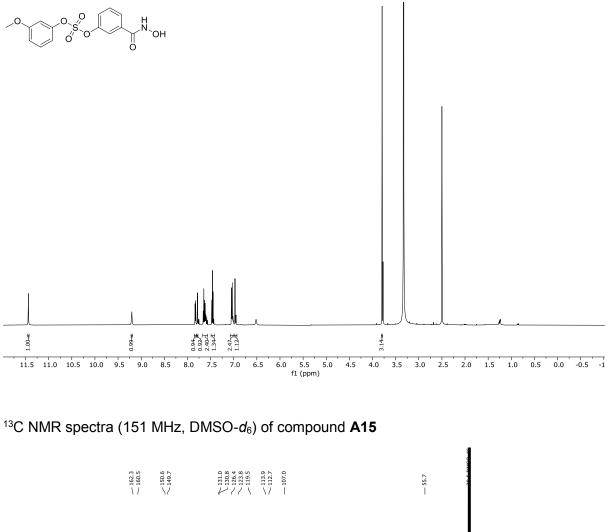

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **A10** (minor contamination with TFA is observed at 158.8 ppm)

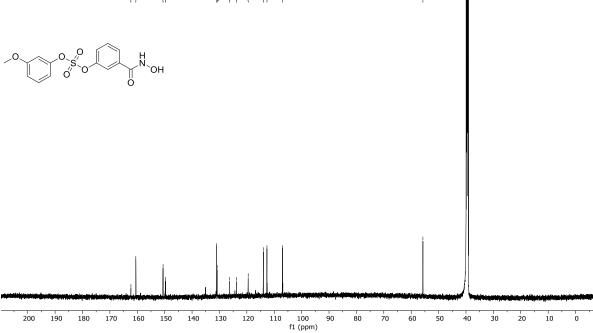


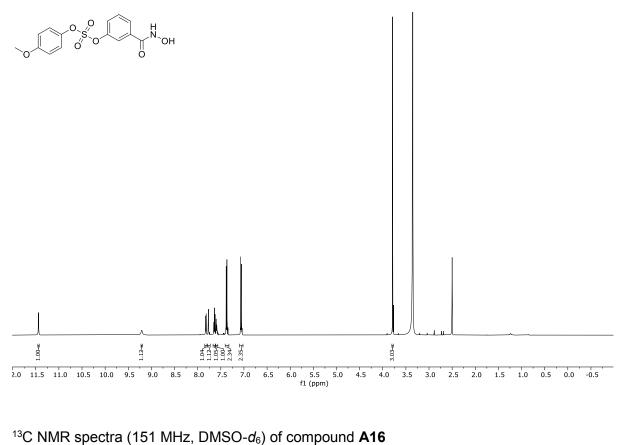


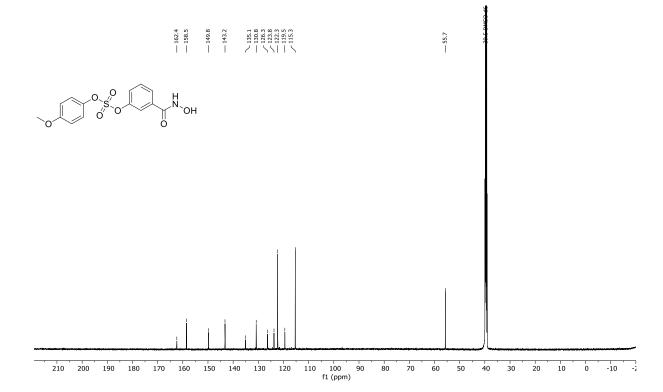


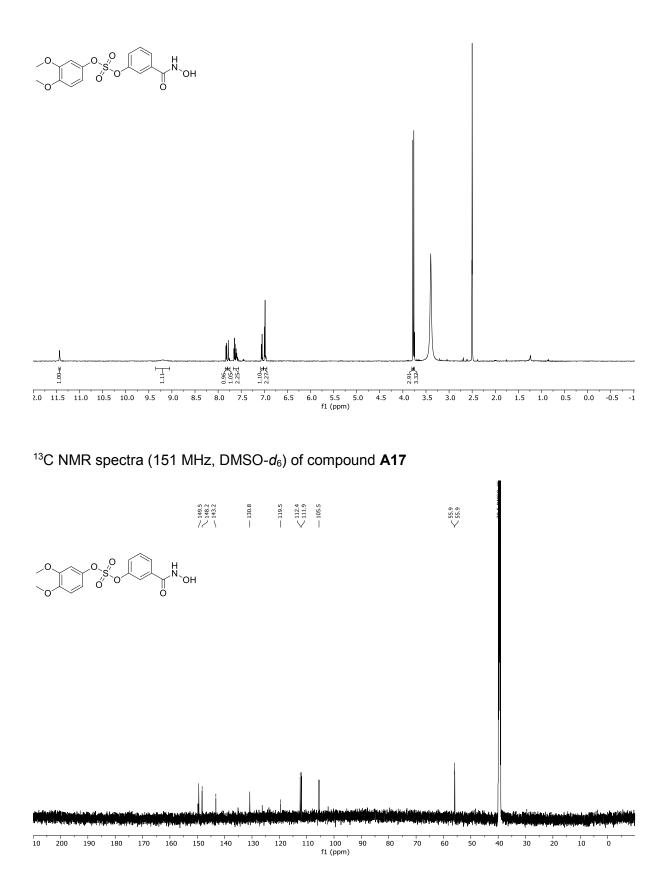


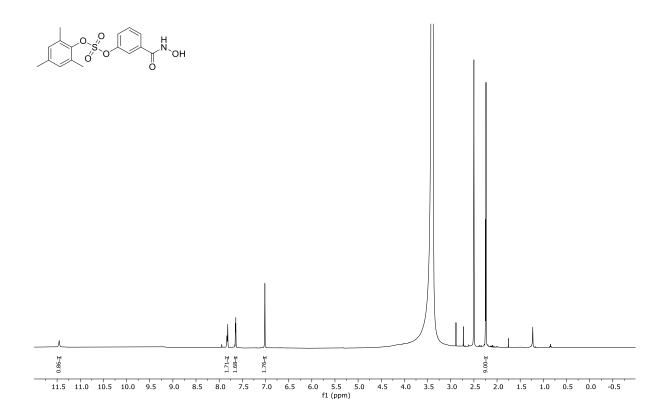


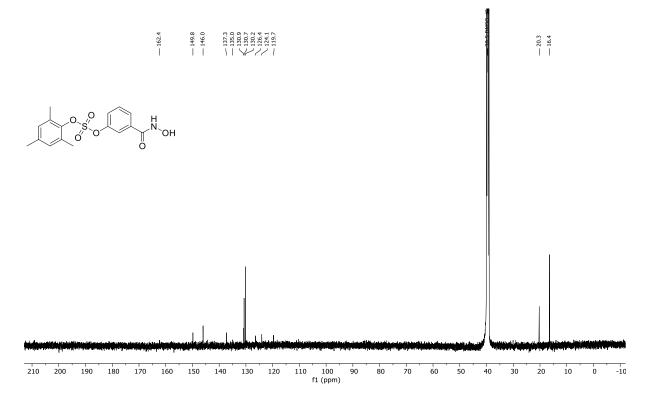


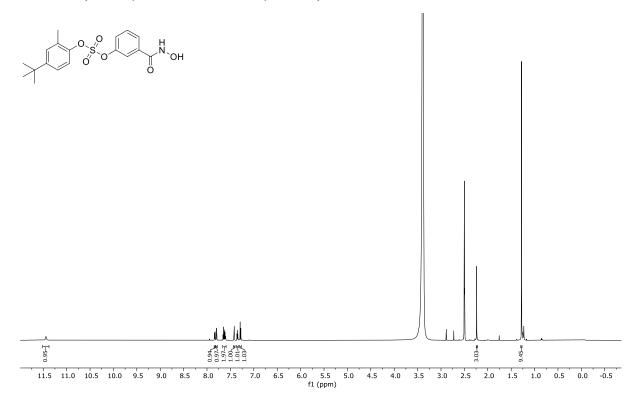


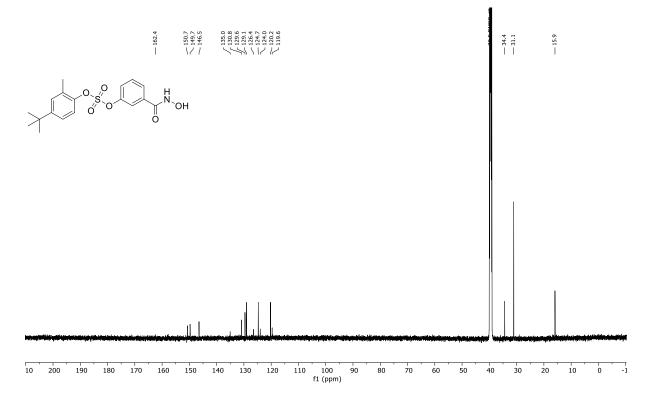

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **A14** (minor contamination with TFA is observed at 158.8 ppm)

