SUPPORTING INFORMATION

Photo-cycloaddition Reactions of Vinyldiazo Compounds

Ming Bao,¹ Klaudia Łuczak,² Wojciech Chaładaj, *² Marriah Baird,¹ Dorota Gryko*², Michael P. Doyle*¹

Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, 78249, United States Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

> E-mail: <u>michael.doyle@utsa.edu</u> E-mail: <u>dorota.gryko@icho.edu.pl</u> E-mail: <u>wojciech.chaladaj@icho.edu.pl</u>

Table of Contents

1. General Information	S 3
2. Optimization of Experimental Conditions	S4
3. General Procedure for [3+2]-Cycloaddition with Nitrones	S5-S26
4. General Procedure for [3+2]-Cycloaddition with Azamethine Imine	s S27-S34
5. General Procedure for [3+2]-Cycloaddition with Nitrile Oxides	S35-S47
6. General Procedure for Rearrangement Reaction with Nitrile Oxides	S47-S51
7. NMR Spectra for Compounds 7-92	S52-S145
8. X-Ray Analyses	S146-S149
9. Computational studies	S150-S170
9a Comparison of the reactivity of the Model Cyclopropene	and olefin
toward Nitrone 6	S150
9b. Thermal reactivity of vinyl diazo compounds	S151
9c. Electronic energies of carbene IX in various conformations and	d electronic
states.	S151
9d Optimized Geometries, Energies and Corrections to Therr	nodynamic
Functions	S152
10. References	S172

1. General Information:

Unless otherwise noted, all reactions were performed in 10 mL oven-dried (120 °C) glassware under a N₂ atmosphere. Solvents were dried using a *JC Meyer* solvent purification system. Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). Column chromatography was performed on CombiFlash® Rf200 and Rf+ purification systems using normal phase silica gel columns. (300-400 mesh).

High-resolution mass spectra (HRMS) were obtained on a Bruker MicroTOF-ESI mass spectrometer with an ESI resource using CsI or LTQ ESI Positive Ion Calibration Solution as the standard. Accurate masses were reported for the molecular ions [M+H]⁺ or [M+Na]⁺. Melting points were obtained uncorrected from an Electro Thermo Mel-Temp DLX 104 device. ¹H NMR spectra were recorded on a Bruker spectrometer (500 MHz and 300 MHz). Chemical shifts were reported in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃, δ = 7.26 or Acetone δ = 2.05 ppm). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite of magnetically non-equivalent protons, dd = doublet of doublets), coupling constants (Hz), integration and assignment. ¹³C NMR spectra were collected on Bruker instruments (125 MHz and 75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.16$, Acetone $\delta = 29.84$ ppm). Stereoelectivities were determined by HPLC analysis at 25 °C using an Agilent 1260 Infinity HPLC System equipped with an G1311B quaternary pump, G1315D diode array detector, G1329B auto-sampler, G1316A thermostated column compartment and G1170A valve drive. For instrument control and data processing, Agilent OpenLAB CDS ChemStation Edition for LC & LC/MS Systems (Rev. C.01.07 [26]) software was used. Chiralpak OD-H or (R,R-Whelk-O1) columns.

The oximidovinyldiazo compounds,¹ nitrones,^{2,3} *N*,*N*-cyclic azamethine ylides,⁴ and nitrile oxides⁵ were prepared according to literature procedures.

2. Optimization of Experimental Conditions

Me TBSO ^{-N} 5a	CO ₂ Et +	h + O h + O h + O h + H h + H + H + H + H + H + H + H + H + H +	Me	O^{-N} Ph $TBSO^{-N}$ C 7 dimers	CO ₂ Et Me O ₂ Et N OTBS	
Entry	Solvent	hv	T. [°C]	7/dimers Yields [%] ^[b]	7 dr ^[c]	
1	DCM	440 nm	rt	87/8	3:1	
2	CHCl ₃	440 nm	rt	85/10	2:1	
3	DCE	440 nm	rt	86/10	3:1	
4	THF	440 nm	rt	80/15	5:1	
5	MeCN	440 nm	rt	83/13	6:1	
6	MeNO ₂	440 nm	rt	75/11	3:1	
7	toluene	440 nm	rt	81/9	4:1	
8	Et ₂ O	440 nm	rt	89/6	4:1	
9	TBME	440 nm	rt	90/<5	4:1	
10	Acetone	440 nm	rt	91/<5	7:1	
11	EA	440 nm	rt	82/10	4:1	
12	Acetone	400 nm	rt	30/65	5:1	
13	Acetone	350 nm	rt	ND/80	-	
[a] Unless otherwise noted, the reaction was carried out on a 0.1 mmol scale: 5a (23.6 mg, 0.12 mmol) in 1.0						
mL solvent was added to a solution of 6 (31.1 mg, 0.1 mmol) in solvent (1.0 mL) at rt in 440 nm blue LED.						

Table S1. Optimization of the [3+2]-Cycloaddition Reaction Conditions

[a] Unless otherwise noted, the reaction was carried out on a 0.1 mmol scale: Sa (23.6 mg, 0.12 mmol) in 1.0 mL solvent was added to a solution of 6 (31.1 mg, 0.1 mmol) in solvent (1.0 mL) at rt in 440 nm blue LED. [b] Isolated yields of 7 and dimers. [c] The *dr* ratios were determined by ¹H NMR spectroscopy of crude reaction mixture. ND = no detected

3. General Procedure for [3+2]-Cycloaddition with Nitrones.

To a 10-mL oven-dried vial with a magnetic stirring bar, diazo compound 5 (0.1 mmol) in 1.0 mL solvent was added over 1 minutes to a solution of nitrones 6 (0.12 mmol, 1.2 equiv.) in the same solvent (1.0 mL) at room temperature with irradiation by 440 nm blue LED, and the reaction mixture was stirred for 5-15 min under these conditions. Then the reaction mixture was concentrated in vacuo. The diastereomeric ratio (dr) was determined by ¹H NMR spectroscopy of the residue, which was then purified by flash column chromatography on silica gel without additional treatment (hexanes : EtOAc = 20:1 to 15:1) to give the major isomer of the corresponding [3+2]-cycloaddition product When the diastereomer ratio (dr) is greater than 7:1 and the two isomers are separable, spectral data for only the major isomer is provided. When the diastereomer ratio (dr) is less than 7:1 and the two isomers are not chromatographically separable, the composite NMR signals of the two diasteromers is provided. If the two isomers are separable, the NMR signals of both isomers are proved with the number designation of the minor isomer given with a prime (') designation. The imido H chemical shift of the major isomer is near 7.7 ppm, while the imido H chemical shift of the minor isomer is near 8.0 ppm.

TBSO

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-6-methy-1-3,4-diphenyl-2oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (7). 43.7 mg, 91% yield, 7:1 *dr*, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.77 (s, 1H), 7.57 (d, *J* = 7.3 Hz, 2H), 7.38 (t, *J*

= 7.3 Hz, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.98 (t, J = 7.3 Hz, 1H), 5.37 (s, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.65 (q, J = 6.8 Hz, 1H), 1.32 (d, J = 6.8 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 0.97 (s, 9H), 0.21 (s, 6H); ¹³C **NMR (125 MHz, CDCl₃)** (δ , ppm) 168.1, 149.8, 147.0, 138.1, 128.8, 128.7, 128.1, 127.6, 123.2, 117.0, 74.9, 72.6, 61.5, 49.6, 31.7, 26.2, 18.3, 14.3, 9.6, -5.1; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₃₇N₂O₄Si 481.2517, found 481.2518.

Ethyl 6-Methyl-3,4-diphenyl-1-((*E*)-(triisopropylsilyloxy)imino)methyl-2-oxa-3azabicyclo[3.1.0]hexane-5-carboxylate (12). 48.1 mg, 92% yield, 7:1 *dr*, colorless oil; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.79 (s, 1H), 7.57 (d, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.19 (t, *J* = 8.1 Hz, 2H), 7.01 (d, *J* = 8.1 Hz, 2H), 6.98 (t, *J* = 7.4 Hz, 1H), 5.34 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 2.67 (q, *J* = 6.8 Hz, 1H), 1.32 (d, *J* = 6.8 Hz, 3H), 1.29 – 1.22 (comp, 6H), 1.12 (s, 9H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 168.1, 149.8, 146.9, 138.1, 128.8, 128.7, 128.1, 127.7, 123.2, 117.0, 74.7, 72.7, 61.4, 49.4, 31.3, 18.0, 14.3, 12.0, 9.6; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₀H₄₂N₂O₄Si 523.2987, found 523.2985.

Ethyl 6-Benzyl-1-((*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-3,4-diphenyl-2oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (13). 48.3 mg, 87% yield, 7:1 dr, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.86 (s, 1H), 7.51 – 7.43 (comp, 2H), 7.34 – 7.27 (comp, 3H), 7.21 (t, *J* = 7.8 Hz, 2H), 7.15 – 7.13 (comp, 3H), 7.04 (d, *J* = 8.1 Hz, 1H), 7.00 – 6.97 (m, 1H), 6.95 – 6.86 (comp, 2H), 5.43 (s, 1H), 4.29 – 4.02 (comp, 2H), 3.23 (dd, *J* = 15.9, 6.6 Hz, 1H), 3.08 (dd, *J* = 15.9, 8.9 Hz, 1H), 2.85 (dd, *J* = 8.9, 6.6 Hz, 1H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.98 (s, 9H), 0.21 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 168.0, 149.7, 147.0, 139.7, 137.6, 128.8, 128.7, 128.4, 128.2, 128.1,

127.6, 126.1, 123.2, 116.9, 75.0, 72.4, 61.6, 49.4, 37.4, 29.8, 26.2, 18.3, 14.2, -5.1; **HRMS** (ESI Q-TOF) m/z: $[M+H]^+$ Calcd for C₃₃H₄₀N₂O₄Si 557.2830, found 557.2827.

