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A Motivation
Dictionary learning (DL), a form of nonnegative matrix factorization (MF),
has been widely used in the analysis of biological data. However, efficient,
and biologically interpretable computational methods for analyzing long-distance
multiplexed chromatin interactions at a single-cell level are still lacking. This
gap exists primarily because classical DL methods are not tailored for network
data analysis. Furthermore, these interactions cannot be easily visualized or
predicted via classical clustering approaches. This issue is best illustrated by
Fig A, where a part of the contact map contains three hidden clusters, colored
red, green, and blue [1]. When using a linear chromatin order, the particular
structure of the clusters is not observable. By rearranging the rows/columns,
the cluster structure becomes apparent within the adjacency matrix.

(a) (b) (c)

Fig A. (a) Observed adjacency matrix of a three-cluster model, where points
are arranged in linear order with dense interactions existing both at short- and
long-range. (b) The underlying cluster structure. (c) The reordered adjacency
matrix that reveals all interaction classes.

To mitigate this issue, we propose a novel online convex network dictionary
learning algorithm (online cvxNDL) that imposes “convexity” constraints on
the sampled subgraph patterns to address the issue of interpretability. Further-
more, due to its online nature, it scales to large graph-structured datasets. The
detailed algorithmic implementations are described in the next section.
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B Algorithmic Details
The algorithms presented in this section describe the detailed steps of imple-
mentation outlined in the Methods Section.

B.1 MCMC Sampling of Subnetworks
We use the MCMC sampling in conjunction with subnetwork sampling to gen-
erate online samples. We seek samples in the form of subnetworks induced by
k nodes in the original input network G such that these subnetworks contain
the template F topology. Given an input network G = (V,A) and a template
network F = ([k],AF ), we define a set of homomorphisms as a vector of the
form (with the assumption that 00 = 1):

Hom(F,G) =

x : [k] → [n]

∣∣∣∣∣∣
∏

1≤i,j≤k

A[x[i], x[j]]AF [i,j] = 1

 .

Algorithm A outlines how to use rejection sampling to obtain one homomor-
phism x (an illustrative example is presented in Fig 1(d) in the main text). In
this work, we use a k-path as the template network, where a k-path represents
a directed path from node 1 to k. Paths serve as a simple and natural choice
for networks containing inherent long paths, such as chromatin interaction net-
works, where most contact measurements are due to proximity in the linear
chromosome order.

Algorithm A Rejection Sampling of Homomorphisms

1: input: Network G = ([n],A), template F = ([k],AF ) (under the assump-
tion that there exists at least one homomorphism F → G).

2: while true do
3: Sample x = (x[1], x[2], . . . , x[k]) ∈ [n]k so that x[i]’s are i.i.d.
4: if

∏
1≤i,j≤k A[x[i], x[j]]AF [i,j] > 0 then

5: break
6: end if
7: end while
8: return A homomorphism x : F → G.

While we can find different homomorphisms from the input G by iteratively
executing Algorithm A, this method is computationally expensive. To efficiently
generate a sequence of sample adjacency matrices Axt

from G, the MCMC
sampling algorithm gradually changes the sampled subnetwork based on previ-
ous samples as described in Algorithm B. An illustrative example is shown in
Fig 1(e) in the main text. This sampling algorithm was introduced in [3, 4].
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Algorithm B The MCMC Sampling Algorithm

1: input: Network G = ([n],A), template F = ([k],AF ), and one homomor-
phism x : F → G.

2: Sample v ∈ Neighbor(x[1]) with probability P (v) = 1
N [x[1]] .

3: Compute the acceptance probability

β = min

{ ∑
c∈[n] A

k−1[v,c]∑
c∈[n] A

k−1[x[1],c]

∑
c∈[n] A[x[1],c]∑
c∈[n] A[v,c] , 1

}
.

4: Sample u uniformly at random from [0, 1].
5: if u < β then
6: x′[1] = v
7: else
8: x′[1] = x[1]
9: end if

10: for s = 2, 3, . . . , k do
11: Sample w ∈ [n] with probability Ps(w) =

A[x′[s−1],w]∑
c∈V A[x′[s−1],c] .

12: x′[s] = w
13: end for
14: return New homomorphism x′ : F → G.

B.2 Online Convex NDL (online cvxNDL)
Our online cvxNDL algorithm consists of two parts: initialization and iterative
optimization. For initialization, we compute an initial choice for the dictionary
elements D0 and initialize the representative regions X̂

(j)
0 , ∀j ∈ [K] using i.i.d.

sampling of homomorphisms (Algorithm C). Note that we use i.i.d. sampling
of homomorphisms only during the initialization step, and MCMC sampling
afterwards. Upon initialization, we iteratively optimize the dictionary and the
representative regions in the next phase (Algorithm D). The output of the
latter algorithm is the final dictionary DT and the corresponding representative
regions for all dictionary elements X̂

(j)
T , ∀j ∈ [K]. Due to the added convexity

constraint, each dictionary element DT [:, j] at the final step T has the following
interpretable form:

DT [:, j] =
∑

i∈[Nj ]

wj,iX̂
(j)
T [:, i], s.t.

∑
i∈[Nj ]

wj,i = 1, wj,i ≥ 0, i ∈ [Nj ], j ∈ [K].

