## 12 C. You et al.

## Appendix



Fig. 3. Visualization results on ACDC with 5% and 10% labeled data. ACTION++ consistently outputs more accurate predictions, especially for small regions.



Fig. 4. Visualization results on LA with 5% and 10% labeled data. ACTION++ consistently achieves more sharper and accurate object boundaries.

**Table 5.** Ablation studies of different components (*i.e.*, ATS and SAACL).

| Method                    | $\mathrm{DSC}[\%] \uparrow$ | $\mathrm{ASD}[\mathrm{voxel}]{\downarrow}$ |
|---------------------------|-----------------------------|--------------------------------------------|
| pre-training w/o ATS      | 86.2                        | 2.69                                       |
| pre-training w/ ATS       | 88.1                        | 2.44                                       |
| fine-tuning w/o SAACL/ATS | 89.0                        | 2.06                                       |
| fine-tuning only w/ ATS   | 89.3                        | 1.98                                       |
| fine-tuning only w/ SAACL | 89.5                        | 1.96                                       |
| fine-tuning w/ SAACL/ATS  | <b>89.9</b>                 | <b>1.74</b>                                |

**Table 6.** Effect of cosine period, different methods of varying  $\tau$ , and  $\lambda_a$ .

| T/#iterations   | DSC  | Method                | DSC  | $\lambda_a$ | DSC  |
|-----------------|------|-----------------------|------|-------------|------|
| no/fixed $\tau$ | 89.5 | fixed                 | 89.5 | 0.05        | 88.5 |
| 0.1             | 89.8 | $\operatorname{step}$ | 89.4 | 0.1         | 89.3 |
| 0.2             | 89.1 | rand                  | 88.9 | 0.2         | 89.9 |
| 0.5             | 89.2 | oscil.                | 89.2 | 0.5         | 89.7 |
| 1.0             | 89.9 | cos                   | 89.9 | 1.0         | 89.1 |
| 2.0             | 89.7 | -                     | -    | 10          | 87.9 |

## A Theoretical Analysis

In this section, we discuss the performance guarantee of the proposed SAACL. For abstraction, we denote an image and its corresponding segmentation map as  $\mathbf{x} = \{\omega_p\}_p, \mathbf{y} = \{y_p\}_p$ , where  $\omega_p$  is a pixel. We also denote the feature generator as f, such that  $f(\omega_p; \mathbf{x}) = \phi_p$  for any pixel p. Recent work [8] has shown that, to evaluate the performance of the representations learned via contrastive learning (CL), it suffices to consider a simplified nearest neighbour (NN) classifier<sup>3</sup>  $g_f(\omega_p; \mathbf{x}) = \arg\min_{c \in [K]} \|f(\omega_p; \mathbf{x}) - \psi_c^{\star}\|_2$ , where  $\psi_c^{\star}$  denotes the center of class c in the latent representation space. To this end, we focus on the error rate of  $g_f$  defined as  $\mathcal{E}(g_f) = \sum_{c=1}^{K} \mathbb{P}[g_f(\omega_p; \mathbf{x}) \neq c, \forall \omega_p \in Cla_c]$ , where  $\omega_p \in Cla_c$  refers to pixels in class c. Note that each class c, regardless of being head or tail class, has equal weight in the definition of  $\mathcal{E}(g_f)$ , indicating that a small  $\mathcal{E}(g_f)$  implies good long-tail segmentation performance.

We now demonstrate that SAACL helps achieve a small error  $\mathcal{E}(g_f)$ . The success of contrastive learning mainly depends on two aspects: positive alignment and class divergence [8]. Specifically, the positive alignment is defined as follows:

$$A = \sqrt{\mathbb{E}_{\mathbf{x}, \tilde{\mathbf{x}}} \mathbb{E}_{c \in [K]} \mathbb{E}_{\omega_p \in Cla_c}[\|f(\omega_p; \mathbf{x}) - f(\omega_p; \tilde{\mathbf{x}})\|^2]},\tag{7}$$

where **x** and  $\tilde{\mathbf{x}}$  are two augmentations from the same input sample (*i.e.*, positive sample pairs). The class divergence is defined as  $D = \max_{c \neq c'} \overline{\phi}_c \cdot \overline{\phi}_{c'}$ , which computes the distances between class centers. The following theorem discloses the link between the error rate and the alignment A and class divergence D.