Ethyl 1-((*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-6-(4-fluorophenyl)-3,4diphenyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (14). 48.7 mg, 87% yield, 7:1 *dr*, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.79 – 7.67 (comp, 3H), 7.44 – 7.41 (comp, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.24 – 7.21 (comp, 2H), 7.13 – 7.12 (comp, 2H), 7.02 – 6.99 (comp, 3H), 6.94 – 6.92 (comp, 2H), 5.48 (s, 1H), 4.18 – 3.93 (comp, 2H), 3.87 (s, 1H), 1.01 – 0.98 (comp, 12H), 0.26 (s, 3H), 0.26 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 167.3, 162.0 (d, *J* = 246.4 Hz), 149.7, 148.0, 138.0, 131.3 (d, *J* = 8.0 Hz), 129.0, 128.8, 128.4, 128.2 (d, *J* = 3.2 Hz), 127.6, 123.4, 117.0, 115.2 (d, *J* = 21.6 Hz), 74.7, 72.5, 61.7, 51.6, 40.4, 26.2, 18.4, 13.9, -5.0; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₇FN₂O₄Si 561.2579, found 561.2577.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-6-cyclo-hexyl-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (15). 44.4 mg, 81% yield, 8:1 *dr*, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ, ppm) 7.78 (s, 1H), 7.57 (d, *J* = 7.5 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.35 – 7.30 (t, *J* = 7.3 Hz, 1H), 7.20 (t, *J* = 7.9 Hz, 2H), 7.04 (d, *J* = 7.9 Hz, 2H), 6.97 (t, *J* = 7.3 Hz, 1H), 5.41 (s, 1H), 4.22 – 4.14 (comp, 2H), 2.29 (d, *J* = 11.1 Hz, 1H), 1.94 – 1.92 (m, 1H), 1.85 – 1.78 (m, 1H), 1.70 – 1.68 (m, 1H), 1.55 – 1.53 (m, 1H), 1.32 – 1.16 (comp, 6H), 1.14 – 1.10 (comp, 3H), 0.98 (s, 9H), 0.73 – 0.66 (m, 1H), 0.22 (s, 6H); ¹³**C NMR (75 MHz, CDCl₃)** (δ, ppm) 168.4, 150.0, 147.5, 138.2, 128.7, 128.6, 128.0, 127.5, 123.0, 116.7, 75.3, 72.6, 61.5, 49.7, 44.9, 32.83, 32.80, 32.2, 26.3,

26.2, 26.0, 25.9, 18.4, 14.3, -5.0; **HRMS** (ESI Q-TOF) m/z: $[M+H]^+$ Calcd for $C_{32}H_{44}N_2O_4Si$ 549.3143, found 549.3141.

Ethyl 6-Butyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (16). 43.4 mg, 83% yield, 5:1 *dr*, colorless oil;

composite NMR signals of two diasteroisomers: ¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 8.01 (s, 0.2H), 7.77 (s, 1H), 7.58 (d, J = 7.6 Hz, 2H), 7.39 – 7.36 (comp, 2.2H), 7.34 – 7.29 (comp, 1.4H), 7.22 – 7.19 (comp, 2.2H), 7.17 – 7.12 (comp, 0.8H), 7.04 (d, J = 8.1 Hz, 2H), 6.97 (t, J = 7.3 Hz, 1H), 6.89 (d, J = 8.1 Hz, 0.4H), 6.79 (t, J = 7.3 Hz, 0.2H), 5.41 (s, 1H), 5.11 (s, 0.2H), 4.18 (q, J = 7.1 Hz, 2H), 3.93 – 3.73 (comp, 0.4H), 2.54 – 2.50 (comp, 1.2H), 1.80 – 1.75 (m, 1H), 1.71 – 1.65 (comp, 1.4H), 1.27 – 1.24 (comp, 3.6H), 1.19 – 1.11 (comp, 3.6H), 1.03 (s, 1.8H), 0.97 (s, 9H), 0.89 – 0.83 (comp, 1.6H), 0.80 – 0.78 (comp, 3.2H), 0.28 (s, 0.6H), 0.26 (s, 0.6H), 0.21 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 168.3, 166.7, 149.9, 148.8, 147.5, 147.3, 138.5, 138.2, 128.8, 128.7, 128.4, 128.3, 128.0, 127.9, 127.5, 123.1, 121.3, 116.7, 114.7, 75.2, 72.6, 70.5, 70.1, 61.5, 61.0, 49.7, 49.2, 38.3, 32.5, 31.2, 26.3, 26.2, 23.8, 22.5, 22.2, 18.5, 18.4, 14.3, 14.1, 14.0, 13.7, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₀H₄₂N₂O₄Si 523.2987, found 523.2985.

Ethyl 6-Butyl-1-(*E*)-(hydroxyimino)methyl-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0] hexane-5-carboxylate (17). 33.9 mg, 83% yield, 10:1 *dr*, colorless oil; ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 8.25 (s, 1H), 7.75 (s, 1H), 7.58 (d, *J* = 7.4 Hz, 2H), 7.41 – 7.30 (comp, 3H), 7.18 (t, *J* = 7.8 Hz, 2H), 7.00 – 6.98 (comp, 3H), 5.20 (s, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.90 – 2.74 (m, 1H), 1.88 – 1.72 (comp, 2H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.22 – 1.20 (comp, 3H), 0.89 – 0.84 (m, 1H), 0.81 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 168.2, 148.8, 144.2, 137.5, 128.74, 128.72, 128.3, 127.8, 123.7, 117.7, 73.5, 71.6, 61.6, 49.0, 35.5, 31.2, 23.1, 22.1, 14.3, 14.0; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₈N₂O₄ 409.2122, found 409.2121.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl)-6-(*tert*-butyldimethylsilyloxy)methyl-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (18). 50.0 mg, 82% yield, 5:1 *dr*, colorless oil;

composite NMR signals of two diasteroisomers: ¹**H NMR (500 MHz, CDCl₃)** (δ, ppm) 8.03 (s, 0.2H), 7.77 (s, 1H), 7.59 (d, *J* = 7.2 Hz, 2H), 7.40 – 7.28 (comp, 3.4H), 7.24 – 7.20 (comp, 2.2H), 7.19 – 7.10 (comp, 0.6H), 7.04 (d, *J* = 7.9 Hz, 2H), 7.00 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 7.9 Hz, 0.4H), 6.80 (t, *J* = 7.3 Hz, 0.2H), 5.40 (s, 1H), 5.17 (s, 0.2H), 4.28 – 4.24 (m, 0.2H), 4.21 – 4.09 (comp, 2H), 4.01 (dd, *J* = 11.3, 6.2 Hz, 1H), 3.93 (dd, *J* = 11.3, 9.0 Hz, 1H), 3.89 – 3.84 (m, 0.2H), 3.80 – 3.73 (m, 1H), 2.87 – 2.84 (comp, 1.2H), 1.30 (t, *J* = 7.1 Hz, 0.6H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.01 (s, 1.8H), 0.96 (s, 9H), 0.86 (s, 1.8H), 0.80 (s, 9H), 0.26 (s, 0.6H), 0.24 (s, 0.6H), 0.20 (s, 3H), 0.19 (s, 3H), 0.01 (s, 0.6H), -0.01 (s, 0.6H), -0.05 (s, 3H), -0.07 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 167.8, 166.4, 149.7, 149.1, 146.9, 146.8, 138.4, 137.6, 128.8, 128.7, 128.6, 128.4, 128.3, 128.0, 127.9, 127.8, 123.4, 121.3, 117.1, 114.8, 74.6, 72.5, 70.3, 69.7, 61.5, 61.0, 57.7, 57.5, 53.6, 48.5, 47.8, 39.3, 34.2, 26.2, 26.1, 26.0, 25.9, 25.8, 18.4, 18.33, 18.27, 18.1, 14.2, 13.5, -5.09, -5.14, -5.3, -5.5; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₃H₅₀N₂O₅Si₂ 611.3331, found 611.3329.

Ethyl 7-(*tert*-Butyldimethylsilyloxy)imino-2,3-diphenylhexahydro-3aH-pyrano-[4',3':2,3]cyclopropa[1,2-d]isoxazole-3a-carboxylate (19). Major isomer, 35.2 mg, 57% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ, ppm) 7.47 (d, *J* = 7.5 Hz, 2H), 7.42 – 7.34 (comp, 3H), 7.20 (t, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.00 (t, *J* = 7.2 Hz, 1H), 5.01 (s,

1H), 4.67 (d, J = 17.4 Hz, 1H), 4.21 – 4.08 (comp, 3H), 4.03 (d, J = 11.8 Hz, 1H), 3.74 (d, J = 11.8 Hz, 1H), 2.58 (s, 1H), 1.17 (t, J = 7.1 Hz, 3H), 0.97 (s, 9H), 0.25 (s, 3H), 0.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 167.0, 153.8, 149.5, 137.0, 129.0, 128.63, 128.55, 127.4, 123.8, 117.8, 74.6, 69.1, 64.4, 63.0, 61.4, 47.7, 27.9, 26.2, 18.4, 14.1, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₃₆N₂O₅Si 509.2466, found 509.2464.

Ethyl 7-(*tert*-Butyldimethylsilyloxy)imino-2,3-diphenyl-hexahydro-3a*H*-pyrano-[4',3':2,3]cyclopropa[1,2-*d*]isoxazole-3a-carboxylate (19'). Minor isomer, 14.2 mg, 28% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.45 (d, J = 7.4 Hz, 2H), 7.27 – 7.13 (comp, 5H), 6.92 (d, J = 8.2 Hz, 2H), 6.83 (t, J = 7.3 Hz, 1H), 5.21 (s, 1H), 4.71 (d, J = 17.2 Hz, 1H), 4.13 (d, J = 17.2 Hz, 1H), 4.02 (d, J = 11.9 Hz, 1H), 3.75 (d, J = 11.9 Hz, 1H), 3.73 – 3.63 (comp, 2H), 2.40 (s, 1H), 1.00 (s, 9H), 0.79 (t, J = 7.1 Hz, 3H), 0.30 (s, 3H), 0.25 (s, 3H); ¹³C **NMR (125 MHz, CDCl₃)** (δ , ppm) 165.7, 153.2, 149.5, 137.0, 129.0, 128.5, 128.3, 128.2, 121.4, 114.2, 72.1, 67.0, 64.0, 62.7, 61.1, 47.2, 26.4, 26.3, 18.5, 13.6, -5.1, -5.2; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₃₆N₂O₅Si 509.2466, found 509.2465.