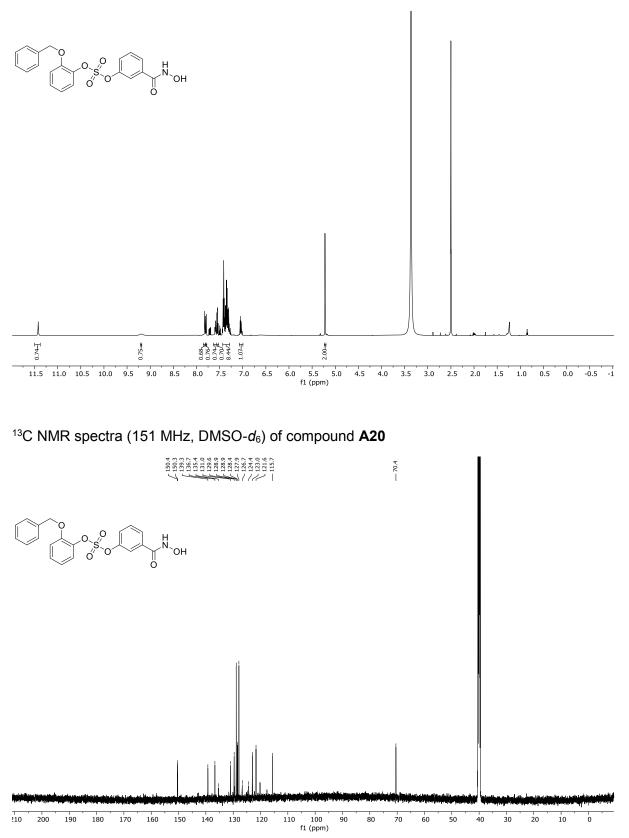


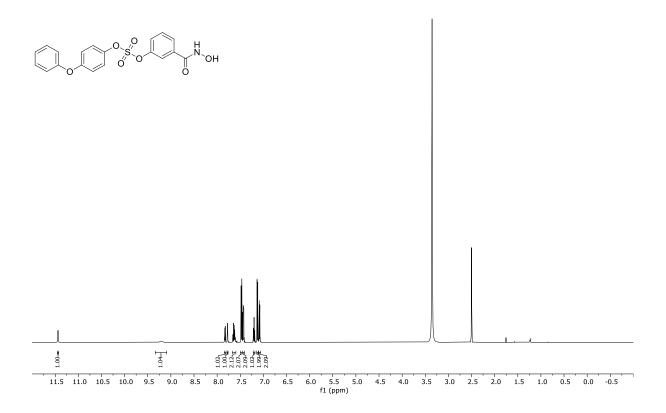


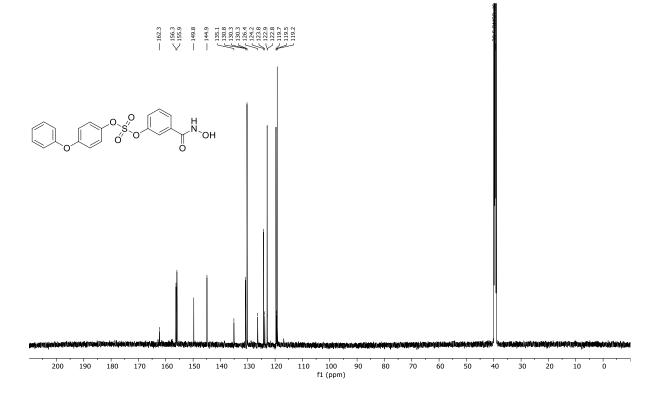


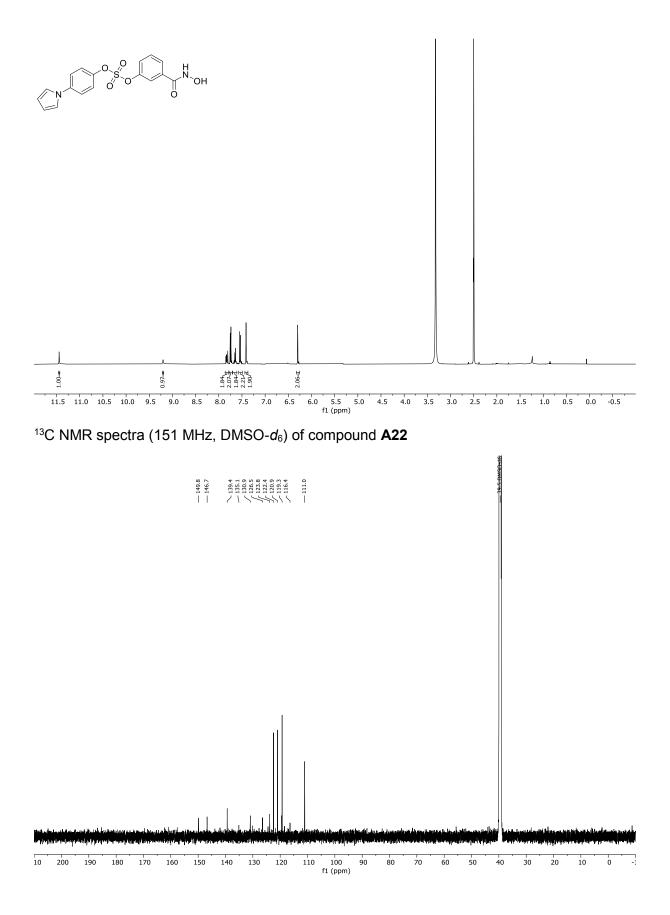


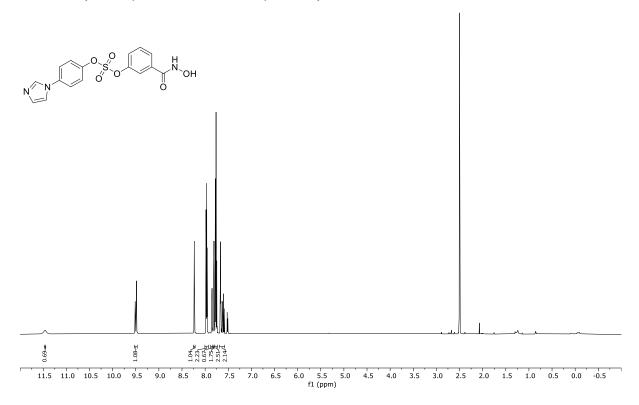


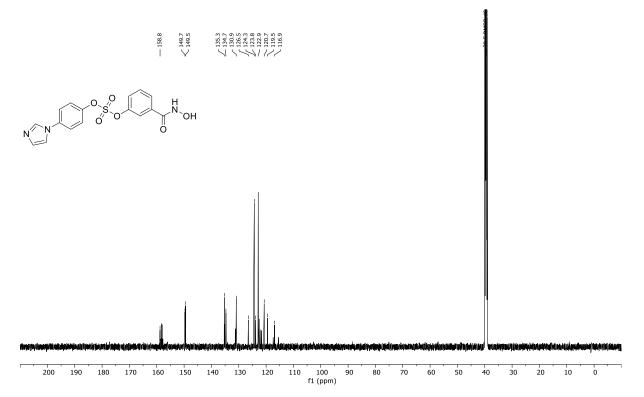


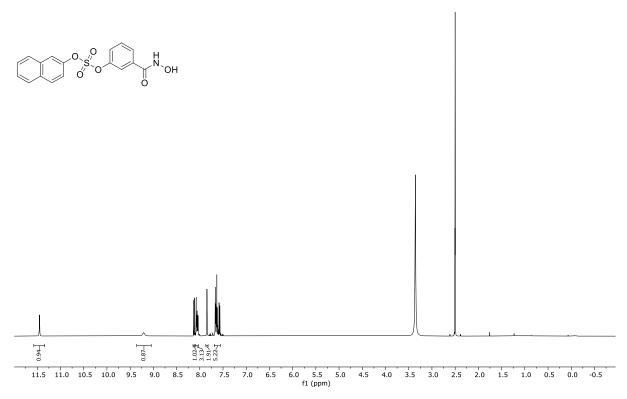


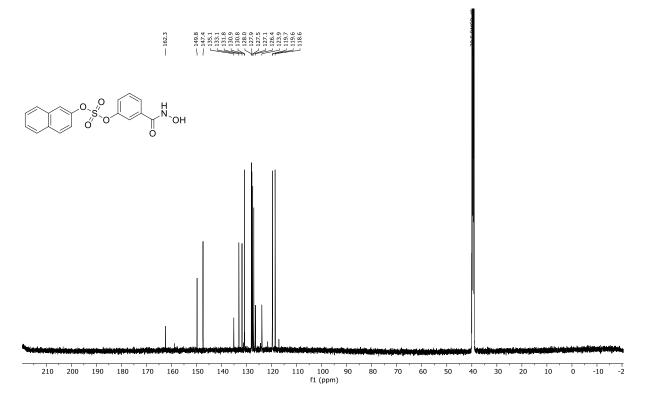


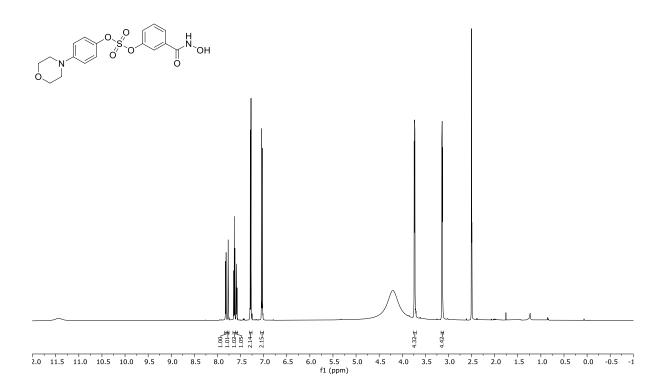


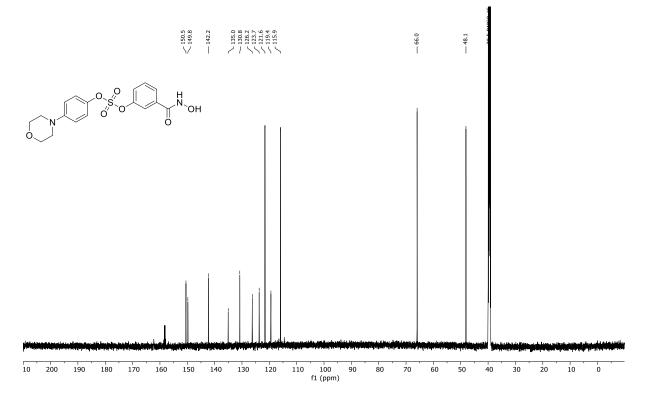


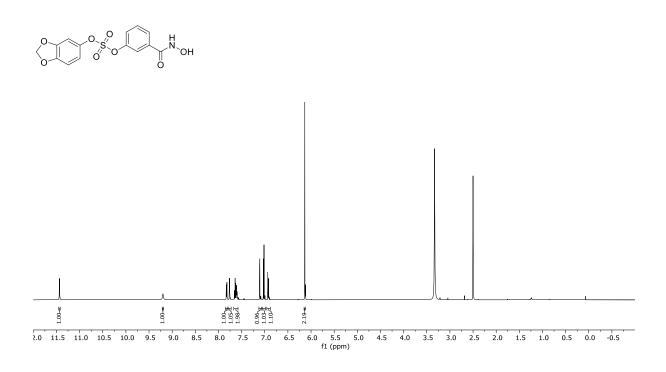


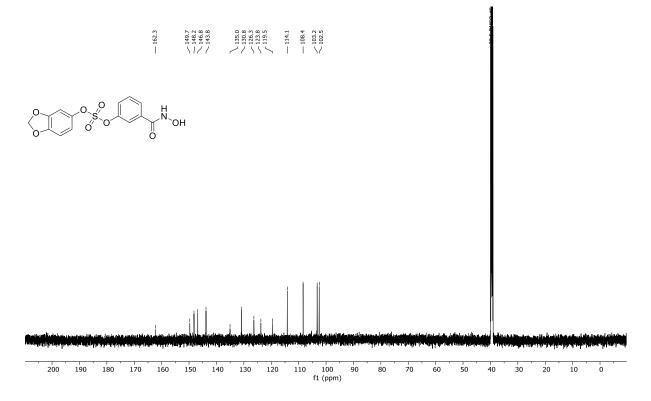


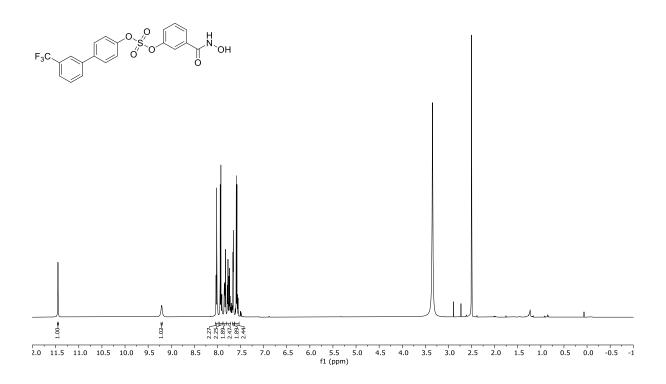



¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **A23** (minor contamination with TFA is observed at 158.8 ppm)

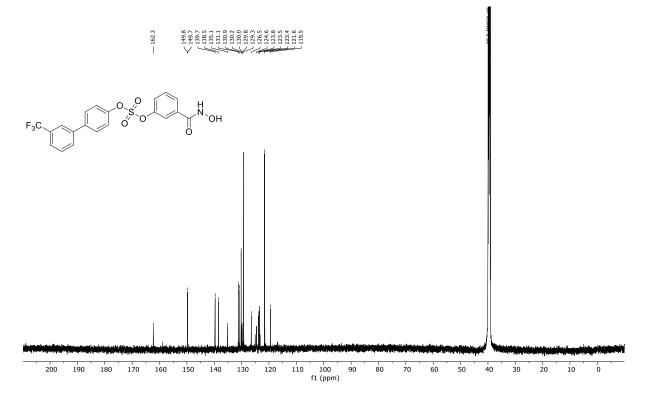


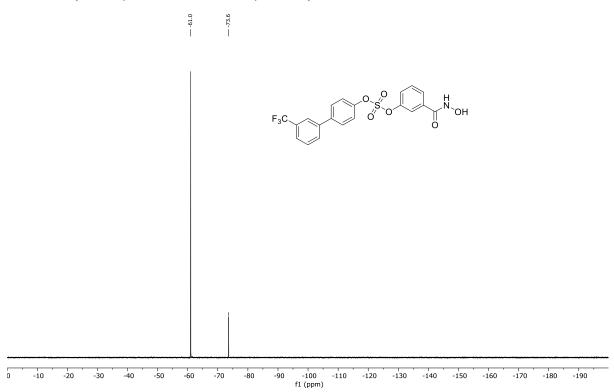

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **A24** (minor contamination with TFA is observed at 158.8 ppm)

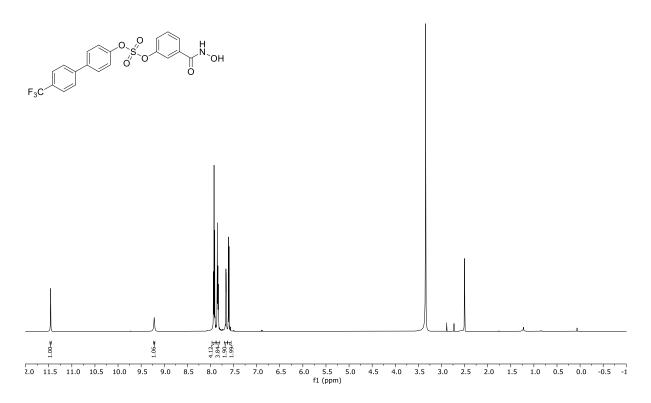


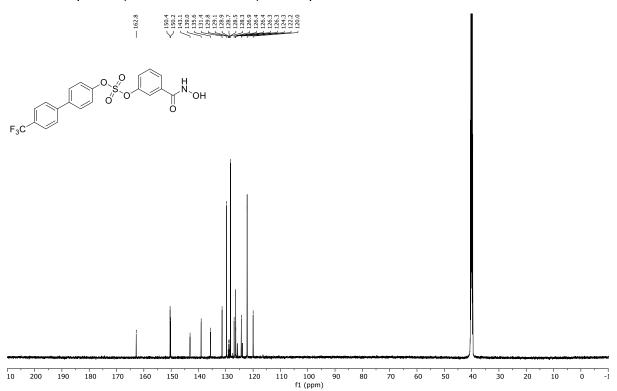


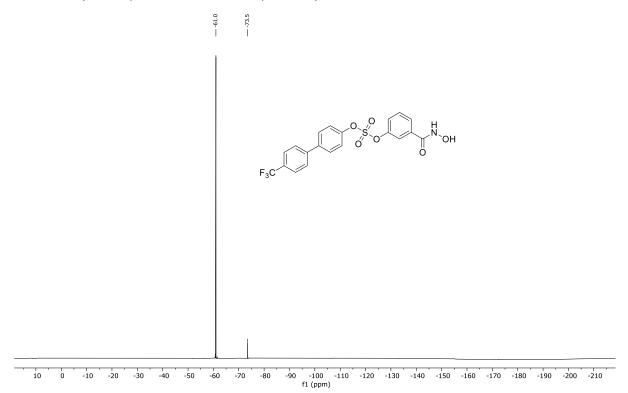
¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **A25** (minor contamination with TFA is observed at 158.8 ppm)

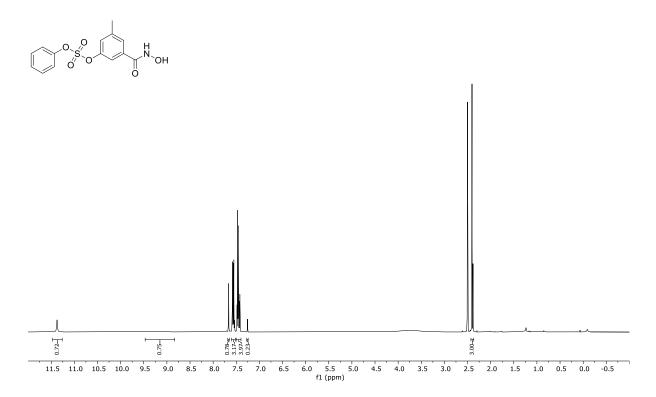


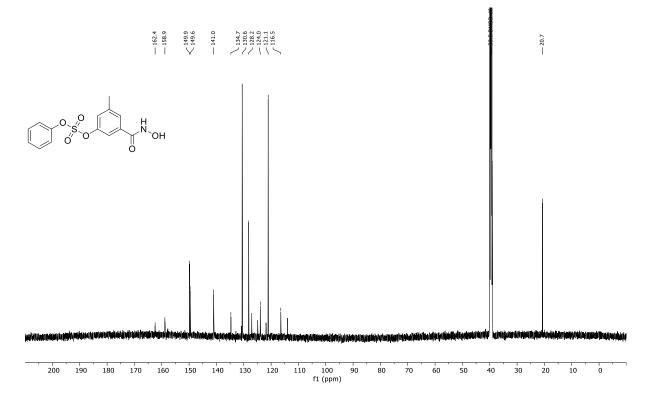


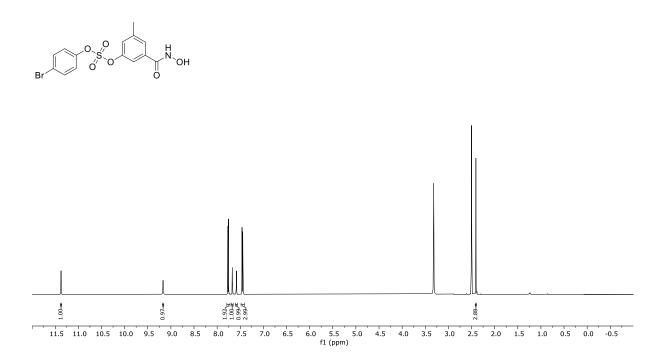


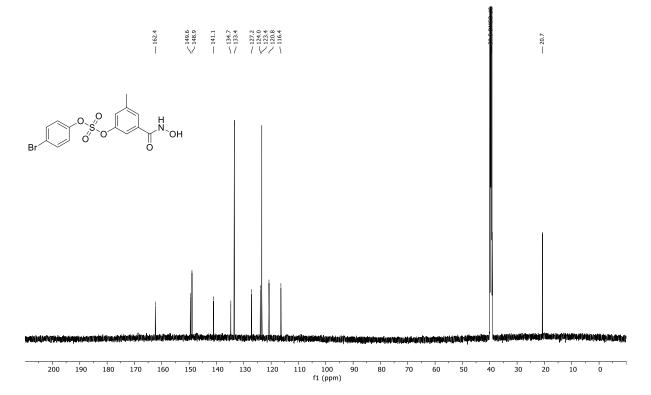

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **A27** (minor contamination with TFA is observed at 158.8 ppm)