**Theorem 1 ([8]).** There exist some constant  $\rho(\sigma, \delta, \epsilon)$  and  $\Delta$  whose value depends on the data augmentation method and Lipschitzness of the model f. Let  $\zeta(\sigma, \delta, \epsilon) = r^2 [1 - \rho(\sigma, \delta, \epsilon) - \sqrt{2\rho(\sigma, \delta, \epsilon)} - \Delta/2]$ . If for any class  $c, c' \in [K]$ , it holds that  $\overline{\phi}_c \cdot \overline{\phi}_{c'} \leq \zeta(\sigma, \delta, \epsilon)$ , then  $\mathcal{E}(g_f) \leq 1 - \sigma + \mathcal{O}(1/\epsilon)A$ .

Due to space limit, please refer to Theorem 1 in [8] for the detailed mathematical form of  $\rho(\sigma, \delta, \epsilon)$ ,  $\Delta$  and the problem-related parameters  $\sigma$ ,  $\delta$  and  $\epsilon$ . For our purpose, we observe that: (1) good positive alignment (small A) directly indicates low error according to the error upper bound; (2) a large class divergence (small D) can help satisfy the condition on  $\overline{\phi}_c \cdot \overline{\phi}_{c'}$ . Therefore, both A are D are crucial to improving the representation learning.

From (5), both the alignment and the diversity are captured by the objective  $\mathcal{L}_{aaco}$ . We rewrite (5) as  $\mathcal{L}_{aaco} = \sum_{i=1}^{n} (\mathcal{L}_{i,1} + \lambda_a \mathcal{L}_{i,2})/n$ , where  $\mathcal{L}_{i,1}$  equals:

$$-\sum_{\phi_i^+} \log \frac{\exp(\phi_i \cdot \phi_i^+ / \tau_{sa})}{\sum_{\phi_j} \exp(\phi_i \cdot \phi_j / \tau_{sa})} = -\sum_{\phi_i^+} \phi_i \cdot \phi_i^+ / \tau_{sa} - \sum_{\phi_i^+} \log \sum_{\phi_j} \exp(\phi_i \cdot \phi_j / \tau_{sa})$$

Here the first term in the above can be rewrite as  $\sum_{\phi_i^+} \|\phi_i - \phi_i^+\|^2/(2\tau_{sa}) - 1$  given the normalization  $\|\phi_p\| = 1$  for all pixels p. Then by the definition  $f(\omega_p; \mathbf{x}) = \phi_p$ and (7), it is clear that  $\mathcal{L}_{i,1}$  induces small A (i.e. good alignment).

Similar analysis shows  $\mathcal{L}_{i,2}$  encourages  $\phi_i$  to be close to the pre-computed optimal class center  $\boldsymbol{\nu}_i$  (small  $\|\phi_i - \boldsymbol{\nu}_i\|$ ). The class centers computed from solving (3) induces large distance  $\|\boldsymbol{\nu}_i - \boldsymbol{\nu}_j\|$  between centers. Furthermore, since (3) does not involve any data yet, it is immune to long-tailness and can guarantee well-separeted centers for the representation of tail classes. Together it holds that  $\mathcal{L}_{i,2}$  encourages large  $\|\overline{\phi_c} - \overline{\phi_{c'}}\|$  for  $c \neq c'$ , or equivalently small  $\overline{\phi_c} \cdot \overline{\phi_{c'}}$ , which is exactly the class divergence.

<sup>&</sup>lt;sup>3</sup> This is because an NN classifier is a special case of a linear classifier, which can be approximated by a neural network. See Sec. 2 of [8].