The weight wj,i, i ∈ [Nj ] is the convex coefficient of the ith representative of
dictionary element DT [:, j].
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Algorithm C Initialization
1: input: Use rejection sampling in Algorithm A to sample i.i.d homomor-

phisms x1, x2, . . . , xN .
2: For each homomorphism, define an adjacency matrix such that: Axi

[a, b] =
A[xi[a], xi[b]]. Flatten the adjacency matrices into vectors: x1, x2, . . . , xN ,
xi ∈ Rd, d = k2 and collect them in X̂ ∈ Rd×N .

3: Run K-means on X̂ to generate the cluster indicator matrix H ∈ {0, 1}N×K

and determine the initial cluster sizes (subsequent representative set sizes)
Ni, i ∈ [K].

4: Compute D0 and X̂
(i)
0 ∈ Rd×Ni , ∀i ∈ [K], according to:

D0 = X̂ H diag(1/N1, . . . , 1/NK)

and summarize the initial representative sets of the clusters into matrices
X̂

(i)
0 , i = [K].

5: return D0, {X̂(i)
0 }i∈[K].
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Algorithm D Online cvxNDL

1: input: Network G = ([n],A), template F = ([k],AF ), a parameter λ ∈ R,
max number of iterations T , and number of dictionary elements K.

2: initialization: Compute D0, {X̂(i)
0 }i∈[K] using Algorithm C. Set A0 = 0,

B0 = 0.
3: for t = 1 to T do
4: MCMC sample a homomorphism xt (Algorithm B). Find its adjacency

matrix Axt
[a, b] = A[xt[a], xt[b]] and flatten it to xt.

5: Update Λt according to:

Λt = argmin
Λ∈RK×1

1

2
∥xt −Dt−1Λ∥22 + λ ∥Λ∥1 . (1)

6: Set At =
1
t ((t− 1)At−1 +ΛtΛ

T
t ) and Bt =

1
t ((t− 1)Bt−1 + xt Λ

T
t ).

7: Choose the index of the basis it to be updated according to it =
argmaxj∈[k] Λt[j]

8: Generate the augmented representative regions {Ŷl
t}l∈[Nit ]∪{0}:

Ŷ0
t = X̂it

t−1

{Ŷl
t}l∈[Nit ]

: Ŷl
t[j] =

{
X̂it

t−1[j], if j ∈ [Ni] \ l
xt, if j = l.

(2)

9: Update {X̂t
i}i∈[K] and Dt by executing the following two steps

• Compute l⋆, D̂⋆ by solving the optimization problems:

l⋆, D̂⋆ = argmin
l, D s.t.

D[j]∈cvx{X̂j
t−1} j ̸=it,

D[it]∈cvx{Ŷl
t}

1

2
Tr(DTDAt)− Tr(DTBt).

• Set

X̂i
t =

{
Ŷl⋆

t , if i = it

X̂i
t−1, if i ∈ [K] \ it,

Dt = D̂⋆.

10: end for
11: return DT , X̂(i)

T , ∀i ∈ [K].
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C Synthetic Data Analysis
We tested our online cvxNDL method on a network (graph) generated by
Stochastic Block Model (SBM) [1], containing 150 nodes with 3 clusters of size
25, 50, 75. Due to the small size of the synthetic set, we fixed the number of
dictionary elements to K = 6 and used a path of length 11 as our template. In
the initialization step, we sampled 30 subgraphs from the input synthetic data
network, with each dictionary element represented by at least 3 representatives.
The maximum number of iterations of the online method was set to 1, 000.

We compared online cvxNDL with various baseline methods, including NMF,
CMF, and online NDL. The learned dictionary elements for different methods
are shown in Fig B. The dictionary elements in online NDL and online cvxNDL
are ordered by their importance score defined as γ(i) = At[i,i]

2∑
j∈[K] At[j,j]2

. Each
square block in the subplots indicates one dictionary element in the form of an
adjacency matrix. The color-shade reflects the values in the adjacency matrix,
with black corresponding to 1 (the largest value) and white corresponding to 0
(the smallest value).

From the results, we can see that dictionaries generated using NMF only
contain partial interaction structures and are hard to interpret. The two con-
vex methods, CMF and online cvxNDL, contain the template structure in all
learned dictionary elements and show stronger off-diagonal connectivity, which
is expected as the input data has slightly stronger connections between the first
and last cluster than other pairs (See Fig A). Online NDL dictionary elements
represent “a middle ground” between NMF and online cvxNDL. Dictionary ele-
ments 2, 0, and 4 resemble those generated by NMF, while dictionary elements
1, 5, and 3 are similar to the ones generated by online cvxNDL, although with
weaker connectivity. Also, the importance score distributions of online NDL
and online cvxNDL differ substantially. In online NDL, dictionary element 1
in Fig Bb is the dominant component in representations, whereas, in online
cxvNDL, the top two dictionary elements (dictionary elements 2 and 5 in Bd)
share similar scores and the dictionary elements, in general, have a more bal-
anced distribution of importance scores. From the original adjacency, we can
see that there are indeed two different connectivity patterns in the network
captured by online cvxNDL.