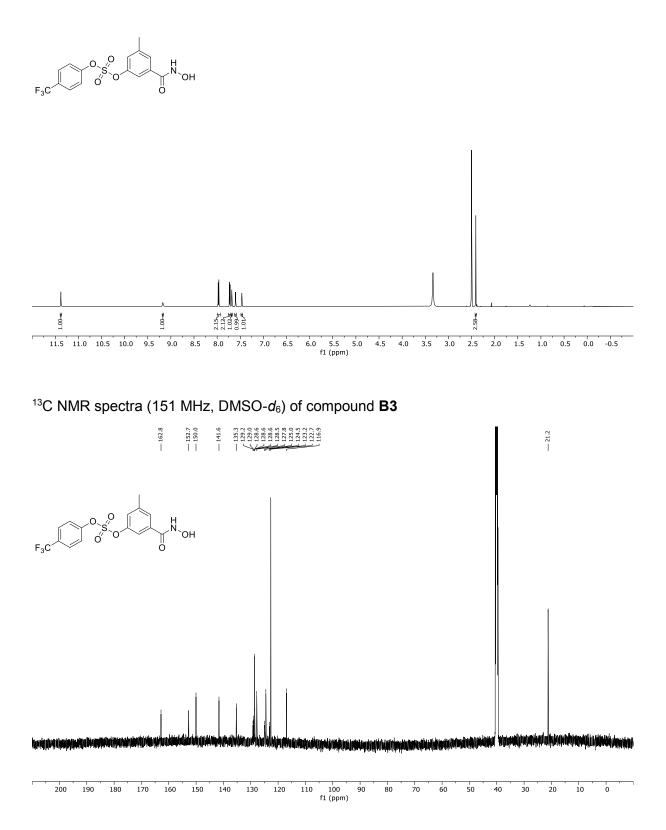

 ^{19}F NMR spectra (376 MHz, DMSO- $\textit{d}_6)$ of compound A27

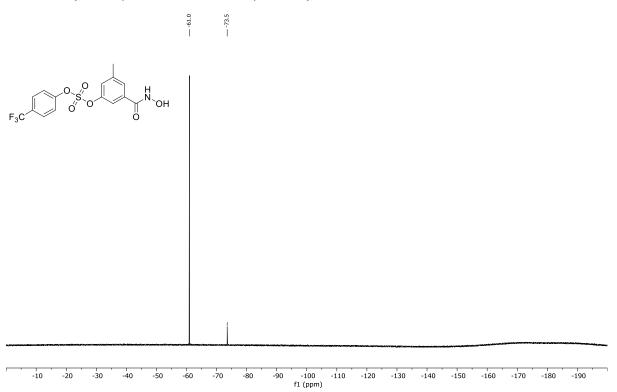


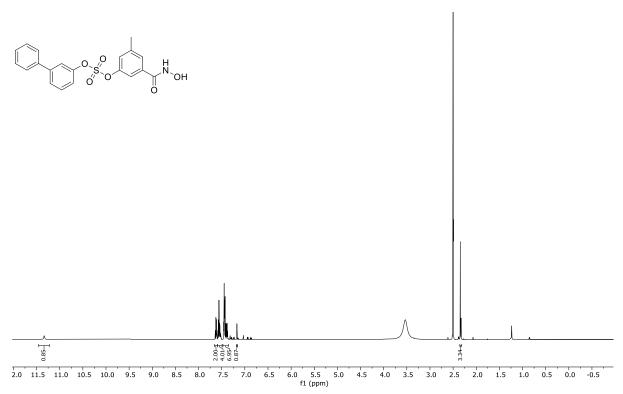


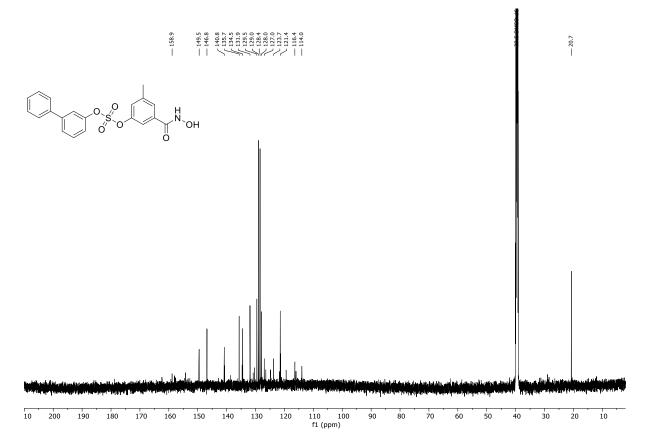


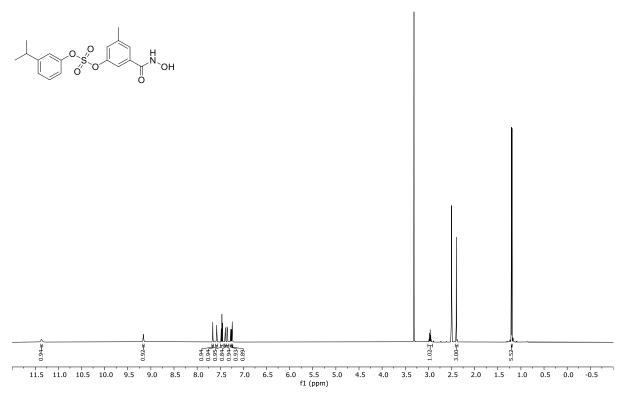

 $^{19}\mathsf{F}$ NMR spectra (376 MHz, DMSO- $d_6)$ of compound A28

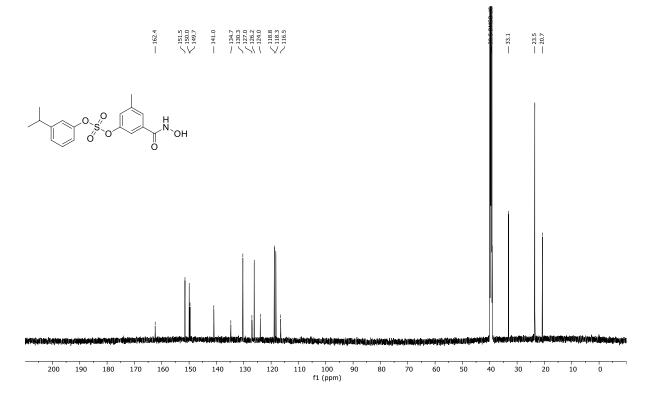


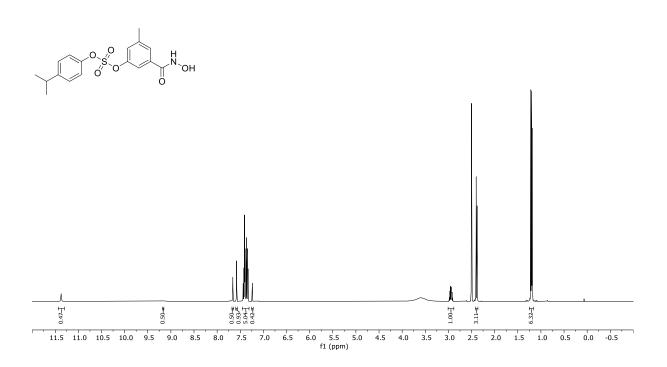


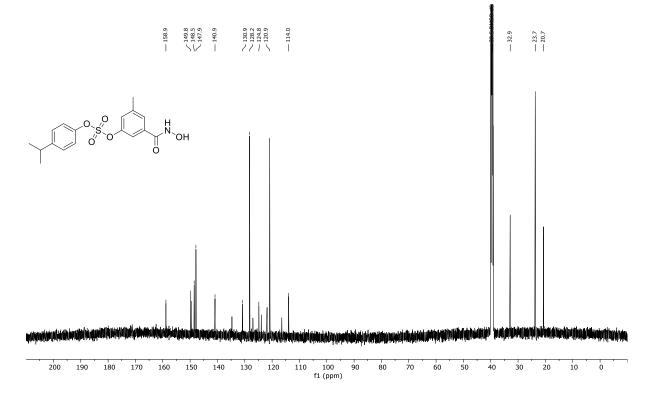


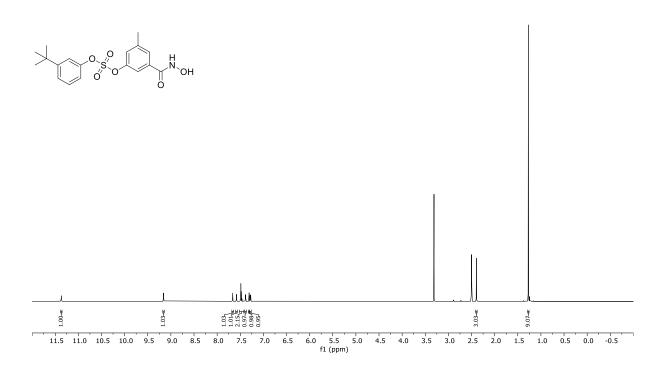


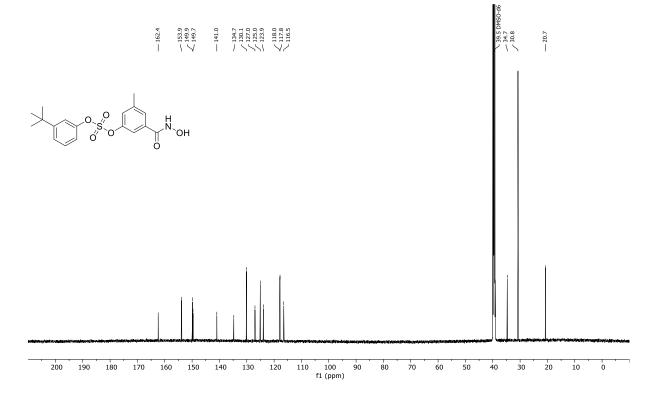


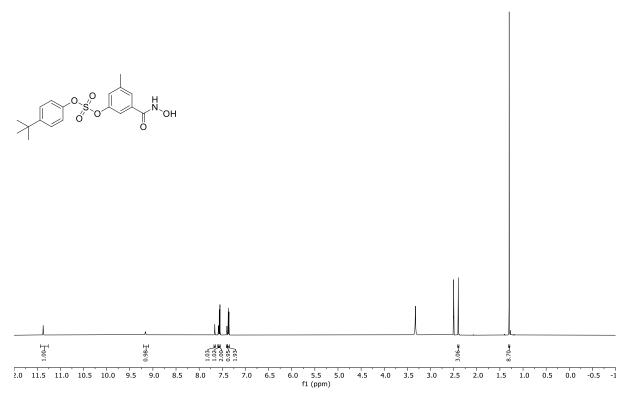


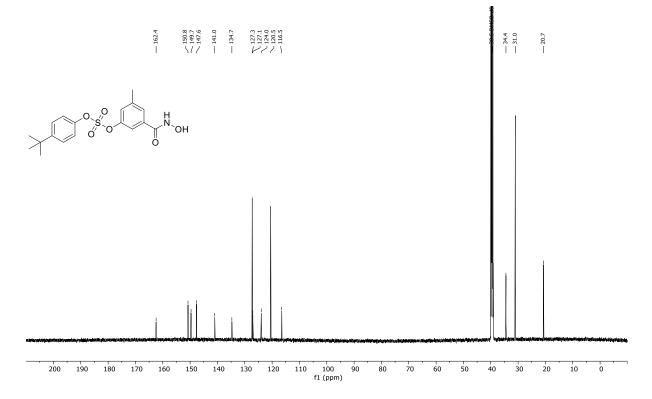

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **B4** (minor contamination with TFA is observed at 158.8 ppm)

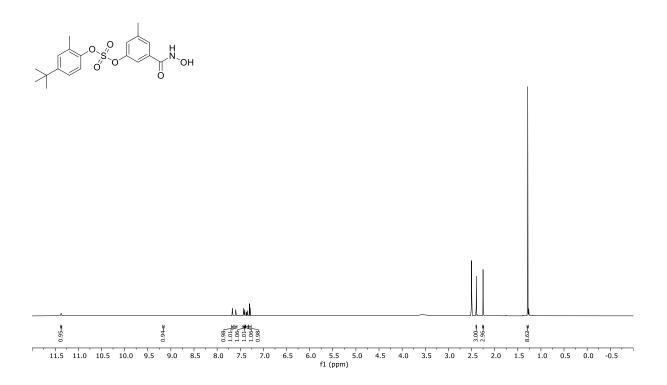


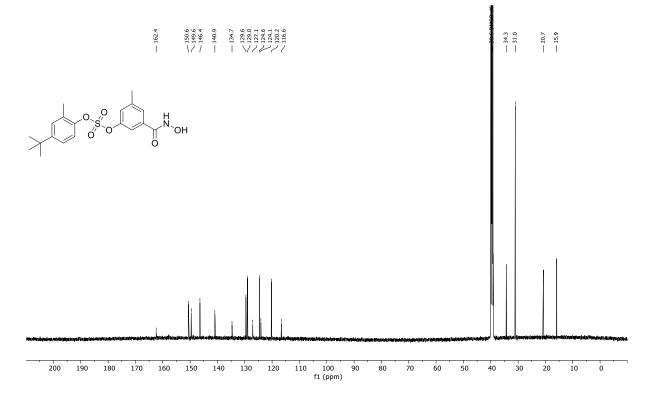

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **B8**

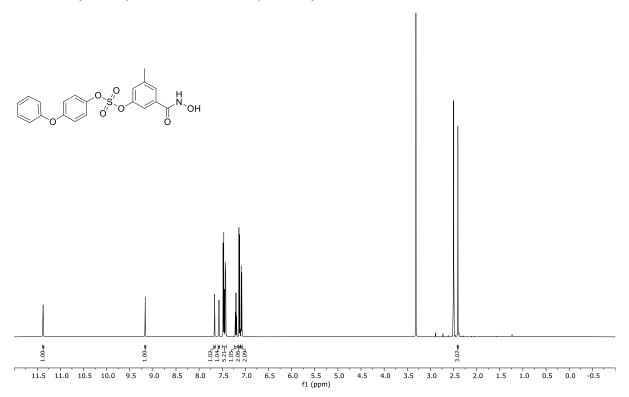


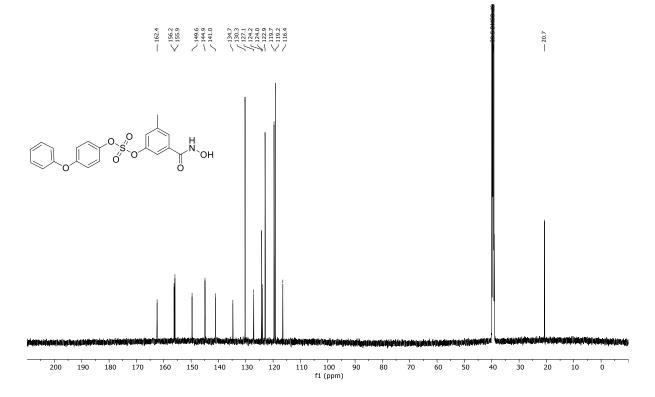


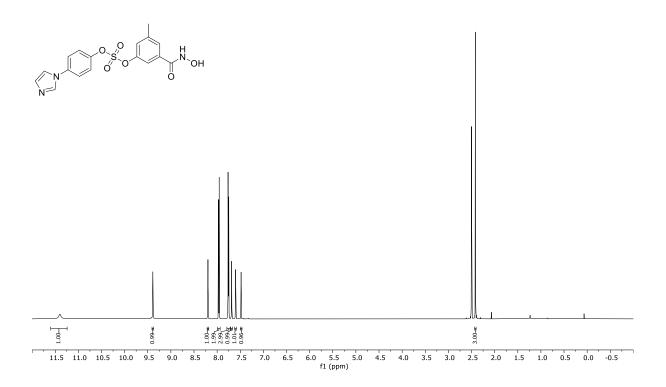

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **B9**

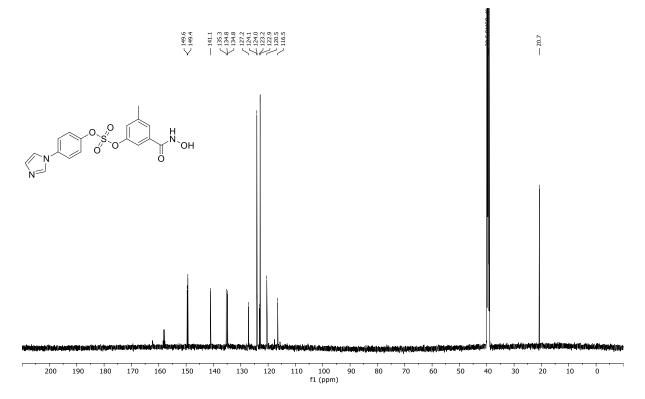


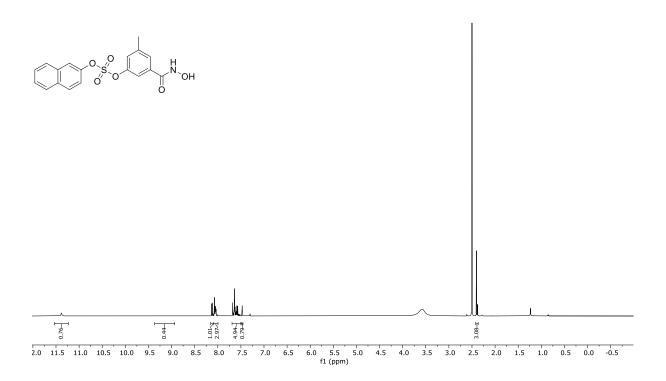


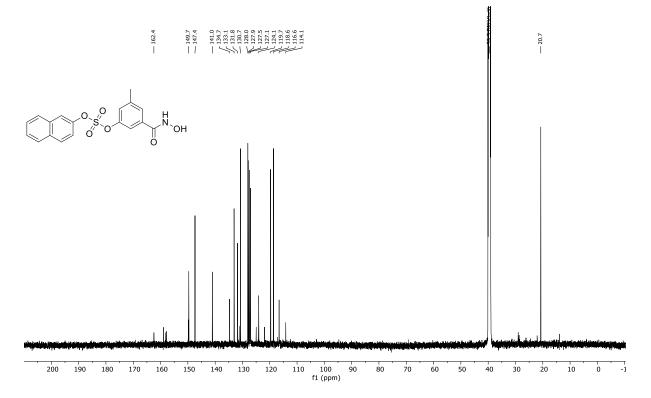


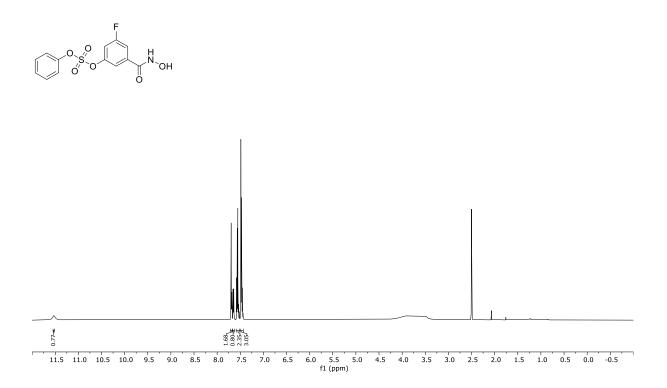


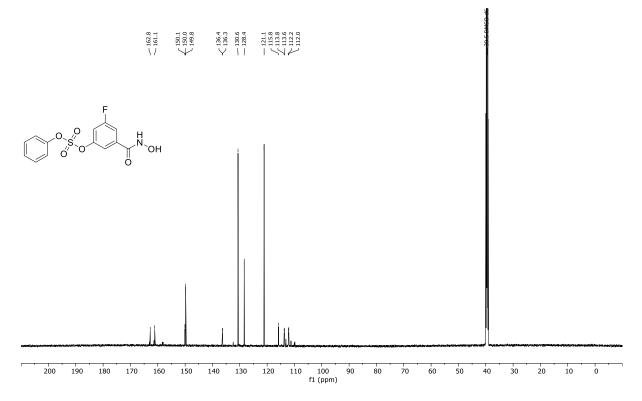


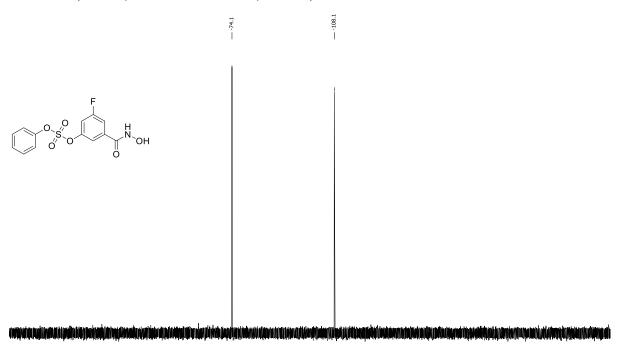


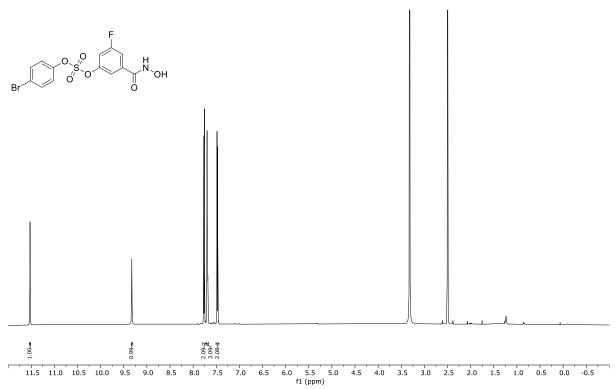




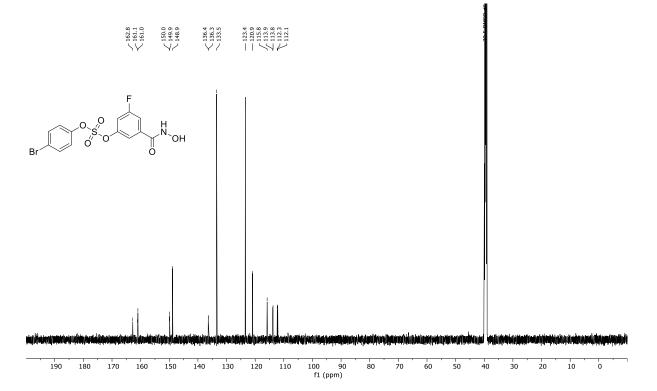

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **B23** (minor contamination with TFA is observed at 158.8 ppm)