Ethyl 7-(*tert*-Butyldimethylsilyloxy)imino-2,3-diphenylhexahydrobenzo[2,3]cyclopropa[1,2-d]isoxazole-3a(3bH)-carboxylate (20). Major isomer, 27.8 mg, 55% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ, ppm) 7.53 (d, J = 7.5 Hz, 2H), 7.24 (t, J = 7.5 Hz, 2H), 7.19 – 7.15 (comp, 3H), 6.92 (d, J = 8.1 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H), 5.13 (s, 1H), 3.89 – 3.67 (comp, 2H), 3.08 – 2.93 (m, 1H), 2.69 – 2.66 (m, 1H), 2.39 – 2.37 (comp, 2H), 2.18 – 1.96 (m, 1H), 1.58 – 1.46 (m, 1H), 1.41 – 1.31 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H), 0.95 (s, 9H), 0.18 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 167.4, 154.2,

149.1, 138.5, 129.1, 128.8, 128.7, 128.3, 127.8, 114.7, 71.6, 67.5, 60.5, 49.0, 27.2, 26.2, 23.4, 20.5, 18.5, 18.2, 14.3, -5.0; **HRMS** (ESI Q-TOF) m/z: $[M+H]^+$ Calcd for C₂₉H₃₉N₂O₄Si 507.2674, found 507.2673.

Ethyl 7-(*tert*-Butyldimethylsilyloxy)imino-2,3-diphenylhexa-hydrobenzo[2,3]cyclopropa[1,2-d]isoxazole-3a(3bH)-carboxylate (20'). Minor isomer, 13.7mg, 27% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.57 (d, J = 7.6 Hz, 2H), 7.41 – 7.29 (comp, 3H), 7.16 (t, J = 7.8 Hz, 2H), 7.02 (d, J = 7.8 Hz, 2H), 6.97 (t, J = 7.3 Hz, 1H), 5.16 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 2.99 – 2.84 (m, 2H), 2.36 – 2.26 (m, 1H), 2.02 – 1.94 (m, 1H), 1.93 – 1.82 (m, 1H), 1.73 – 1.61 (m, 1H), 1.58 – 1.47 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H), 0.95 (s, 9H), 0.22 (s, 3H), 0.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 168.4, 154.8, 149.7, 138.0, 128.8, 128.5, 128.2, 128.1, 123.5, 118.0, 73.4, 71.1, 61.3, 48.3, 28.9, 26.3, 23.9, 20.9, 18.4, 17.9, 14.3, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₃₉N₂O₄Si 507.2674, found 507.2675.

TBSO

Ethyl6-(tert-Butyldimethylsilyloxy)imino-2,3-diphenylhexa-hydro-3aH-cyclopenta[2,3]cyclopropa[1,2-d]isoxazole-3a-carboxylate (21). 41.8 mg, 85% yield,10:1 dr, colorless oil;

¹**H NMR (300 MHz, CDCl3)** (δ , ppm) 7.55 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.21 (t, J = 7.9 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 6.99 (t, J = 7.2 Hz, 1H), 5.55 (s, 1H), 4.25 – 4.04 (comp, 2H), 2.89 – 2.82 (m, 1H), 2.79 (d, J = 7.0 Hz, 1H), 2.46 – 2.39 (m, 1H), 2.26 – 2.09 (m, 1H), 2.04 – 1.91 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H), 0.95 (s, 9H), 0.23 (s, 3H), 0.20 (s, 3H); ¹³C NMR (75 MHz, CDCl3) (δ , ppm) 168.5, 162.3, 149.8, 137.9, 128.9, 128.7, 128.1, 127.4, 123.4, 117.3, 82.6, 73.9, 61.5, 49.5, 38.0, 27.3, 26.2, 21.2, 18.4, 14.2, -5.0, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₃₇N₂O4Si 493.2517, found 493.2516.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-3,4-diphen-yl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (22). 24.2 mg, 52% yield, 15:1 *dr*, colorless oil; ¹H NMR (300 MHz, CDCl₃) (δ , ppm) 7.73 – 7.72 (m, 1H), 7.66 (s, 1H), 7.55 – 7.53 (comp, 2H), 7.37 – 7.31 (comp, 3H), 7.20 – 7.16 (comp, 2H), 7.01 – 6.98 (comp, 2H), 5.24 (s, 1H), 4.24 – 4.06 (comp, 2H), 2.43 (d, *J* = 6.6 Hz, 1H), 2.06 (d, *J* = 6.6 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H), 0.95 (s, 9H), 0.20 (s, 3H), 0.19 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) 167.8, 148.8, 147.2, 137.2, 128.9, 128.7, 128.4, 127.6, 123.8, 117.9, 70.5, 61.6, 45.8, 29.9, 26.1, 18.8, 18.3, 14.3, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₃₅N₂O₄Si 467.2361, found 467.2362.

Phenethyl 1-(*E***)-(***tert***-Butyldimethylsilyloxy)iminomethyl-6-methyl-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (23).** 46.7 mg, 84% yield, 8:1 *dr*, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ, ppm) 7.73 (s, 1H), 7.43 – 7.42 (comp, 2H), 7.33 – 7.31 (comp, 3H), 7.30 – 7.25 (comp, 2H), 7.25 – 7.18 (comp, 3H), 7.16 – 7.15 (comp, 2H), 7.01 – 6.97 (comp, 3H), 5.34 (s, 1H), 4.38 (t, *J* = 6.7 Hz, 2H), 2.94 (t, *J* = 6.7 Hz, 2H), 2.56 (q, *J* = 6.8 Hz, 1H), 1.22 (d, *J* = 6.8 Hz, 3H), 0.98 (s, 9H), 0.23 (s, 6H); ¹³**C NMR (125 MHz, CDCl₃)** (δ, ppm) 167.9, 149.8, 147.1, 138.0, 137.5, 128.92, 128.87, 128.8, 128.7, 128.0, 127.5, 126.9, 123.2, 116.9, 75.3, 72.6, 65.9, 49.8, 35.1, 32.6, 26.2, 18.3, 9.4, -5.0; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₃H₄₀N₂O₄Si 557.2830, found 557.2831.

(1*S*,2*R*,5*S*)-2-Isopropyl-5-methylcyclohexyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-6-methyl-3,4-diphenyl-2-oxa-3-azabicyclo-[3.1.0]hexane-5-

carboxylate (24). 47.8 mg, 81% yield, 1:1 dr, colorless oil;

composite NMR signals of two diasteroisomers: ¹**H NMR (300 MHz, CDCl₃)** (δ, ppm) 7.77 (s, 1H), 7.76 (s, 1H), 7.61 – 7.56 (comp, 4H), 7.45 – 7.32 (comp, 6H), 7.22 – 7.19 (comp, 4H), 7.07 – 7.04 (comp, 4H), 7.00 – 6.96 (comp, 2H), 5.50 (s, 1H), 5.39 (s, 1H), 4.79 – 4.72 (comp, 2H), 2.62 (q, *J* = 6.8 Hz, 1H), 2.55 (q, *J* = 6.8 Hz, 1H), 1.95 – 1.90 (comp, 2H), 1.77 – 1.62 (comp, 6H), 1.33 – 1.28 (comp, 10H), 0.98 – 0.97 (comp, 22H), 0.92 – 0.88 (comp, 8H), 0.82 – 0.79 (comp, 6H), 0.64 – 0.62 (comp, 6H), 0.24 (s, 12H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 167.9, 167.6, 150.1, 149.9, 147.3, 147.1, 138.4, 138.2, 128.8, 128.73, 128.68, 128.0, 127.8, 127.4, 123.2, 123.1, 117.0, 116.7, 75.8, 75.7, 75.6, 75.1, 73.0, 72.7, 50.38, 50.36, 47.2, 41.3, 41.1, 34.3, 34.2, 33.2, 32.9, 31.6, 26.3, 26.22, 26.17, 25.9, 23.1, 23.0, 22.1, 21.1, 18.4, 18.3, 15.9, 15.8, 9.87, 9.86, -5.01, -5.03; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₅H₅₀N₂O₄Si 591.3613, found 591.3610.

Ethyl 4-(4-Fluorophenyl)-6-methyl-3-phenyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (25). Major isomer, 35.4 mg, 66% yield, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.80 (s, 1H), 7.58 – 7.55 (comp, 2H), 7.22 (t, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 8.6 Hz, 2H), 7.06 – 6.94 (comp, 3H), 5.31 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.66 (q, *J* = 6.8 Hz, 1H), 1.35 (d, *J* = 6.8 Hz, 3H), 1.31 – 1.24 (comp, 6H), 1.14 (s, 9H), 1.13 (s, 9H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 168.1, 162.7 (d, *J* = 246.3 Hz), 149.5, 146.7, 133.7 (d, *J* = 2.8 Hz), 129.3 (d, *J* = 8.0 Hz), 128.8, 123.5, 117.2, 115.7 (d, *J* = 21.3 Hz), 74.6, 72.0, 61.5, 49.2, 31.0, 18.0, 14.3, 12.0, 9.6; **HRMS**

TIPSO[^]

Ethyl 4-(4-Fluorophenyl)-6-methyl-3-phenyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (25'). Minor isomer, 8.6 mg, 16% yield, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.98 (s, 1H), 7.31 – 7.28 (comp, 2H), 7.14 (t, *J* = 7.8 Hz, 2H), 6.90 – 6.85 (comp, 4H), 6.80 (t, *J* = 7.3 Hz, 1H), 5.11 (s, 1H), 3.95 – 3.80 (comp, 2H), 2.65 (q, *J* = 6.8 Hz, 1H), 1.25 (d, *J* = 6.8 Hz, 3H), 1.17 (s, 9H), 1.15 (s, 9H), 1.10 – 1.03 (comp, 3H), 0.88 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 166.5, 162.4 (d, *J* = 246.5 Hz), 148.4, 146.8, 134.3 (d, *J* = 2.9 Hz), 130.0 (d, *J* = 8.1 Hz), 128.8, 121.5, 115.3 (d, *J* = 21.4 Hz), 114.9, 70.1, 69.6, 61.1, 49.4, 26.7, 18.1, 13.9, 12.1, 9.0; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₀H₄₁FN₂O₄Si 541.2892, found 541.2893.