To show that our method scales well, and significantly better than regu-
lar convex methods, we generated synthetic data and compared the running
time and computed memory requirements for online cvxNDL and convex ma-
trix factorization (CMF), the only other method that provides biologically inter-
pretable results. We created synthetic datasets of successively larger sizes using
the stochastic block model with n = 500, 1000, 1500, 2000, and 2500 nodes,
respectively. The graphs consist of 3 underlying clusters of sizes 0.2×n, 0.2×n,
and 0.6×n. Although these numbers appear rather small, CMF already becomes
computationally prohibitive for several thousand nodes. It hence represents the
bottleneck for comparative studies (see Fig C(a)). In terms of compute mem-
ory requirements, online cvxNDL seems to follow a near-constant trend (see
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(a) NMF (b) Online NDL

(c) CMF (d) Online cvxNDL

Fig B. Dictionary elements generated by different methods on an SBM
synthetic dataset. Numbers in parenthesis are the importance scores for online
NDL and online cvxNDL.

Fig C(b)). This is due to the fact that at each step, the online cvxNDL al-
gorithm looks at one sample and decides to retain it or reject it based on the
improvement it provides for the learned dictionaries. Hence, the compute mem-
ory scales with the size of the dictionary and not the size of the input network.
CMF, on the other hand, requires access to the entire input graph for each
update step.
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(a) Run time (b) Compute memory

Fig C. Run time and memory requirements for CMF and online cvxNDL for
successively larger networks generated using SBM.

Reconstruction accuracy: To validate the reliability of our learned dic-
tionaries for representing the global interactions, we reconstructed the whole
graph by aggregating the regenerated subgraphs: x̂i = DTαi from the same
MCMC sampling stream. For each method we selected the top-m edges after
aggregation to reconstruct the original adjacency matrix, where m is the number
of edges in the original adjacency matrix. The original and the reconstructed
adjacency matrices are shown in Fig 7 in the main text. For comparison, we
also added the reconstructed adjacency achieved when using random dictionary
elements. From the results, we can see that all baseline methods, as well as
online cvxNDL, almost perfectly reconstruct the original network, while, clearly
random dictionaries do not capture any meaningful information. We also report
the average precision recall score for each method, both for synthetic and real
datasets as listed in Table 1 in the main text.

D ChIA-Drop Dataset
The preprocessed and binned RNAPII ChIA-Drop data includes 45, 938, 42, 292,
49, 072, and 55, 795 nodes and 36, 140, 28, 387, 53, 006, 45, 530 hyperedges for
chromosome chr2L, chr2R, chr3L and chr3R respectively. The size distribution
of hyperedges is given in Table A. The clique-expanded input network has
113, 606, 85, 316, 161, 590, and 143, 370 edges respectively. Fig D plots the
number of MCMC samples needed for given percentages of node coverage.

The dictionary elements for each of the 4 chromosomes are presented in Fig 5
in the main text. The density or complexity of dictionary elements, defined
as ρ = 1

k2

∑k
i,j=1 DT [i, j], is reported in Table B while the median distance

of pairwise interacting nodes in all representatives of a dictionary element is
reported in Table C.
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Table A. Number of hyperedges of various sizes observed in the ChIA-Drop
data for various chromosomes.

hyperedge
sizes chr2L chr2R chr3L chr3R

2 28373 22951 42175 35585
3 5723 4018 8103 7379
4 1307 936 1804 1700
5 424 275 533 479
6 136 94 196 187
7 60 41 82 69
8 48 29 38 31
9 21 15 28 22
10 8 5 16 7
11 7 6 9 8
12 11 2 7 9
13 5 2 5 7
14 7 2 2 5
15 4 2 1 4
16 3 2 1 4
17 1 2 2 0
18 2 1 1 1
19 0 1 0 0
≥20 1 4 4 7

Fig D. Number of MCMC samples needed for given percentages of node
coverage.

9



Table B. Density of dictionary elements, reported for all chromosomes.
Dictionary
element chr2L chr2R chr3L chr3R

1 0.146 0.158 0.168 0.161
2 0.188 0.165 0.156 0.157
3 0.134 0.185 0.141 0.140
4 0.220 0.147 0.159 0.179
5 0.145 0.146 0.142 0.139
6 0.132 0.297 0.148 0.173
7 0.162 0.189 0.191 0.184
8 0.158 0.184 0.164 0.147
9 0.148 0.136 0.210 0.183
10 0.177 0.166 0.168 0.157
11 0.220 0.261 0.163 0.161
12 0.168 0.162 0.145 0.157
13 0.204 0.203 0.186 0.142
14 0.225 0.142 0.148 0.205
15 0.142 0.229 0.262 0.163
16 0.173 0.184 0.143 0.205
17 0.189 0.263 0.127 0.224
18 0.161 0.219 0.152 0.251
19 0.182 0.159 0.183 0.242
20 0.187 0.156 0.170 0.193
21 0.231 0.157 0.199 0.126
22 0.143 0.195 0.165 0.150
23 0.162 0.201 0.134 0.175
24 0.223 0.141 0.167 0.212
25 0.167 0.212 0.140 0.208

Table C. Median distance of pairwise interacting nodes within each
dictionary element and for each chromosome.

dictionary
element chr2L chr2R chr3L chr3R

1 10758 6738 7328 14753
2 8523 7688 12934 14760
3 9906 8759 9539 12666
4 8354 7158 12690 11748
5 9847 7651 10412 13674
6 8547 6953 10608 15598
7 10024 9383 11994 13498
8 8870 9226 10399 12830
9 10692 7085 14414 12493
10 11220 6414 9466 11930
11 10455 10711 10130 11421
12 8488 7656 11694 9398
13 9979 7706 14206 13455
14 10591 8251 8689 12540
15 10928 7284 10532 12572
16 10268 7143 8849 13842
17 8545 9681 9978 15184
18 8675 6859 8558 11974
19 9854 7882 8501 18233
20 9314 8199 10532 11592
21 9343 8872 9728 12791
22 8105 6418 10214 13301
23 8870 7418 11012 14239
24 9527 8764 10010 12692
25 11072 9711 13471 11316
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D.1 Results for Baseline Methods Applied to ChIA-Drop
Datasets

