Appendix

Fig. 3. Visualization results on ACDC with 5% and 10% labeled data. ACTION++ consistently outputs more accurate predictions, especially for small regions.

Fig. 4. Visualization results on LA with 5% and 10% labeled data. ACTION++ consistently achieves more sharper and accurate object boundaries.

Table 5. Ablation studies of different components (*i.e.*, ATS and SAACL).

Method		DSC[%] [↑] ASD[voxel]↓
pre-training w/o ATS	86.2	2.69
pre-training $w/$ ATS	88.1	2.44
fine-tuning w/o SAACL/ATS	89.0	2.06
fine-tuning only w / ATS	89.3	1.98
fine-tuning only w/ SAACL	89.5	1.96
fine-tuning w/ SAACL/ATS	89.9	1.74

Table 6. Effect of cosine period, different methods of varying τ , and λ_a .

A Theoretical Analysis

In this section, we discuss the performance guarantee of the proposed SAACL. For abstraction, we denote an image and its corresponding segmentation map as $\mathbf{x} = {\{\omega_p\}_p}$, $\mathbf{y} = {\{y_p\}_p}$, where ω_p is a pixel. We also denote the feature generator as f, such that $f(\omega_p; \mathbf{x}) = \phi_p$ for any pixel p. Recent work [\[8\]](#page-0-0) has shown that, to evaluate the performance of the representations learned via contrastive learning (CL) , it suffices to consider a simplified nearest neighbour (NN) classifier^{[3](#page-1-0)} $g_f(\omega_p; \mathbf{x}) = \arg \min_{c \in [K]} ||f(\omega_p; \mathbf{x}) - \psi_c^*||_2$, where ψ_c^* denotes the center of class *c* in the latent representation space. To this end, we focus on the error rate of g_f defined as $\mathcal{E}(g_f) = \sum_{c=1}^K \mathbb{P}[g_f(\omega_p; \mathbf{x}) \neq c, \forall \omega_p \in Cl_a_c]$, where $\omega_p \in Cl_a$ refers to pixels in class *c*. Note that each class *c*, regardless of being head or tail class, has equal weight in the definition of $\mathcal{E}(g_f)$, indicating that a small $\mathcal{E}(q_f)$ implies good long-tail segmentation performance.

We now demonstrate that SAACL helps achieve a small error $\mathcal{E}(g_f)$. The success of contrastive learning mainly depends on two aspects: positive alignment and class divergence [\[8\]](#page-0-0). Specifically, the positive alignment is defined as follows:

$$
A = \sqrt{\mathbb{E}_{\mathbf{x}, \tilde{\mathbf{x}}} \mathbb{E}_{c \in [K]} \mathbb{E}_{\omega_p \in Cla_c} [\| f(\omega_p; \mathbf{x}) - f(\omega_p; \tilde{\mathbf{x}}) \|^2]},
$$
(7)

where x and \tilde{x} are two augmentations from the same input sample *(i.e., positive*) sample pairs). The class divergence is defined as $D = \max_{c \neq c'} \phi_c \cdot \phi_{c'}$, which computes the distances between class centers. The following theorem discloses the link between the error rate and the alignment *A* and class divergence *D*.

Theorem 1 ([\[8\]](#page-0-0)). *There exist some constant* $\rho(\sigma, \delta, \epsilon)$ and Δ whose value de*pends on the data augmentation method and Lipschitzness of the model f. Let* $\zeta(\sigma, \delta, \epsilon) = r^2[1 - \rho(\sigma, \delta, \epsilon) - \sqrt{2\rho(\sigma, \delta, \epsilon)} - \Delta/2]$. If for any class $c, c' \in [K]$, it *holds that* $\overline{\phi}_c \cdot \overline{\phi}_{c'} \leq \zeta(\sigma, \delta, \epsilon)$, then $\mathcal{E}(g_f) \leq 1 - \sigma + \mathcal{O}(1/\epsilon)A$.

Due to space limit, please refer to Theorem 1 in [\[8\]](#page-0-0) for the detailed mathematical form of $\rho(\sigma, \delta, \epsilon)$, Δ and the problem-related parameters σ , δ and ϵ . For our purpose, we observe that: (1) good positive alignment (small *A*) directly indicates low error according to the error upper bound; (2) a large class divergence (small *D*) can help satisfy the condition on $\overline{\phi}_c \cdot \overline{\phi}_{c'}$. Therefore, both *A* are *D* are crucial to improving the representation learning.

From [\(5\)](#page-0-1), both the alignment and the diversity are captured by the objective $\mathcal{L}_{\text{aaco}}$. We rewrite [\(5\)](#page-0-1) as $\mathcal{L}_{\text{aaco}} = \sum_{i=1}^{n} (\mathcal{L}_{i,1} + \lambda_a \mathcal{L}_{i,2})/n$, where $\mathcal{L}_{i,1}$ equals:

$$
-\sum_{\phi_i^+} \log \frac{\exp(\phi_i \cdot \phi_i^+ / \tau_{sa})}{\sum_{\phi_j} \exp(\phi_i \cdot \phi_j / \tau_{sa})} = -\sum_{\phi_i^+} \phi_i \cdot \phi_i^+ / \tau_{sa} - \sum_{\phi_i^+} \log \sum_{\phi_j} \exp(\phi_i \cdot \phi_j / \tau_{sa}).
$$

Here the first term in the above can be rewrite as $\sum_{\phi_i^+} \|\phi_i - \phi_i^+\|^2/(2\tau_{sa}) - 1$ given the normalization $\|\phi_p\| = 1$ for all pixels *p*. Then by the definition $f(\omega_p; \mathbf{x}) = \phi_p$ and (7) , it is clear that $\mathcal{L}_{i,1}$ induces small *A* (i.e. good alignment).

Similar analysis shows $\mathcal{L}_{i,2}$ encourages ϕ_i to be close to the pre-computed optimal class center ν_i (small $\|\phi_i - \nu_i\|$). The class centers computed from solving [\(3\)](#page-0-2) induces large distance $\|\nu_i - \nu_j\|$ between centers. Furthermore, since [\(3\)](#page-0-2) does not involve any data yet, it is immune to long-tailness and can guarantee well-separeted centers for the representation of tail classes. Together it holds that $\mathcal{L}_{i,2}$ encourages large $\|\phi_c - \phi_{c'}\|$ for $c \neq c'$, or equivalently small $\phi_c \cdot \phi_{c'}$, which is exactly the class divergence.

³ This is because an NN classifier is a special case of a linear classifier, which can be approximated by a neural network. See Sec. 2 of [\[8\]](#page-0-0).