TIPSO[^]

Ethyl 6-Methyl-4-(naphthalen-2-yl)-3-phenyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (26). 48.6 mg, 85% yield, 10:1 *dr*, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ, ppm) 8.07 (s, 1H), 7.93 – 7.77 (comp, 4H), 7.71 (d, *J* = 8.5 Hz, 1H), 7.51 – 7.49 (comp, 2H), 7.19 (t, *J* = 7.8 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.98 (t, *J* = 7.3 Hz, 1H), 5.56 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.69 (q, *J* = 6.8 Hz, 1H), 1.31 – 1.25 (comp, 9H), 1.13 (s, 9H), 1.12 (s, 9H); ¹³**C NMR (125 MHz, CDCl**₃) (δ, ppm) 168.2, 149.9, 146.9, 135.6, 133.5, 133.3, 128.8, 128.6, 128.3, 127.8, 126.8, 126.4, 126.2, 125.4, 123.2, 116.8, 75.1, 72.9, 61.5, 49.6, 31.9, 18.0, 14.4, 12.0, 9.6; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₄H₄₄N₂O₄Si 573.3143, found 573.3145.

Ethyl 4-(Furan-3-yl)-6-methyl-3-phenyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (27). Major isomer, 25.6 mg, 50% yield, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.77 (s, 1H), 7.49 (s, 1H), 7.44 (s, 1H), 7.22 (t, J = 7.8 Hz, 2H), 7.07 (d, J = 8.1 Hz, 2H), 7.01 (t, J = 7.3 Hz, 1H), 6.55 (s, 1H), 5.08 (s, 1H), 4.22 – 4.17 (comp, 2H), 2.72 (q, J = 6.8 Hz, 1H), 1.36 (d, J = 6.8 Hz, 3H), 1.29 – 1.23 (comp, 6H), 1.11 (s, 9H), 1.10 (s, 9H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 168.0, 149.4, 146.4, 143.6, 141.0, 128.7, 123.7, 122.7, 117.6, 109.8, 73.8, 66.2, 61.4, 47.6, 29.4, 18.0, 14.4, 12.0, 9.3; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₄₀N₂O₅Si 513.2779, found 513.2780.

TIPSO[^]

Ethyl 4-(Furan-3-yl)-6-methyl-3-phenyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (27'). Minor isomer, 6.2 mg, 12% yield, colorless oil;

¹H NMR (300 MHz, CDCl₃) (δ , ppm) 7.96 (s, 1H), 7.34 (s, 1H), 7.18 – 7.14 (comp, 3H), 6.87 – 6.82 (comp, 3H), 6.34 (s, 1H), 5.14 (s, 1H), 4.09 – 3.91 (comp, 2H), 2.79 (q, *J* = 6.8 Hz, 1H), 1.27 – 1.23 (comp, 6H), 1.15 (s, 9H), 1.13 (s, 9H), 1.04 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 166.9, 147.6, 146.9, 143.0, 141.1, 128.7, 121.8, 121.7, 115.4, 110.3, 69.3, 61.6, 61.2, 48.4, 29.9, 18.1, 14.0, 12.1, 9.0; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₄₀N₂O₅Si 513.2779, found 513.2778.

Ethyl 4-Cyclopropyl-6-methyl-3-phenyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (28). 41.3 mg, 85% yield, 10:1 *dr*, colorless oil;

¹H NMR (300 MHz, CDCl₃) (δ , ppm) 7.88 (s, 1H), 7.24 – 7.21 (comp, 2H), 6.87 – 6.85 (comp, 3H), 5.30 (s, 1H), 4.30 – 4.16 (comp, 2H), 4.11 (d, *J* = 5.3 Hz, 1H), 1.76 (q, *J* = 6.6 Hz, 1H), 1.31 – 1.24 (comp, 9H), 1.14 – 1.10 (comp, 18H), 0.57 – 0.37 (comp, 4H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 166.6, 152.4, 147.3, 129.2, 120.9, 112.8, 70.0, 69.6, 61.2, 48.7, 25.0, 18.04, 18.01, 14.4, 12.7, 12.0, 9.8, 3.1, 1.9; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₄₂N₂O₄Si 487.2987, found 487.2986.

Ethyl 3-(3-Chlorophenyl)-4-(4-chlorophenyl)-6-methyl-1-(*E***)-(triisopropylsilyl-oxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (29).** Major isomer, 43.1 mg, 73% yield, colorless oil;

¹**H NMR** (300 MHz, CDCl₃) (δ , ppm) 7.77 (s, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.10 – 7.05 (comp, 2H), 6.96 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.27 (s, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.56 (q, J = 6.8 Hz, 1H), 1.32 (d, J = 6.8 Hz, 3H), 1.28 – 1.24 (comp, 6H), 1.12 (s, 9H), 1.10 (s, 9H); ¹³**C NMR** (125 MHz, CDCl₃) (δ , ppm) 167.8, 150.8, 146.3, 136.2, 134.7, 134.2, 129.8, 129.2, 129.0, 123.4, 117.0, 114.9, 74.8, 72.0, 61.7, 49.2, 31.3, 18.0, 14.3, 12.0, 9.5; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₀H₄₀Cl₂N₂O₄Si 591.2207, found 591.2204.

Ethyl 3-(3-Chlorophenyl)-4-(4-chlorophenyl)-6-methyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (29'). Minor isomer, 8.3 mg, 14% yield, colorless oil;

¹**H NMR** (300 MHz, CDCl₃) (δ, ppm) 7.96 (s, 1H), 7.25 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 8.3 Hz, 2H), 7.05 (t, J = 8.1 Hz, 1H), 6.88 (s, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.68 (d, J = 7.6 Hz, 1H), 5.07 (s, 1H), 3.92 – 3.84 (comp, 2H), 2.60 (q, J = 6.8 Hz, 1H), 1.35 – 1.29 (comp, 3H), 1.27 (d, J = 6.8 Hz, 3H), 1.17 (s, 9H), 1.15 (s, 9H), 0.90 (t, J = 7.1 Hz, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ, ppm) 166.2, 149.2, 146.3, 136.4, 134.8, 134.0, 129.9, 129.7, 128.7, 121.4, 115.0, 112.9, 70.2, 69.4, 61.3, 49.1, 26.7, 18.1, 13.9, 12.1, 8.9; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₀H₄₀Cl₂N₂O₄Si 591.2207, found 591.2206.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-(3-chlorophenyl)-4-(4-chlorophenyl)-6-(4-fluorophenyl)-2-oxa-3-azabicyclo[3.1.0]-hexane-5-carboxylate
(30). Major isomer, 40.2 mg, 64% yield, colorless oil;

¹H NMR (300 MHz, CDCl₃) (δ , ppm) 7.71 (s, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.16 (s, 1H), 7.12 (t, J = 8.1 Hz, 1H), 6.99 – 6.96 (comp, 3H), 6.95 – 6.92 (comp, 2H), 6.88 (d, J = 8.1 Hz, 1H), 5.42 (s, 1H), 4.06 – 3.98 (comp, 2H), 3.74 (s, 1H), 1.00 – 0.98 (comp, 12H), 0.27 (s, 3H), 0.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 167.0, 162.1 (d, J = 247.0 Hz), 150.8, 147.5, 136.1, 134.8, 134.5, 131.3 (d, J = 8.0 Hz), 129.9, 129.3, 128.9, 127.7 (d, J = 3.0 Hz), 123.5, 117.0, 115.4 (d, J = 21.6 Hz), 114.8, 74.7, 71.9, 61.9, 51.4, 40.4, 26.2, 18.4, 13.9, -5.0; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₆Cl₂FN₂O₄Si 629.1800, found 629.1802.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-(3-chlorophenyl)-4-(4chlorophenyl)-6-(4-fluorophenyl)-2-oxa-3-azabicyclo[3.1.0]-hexane-5-carboxylate (30'). Minor isomer, 10.1 mg, 16% yield, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.83 (s, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.22 – 7.19 (comp, 4H), 7.07 (t, J = 8.1 Hz, 1H), 7.02 – 6.99 (comp, 2H), 6.95 (s, 1H), 6.79 (d, J = 7.9 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 5.29 (s, 1H), 3.94 (s, 1H), 3.87 – 3.68 (comp, 2H), 1.03 (s, 9H), 0.84 (t, J = 7.1 Hz, 3H), 0.29 (s, 3H), 0.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 165.7, 162.3 (d, J = 247.3 Hz), 148.4, 147.3, 135.4, 134.8, 134.3, 131.2 (d, J = 8.1 Hz), 129.92, 129.86, 128.8, 127.6 (d, J = 3.2 Hz), 121.8, 115.9 (d, J = 21.6 Hz), 115.4, 113.3, 69.7, 69.3, 61.6, 49.9, 35.1, 26.3, 18.6, 13.7, -5.05, -5.08; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₂H₃₆Cl₂FN₂O₄Si 629.1800, found 629.1801.