(a) chr2L (b) chr2R

(c) chr3L (d) chr3R

Fig E. Dictionaries learned by NMF for chr2L, 2R, 3L and 3R.
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(a) chr2L (b) chr2R

(c) chr3L (d) chr3R

Fig F. Dictionaries learned by online NDL for chr2L, 2R, 3L and 3R.
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(a) chr2L (b) chr2R

(c) chr3L (d) chr3R

Fig G. Dictionaries learned by CMF for chr2L, 2R, 3L and 3R.
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E Reconstruction of ChIA-Drop Contact Maps
The reconstructions for 4 randomly selected subnetwork samples are shown
in Fig H, providing a means to visually assess the accuracy of reconstructed
small-scale interactions. While all dictionary learning methods have compara-
ble reconstruction accuracy, random dictionary elements fail to reconstruct the
original subnetwork.

(a) Reconstruction of sample #15657 (b) Reconstruction of sample #8814

(c) Reconstruction of sample #2019 (d) Reconstruction of sample #9632

Fig H. Reconstructed adjacency matrices for subnetwork samples from chr2L
obtained using different methods and random dictionary elements. OMF
stands for Ordinary (Standard) MF or NMF.

We also compared the reconstruction accuracy of various methods, including
random dictionary models, for the complete networks corresponding to the four
chromosomes, chr2L, chr2R, chr3L, and chr 3R. The corresponding reconstruc-
tion accuracy values are reported in Table 1 of the main text. The table clearly
shows that random dictionaries offer low reconstruction accuracy. The corre-
sponding reconstructed networks, along with the original network, are shown in
Figs I- L.

The random dictionary elements used in Figs I- L are obtained by randomly
selecting a subset of MCMC sampled k-paths. However, k-paths will capture
some local interaction patterns even when selected randomly. This is reflected
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by the “acceptable” partial reconstruction of the contact maps via random dictio-
naries. Even for chromosome 3L (Fig K), for which the reconstruction results
look visually indistinguishable from the original, the reconstruction accuracy
is only 52%. In comparison, our method provides significantly higher recon-
struction accuracy for all 4 chromosomes. Additionally, our method also offers
excellent accuracy on synthetic datasets of variable node sizes.

(a) Original adjacency (b) Online cvxNDL (c) Random dictionaries

(d) NMF (e) CMF (f) Online NDL

Fig I. Comparison of network reconstructions obtained using different
baseline methods and random dictionaries for Drosophila chromosome 2L. (a):
The original adjacency matrix; (b, c, d, e, f): Reconstructed network
adjacency matrices with online cxvNDL, random dictionary elements, NMF,
CMF and online NDL, respectively.
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(a) Original adjacency (b) Online cvxNDL (c) Random dictionaries

(d) NMF (e) CMF (f) Online NDL

Fig J. Reconstructed network comparisons based on different baseline
methods and random dictionaries, applied on Drosophila chromosome 2R. (a):
The original adjacency matrix. (b, c, d, e, f): Reconstructed network
adjacency matrices with online cxvNDL, random dictionary elements, NMF,
CMF and online NDL.
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(a) Original adjacency (b) Online cvxNDL (c) Random dictionaries

(d) NMF (e) CMF (f) Online NDL

Fig K. Reconstructed network comparisons based on different baseline
methods and random dictionaries, applied on Drosophila chromosome 3L. (a):
The original adjacency matrix. (b, c, d, e, f): Reconstructed network
adjacency matrices with online cxvNDL, random dictionary elements, NMF,
CMF and online NDL.
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(a) Original adjacency (b) Online cvxNDL (c) Random dictionaries

(d) NMF (e) CMF (f) Online NDL

Fig L. Reconstructed network comparisons based on different baseline
methods and random dictionaries, applied on Drosophila chromosome 3R. (a):
The original adjacency matrix. (b, c, d, e, f): Reconstructed network
adjacency with online cxvNDL, random dictionary elements, NMF, CMF and
online NDL.
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F Gene Ontology Enrichment Analysis
To associate a biological function with each dictionary element, we performed a
gene ontology (GO) enrichment analysis for each element and the correspond-
ing chromosome. Recall that as a results of the convexity constraint, every
dictionary element has its corresponding set of representatives that capture real
observed subgraphs which can be mapped back to actual genomic locations. Of
most interest is the set of genes that covers at least one vertex in at least one
of the representatives, as described in Fig M.

Fig M. GO enrichment analysis workflow. Each dictionary element is
associated with a collection of real subnetwork representatives. These comprise
nodes that can be mapped to the genome to identify their locations. A gene is
said to cover the node if the genomic fragment corresponding to the node is
fully contained within the gene.

Using the set of representative genes, we run the GO enrichment analysis
using the annotation category “Biological Process” from http://geneontology.
org, with the reference list Drosophila Melanogaster for each dictionary element.
For further analysis, we only selected results with false discovery rate (FDR)
< 0.05 and hence obtained candidate sets of enriched GO terms. Note that
there may be inherently enriched GO terms for each dictionary element due
to the sampling bias. To remove this bias, we ran another GO enrichment
analysis with all genes on each chromosome and used those results to filter out
the background GO terms for each dictionary element.