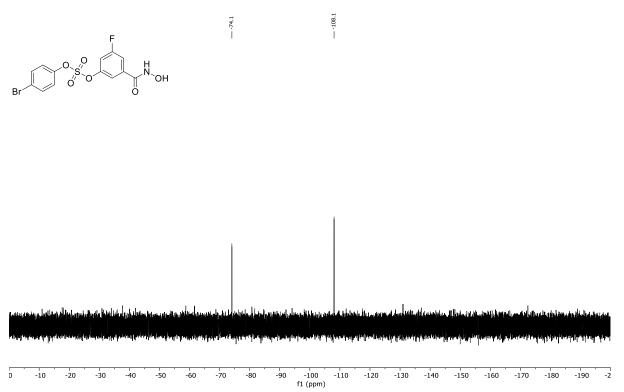


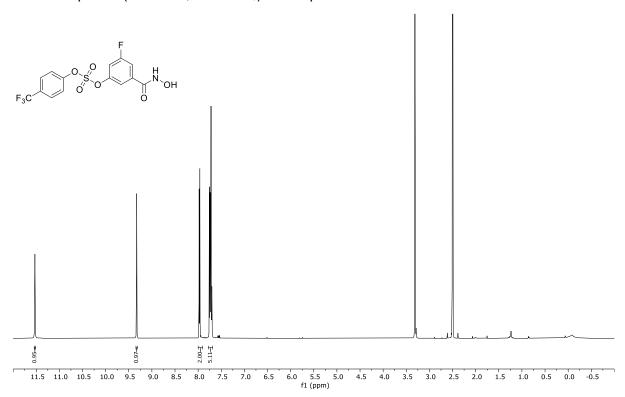

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **B24** (minor contamination with TFA is observed at 158.8 ppm)

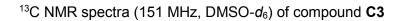


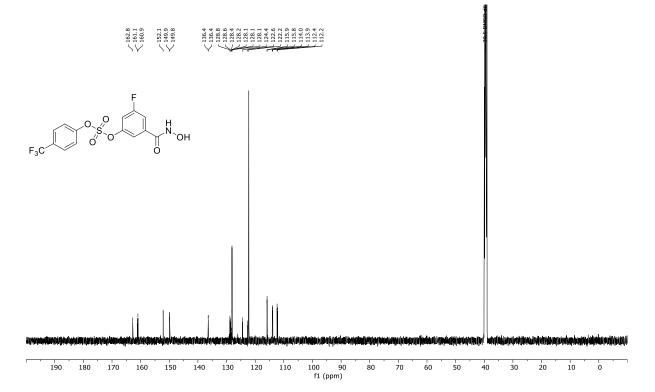
¹³C NMR spectra (151 MHz, DMSO- d_6) of compound **C1** (minor contamination with TFA is observed at 158.8 ppm)

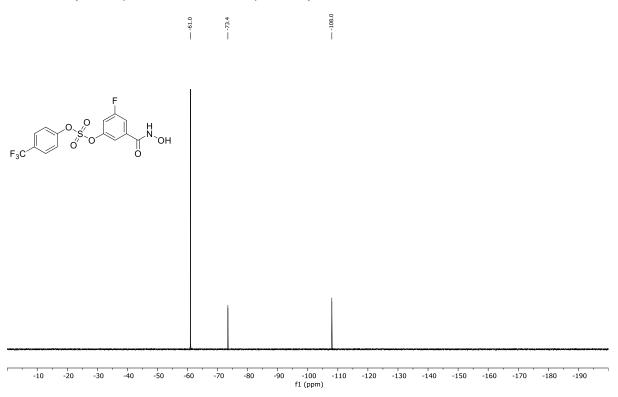


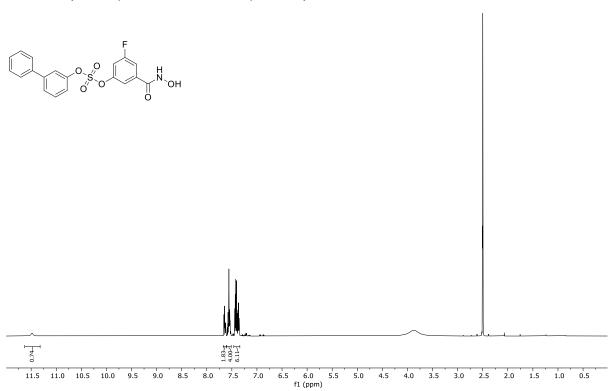


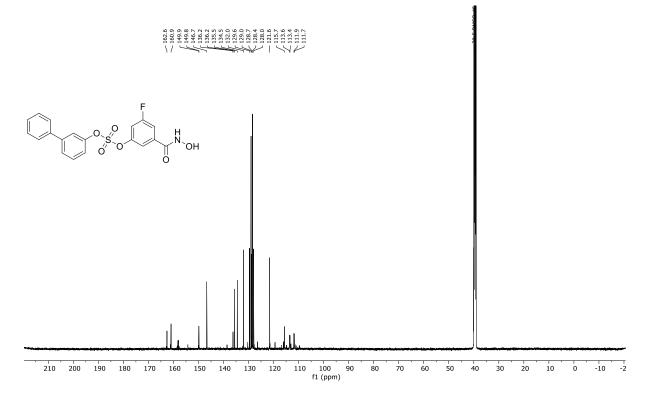

-90 -100 f1 (ppm) Г -110 -120 -130 -10 -20 -30 -40 -50 -60 -70 -80 -140 -150 -160 -170 -180 -190

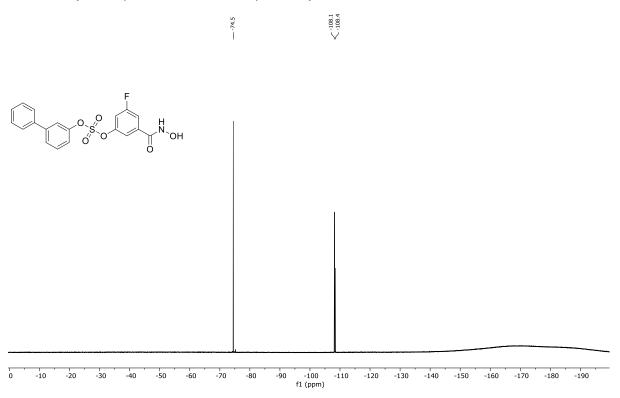


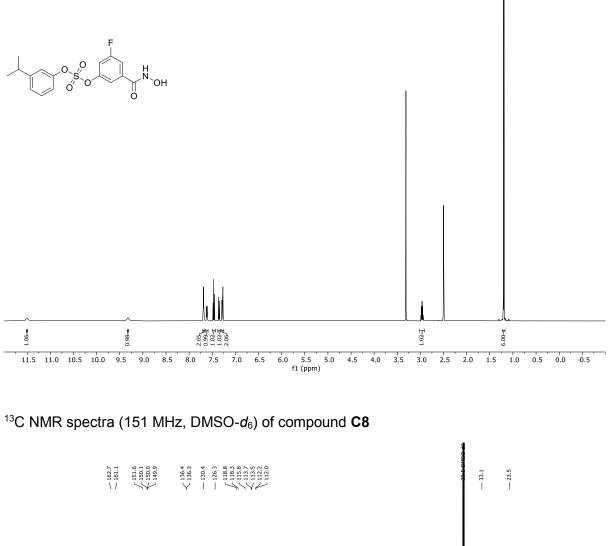

¹H NMR spectra (600 MHz, DMSO- d_6) of compound C2

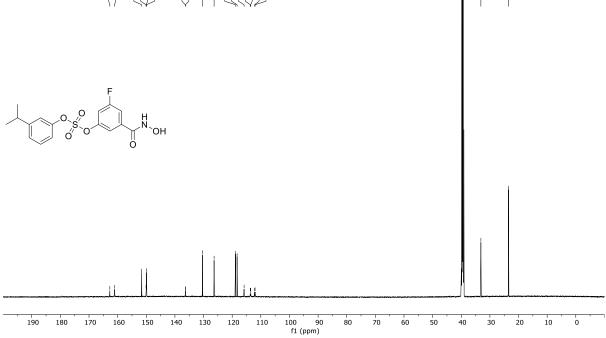


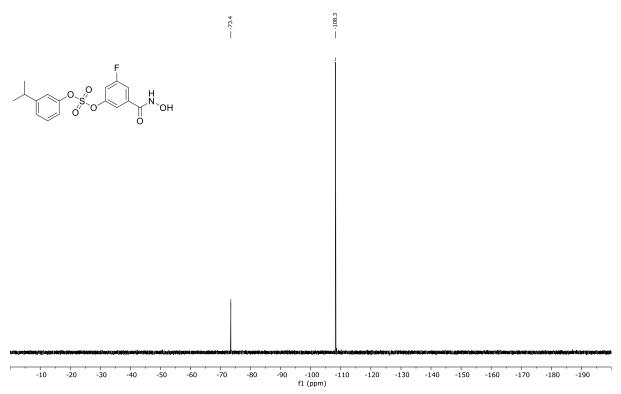


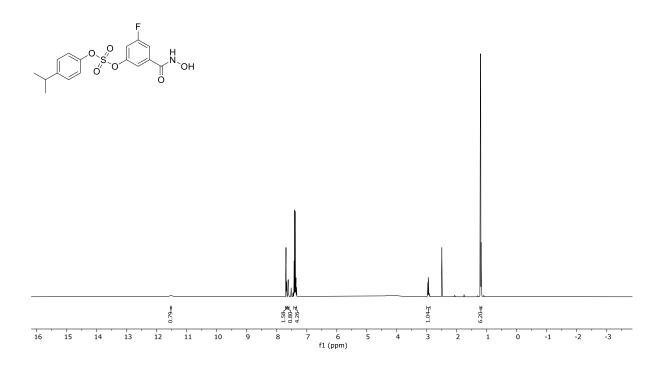


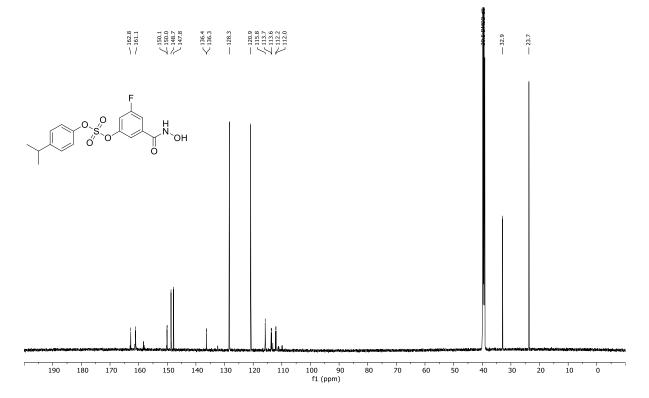


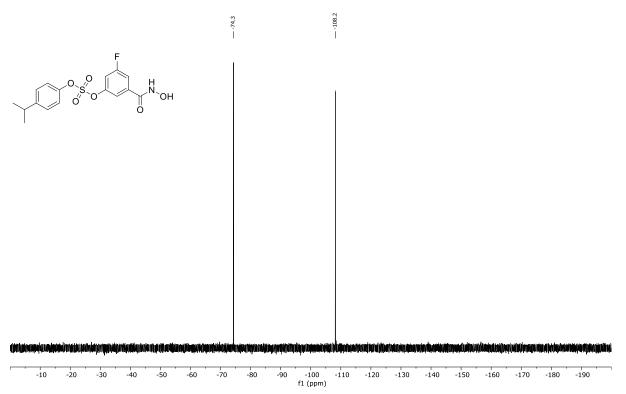


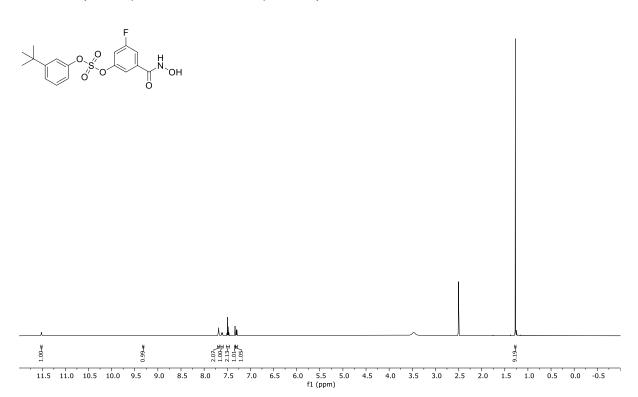

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **C4** (minor contamination with TFA is observed at 158.8 ppm)

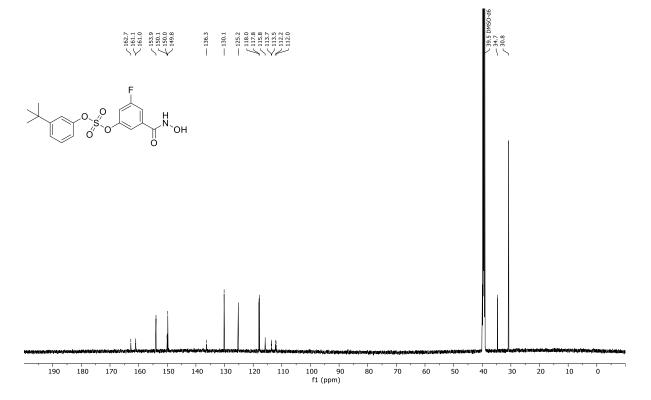

 $^{19}\mathsf{F}$ NMR spectra (376 MHz, DMSO- $d_6)$ of compound C4

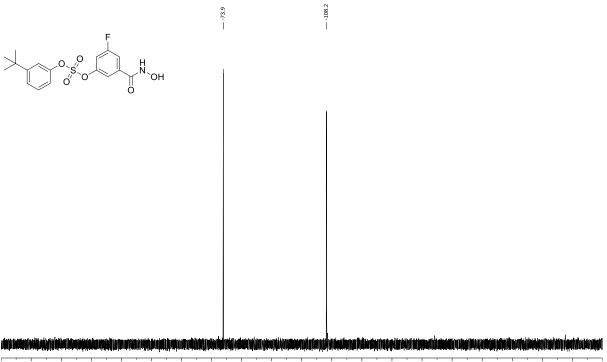


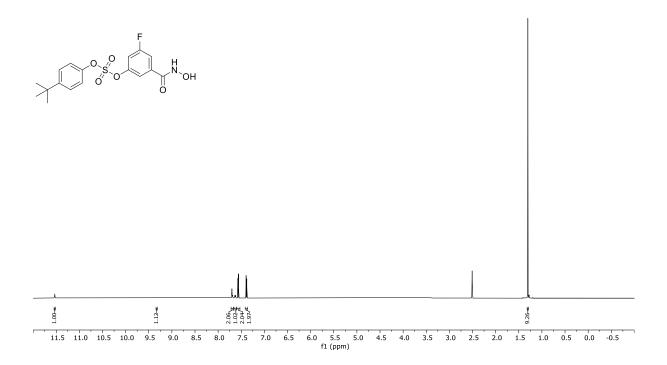


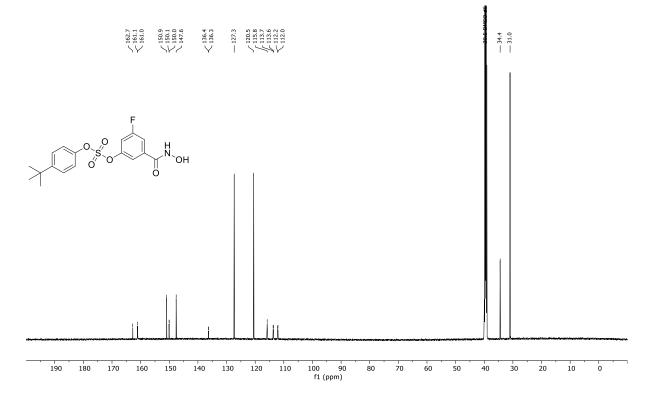

¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of compound **C8**

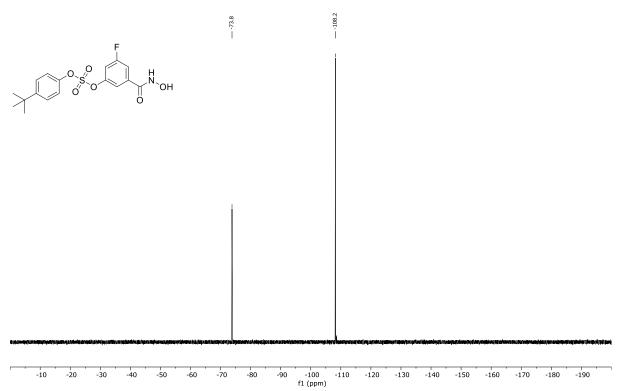


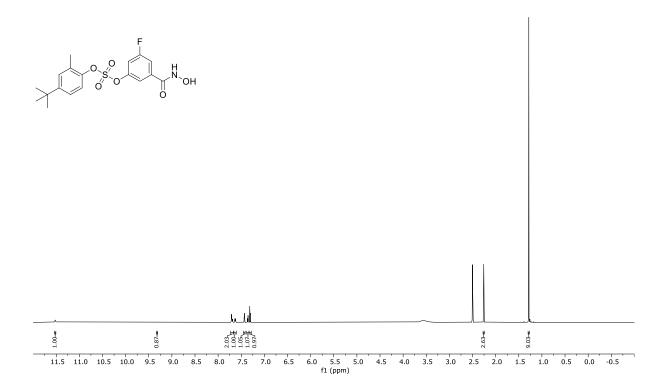


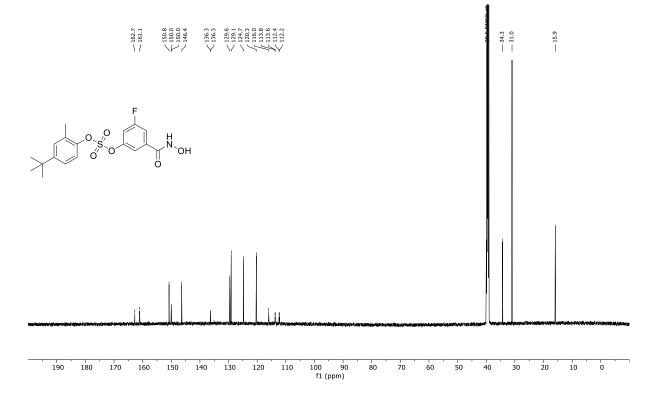

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **C9** (minor contamination with TFA is observed at 158.8 ppm)