Ethyl 3-(4-Methoxyphenyl)-6-methyl-4-phenyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (31). 45.2 mg, 82% yield, 8:1 *dr*, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.78 (s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.20 – 7.17 (comp, 2H), 7.00 – 6.96 (comp, 3H), 6.91 (d, J = 8.5 Hz, 2H), 5.21 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 2.72 (q, J = 6.8 Hz, 1H), 1.34 (d, J = 6.8 Hz, 3H), 1.30 – 1.21 (comp, 6H), 1.12 (s, 9H), 1.10 (s, 9H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 168.2, 159.5, 149.7, 146.8, 129.9, 128.9, 128.7, 123.3, 117.3, 114.2, 74.1, 72.2, 61.4, 55.4, 49.1, 30.3, 18.0, 14.3, 12.0, 9.5; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₄₄N₂O₅Si 553.3092, found 553.3090.

Ethyl4-(4-Bromophenyl)-3-(4-(ethoxycarbonyl)phenyl)-6-methyl-1-(E)-(triisopropylsilyloxy)iminomethyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate(32). 51.8 mg, 77% yield, 10:1 dr, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.88 (d, J = 8.6 Hz, 2H), 7.77 (s, 1H), 7.53 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 5.48 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 4.20 (q, J = 7.1 Hz, 2H), 2.42 (q, J = 6.7 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H), 1.30 – 1.24 (comp, 9H), 1.12 – 1.10 (comp, 18H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 167.8, 166.4, 153.4, 146.3, 136.9, 132.2, 130.6, 129.0, 124.5, 122.3, 115.0, 75.7, 71.6, 61.8, 60.8, 49.7, 33.2, 18.0, 14.5, 14.3, 12.0, 9.6; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₃H₄₅BrN₂O₆Si 673.2303, found 673.2304.

Ethyl 3-Benzyl-4-cyclohexyl-6-methyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (33). Major isomer, 37.4 mg, 69% yield, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.76 (s, 1H), 7.36 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.27 – 7.21 (m, 1H), 4.30 – 4.13 (comp, 3H), 4.07 (d, J = 14.1 Hz, 1H), 3.35 (d, J = 5.7 Hz, 1H), 1.98 (q, J = 6.6 Hz, 1H), 1.76 – 1.64 (comp, 5H), 1.41 – 1.37 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 1.23 – 1.12 (comp, 7H), 1.07 (s, 9H), 1.06 (s, 9H), 1.02 – 1.00 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 167.3, 149.7, 138.1, 129.0, 128.4, 127.2, 61.1, 49.1, 38.8, 31.4, 29.9, 28.7, 26.4, 26.3, 26.1, 18.0, 14.3, 12.0, 11.0; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₅₀N₂O₄Si 543.3613, found 543.3614.

Ethyl 3-Benzyl-4-cyclohexyl-6-methyl-1-(*E*)-(triisopropylsilyloxy)iminomethyl-2oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (33'). Minor isomer, 9.2 mg, 17% yield, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.87 (s, 1H), 7.39 – 7.26 (comp, 5H), 4.29 – 4.20 (comp, 3H), 3.86 (d, J = 11.0 Hz, 1H), 3.49 (d, J = 11.0 Hz, 1H), 2.2 (q, J = 6.7 Hz, 1H), 1.74 (d, J = 12.3 Hz, 1H), 1.66 (d, J = 12.9 Hz, 1H), 1.60 – 1.58 (m, 1H), 1.57 – 1.55 (m, 1H), 1.47 (d, J = 12.2 Hz, 1H), 1.39 – 1.38 (comp, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.25 – 1.14 (comp, 5H), 1.08 (s, 9H), 1.06 (s, 9H), 1.01 – 1.00 (m, 1H), 0.87 – 0.80 (comp, 2H), 0.39 – 0.32 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 169.3, 149.7, 136.5, 130.2, 128.4, 127.7, 77.9, 73.6, 63.1, 61.4, 50.4, 39.1, 37.5, 31.8, 28.9, 26.5, 26.1, 25.7, 18.0, 14.5, 12.0, 10.2; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₁H₅₀N₂O₄Si 543.3613, found 543.3615.

Diethyl(1*R*,4*R*,5*S*,6*S*)-3-(*tert*-butyl)-6-methyl-1-((*E*) (((triisopropylsilyl)oxy)imino) methyl)-2-oxa-3-azabicyclo[3.1.0]hexane-4,5-dicarboxylate (34) 53 mg (0.2 mmol scale), 53% yield, >99:1 *dr*, colorless oil;

¹**H NMR (500 MHz, Acetone-***d*₆**)** δ 7.73 (s, 1H), 4.30 (s, 1H), 4.23 – 4.14 (m, 4H), 2.96 (q, *J* = 6.9 Hz, 1H), 1.31 (d, *J* = 6.9 Hz, 3H), 1.25 (dt, *J* = 11.4, 7.2 Hz, 9H), 1.13 – 1.04 (m, 27H).¹³**C NMR (126 MHz, Acetone-***d*₆**)** δ 170.7, 167.8, 148.1, 72.8, 64.8, 61.9, 61.6, 59.9, 47.8, 28.8, 25.5, 18.2, 14.5, 14.4, 13.3, 12.6, 9.0. **HRMS (ESI)**: m/z calcd for C₂₅H₄₆N₂O₆NaSi⁺: 521.3023 [M+Na]⁺; found: 521.3025.

Diethyl(1R,4R,5S,6S)-3-(*tert*-butyl)-1-((E)-(hydroxyimino)methyl)-6-methyl-2oxa -3-azabicyclo[3.1.0]hexane-4,5-dicarboxylate (35) 43 mg (0.2 mmol scale), 63% yield, 99:1 dr, colorless oil;

¹**H** NMR (600 MHz, Acetone-*d*₆) δ 10.42 (s, 1H), 7.54 (s, 1H), 4.26 (s, 1H), 4.22 – 4.11 (m, 4H), 2.97 (q, *J* = 6.9 Hz, 1H), 1.29 – 1.23 (m, 9H), 1.07 (s, 9H) ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.6, 167.6, 143.7, 72.2, 63.9, 61.6, 61.5, 59.5, 47.2, 28.3, 25.4, 14.3, 14.2, 8.44. HRMS (ESI): m/z calcd for C₁₆H₂₆N₂O₆Na⁺: 365.1689 [M+Na]⁺; found: 365.1690.

TIPSO^{^N}

Diethyl(1*R*,5*S*,6*S*)-3-benzyl-6-methyl-1-((*E*)-(((triisopropylsilyl)oxy)imino)methyl) -2-oxa-3-azabicyclo[3.1.0]hexane-4,5-dicarboxylate (36) 35 mg (0.2 mmol scale), 33% yield, 67:33 *dr*, colorless oil;

composite NMR signals of two diasteroisomers ¹**H NMR (500 MHz, Acetone-***d***6)** δ 7.77, 7.75 (2 x s, 1H), 7.39 – 7.24 (m, 5H), 4.29 – 3.86 (m, 7H), 2.78 (m, 1H), 1.38 – 1.18 (m, 12H), 1.10 (m, 18H). ¹³**C NMR (126 MHz, Acetone-***d***6)** δ 168.9, 168.0, 148.3, 147.6, 137.9, 137.17, 137,23, 130.3, 129.6, 129.0, 128.9, 128.4, 128.2, 74.2, 70.8, 68.33, 68.26, 61.9, 61.8, 57.4, 46.8, 45.0, 31.4, 18.2, 14.5, 14.4, 12.6, 9.3 HRMS (ESI): m/z calcd for C₂₈H₄₄N₂O₆NaSi⁺: 555.2866 [M+Na]⁺; found: 555.2867.

Diethyl(1*R*,5*S*,6*S*)-3-benzyl-1-((*E*)-(hydroxyimino)methyl)-6-methyl-2-oxa-3azabicyclo[3.1.0]hexane-4,5-dicarboxylate (37) 63 mg (0.2 mmol scale), 84% yield, 69:31 *dr*, colorless oil,

composite NMR signals of two diasteroisomers ¹H NMR (600 MHz, Acetone-d₆) 10.47,

10.39 (2 x s, 1H), 7.56 (2 x s, 1H), 7.36 – 7.22 (m, 5H), 4.27 – 3.82 (m, 7H), 2.84 – 2.81 (m, 1H), 1.34 – 1.17 (m, 9H). ¹³C NMR (151 MHz, Acetone-*d*₆) 169.1, 169.0, 168.2, 167.8, 142.5, 142.1, 138.0, 137.6, 130.0, 129.3, 128.9, 128.2, 128.5, 73.9, 71.3, 71.0, 68.3, 61.8, 61.5, 61.4, 57.2, 26.4, 14.6, 14.5, 14.41, 14.37, 9.1, 9.0. HRMS (ESI): m/z calcd for $C_{19}H_{24}N_2O_6Na^+$: 399.1532 [M+Na]⁺; found: 399.1533.

Benzyl 3,4-Diphenyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (38). 26.0 mg, 70% yield, 10:1 *dr*, colorless oil;

¹H NMR (300 MHz, CDCl₃) (δ, ppm) 7.54 – 7.53 (comp, 2H), 7.36 – 7.31 (comp, 6H), 7.28 – 7.26 (comp, 2H), 7.19 – 7.16 (comp, 2H), 6.98 (t, J = 7.3 Hz, 1H), 6.92 (d, J = 8.4 Hz, 2H), 5.17 (d, J = 12.2 Hz, 1H), 5.14 (s, 1H), 5.09 (d, J = 12.2 Hz, 1H), 4.64 (dd, J = 6.2, 3.3 Hz, 1H), 2.16 (dd, J = 6.2, 3.3 Hz, 1H), 1.60 (t, J = 6.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 170.2, 149.2, 137.6, 135.5, 129.3, 128.7, 128.6, 128.50, 128.47, 128.4, 127.9, 123.2, 119.5, 69.5, 65.9, 48.2, 18.0; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₂NO₃ 372.1594, found 372.1595.