Furthermore, we utilized the hierarchical structure of GO terms [5], where
terms are represented as nodes in a directed acyclic graph, and their relation-
ships are described via arcs in the digraph. A child GO term is considered more
specific than a parent GO term. Since the GO graph is not a strict hierarchy (a
child node may have multiple parent nodes), to further improve the results, we
performed the following processing. For each GO term: i) we first find all the
paths between the term and the root node (which is “Biological process” in our
setting), and ii) we remove all intermediate parent GO terms from its enriched
GO terms set. By iteratively repeating this filtering process for each dictionary
element, we derived a set of the most specific GO terms for each dictionary
element.

19



F.1 Dictionary Elements Associated with GO Terms
We investigated the most frequently enriched GO terms as well as the least fre-
quently enriched GO terms for each chromosome and identified the correspond-
ing dictionary elements where they were found to be enriched. The results are
shown in Tables D to G. For each dictionary element, we computed its density
(complexity) ρ via ρ = 1

k2

∑
i,j Di,j and the median genomic distance between

all consecutive pairs of nodes, denoted by dmed. The full set of results for the
densities and median distances for all dictionary elements and all chromosomes
is provided in Tables B and C.

Note that the Drosophila S2 cells are embryonic cells, and most GO terms
found are related to cellular reproductive process or developmental process, as
expected. From the tables, one can also see that different dictionary elements
reflect different biological processes and for the same GO term, the dictionary
elements share similar patterns. For example, in Table D, we can see that dic-
tionary elements 19 and 12 share very similar structural patterns, and both
of them are enriched in biosynthetic processes of antibacterial peptides. On
the other hand, dictionary elements 13 and 8 have a pattern that differs from
that of 19 and 12, and they are enriched in dorsal/ventral lineage restriction
processes. We also found that dictionary elements with GO term peripheral
nervous system development, celluar response to organic substance, and neurob-
last fate determination have relatively lower density and smaller median node
distances than the top 2 enriched GO terms, regulation of reproductive process
and muscle cell cellular homeostasis. The difference in density and median dis-
tance is also reflected by the significantly different dictionary patterns observed,
such as dictionary element 12 and dictionary element 5; the former element has
a much higher density and median distance than the latter.

There are also a few shared GO terms that are enriched in both chr2L and
chr2R (11 shared terms in total) and in both chr3L and chr3R (3 shared terms
in total). The results are reported in Table H and I. We found that there are
very few shared terms between the two chromosomes when compared to the
roughly one hundred uniquely enriched GO terms for each chromosome. Most
of the shared terms also have “similar” patterns (which can be seen visually
or through a simple computation of the ℓ2 distance between their flattened
adjacency matrices) of their corresponding dictionary elements.

20



Table D. The 5 most and least enriched GO terms within the span of
dictionary elements for chr2L. Column ‘#’ indicates the number of dictionary
elements that show enrichment for the given GO term. Also reported are up to
3 dictionary elements with the largest importance score in the dictionary,
along with the “density” ρ of interactions in the dictionary element and median
distance dmed of all adjacent pairs of nodes in its representatives.

most frequent
GO term

# top 3 dictionaries least frequent
GO term

# dictionary

(GO:2000241)
regulation of
reproductive
process

5

ρ=0.134,0.142,0.161

dmed=9906,8105,10024

(GO:0007485)
imaginal disc-
derived male
genitalia devel-
opment

1

ρ=0.142

dmed=

8105

(GO:0046716)
muscle cell
cellular home-
ostasis

4

ρ=0.141,0.161,0.203

dmed=10928,10024,9979

(GO:0008347)
glial cell migra-
tion

1

ρ=0.132

dmed=

8547

(GO:0007422)
peripheral ner-
vous system
development

3

ρ=0.132,0.158,0.147

dmed=8547,8870,10692

(GO:0002920)
regulation of
humoral im-
mune response

1

ρ=0.142

dmed=

8105

(GO:0071310)
cellular response
to organic sub-
stance

3

ρ=0.134,0.142,0.158

dmed=9906,8105,8870

(GO:0016075)
rRNA catabolic
process

1

ρ=0.147

dmed=

10692

(GO:0007400)
neuroblast fate
determination

3

ρ=0.132,0.142,0.147

dmed=8547,8105,10692

(GO:0008258)
head involution

1

ρ=0.147

dmed=

10692
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Table E. The 5 most and least enriched GO terms within the span of
dictionary elements for chr2R. Column ‘#’ indicates the number of dictionary
elements that show enrichment for the given GO term. Also reported are up to
3 dictionary elements with the largest importance score in the dictionary,
along with the “density” ρ of interactions in the dictionary element and median
distance dmed of all adjacent pairs of nodes in its representatives.

most frequent
GO term

# top 3 dictionaries least frequent
GO term

# dictionary

(GO:0030706)
germarium-
derived oocyte
differentiation

6

ρ=0.140,0.145,0.146

dmed=8764,7651,7158

(GO:0050803)
regulation of
synapse struc-
ture or activity

1

ρ=0.140

dmed=

8764

(GO:0001700)
embryonic de-
velopment via
the syncytial
blastoderm

5

ρ=0.145,0.141,0.136

dmed=7651,8251,7085

(GO:0007498)
mesoderm de-
velopment

1

ρ=0.183

dmed=

7143

(GO:0007451)
dorsal/ventral
lineage restric-
tion, imaginal
disc

4

ρ=0.140,0.136,0.157

dmed=8764,7085,6738

(GO:0010638)
positive regula-
tion of organelle
organization

1

ρ=0.145

dmed=

7651

(GO:0006964)
positive regula-
tion of biosyn-
thetic process
of antibacte-
rial peptides
active against
Gram-negative
bacteria

