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Fig. 3. Visualization results on ACDC with 5% and 10% labeled data. ACTION++
consistently outputs more accurate predictions, especially for small regions.
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Fig. 4. Visualization results on LA with 5% and 10% labeled data. ACTION++
consistently achieves more sharper and accurate object boundaries.

Table 5. Ablation studies of di↵erent
components (i.e., ATS and SAACL).

Method DSC[%]" ASD[voxel]#

pre-training w/o ATS 86.2 2.69
pre-training w/ ATS 88.1 2.44

fine-tuning w/o SAACL/ATS 89.0 2.06
fine-tuning only w/ ATS 89.3 1.98
fine-tuning only w/ SAACL 89.5 1.96
fine-tuning w/ SAACL/ATS 89.9 1.74

Table 6. E↵ect of cosine period, di↵erent meth-
ods of varying ⌧ , and �a.

T/#iterations DSC Method DSC �a DSC

no/fixed ⌧ 89.5 fixed 89.5 0.05 88.5
0.1 89.8 step 89.4 0.1 89.3
0.2 89.1 rand 88.9 0.2 89.9

0.5 89.2 oscil. 89.2 0.5 89.7
1.0 89.9 cos 89.9 1.0 89.1
2.0 89.7 - - 10 87.9

A Theoretical Analysis

In this section, we discuss the performance guarantee of the proposed SAACL.
For abstraction, we denote an image and its corresponding segmentation map
as x = {!p}p, y = {yp}p, where !p is a pixel. We also denote the feature
generator as f , such that f(!p;x) = �p for any pixel p. Recent work [8] has
shown that, to evaluate the performance of the representations learned via
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contrastive learning (CL), it su�ces to consider a simplified nearest neighbour
(NN) classifier3 gf (!p;x) = argminc2[K] kf(!p;x)�  ?

ck2, where  
?
c denotes the

center of class c in the latent representation space. To this end, we focus on the
error rate of gf defined as E(gf ) =

PK
c=1 P[gf (!p;x) 6= c, 8!p 2 Clac], where

!p 2 Clac refers to pixels in class c. Note that each class c, regardless of being
head or tail class, has equal weight in the definition of E(gf ), indicating that a
small E(gf ) implies good long-tail segmentation performance.

We now demonstrate that SAACL helps achieve a small error E(gf ). The
success of contrastive learning mainly depends on two aspects: positive alignment
and class divergence [8]. Specifically, the positive alignment is defined as follows:

A =
q
Ex,x̃Ec2[K]E!p2Clac [kf(!p;x)� f(!p; x̃)k2], (7)

where x and x̃ are two augmentations from the same input sample (i.e., positive
sample pairs). The class divergence is defined as D = maxc 6=c0 �c · �c0 , which
computes the distances between class centers. The following theorem discloses
the link between the error rate and the alignment A and class divergence D.

Theorem 1 ([8]). There exist some constant ⇢(�, �, ✏) and � whose value de-
pends on the data augmentation method and Lipschitzness of the model f . Let
⇣(�, �, ✏) = r2[1� ⇢(�, �, ✏) �

p
2⇢(�, �, ✏) ��/2]. If for any class c, c0 2 [K], it

holds that �c · �c0  ⇣(�, �, ✏), then E(gf )  1� � +O(1/✏)A.

Due to space limit, please refer to Theorem 1 in [8] for the detailed mathematical
form of ⇢(�, �, ✏), � and the problem-related parameters �, � and ✏. For our
purpose, we observe that: (1) good positive alignment (small A) directly indicates
low error according to the error upper bound; (2) a large class divergence (small
D) can help satisfy the condition on �c ·�c0 . Therefore, both A are D are crucial
to improving the representation learning.

From (5), both the alignment and the diversity are captured by the objective
Laaco. We rewrite (5) as Laaco =

Pn
i=1(Li,1 + �aLi,2)/n, where Li,1 equals:

�

X

�+
i

log
exp(�i · �

+
i /⌧sa)P

�j
exp(�i · �j/⌧sa)

= �

X

�+
i

�i · �
+
i /⌧sa �

X

�+
i

log
X

�j

exp(�i · �j/⌧sa).

Here the first term in the above can be rewrite as
P

�+
i
k�i��+

i k
2/(2⌧sa)�1 given

the normalization k�pk = 1 for all pixels p. Then by the definition f(!p;x) = �p

and (7), it is clear that Li,1 induces small A (i.e. good alignment).
Similar analysis shows Li,2 encourages �i to be close to the pre-computed

optimal class center ⌫i (small k�i � ⌫ik). The class centers computed from
solving (3) induces large distance k⌫i � ⌫jk between centers. Furthermore, since
(3) does not involve any data yet, it is immune to long-tailness and can guarantee
well-separeted centers for the representation of tail classes. Together it holds that
Li,2 encourages large k�c � �c0k for c 6= c0, or equivalently small �c · �c0 , which
is exactly the class divergence.
3 This is because an NN classifier is a special case of a linear classifier, which can be
approximated by a neural network. See Sec. 2 of [8].
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