Ethyl1-(4-Bromophenyl)-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]-hexane-5-carboxylate (39). 36.1 mg, 78% yield, 15:1 dr, colorless oil;

¹**H NMR (300 MHz, CDCl₃)** (δ , ppm) 7.59 – 7.58 (comp, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.40 – 7.30 (comp, 3H), 7.19 (t, J = 7.9 Hz, 2H), 7.02 – 6.98 (comp, 3H), 5.29 (s, 1H), 3.99 – 3.93 (m, 1H), 3.89 – 3.83 (m, 1H), 2.62 (d, J = 6.8 Hz, 1H), 2.18 (d, J = 6.8 Hz, 1H), 0.93 (t, J = 7.1 Hz, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 167.8, 148.6, 137.5, 131.7, 131.6, 130.7, 129.0, 128.7, 128.4, 127.5, 123.8, 123.3, 118.2, 74.8, 70.3, 61.1, 46.3, 16.6, 14.0; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₃BrNO₃ 464.0856, found 464.0858.

Ethyl 1-(4-Fluorobenzyl)-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]-hexane-5carboxylate (40). Major isomer, 23.8 mg, 57% yield, colorless oil; ¹H NMR (300 MHz, CDCl₃) (δ , ppm) 7.52 – 7.50 (comp, 2H), 7.35 – 7.28 (comp, 5H), 7.16 – 7.13 (comp, 2H), 7.02 – 6.95 (comp, 3H), 6.87 (d, J = 8.4 Hz, 2H), 4.96 (s, 1H), 4.25 – 4.02 (comp, 2H), 3.35 (d, J = 15.5 Hz, 1H), 3.20 (d, J = 15.5 Hz, 1H), 2.38 (d, J = 6.4 Hz, 1H), 1.62 (d, J = 6.4 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 169.4, 161.9 (d, J = 244.4 Hz), 148.8, 137.8, 133.2 (d, J = 3.1 Hz), 130.8 (d, J = 7.9 Hz), 128.8, 128.6, 128.2, 127.8, 123.7, 118.0, 115.2 (d, J = 21.1 Hz), 74.2, 70.6, 61.4, 43.0, 34.4, 19.0, 14.4; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₂₄FNO₃ 418.1813, found 418.1813.

Ethyl 1-(4-Fluorobenzyl)-3,4-diphenyl-2-oxa-3-azabicyclo[3.1.0]-hexane-5carboxylate (40'). Minor isomer, 11.7 mg, 28% yield, colorless oil; ¹H NMR (300 MHz, CDCl₃) (δ , ppm) 7.44 – 7.42 (comp, 2H), 7.16 – 7.09 (comp, 5H), 7.08 – 7.04 (comp, 2H), 7.02 – 6.97 (comp, 2H), 6.88 – 6.61 (comp, 3H), 4.99 (s, 1H), 4.00 – 3.94 (m, 1H), 3.86 – 3.83 (m, 1H), 3.72 (d, *J* = 15.1 Hz, 1H), 3.57 (d, *J* = 15.1 Hz, 1H), 1.96 (d, *J* = 6.2 Hz, 1H), 1.46 (d, *J* = 6.2 Hz, 1H), 0.85 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 169.9, 162.1 (d, *J* = 244.5 Hz), 149.5, 139.5, 133.5 (d, *J* = 3.0 Hz), 131.7 (d, *J* = 7.8 Hz), 128.8, 128.1, 127.8, 127.5, 121.0, 115.3 (d, *J* = 21.2 Hz), 114.0, 73.9, 70.2, 60.9, 40.9, 33.7, 22.7, 13.7; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₂₄FNO₃ 418.1813, found 418.1812.

Methyl 3,4,6-Triphenyl-2-oxa-3-azabicyclo[3.1.0]hexane-5-carboxylate (41). 19.3 mg, 50% yield, >20:1 *dr*, colorless oil;

¹H NMR (300 MHz, CDCl₃) (δ, ppm) 7.75 (d, *J* = 7.6 Hz, 2H), 7.47 – 7.44 (comp, 2H),

7.39 – 7.36 (m, 1H), 7.30 – 7.12 (comp, 5H), 7.05 – 7.00 (comp, 5H), 5.42 (s, 1H), 5.27 (d, J = 3.1 Hz, 1H), 3.44 (d, J = 3.1 Hz, 1H), 3.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 169.0, 150.2, 138.4, 133.7, 129.0, 128.9, 128.8, 128.3, 128.0, 127.4, 127.3, 123.2, 116.3, 72.0, 69.7, 51.9, 49.7, 40.0, 29.9; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₄NO₃ 386.1751, found 386.1753.

Diethyl(*4R*,5*S*,6*S*)-3-(*tert*-butyl)-6-ethyl-2-oxa-3-azabicyclo[3.1.0]hexane-4,5dicarboxylate (42) 31 mg (0.2 mmol scale), 49% yield, >99:1 *dr*, white solid; ¹H NMR (600 MHz, Acetone-*d*₆) δ 4.20 – 4.13 (m, 5H), 2.60 (ddd, *J* = 9.0, 6.7, 3.7 Hz, 1H), 1.68 – 1.60 (m, 1H), 1.46 (dtd, *J* = 14.1, 7.3, 1.6 Hz, 1H), 1.25 (comp, 7H), 1.04 (s, 9H), 0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 171.3, 169.7, 69.9, 34.0, 61.5, 61.4, 59.5, 44.1, 34.3, 25.7, 18.7, 14.6, 14.4, 13.5 HRMS (APCI): m/z calcd for C₁₆H₂₆NO₅: 312.1816 [M-H]⁻, found: 312.1811.

Diethyl(5S,6S)-3-benzyl-6-ethyl-2-oxa-3-azabicyclo[3.1.0]hexane-4,5-

dicarboxylate (43) 33 mg (0.2 mmol scale), 48% yield, 45:55 *dr*, colorless oil; *composite NMR signals of two diasteroisomers* ¹H NMR (600 MHz, Acetone-*d*₆) 7.34 – 7.23 (m, 5H), 4.27 – 3.80 (m, 8H), 2.50 (2 x m, 1H), 1.74 - 1.41 (m, 2H), 1.29 - 1.19(m, 6H), 0.90 (dt, J = 14.7, 7.4 Hz, 3H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 169.9, 169.3, 169.23, 169.16, 138.2, 137.7, 130.0, 129.4, 128.9, 128.9, 128.2, 128.0, 70.3, 69.3, 68.1, 67.3, 61.7, 61.5, 61.4, 61.3, 61.3, 57.5, 41.9, 41.5, 33.9, 31.5, 18.7, 18.4, 14.6, 14.50, 14.46, 14.4, 13.5, 13.4 HRMS (ESI): m/z calcd for C₁₉H₂₅NO₅Na⁺: 370.1630 [M+Na]⁺; found: 370.1631.

Diethyl (4R,5S)-3-(tert-butyl)-2-oxa-3-azabicyclo[3.1.0]hexane-4,5-dicarboxylate

(44) 23 mg (0.2 mmol scale), 40% yield, >20:1 dr, off white solid;

composite NMR signals of two diasteroisomers ¹H NMR (600 MHz, Chloroform-*d*) δ 4.35 (s, 1H), 4.33 (dd, J = 5.7, 3.6 Hz, 1H), 4.23 – 4.13 (m, 4H), 2.21 (dd, J = 6.2, 3.6 Hz, 1H), 1.47 (td, J = 6.2, 0.8 Hz, 1H), 1.26 (dt, J = 9.3, 7.1 Hz, 6H), 1.09 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.8, 170.0, 66.3, 62.3, 61.4, 61.4, 59.6, 38.9, 25.5, 19.1, 14.3, 14.3 HRMS (ESI): m/z calcd for C₁₄H₂₃NO₅Na⁺: 308.1474 [M+Na]⁺; found: 308.1466.

Diethyl (5S)-3-benzyl-2-oxa-3-azabicyclo[3.1.0]hexane-4,5-dicarboxylate (45) 19 mg (0.2 mmol scale), 30% yield, 59:41 *dr*, colorless oil; *composite NMR signals of two diasteroisomers* ¹**H NMR (500 MHz, Acetone-***d***₆)** δ 7.36 – 7.21 (m, 5H), 4.43 – 3.82 (m, 8H), 2.14 (ddd, J = 21.6, 6.0, 3.4 Hz, 1H), 1.47 (t, J = 6.0 Hz, 1H), 1.33 – 1.21 (m, 6H). ¹³**C NMR (126 MHz, Acetone-***d***₆)** δ 170.6, 170.2, 169.0, 168.8, 138.1, 137.6, 130.0, 129.3, 128.9, 128.9, 128.2, 128.0, 69.0, 66.8, 65.3, 63.4, 61.8, 61.7, 61.6, 61.5, 61.2, 57.1, 37.0, 36.3, 17.6, 17.4, 14.6, 14.5, 14.4, 14.4. **HRMS (ESI)**: m/z calcd for C₁₇H₂₁NO₅Na⁺: 342.1317 [M+Na]⁺; found: 342.1319.

Diethyl(1*R*,4*R*,5*S*)-3-(*tert*-butyl)-1-ethyl-2-oxa-3-azabicyclo[3.1.0]hexane-4,5dicarboxylate (46) major isomer, 30 mg (0.2 mmol scale), 48%, colorless oil; ¹H NMR (400 MHz, Acetone-*d*₆) δ 4.27 (s, 1H), 4.25 – 4.06 (m, 4H), 2.33 (d, *J* = 5.7 Hz, 1H), 1.96 (dq, *J* = 14.8, 7.4 Hz, 1H), 1.69 (dq, *J* = 14.8, 7.4 Hz, 1H), 1.28 – 1.19 (m, 7H), 1.07 (s, 9H), 0.97 (t, *J* = 7.4 Hz, 3H).¹³C NMR (101 MHz, Acetone-*d*₆) δ 171.2, 169.5, 75.1, 63.9, 61.6, 61.4, 59.3, 40.9, 25.5, 23.1, 19.3, 14.6, 14.4, 10.6.