3

ρ=0.145,0.156,0.202

dmed=7651,8199,7706

(GO:0043277)
apoptotic cell
clearance

1

ρ=0.136

dmed=

7085

(GO:0045476)
nurse cell apop-
totic process

3

ρ=0.141,0.159,0.136

dmed=8251,7882,7085

(GO:0001707)
mesoderm for-
mation

1

ρ=0.183

dmed=

7143
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Table F. The 5 most and least enriched GO terms within the span of
dictionary elements for chr3L. Column ‘#’ indicates the number of dictionary
elements that show enrichment for the given GO term. Also reported are up to
3 dictionary elements with the largest importance score in the dictionary,
along with the “density” ρ of interactions in the dictionary element and median
distance dmed of all adjacent pairs of nodes in its representatives.

most frequent
GO term

# top 3 dictionaries least frequent
GO term

# dictionary

(GO:0009631)
cold acclimation

2

ρ=0.148,0.152

dmed=10608,8558

(GO:0035070)
salivary gland
histolysis

1

ρ=0.143

dmed=

8849

(GO:0009408)
response to heat

2

ρ=0.147,0.152

dmed=8689,8558

(GO:0046843)
dorsal ap-
pendage forma-
tion

1

ρ=0.147

dmed=

8689

(GO:0007616)
long-term mem-
ory

2

ρ=0.147,0.126

dmed=8689,9978

(GO:0007097)
nuclear migra-
tion

1

ρ=0.134

dmed=

11012

(GO:0061077)
chaperone-
mediated pro-
tein folding

2

ρ=0.148,0.152

dmed=10608,8558

(GO:0035071)
salivary gland
cell autophagic
cell death

1

ρ=0.143

dmed=

8849

(GO:0008587)
imaginal disc-
derived wing
margin morpho-
genesis

2

ρ=0.126,0.152

dmed=9978,8558

(GO:0007528)
neuromuscular
junction devel-
opment

1

ρ=0.147

dmed=

8689
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Table G. The 5 most and least enriched GO terms within the span of
dictionary elements for chr3R. Column ‘#’ indicates the number of dictionary
elements that show enrichment for the given GO term. Also reported are up to
3 dictionary elements with the largest importance score in the dictionary,
along with the “density” ρ of interactions in the dictionary element and median
distance dmed of all adjacent pairs of nodes in its representatives.

most frequent
GO term

# top 3 dictionaries least frequent
GO term

# dictionary

(GO:0001819)
positive regula-
tion of cytokine
production

7

ρ=0.126,0.146,0.157

dmed=12791,12830,11930

(GO:0061448)
connective tis-
sue development

1

ρ=0.142

dmed=

13455

(GO:0008015)
blood circula-
tion

7

ρ=0.126,0.142,0.138

dmed=12791,13455,13674

(GO:0051282)
regulation of
sequestering of
calcium ion

1

ρ=0.126

dmed=

12791

(GO:0045948)
positive reg-
ulation of
translational
initiation

5

ρ=0.126,0.138,0.162

dmed=12791,13674,12572

(GO:0043123)
positive regula-
tion of I-kappaB
kinase/NF-
kappaB signal-
ing

1

ρ=0.204

dmed=

12540

(GO:0042177)
negative regula-
tion of protein
catabolic pro-
cess

5

ρ=0.126,0.142,0.138

dmed=12791,13455,13674

(GO:0007435)
salivary gland
morphogenesis

1

ρ=0.204

dmed=

12540

(GO:0043065)
positive regula-
tion of apoptotic
process

4

ρ=0.126,0.146,0.179

dmed=12791,12830,11748

(GO:0045738)
negative regu-
lation of DNA
repair

1

ρ=0.183

dmed=

12493
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Table H. GO terms shared between chr2L and chr2R.
GO_term chr2L dictionaries chr2R dictionaries

(GO:0016325) oocyte micro-
tubule cytoskeleton organiza-
tion

(GO:1901701) cellular re-
sponse to oxygen-containing
compound

(GO:0007298) border follicle
cell migration

(GO:0043410) positive regu-
lation of MAPK cascade

(GO:0016049) cell growth

(GO:0035331) negative regu-
lation of hippo signaling

(GO:0051962) positive regu-
lation of nervous system de-
velopment

(GO:0060322) head develop-
ment

(GO:0007293) germarium-
derived egg chamber forma-
tion

(GO:0002164) larval develop-
ment

(GO:0007420) brain develop-
ment
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Table I. GO terms shared between chr3L and chr3R.
GO_term chr3L dictionaries chr3R dictionaries

(GO:0070373) neg-
ative regulation of
ERK1 and ERK2
cascade

(GO:0007140) male
meiotic nuclear divi-
sion

(GO:0046777) protein
autophosphorylation
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F.2 Additional Results
Here we report more detailed results for each dictionary element, including its
number of enriched GO terms and importance scores (Tables J, K, L, M).

Table J. Number of enriched GO terms for each dictionary element identified
for chr2L.