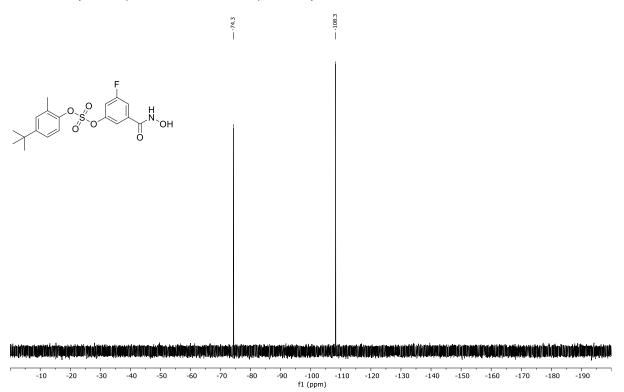


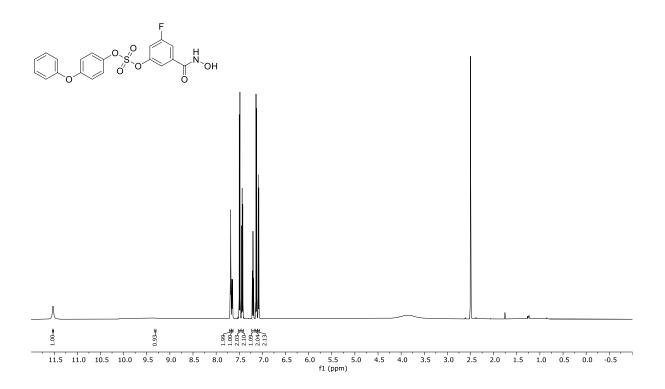


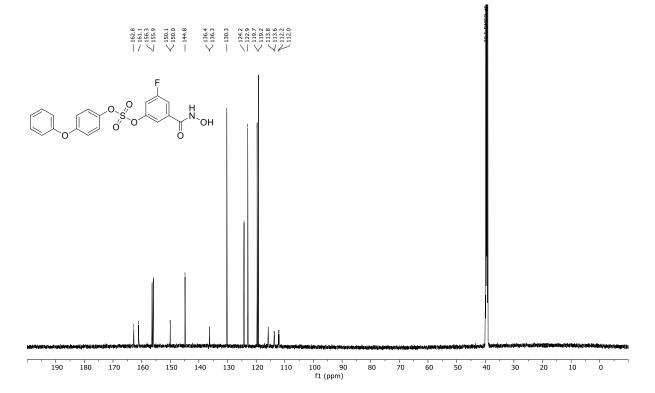


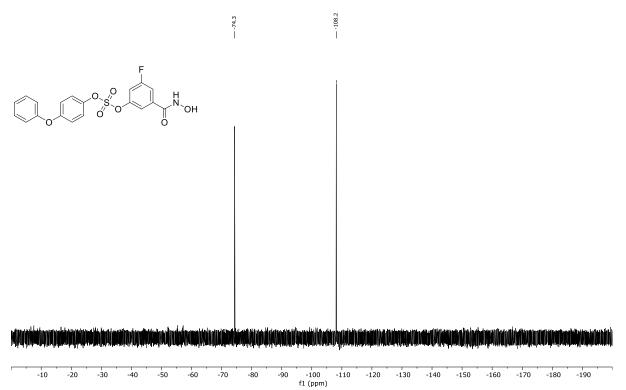

-100 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -170 -190 -110 -120 -130 -140 -150 -160 -180

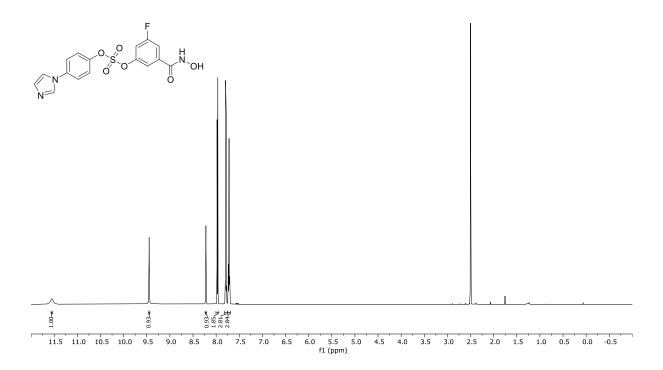


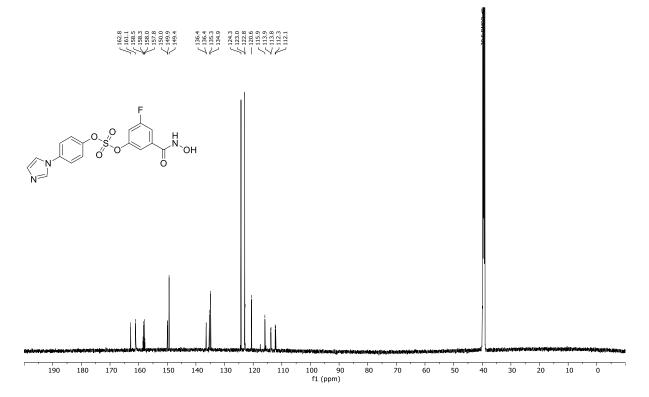


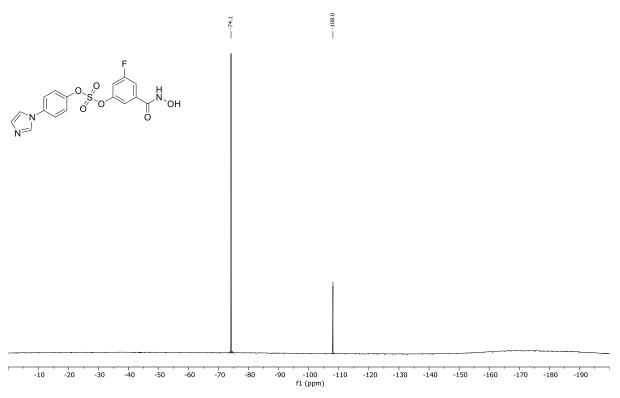

$^{19}\mathsf{F}$ NMR spectra (376 MHz, DMSO- $\textit{d}_6)$ of compound C12

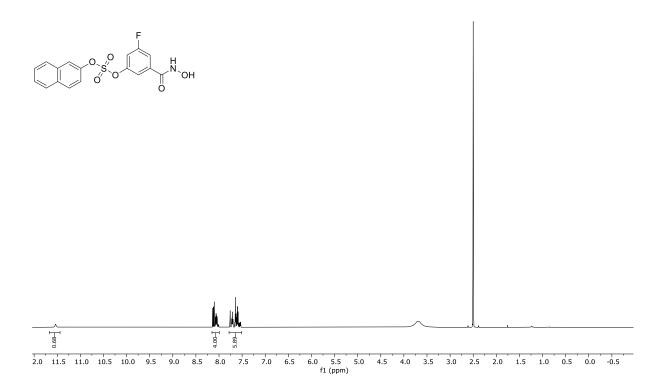




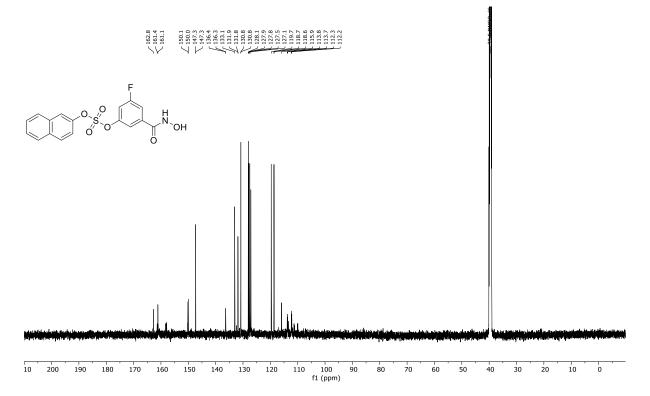




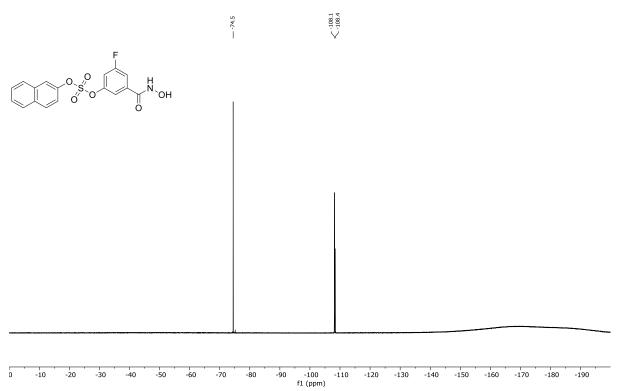


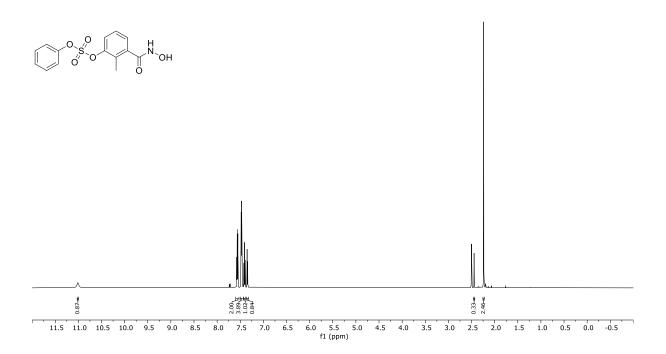


¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **C23** (minor contamination with TFA is observed at 158.8 ppm)

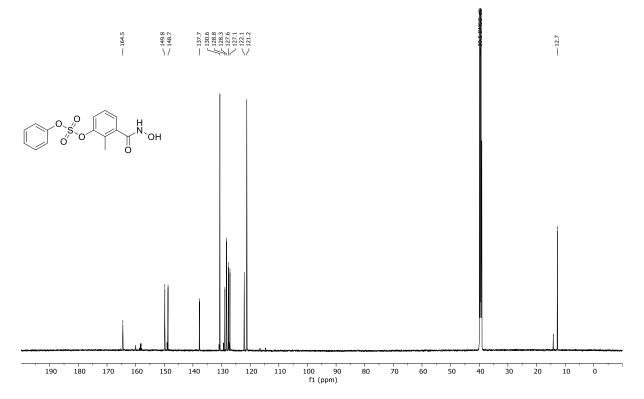


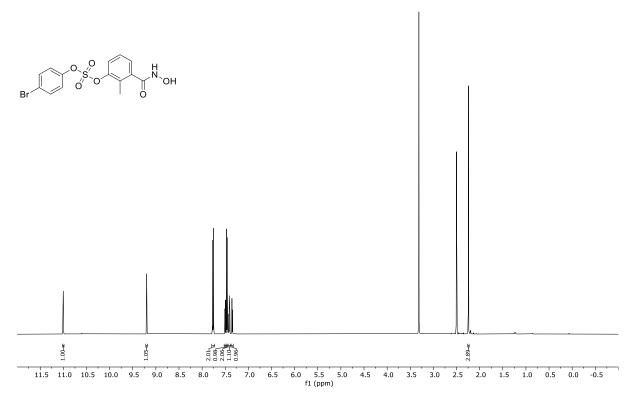
$^{19}\mathsf{F}$ NMR spectra (376 MHz, DMSO- $d_6)$ of compound C23

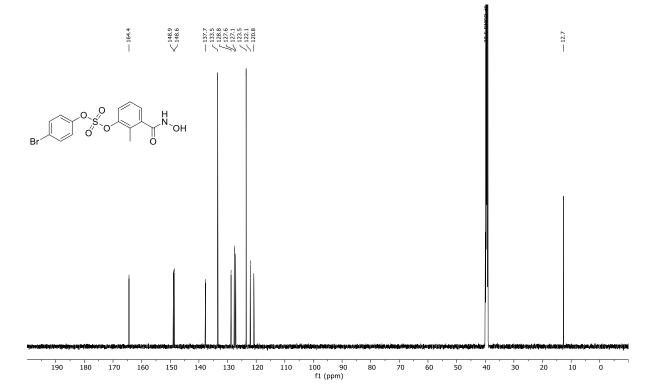


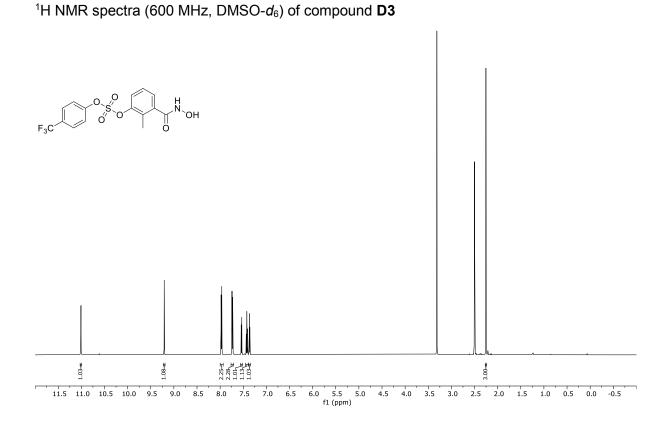


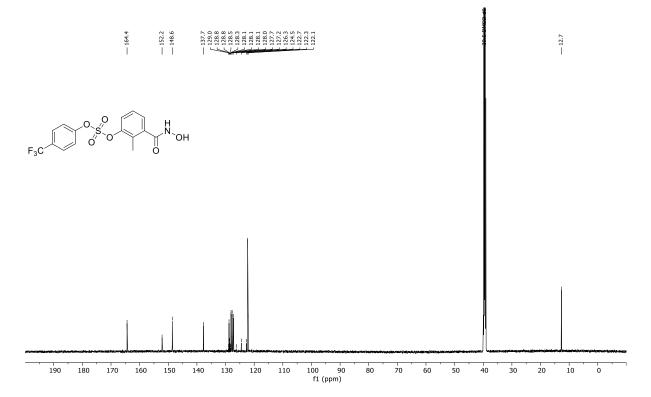
¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **C24** (minor contamination with TFA is observed at 158.8 ppm)

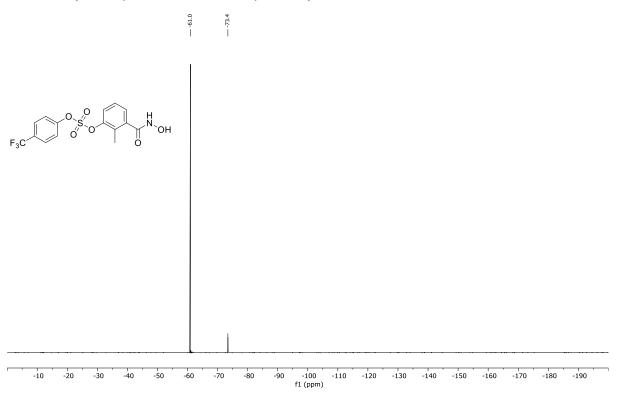


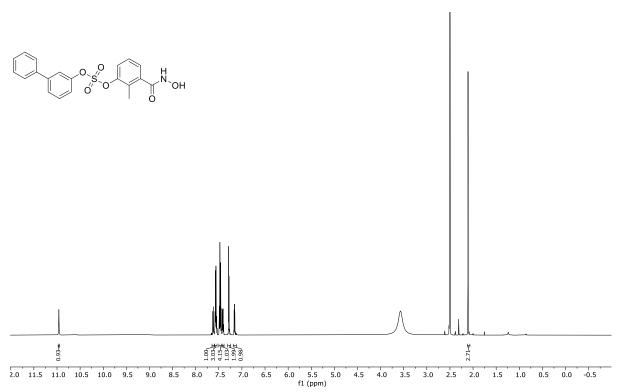

$^{19}\mathsf{F}$ NMR spectra (376 MHz, DMSO- $d_6)$ of compound C24

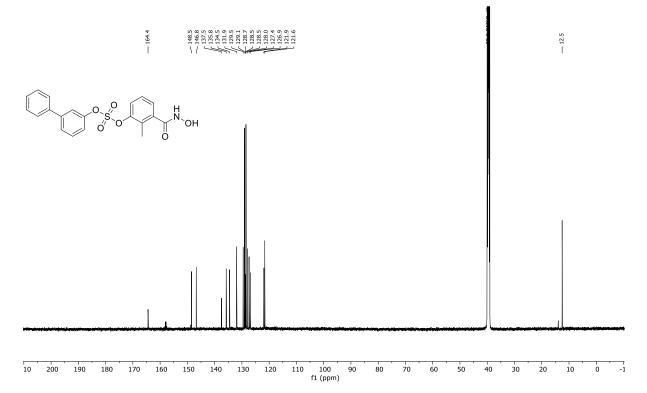


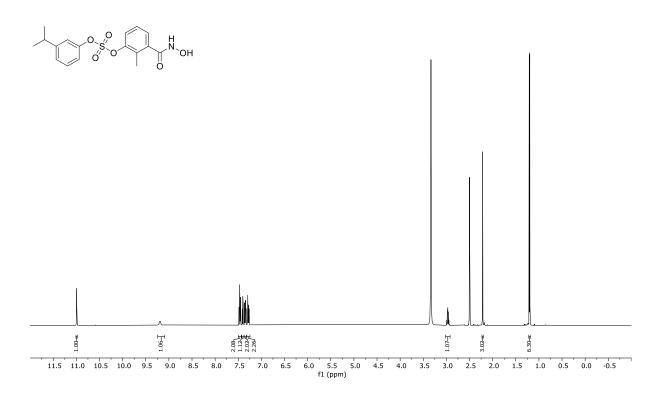

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **D1** (minor contamination with TFA is observed at 158.8 ppm)