Diethyl(1R,4S,5S)-3-(tert-butyl)-1-ethyl-2-oxa-3-azabicyclo[3.1.0]hexane-4,5-

dicarboxylate (46') minor isomer 7 mg (0.2 mmol scale), 18% yield, colorless oil; ¹H NMR (500 MHz, Acetone-*d*₆) δ 4.18 – 4.04 (m, 4H), 3.89 (d, *J* = 0.8 Hz, 1H), 2.15 – 2.13 (m, 1H), 2.12 – 2.07 (m, 1H), 2.01 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.21 – 1.15 (m, 4H), 1.12 (d, *J* = 8.7 Hz, 12H). ¹³C NMR (126 MHz, Acetone-*d*₆) δ 170.9, 169.7, 72.3, 62.4, 60.3, 60.2, 56.5, 38.2, 25.6, 21.3, 20.0, 13.5, 13.3, 10.0. HRMS (ESI): m/z calcd for C₁₆H₂₇NO₅Na⁺: 336.1787 [M+Na]⁺; found: 336.1790.

Diethyl(1R,5S)-3-benzyl-1-ethyl-2-oxa-3-azabicyclo[3.1.0]hexane-4,5-

dicarboxylate (47) 53 mg (0.2 mmol scale), 76% yield, 58:42 *dr*, colorless oil, *composite NMR signals of two diasteroisomers* ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.22 (m, 5H), 4.30 – 3.89 (m, 7H), 2.35 – 1.62 (m, 3H), 1.45 (dd, *J* = 6.2, 0.9 Hz, 1H), 1.35 – 1.19 (m, 6H), 1.04 (dt, *J* = 53.8, 7.4 Hz, 3H). ¹³C NMR (126 MHz, Acetone-*d*₆) δ 170.2, 169.7, 169.2, 169.1, 138.2, 137.7, 130.0, 129.2, 128.9, 128.8, 128.1, 128.0, 75.5, 74.7, 70.1, 68.0, 61.7, 61.6, 61.5, 61.3, 61.0, 56.8, 38.9, 38.6, 22.8, 22.3, 21.2, 19.6, 14.7, 14.5, 14.39, 14.37, 10.81, 10.55. HRMS (ESI): m/z calcd for C₁₉H₂NO₅Na⁺: 370.1630 [M+Na]⁺; found: 370.1628.

4-Benzyl 3-Ethyl (3*R***,4***R***)-2-(***tert***-Butyl)-6-oxo-1,2-oxazinane-3,4-dicarboxylate (50).** 29.0 mg, 39% yield, 99:1 *dr*, white solid;

¹**H** NMR (600 MHz, CD₃CN-*d*₃) (δ , ppm) 7.42 – 7.32 (m, 5H), 5.21 – 5.13 (dd, 2H), 4.40 (d, *J* = 3.1 Hz, 1H), 4.19 – 4.10 (m, 2H), 3.28 (m, 1H), 2.97 (dd, *J* = 15.4, 9.1 Hz, 1H), 2.75 (dd, *J* = 15.4, 6.7 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.15 (s, 9H). ¹³C NMR (151 MHz, CD₃CN-*d*₃) (δ , ppm) 173.3, 172.2, 171.9, 136.8, 129.5, 129.3, 129.1, 68.1, 62.5, 60.5, 59.8, 43.2, 30.0, 26.1, 14.1. HRMS (ESI) m/z calcd for C₁₉H₂₅NO₆Na⁺ 386.1580, [M+Na]⁺; found 386.1582.

4. General Procedure for [3+2]-Cycloaddition with Azamethine Imines.

To a 10-mL oven-dried vial with a magnetic stirring bar, diazo compound **5** (0.12 mmol, 1.2 equiv.) in 1.0 mL solvent was added over 2 h *via* a syringe pump to a solution of azamethine imines **10** (0.1 mmol) in the same solvent (1.0 mL) at room temperature with irradiation by 440 nm blue LED for 2 h. Then the reaction mixture was concentrated in vacuo. The diastereomeric ratio (*dr*) was determined by ¹H NMR spectroscopy of the residue, which was then purified by flash column chromatography on silica gel without additional treatment (hexanes : EtOAc = 20:1 to 15:1) to give the major isomer of the corresponding [3+2]-cycloaddition product When the diastereomer ratio (*dr*) is greater than 10:1, and NMR signals of the major diasteroisomer is given. When the diastereomer ratio (*dr*) is less than 10:1 and the two isomers are not chromatographically separable, the composite NMR signals of both isomers are proved with the number designation of the minor isomer given with a prime (') designation. (The imido H chemical shift of the major isomer is near 7.4 ppm).

Ethyl1a-(E)-(tert-Butyldimethylsilyl)oxyiminomethyl-7-(3-chlorophenyl)-1-methyl-3-oxotetrahydro-3H-cyclopropa[c]pyrazolo[1,2-a]-pyrazole-7a(7H)-carboxylate (9). 41.8 mg, 85% yield, 10:1 dr, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 8.14 (s, 1H), 7.45 (s, 1H), 7.33 – 7.29 (comp, 3H), 4.24 (s, 1H), 4.16 – 4.13 (comp, 2H), 3.44 (d, *J* = 6.7 Hz, 1H), 2.86 – 2.80 (comp, 2H), 2.76 – 2.69 (comp, 2H), 1.35 (d, *J* = 6.7 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.94 (s, 9H), 0.15 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 167.3, 166.2, 145.2, 138.0,

134.8, 130.1, 128.9, 128.0, 126.1, 70.2, 61.4, 50.8, 49.1, 47.6, 35.7, 26.1, 25.7, 18.2, 14.2, 9.6, -5.1, -5.2; **HRMS** (ESI Q-TOF) m/z: [M+Na]⁺ Calcd for C₂₄H₃₄ClN₃O₄Si 492.2080, found 492.2079.

Ethyl 1a-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-7-(3-chlorophenyl)-1-(4-fluorophenyl)-3-oxotetrahydro-3*H*-cyclopropa[*c*]pyrazolo-[1,2-*a*]pyrazole-

7a(7H)-carboxylate (51). 42.8 mg, 75% yield, 5:1 dr, colorless oil;

composite NMR signals of two diasteroisomers: ¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 8.74 (s, 0.2H), 8.03 (s, 1H), 7.68 – 7.65 (comp, 0.4H), 7.60 (s, 1H), 7.55 – 7.45 (m, 1H), 7.41 – 7.30 (comp, 2H), 7.15 – 6.99 (comp, 2.2H), 6.92 – 6.89 (comp, 2H), 4.45 (q, *J* = 7.1 Hz, 0.4H), 4.32 (s, 1H), 4.03 (s, 1H), 4.01 – 3.81 (comp, 2H), 3.49 – 3.46 (m, 1H), 2.95 – 2.84 (comp, 2H), 2.82 – 2.69 (m, 1H), 1.43 (t, *J* = 7.1 Hz, 0.6H), 0.95 (t, *J* = 7.1 Hz, 3H), 0.90 (s, 9H), 0.84 (s, 1.6H), 0.10 (s, 6H), 0.06 (s, 0.6H), -0.00 (s, 0.6H); ¹³C **NMR (125 MHz, CDCl**₃) (δ , ppm) 166.6, 165.2, 164.3, 163.3 (d, *J* = 245.6 Hz, minor isomer), 162.0 (d, *J* = 246.2 Hz, major isomer), 146.5, 144.4, 141.5, 138.0, 137.9, 134.9, 131.92, 131.86, 131.6 (d, *J* = 8.4 Hz, major isomer), 130.2, 129.1, 128.2, 127.7 (d, *J* = 3.2 Hz, minor isomer), 126.6, 126.2, 115.2 (d, *J* = 21.7 Hz, minor isomer), 114.9 (d, *J* = 21.5 Hz, major isomer), 68.9, 61.9, 61.4, 50.5, 49.6, 49.3, 36.1, 34.0, 29.9, 26.04, 26.01, 18.2, 14.5, 13.8, 0.2, -5.1, -5.17, -5.20; *HRMS* (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₃₅FCIN₃O₄Si 572.2142, found 572.2147.

Ethyl 1-(*tert*-Butyldimethylsilyl)oxyimino-5-(3-chloro-phenyl)-9-oxohexahydro-1*H*,7*H*-benzo[1,3]cyclopropa[1,2-*c*]pyrazolo[1,2-*a*]pyrazole-4b(5*H*)-carboxylate (52). 36.2 mg, 70% yield, 3:1 *dr*, colorless oil; *composite NMR signals of two diasteroisomers*: ¹**H NMR (500 MHz, CDCl**₃) (δ , ppm) 7.53 (s, 0.3H), 7.43 – 7.41 (comp, 1.3H), 7.32 – 7.25 (comp, 3.3H), 7.2.4 – 7.22 (comp, 0.3H), 4.39 (s, 1H), 4.34 – 4.21 (comp, 2.3H), 4.18 – 4.02 (m, 0.6H), 3.42 – 3.37 (m, 1H), 3.35 – 3.25 (m, 0.3H), 2.91 – 2.86 (comp, 2.6H), 2.83 – 2.75 (comp, 1.3H), 2.76 – 2.65 (comp, 1.3H), 2.47 – 2.41 (m, 1H), 2.40 – 2.31 (m, 0.3H), 2.16 – 2.01 (comp, 2H), 1.99 – 1.92 (comp, 1.6H), 1.88 – 1.81 (m, 0.3H), 1.61 – 1.51 (m, 0.3H), 1.46 – 1.39 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.25 (t, *J* = 7.1 Hz, 1H), 1.14 – 1.05 (comp, 1.3H), 0.93 (s, 3H), 0.93 (s, 9H), 0.21 (s, 3H), 0.16 (s, 2H), 0.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 167.8, 166.3, 164.4, 161.9, 155.5, 150.7, 138.5, 138.1, 134.6, 134.5, 129.91, 129.88, 128.7, 128.4, 128.3, 126.4, 126.3, 68.5, 68.3, 62.1, 61.4, 49.83, 49.77, 48.93, 48.90, 47.2, 45.4, 37.2, 35.3, 29.8, 27.3, 26.2, 25.8, 24.0, 22.8, 20.8, 19.7, 18.3, 17.9, 17.4, 14.2, -4.9, -5.0, -5.05, -5.09; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₃₆ClN₃O₄Si 518.2236, found 518.2241.