# GO terms # GO terms # GO terms # GO terms # GO terms

2 15 0 0 0

0 19 2 2 27

20 24 1 0 1

0 31 0 0 0

0 0 6 0 0
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Table K. Number of enriched GO terms for each dictionary element identified
for chr2R.

# GO terms # GO terms # GO terms # GO terms # GO terms

4 0 0 23 6

1 0 1 0 0

0 1 2 0 8

12 17 9 8 10

40 0 5 7 2

Table L. Number of enriched GO terms for each dictionary element identified
for chr3L.

# GO terms # GO terms # GO terms # GO terms # GO terms

0 6 2 10 0

3 1 0 14 0

0 1 1 9 4

3 0 16 4 3

3 0 0 0 0
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Table M. Number of enriched GO terms for each dictionary element
identified for chr3R.

# GO terms # GO terms # GO terms # GO terms # GO terms

15 2 5 8 124

9 2 0 0 10

13 14 16 0 4

7 25 57 0 0

20 1 6 0 4
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G RNA-Seq Coexpression Analysis
The ChIA-Drop dataset [9] used for learning dictionaries of chromatin inter-
actions lacks RNA-Seq replicates, posing a challenge when trying to validate
our results through coexpression analysis. To address this limitation, we re-
trieved RNA-Seq data corresponding to untreated S2 cell lines of Drosophila
Melanogaster from the Digital Expression Explorer (DEE2) repository. DEE2
provides uniformly processed RNA-Seq data sourced from the publicly available
NCBI Sequence Read Archive (SRA) [10]. In total, we retrieved 20 samples
from untreated S2 cell lines with their IDs reported in Table N.

Table N. Sample IDs retrieved from NCBI Sequence Read Archive for
RNA-Seq coexpression analysis.

SRR12191916 SRR12191917 SRR12191918 SRR12191920 SRR12191921
SRR12191923 SRR12191927 SRR2442878 SRR2442879 SRR3065067
SRR5340065 SRR5340066 SRR5340069 SRR5340070 SRR5340071
SRR5340072 SRR6930637 SRR8108628 SRR8108629 SRR8108630

To ensure consistent normalization across all samples, we use the trimmed
mean of M values (TMM) method [7], available through the edgeR package [6].
This is of crucial importance when jointly analyzing samples from multiple
sources. We selected the most relevant genes by filtering the list of covered genes
and retaining only those with more than 95% overlap with the gene promoter
regions, as defined in the Ensmbl browser. Subsequently, for each dictionary el-
ement, we collected all genes covered by it and calculated the pairwise Pearson
correlation coefficient of expressions of pairs of genes in the set. For a pair of
random variables X1 and X2, the correlation coefficient is defined as

ρX1X2 =
Covariance(X1, X2)

Var(X1)Var(X2)

For two genes G1 and G2, let X1 and X2 be vectors of normalized read counts.
The Pearson correlation coefficient can be written as

ρG1G2
=

∑n
i=1(x1i − x̄1)(x2i − x̄2)√∑n

i=1(x1i − x̄1)2
√∑n

i=1(x2i − x̄2)2

where

n is the number of samples,

x̄1 =

∑n
i=1 x1i

n
and x̄2 =

∑n
i=1 x2i

n
are sample means.

To visualize the underlying coexpression clusters within the genes, we performed
hierarchical clustering. We report the mean correlation statistics as well as mean
statistics for positively correlated genes for each dictionary element. Correlation
plots for all dictionary elements are shown in Figs N, O, P and Q.
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Fig N. Pairwise coexpression of genes covered by various dictionary elements
for chr 2L obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig N. Pairwise coexpression of genes covered by various dictionary elements
for chr 2L obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig N. Pairwise coexpression of genes covered by various dictionary elements
for chr 2L obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig O. Pairwise coexpression of genes covered by various dictionary elements
for chr 2R obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig O. Pairwise coexpression of genes covered by various dictionary elements
for chr 2R obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig O. Pairwise coexpression of genes covered by various dictionary elements
for chr 2R obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig P. Pairwise coexpression of genes covered by various dictionary elements
for chr 3L obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig P. Pairwise coexpression of genes covered by various dictionary elements
for chr 3L obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig P. Pairwise coexpression of genes covered by various dictionary elements
for chr 3L obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig Q. Pairwise coexpression of genes covered by various dictionary elements
for chr 3R obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig Q. Pairwise coexpression of genes covered by various dictionary elements
for chr 3R obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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Fig Q. Pairwise coexpression of genes covered by various dictionary elements
for chr 3R obtained through online cvxNDL. We calculated the mean and
standard deviation of absolute pairwise coexpression values, along with the
mean and standard deviation of coexpression values specifically for all
positively correlated gene pairs.
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H STRING interaction network and FlyMine
The STRING interaction network [8] provides a confidence score indicating the
interaction likelihood between a pair of proteins within an organism. This score
reflects both direct interactions via physical protein binding and indirect inter-
actions by virtue of the proteins participating in the same cellular pathways.
The confidence level of interaction between a pair of proteins can vary from 0,
indicating very low confidence, to 1000, indicating very high confidence. Fig Ra
shows the distribution of confidence levels between all pairs of proteins in the
STRING database for Drosophila Melanogaster. A large majority of these in-
teractions are very low confidence. To focus on more reliable interactions, we
filtered the protein interactions to retain only those with a confidence score ex-
ceeding 200, resulting in a refined dataset shown in Fig Rb. By mapping these
proteins back to their corresponding genes, we derived an induced network rep-
resenting gene-gene interactions.