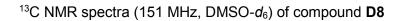


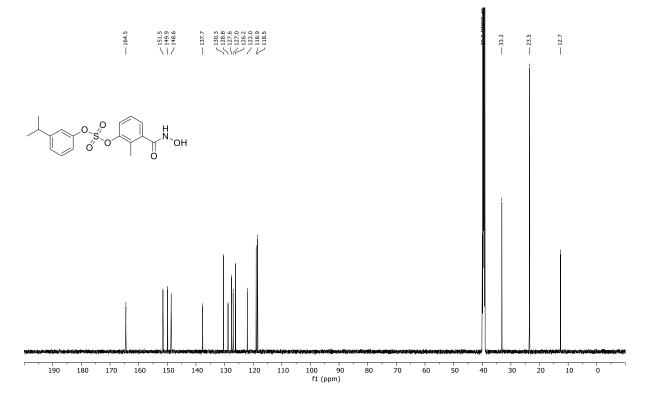


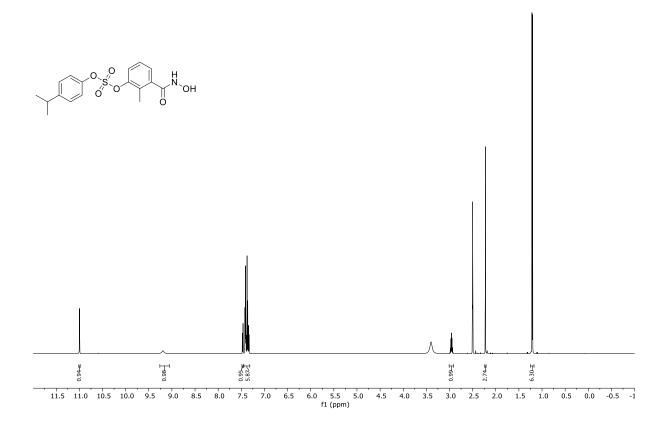

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **D2**

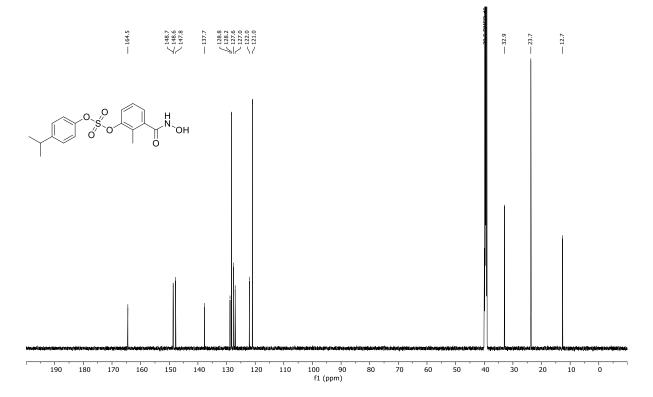


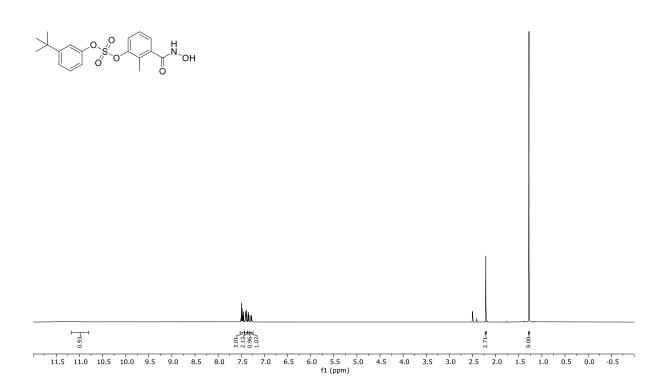


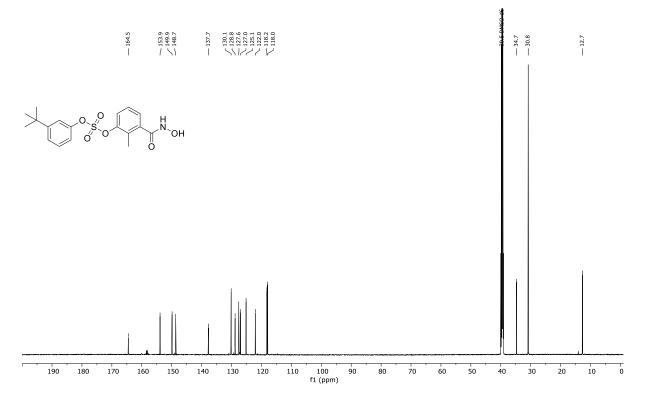


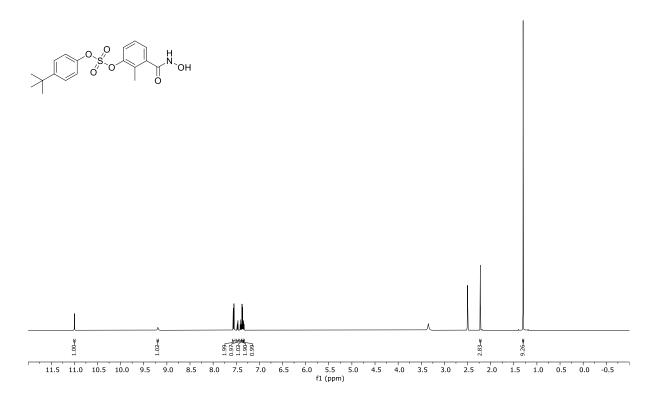


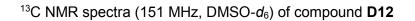

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **D4** (minor contamination with TFA is observed at 158.8 ppm)

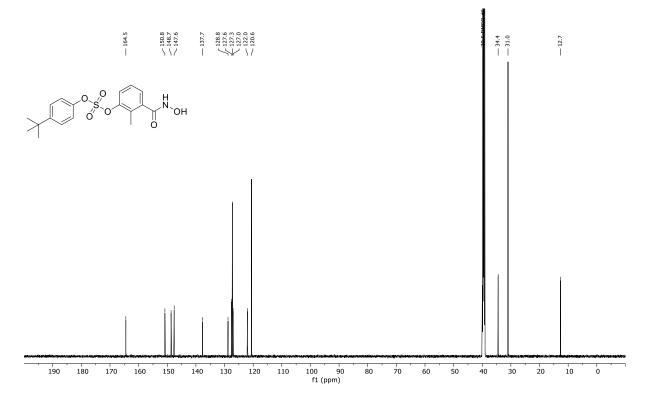


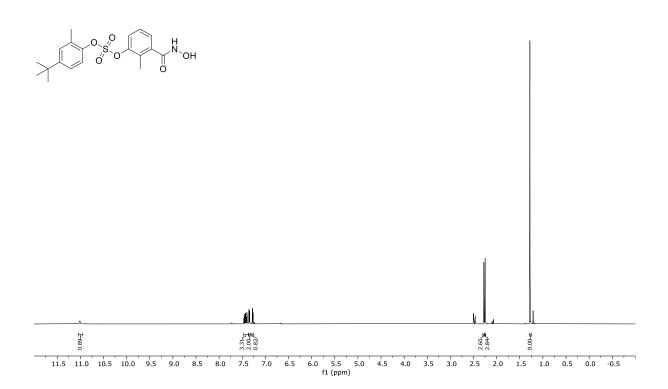


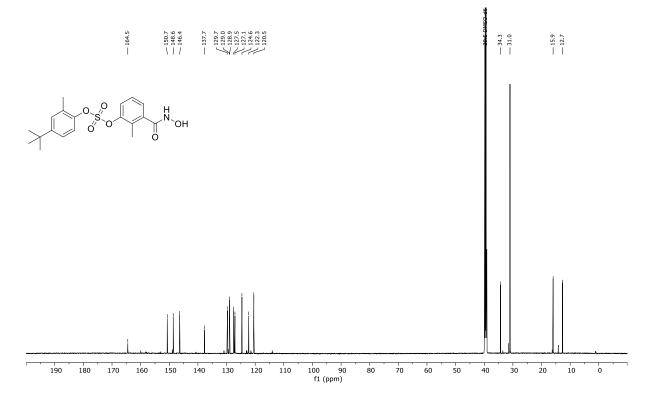


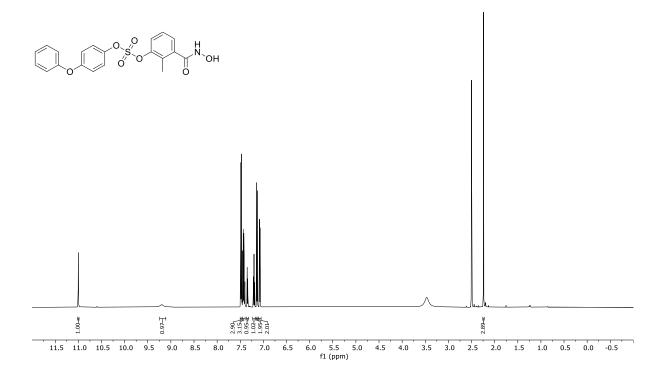

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **D9**

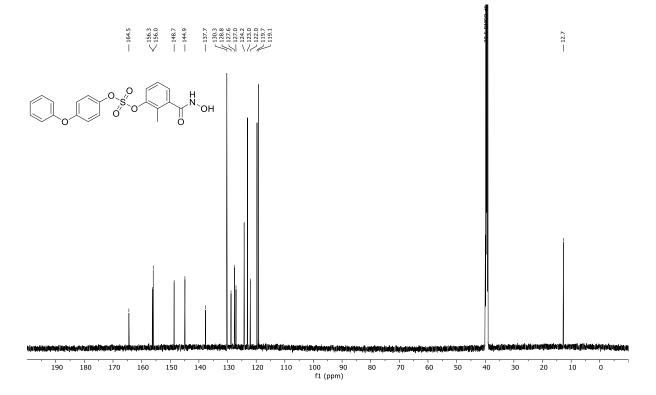


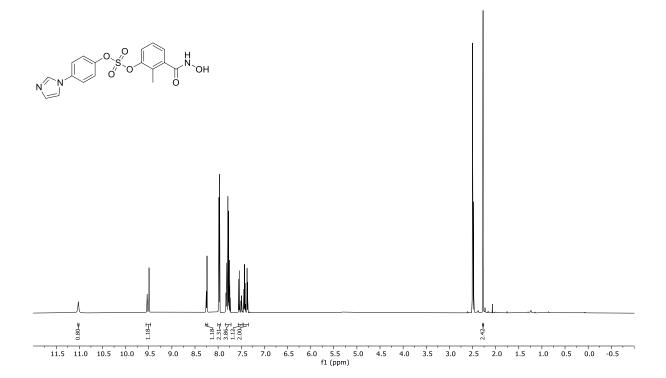


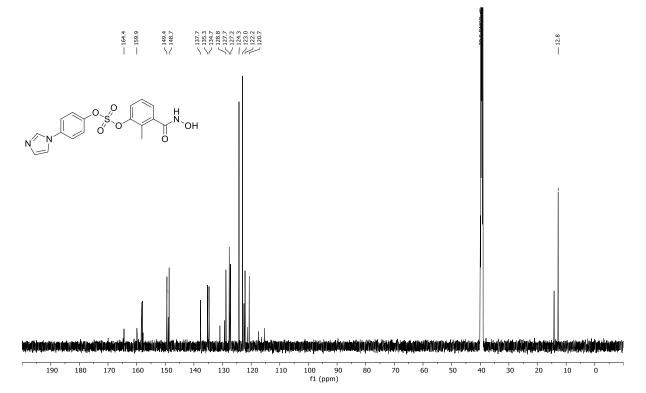

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **D11** (minor contamination with TFA is observed at 158.8 ppm)

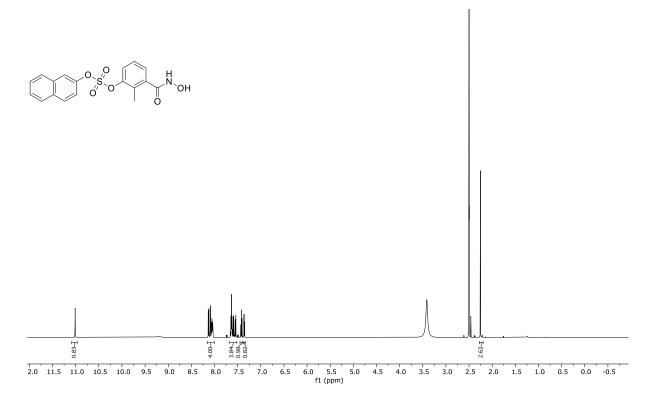


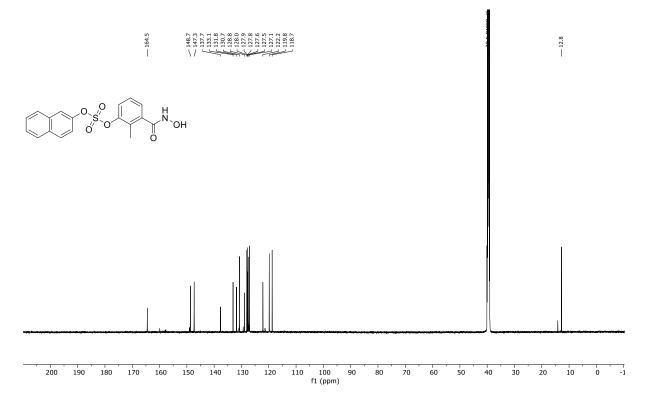


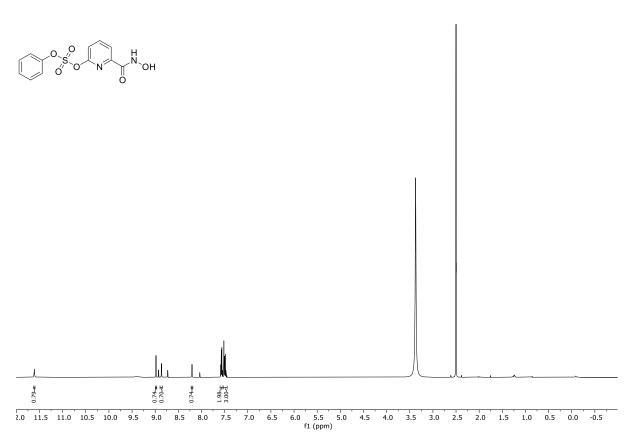


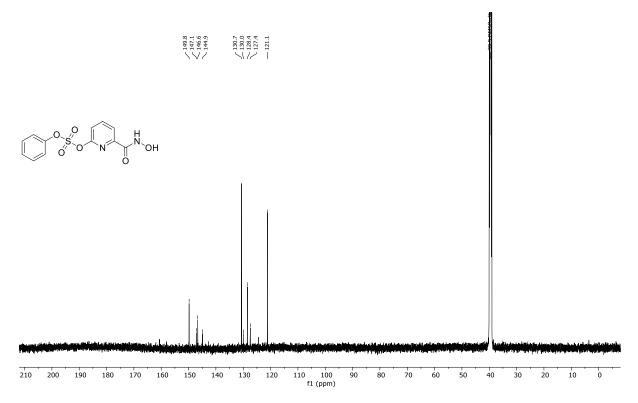


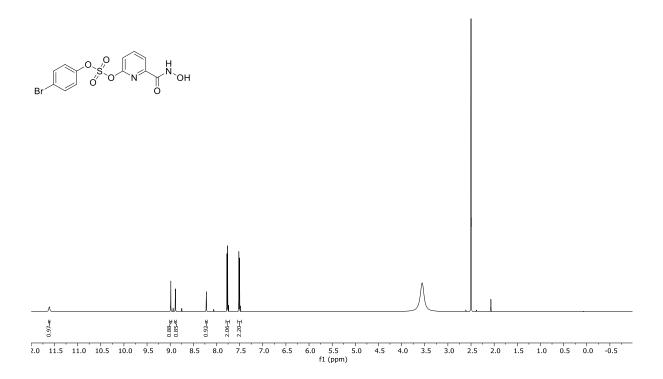




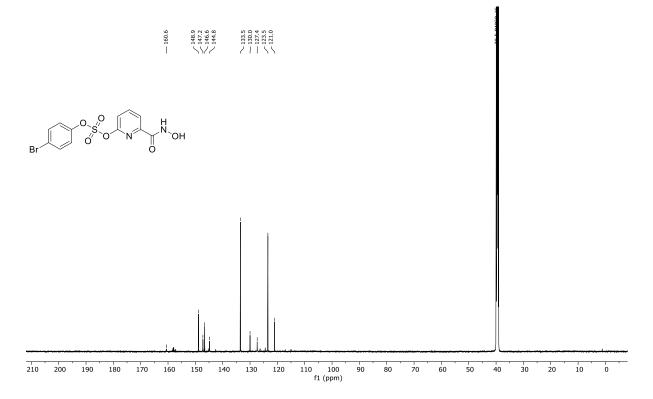


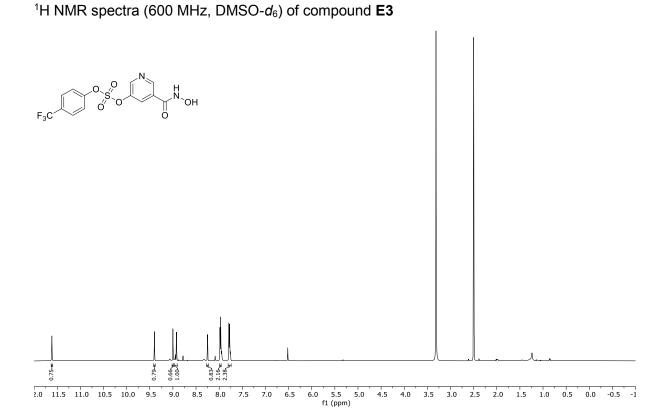

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **D23** (minor contamination with TFA is observed at 158.8 ppm)