(a) All confidence values. (b) Confidence values filtered for > 200.

Fig R. Histogram of confidence values for pairwise interaction of proteins in
the STRING interaction network for Drosophila Melanogaster.

For the online cvxNDL dictionary, we calculated the mean confidence level
for all pairs of proteins. We also repeated the same experiments with a randomly
constructed dictionary as a control. Fig S shows the mean confidence level
and confidence interval for a subset of dictionary elements. We performed a
K-S test with the null hypothesis that the two sets of confidence scores for
pairwise interactions belonging to online cvxNDL dictionaries and randomly
constructed dictionaries are drawn from the same distribution. We rejected the
null hypothesis with p-value < 0.05. The mean confidence values of interactions
(and the corresponding standard deviation) for all online cvxNDL and CMF
dictionary elements and for each of the 4 chromosomes are shown in Table O.

Flymine [2] is a large genomic and proteomic database for Drosophila. We
used FlyMine to retrieve a list of upregulated genes in S2 cell lines. We observe
that the upregulated genes are overrepresented in our dictionary elements. To
test our hypothesis, we performed the hypergeometric overrepresentation test.
Our null hypothesis is that the proportion of upregulated genes in our dictionary
elements is no higher than the overall proportion of upregulated genes in S2 cell
lines. We rejected the null hypothesis (p-value < 0.05) for all dictionary elements
for all chromosomes except a small subset of 4 dictionary elements (1 dictionary
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(a) Mean confidence value for dictionary
elements from chr2L and chr2R.

(b) Mean confidence value for dictionary
elements from chr3L and chr3R

Fig S. Confidence levels for pairwise interaction of proteins for dictionary
elements based on STRING interaction network.

Chromosome Online cvxNDL CMF

chr2L 0.424 (0.088) 0.405 (0.088)
chr2R 0.380 (0.060) 0.416 (0.084)
chr3L 0.426 (0.121) 0.445 (0.145)
chr3R 0.389 (0.076) 0.401 (0.074)

Table O. The mean confidence value of interactions based on STRING
interaction network for all 25 online cvxNDL and CMF dictionary elements,
and for each of the four chromosomes analyzed (and their standard deviation).

element from chr2R and 3 dictionary elements from chr3L). The p-values for all
dictionary elements are shown in Table P.
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Table P. Results for hypergeometric overrepresentation test for all dictionary
elements. We report the p-values corresponding to the null hypothesis that the
proportion of upregulated genes in our dictionary elements is no higher than
the overall proportion of upregulated genes in S2 cell lines.

dictionary
element chr2L chr2R chr3L chr3R

0 1.18E-03 5.90E-07 7.96E-05 3.24E-05
1 1.93E-08 8.13E-06 5.38E-04 9.23E-09
2 4.36E-08 4.44E-07 1.40E-03 1.36E-02
3 8.13E-06 7.92E-05 1.65E-04 4.49E-08
4 4.50E-06 1.83E-04 2.54E-03 4.88E-12
5 1.23E-06 3.93E-04 3.53E-03 5.84E-05
6 1.26E-03 2.88E-03 5.58E-03 6.07E-06
7 1.60E-03 3.88E-06 1.76E-03 1.39E-05
8 3.50E-05 9.15E-07 1.22E-04 3.03E-05
9 2.17E-04 2.17E-06 2.73E-04 4.36E-07
10 1.02E-05 3.57E-02 5.23E-06 2.37E-06
11 1.82E-05 8.94E-04 8.92E-02 1.96E-04
12 2.08E-06 8.90E-04 2.01E-01 3.23E-05
13 8.12E-05 8.52E-03 3.40E-05 1.73E-04
14 1.95E-05 1.41E-04 1.93E-03 1.84E-10
15 6.95E-08 5.78E-05 1.20E-02 8.32E-05
16 5.02E-03 7.60E-04 1.78E-03 4.82E-06
17 3.24E-04 5.41E-02 9.17E-06 7.53E-04
18 1.78E-03 6.04E-06 1.96E-02 3.89E-06
19 3.89E-04 3.56E-05 8.10E-04 6.86E-08
20 1.75E-08 2.90E-04 5.02E-03 1.50E-04
21 6.41E-03 1.55E-02 3.72E-06 8.88E-10
22 2.99E-03 1.40E-03 2.24E-05 9.23E-09
23 1.65E-05 6.78E-03 5.98E-03 3.42E-07
24 2.54E-06 1.03E-04 6.22E-02 7.19E-08

I Accessibility of figures
To help improve the accessibility of our work for people with colour blindness,
we suggest using the Visolve software that can help interpret figures that may
represent issues for readers who are colour blind. The Visolve software allows
for easy interpretation of figures for people with various forms of color blindness
and can be downloaded from [https://www.ryobi.co.jp/products/visolve/en/].
Here, we reproduce the dictionary elements corresponding to chr2L using CMF
and online cvxNDL and their versions highlighting regions corresponding to a
range of distances (colors) using Visolve.
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(a) Online cvxNDL dictionaries with
green filter (b) CMF dictionaries with green filter

(c) Online cvxNDL dictionaries with red
filter (d) CMF dictionaries with red filter

Fig T. Online cvxNDL and CMF dictionaries for chr2L with green (20, 000
bases - 35, 000 bases) and red (> 40, 000 bases) filters from Visolve software.
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