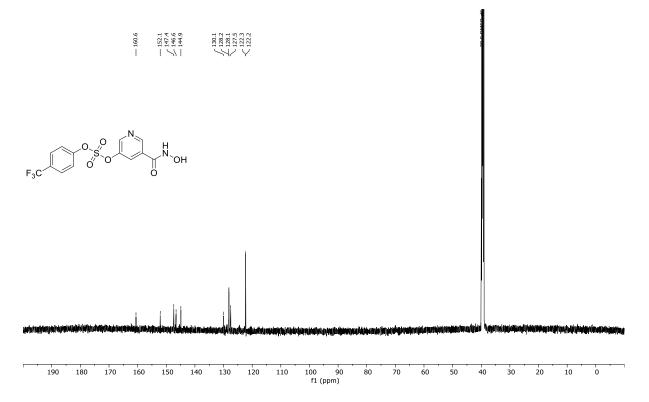


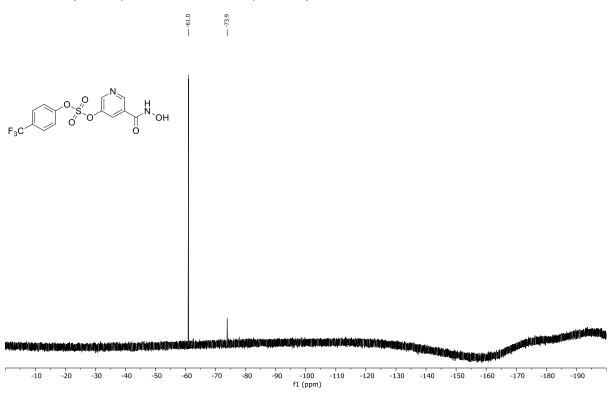


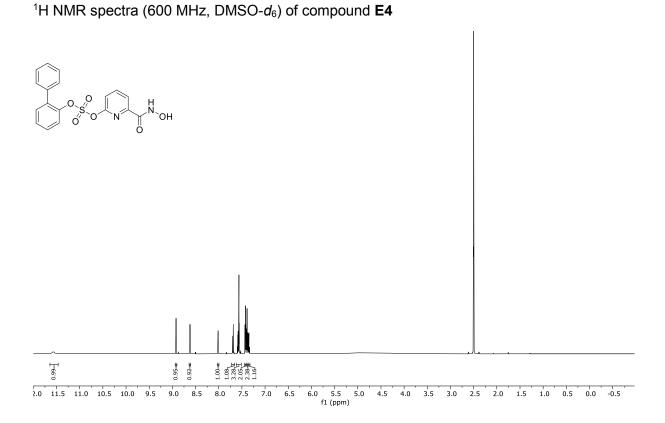
¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **D24**

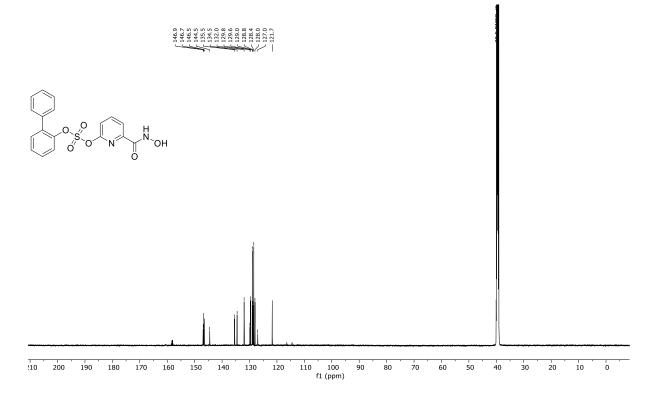


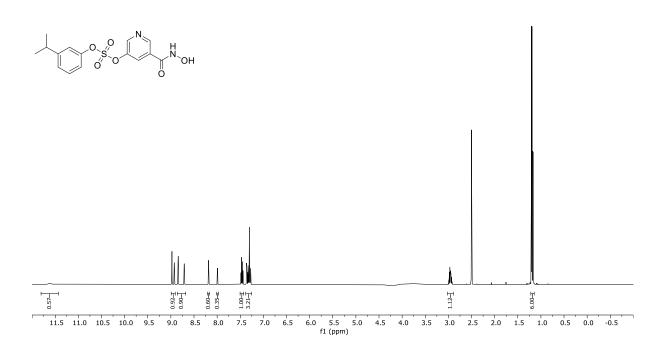


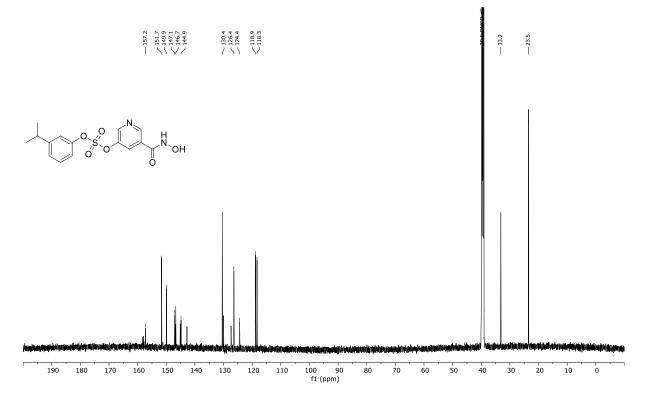


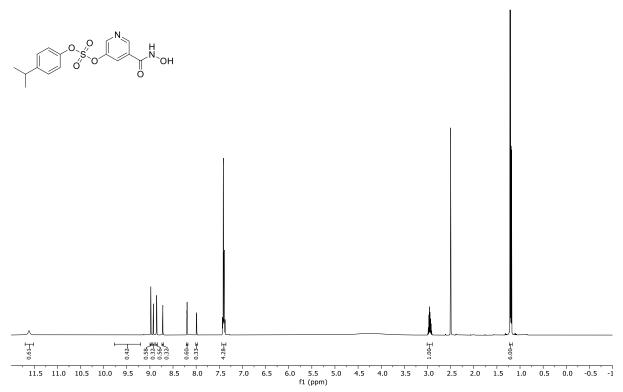

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **E2** (minor contamination with TFA is observed at 158.8 ppm)

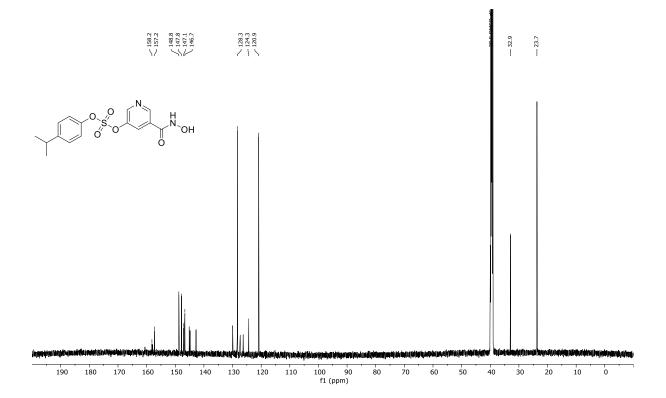


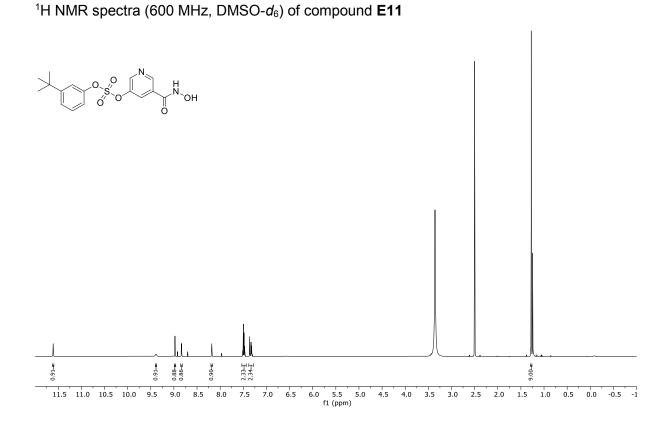


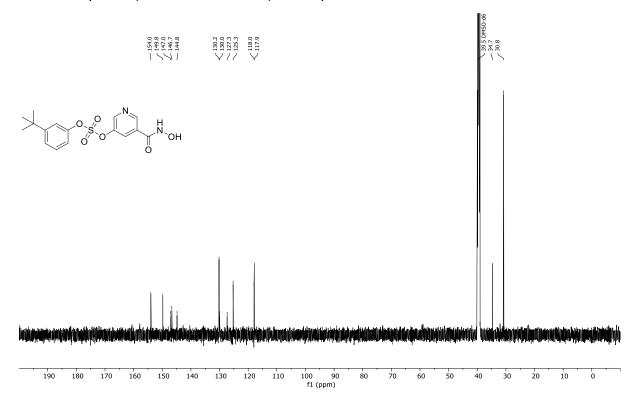

¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of compound **E3**

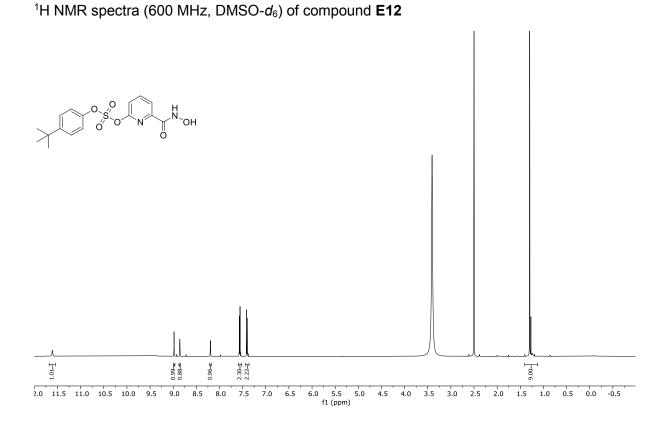


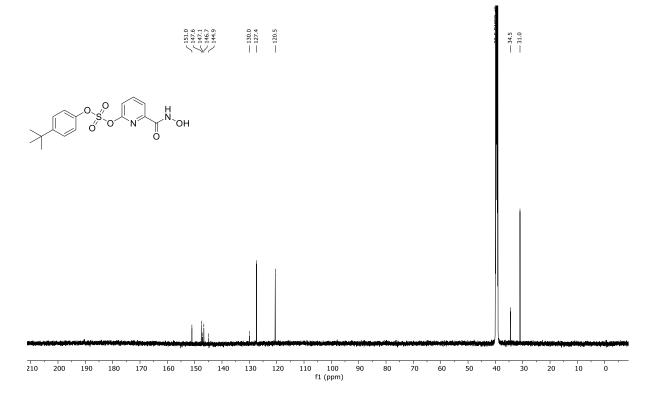

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **E4** (minor contamination with TFA is observed at 158.8 ppm)

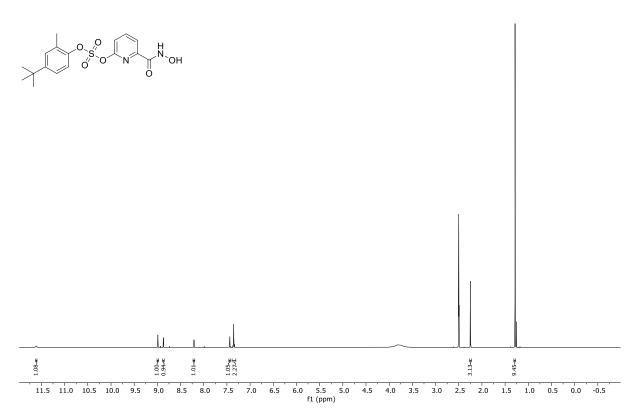


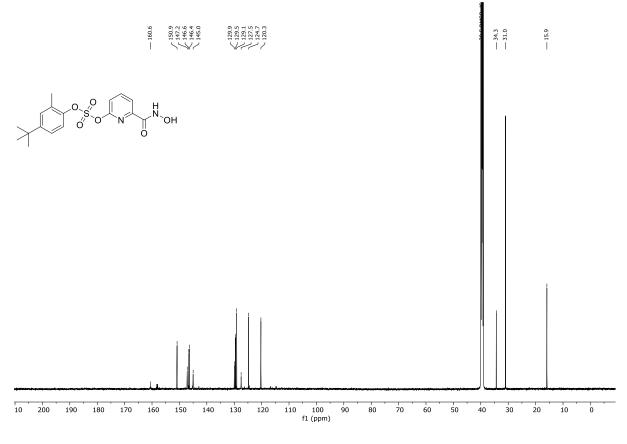

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **E8** (minor contamination with TFA is observed at 158.8 ppm)

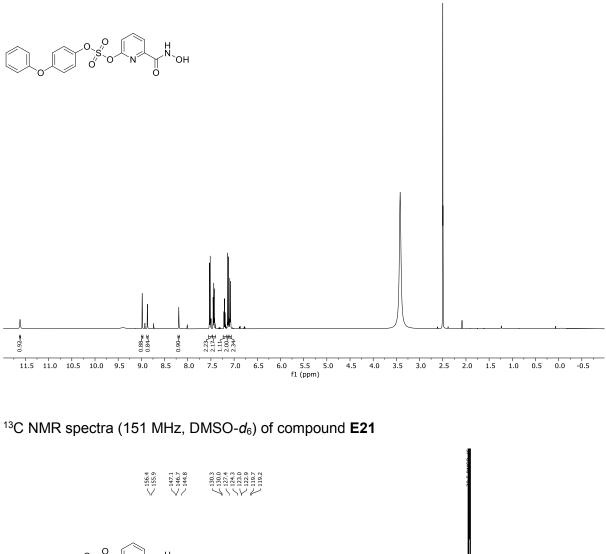


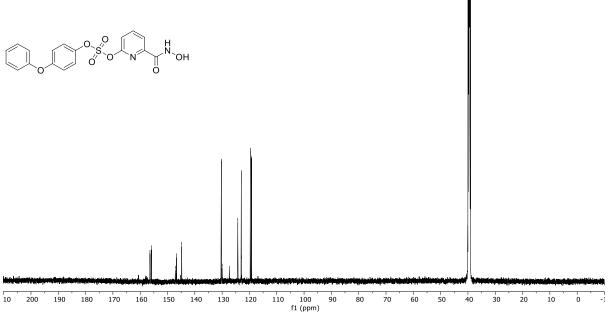


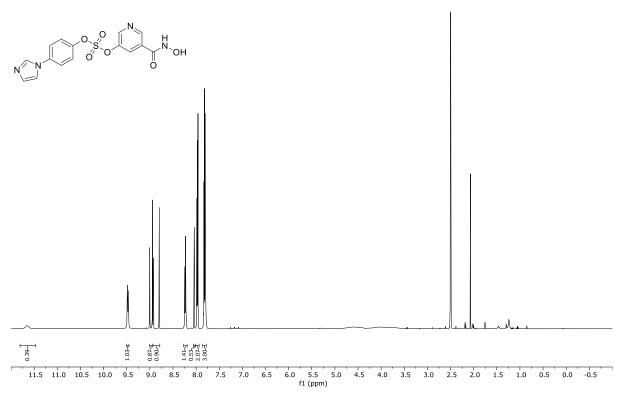


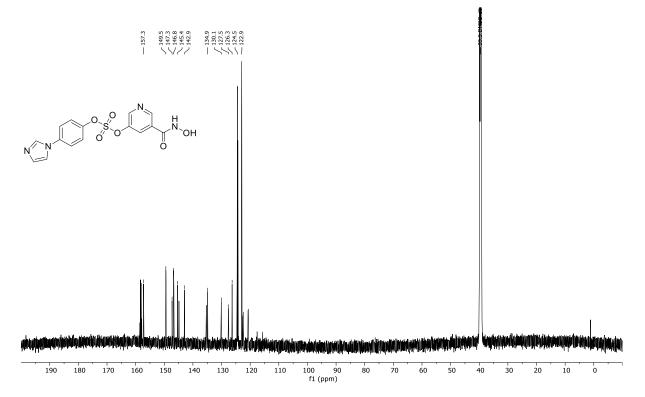

¹H NMR spectra (600 MHz, DMSO-*d*₆) of compound **E9**

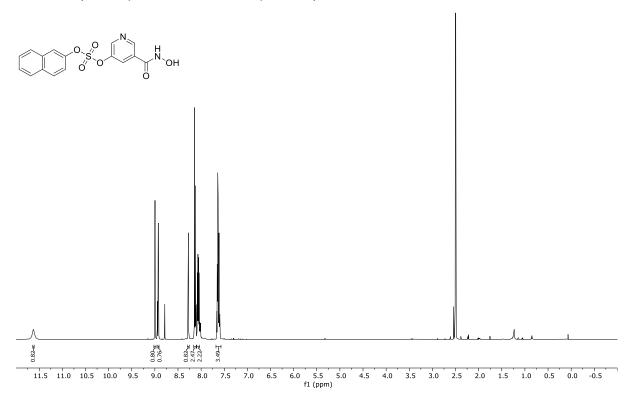


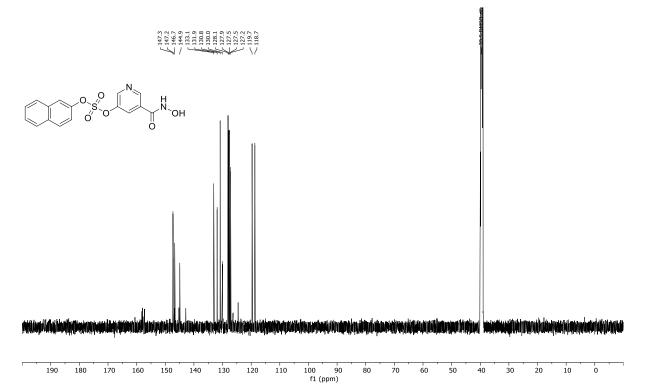


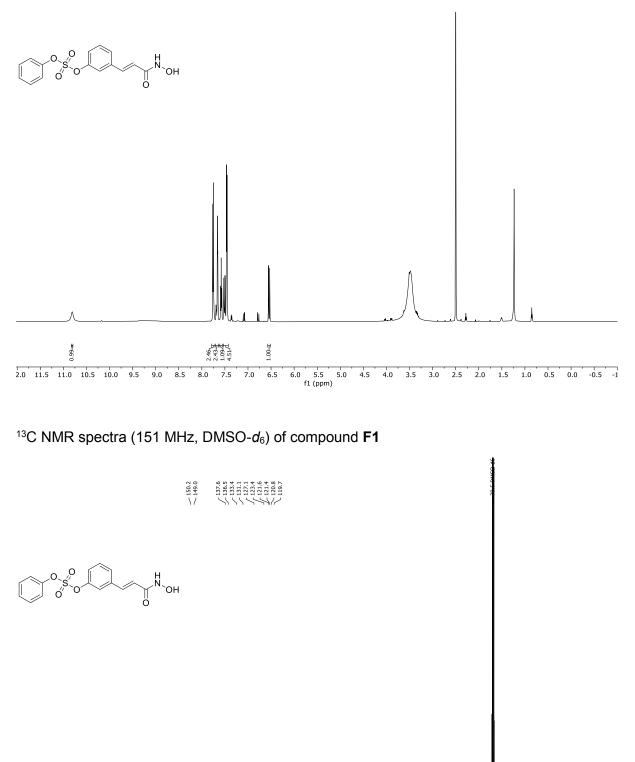


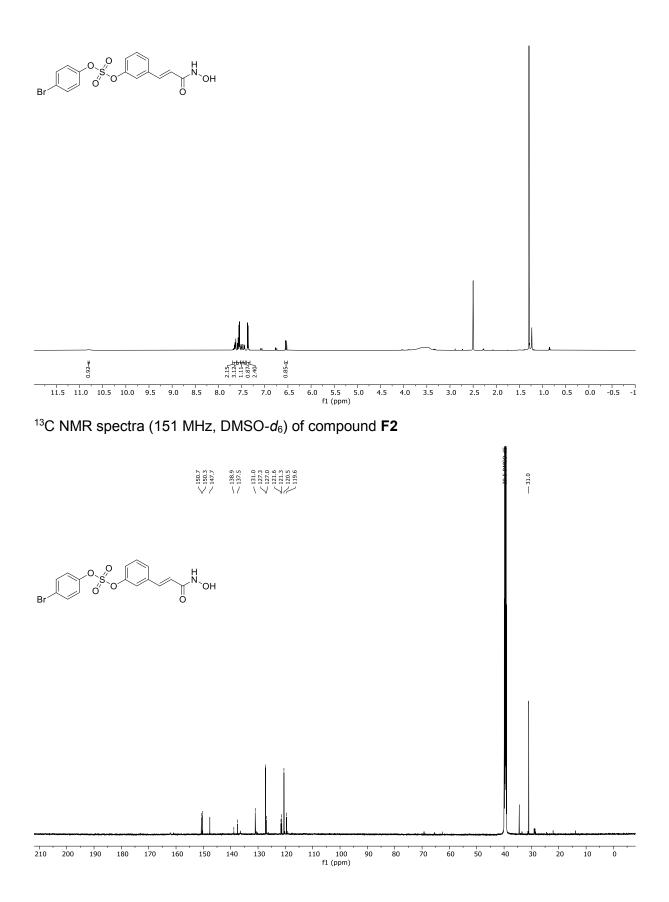

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **E19** (minor contamination with TFA is observed at 158.8 ppm)

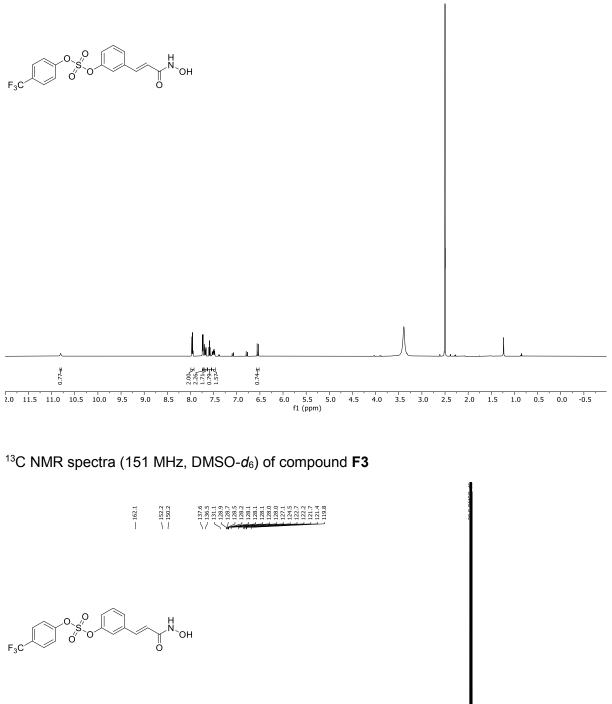

S178

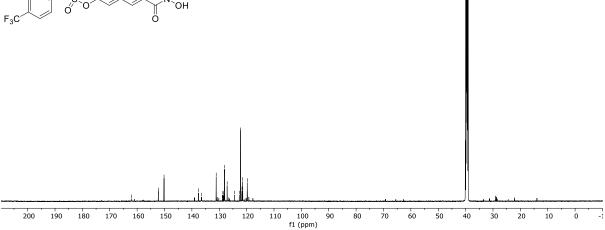




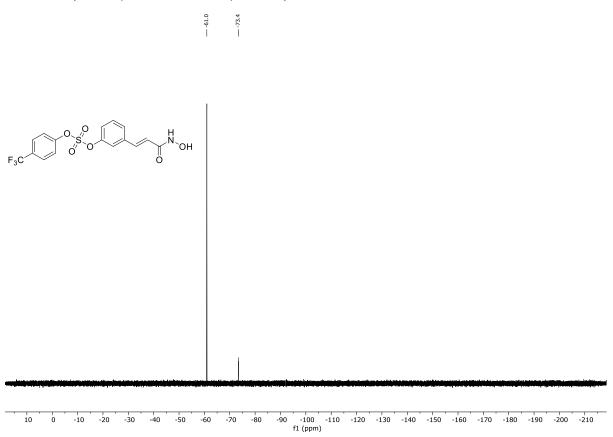

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **E23** (minor contamination with TFA is observed at 158.8 ppm)

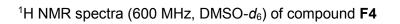

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **E24** (minor contamination with TFA is observed at 158.8 ppm)

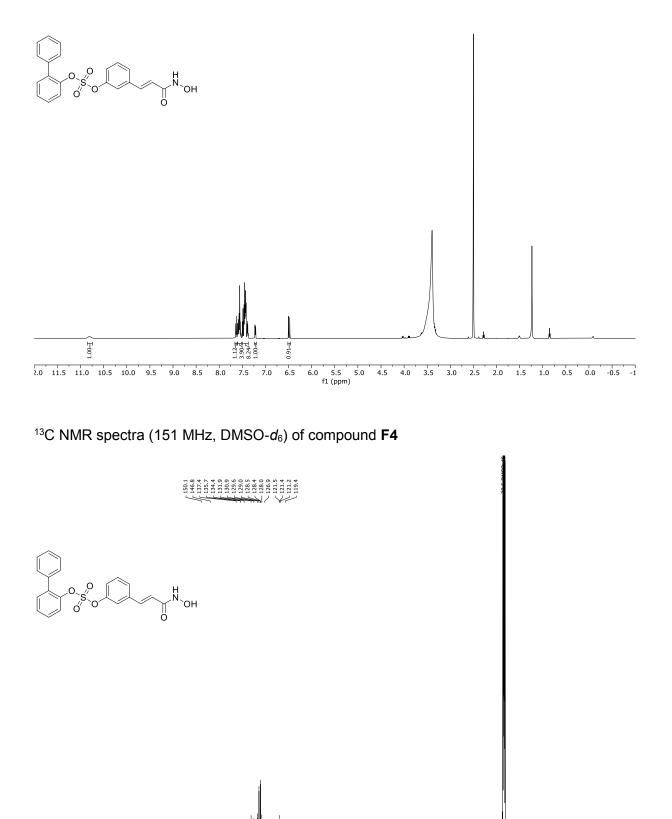


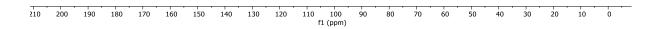


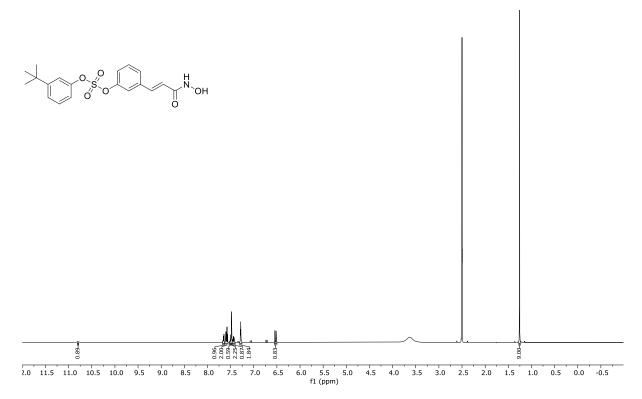
110 100 f1 (ppm)

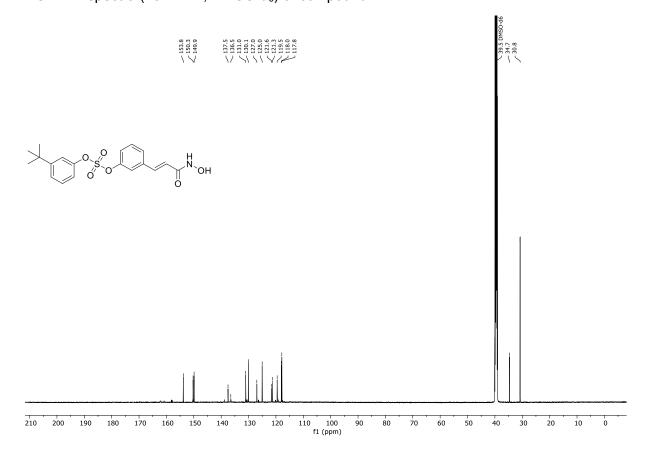

170 160

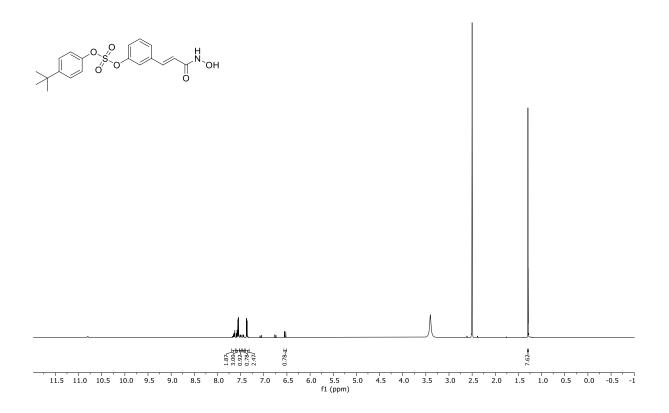


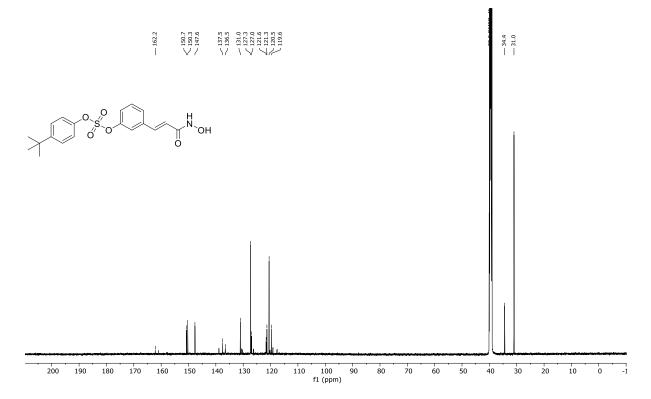


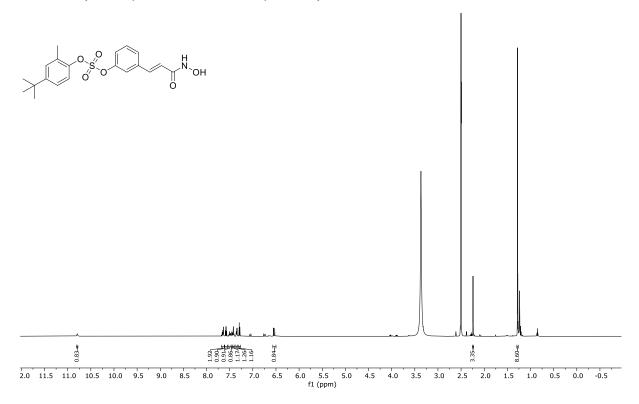


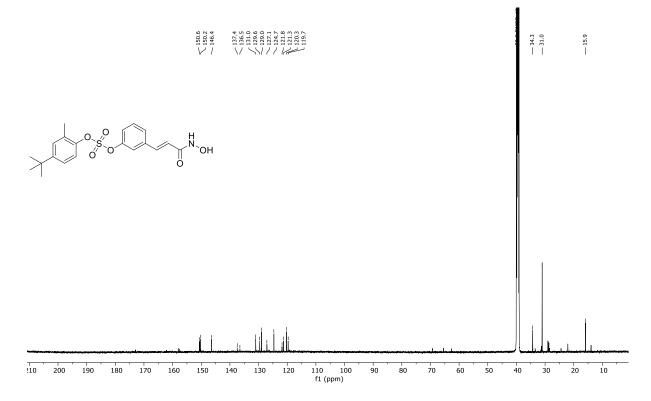

 $^{19}\mathsf{F}$ NMR spectra (376 MHz, CDCl_3) of compound F3

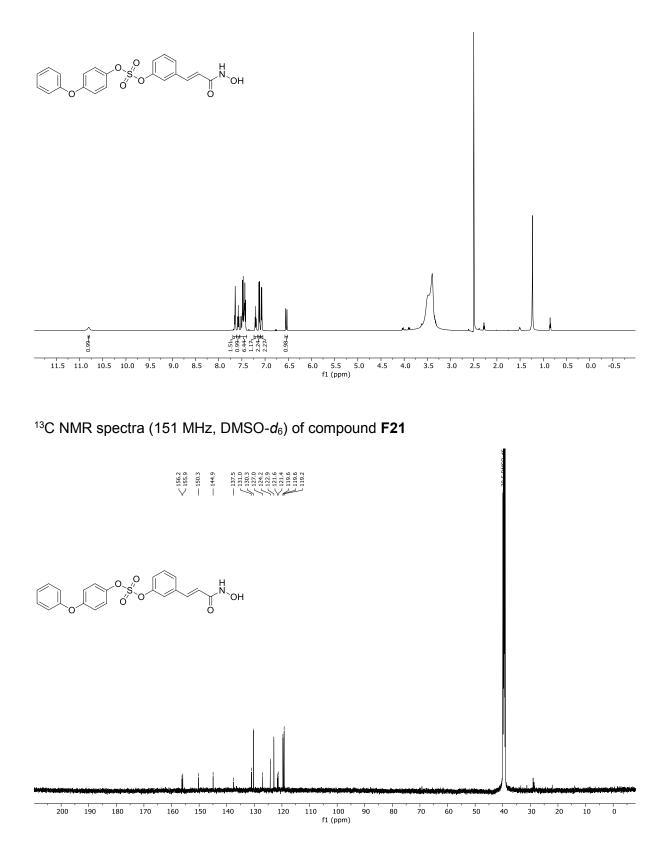







¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **F11**




¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **F12**

¹³C NMR spectra (151 MHz, DMSO-*d*₆) of compound **F19**