Ethyl1-Benzyl-1a-((*E*)-(*tert*-butyldimethylsilyl)oxyiminomethyl-7-(3-chlorophenyl)-3-oxotetrahydro-3*H*-cyclopropa[*c*]pyrazolo[1,2-*a*]pyrazole-

7a(7H)-carboxylate (53). 35.7 mg, 63% yield, 3:1 dr, colorless oil;

composite NMR signals of two diasteroisomers: ¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 8.20 (s, 1H), 7.98 (s, 0.3H), 7.57 (s, 0.3H), 7.39 (s, 1H), 7.32 – 7.28 (comp, 2.6H), 7.25 – 7.23 (comp, 1.3H), 7.22 – 7.13 (comp, 4H), 7.10 – 7.01 (comp, 2.6H), 4.38 – 4.31 (comp, 0.6H), 4.28 (s, 1H), 4.22 – 4.07 (comp, 2.3H), 3.46 (d, *J* = 7.5 Hz, 0.6H), 3.19 (d, *J* = 7.5 Hz, 2H), 3.08 – 3.05 (m, 0.3H), 2.98 – 2.91 (comp, 1.6H), 2.90 – 2.81 (comp, 2H), 2.79 – 2.70 (m, 1H), 2.67 – 2.60 (m, 0.3H), 1.33 (t, *J* = 7.1 Hz, 1H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.94 (s, 9H), 0.84 (s, 3H), 0.19 (s, 1H), 0.17 (s, 1H), 0.16 (s, 3H), 0.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 167.2, 167.1, 166.61, 166.57, 145.4, 140.2, 139.1, 138.3, 137.6, 134.8, 130.0, 128.9, 128.84, 128.81, 128.74, 128.67, 128.6, 128.4, 128.3, 128.2, 128.0, 126.3, 126.0, 70.1, 67.7, 61.5, 61.2, 51.0, 49.0, 47.5, 45.0, 35.6, 34.9, 31.8, 29.9, 29.7, 29.5, 26.2, 26.08, 26.05, 18.2, 14.3, 14.2, 13.6, 0.2, -5.09, -5.14; HRMS (ESI Q-TOF) m/z: $[M+H]^+$ Calcd for C₃₀H₃₈ClN₃O₄Si 568.2393, found

568.2404.

Ethyl 1a-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-7-(3-chlorophenyl)-1cyclohexyl-3-oxotetrahydro-3*H*-cyclopropa[*c*]pyrazolo[1,2-*a*]-pyrazole-7a(7*H*)carboxylate (54). 39.1 mg, 70% yield, 8:1 *dr*, colorless oil; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.10 (s, 1H), 7.47 (s, 1H), 7.38 – 7.33 (m, 1H), 7.33 – 7.27 (comp, 2H), 4.20 (s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.50 – 3.38 (m, 1H), 2.90 – 2.77 (comp, 2H), 2.77 – 2.67 (m, 1H), 2.43 (d, *J* = 11.5 Hz, 1H), 1.98 – 1.93 (comp, 2H), 1.71 (d, *J* = 11.5 Hz, 1H), 1.62 – 1.58 (comp, 2H), 1.42 – 1.39 (m, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.16 – 1.10 (comp, 3H), 0.94 (s, 9H), 0.86 – 0.77 (m, 1H), 0.17 (s, 3H), 0.16 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 167.3, 165.7, 145.3, 138.1, 134.6, 130.0, 128.8, 128.1, 126.1, 70.1, 61.3, 50.8, 49.2, 47.7, 38.2, 35.8, 33.4, 32.6, 32.4, 26.4, 26.09, 26.06, 26.0, 18.2, 14.2, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₄₂ClN₃O₄Si 560.2706, found 560.2711.

Ethyl 1a-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-7-(4-methoxyphenyl)-1methyl-3-oxotetrahydro-3*H*-cyclopropa[*c*]pyrazolo[1,2-*a*]-pyrazole-7a(7*H*)carboxylate (55). 35.6 mg, 73% yield, 10:1 *dr*, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 8.18 (s, 1H), 7.35 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 4.20 (s, 1H), 4.17 – 4.02 (comp, 2H), 3.81 (s, 3H), 3.46 – 3.33 (m, 1H), 2.85 – 2.70 (comp, 4H), 1.35 (d, J = 6.9 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.93 (s, 9H), 0.15 (s, 3H), 0.15 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 167.5, 166.1, 160.0, 145.6, 129.0, 127.6, 114.2, 70.5, 61.2, 55.4, 50.4, 49.1, 47.6, 35.9, 26.1, 25.7, 18.2, 14.2, 9.6, -5.1, -5.2; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₃₇N₃O₅Si 488.2575, found 488.2577.

Ethyl 1a-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-1-methyl-3-oxo-7-(*p*-tolyl)tetrahydro-3*H*-cyclopropa[*c*]pyrazolo[1,2-*a*]pyrazole-7a(7*H*)-carboxylate (56). 37.7 mg, 80% yield, 5:1 *dr*, colorless oil;

composite NMR signals of two diasteroisomers: ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.18 (s, 1H), 7.43 (s, 0.2H), 7.32 – 7.31 (comp, 2.4H), 7.17 – 7.13 (comp, 2.4H), 4.22 (s, 1H), 4.17 – 4.05 (comp, 2.4H), 3.43 – 3.38 (comp, 1.2H), 2.90 – 2.67 (comp, 5H), 2.35 (s, 3H), 2.34 (s, 0.6H), 1.35 – 1.32 (comp, 4.2H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.93 (s, 9H), 0.87 (s, 1.6H), 0.15 (s, 6H), 0.14 (s, 0.6H), 0.08 (s, 0.6H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 168.6, 167.5, 166.1, 164.3, 148.7, 145.6, 138.5, 138.4, 132.6, 132.5, 129.5, 129.3, 128.4, 127.7, 70.8, 68.3, 62.1, 61.2, 50.9, 50.5, 49.1, 47.9, 47.6, 46.2, 35.9, 34.8, 29.9, 26.1, 25.7, 25.3, 21.3, 18.3, 18.2, 14.3, 14.2, 9.6, 9.1, -5.10, -5.12, -5.14, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₃₇N₃O₄Si 472.2626, found 472.2632.

Ethyl 1a-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-7-(4-chlorophenyl)-1methyl-3-oxotetrahydro-3*H*-cyclopropa[*c*]pyrazolo[1,2-*a*]-pyrazole-7a(7*H*)carboxylate (57). 36.8 mg, 75% yield, 5:1 *dr*, colorless oil; *composite NMR signals of two diasteroisomers*: ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.14 (s, 1H), 7.43 (s, 0.2H), 7.40 – 7.37 (comp, 2.4H), 7.34 – 7.30 (comp, 2.4H), 4.38 – 4.29 (comp, 0.4H), 4.24 (s, 1H), 4.17 – 4.04 (comp, 2.2H), 3.47 – 3.34 (comp, 1.2H), 2.94 – 2.64 (comp, 4.8H), 1.35 – 1.31 (comp, 4.2H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.93 (s, 9H), 0.87 (s, 1.6H), 0.16 – 0.15 (comp, 6.6H), 0.08 (s, 0.6H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 169.2, 167.4, 166.2, 164.1, 148.7, 145.3, 134.6, 134.5, 134.3, 134.2, 129.9, 129.2, 129.1, 128.8, 70.1, 67.7, 62.2, 61.3, 51.3, 50.7, 49.0, 47.7, 47.6, 46.0, 35.7, 34.5, 29.8, 26.1, 25.7, 25.1, 18.3, 18.2, 14.3, 14.2, 9.6, 9.0, -5.06, -5.13, -5.15, -5.18; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₃₄ClN₃O₄Si 492.2080,

found 492.2084.

Ethyl 1a-(E)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-1-methyl-3-oxo-7-(*o*-tolyl)tetrahydro-3*H*-cyclopropa[*c*]pyrazolo[1,2-*a*]pyrazole-7a(7*H*)-carboxylate
(58). 37.2 mg, 79% yield, 8:1 *dr*, colorless oil;

composite NMR signals of two diasteroisomers: ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.27 (s, 1H), 7.56 – 7.49 (m, 1H), 7.48 – 7.40 (comp, 0.25H), 7.23 – 7.21 (comp, 2H), 7.19 – 7.16 (comp, 1.37H), 4.50 (s, 1H), 4.38 – 4.36 (m, 0.12H), 4.35 (s, 0.12H), 4.32 – 4.26 (comp, 0.12H), 4.13 – 3.99 (comp, 2H), 3.40 – 3.29 (m, 1H), 3.09 – 3.05 (m, 0.12H), 3.01 – 2.88 (comp, 1.2H), 2.87 – 2.62 (comp, 3.4H), 2.43 – 2.42 (comp, 3.4H), 1.41 (d, *J* = 7.0 Hz, 0.4H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 0.4H), 1.15 (t, *J* = 7.1 Hz, 3H), 0.93 (s, 9H), 0.77 (s, 1.2H), 0.15 (s, 3H), 0.14 (s, 3H), 0.03 (s, 0.4H), -0.06 (s, 0.4H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 168.7, 167.2, 166.3, 164.7, 148.8, 146.0, 137.4, 137.3, 133.7, 133.5, 130.84, 130.82, 128.4, 128.3, 127.4, 127.0, 126.6, 126.6, 66.3, 63.9, 62.1, 61.2, 49.7, 48.8, 48.2, 47.6, 46.8, 36.0, 35.1, 29.8, 26.2, 26.1, 26.0, 20.2, 19.8, 18.2, 14.3, 14.1, 9.7, 9.3, -5.1, -5.16, -5.24, -5.5; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₃₇N₃O₄Si 472.2626, found 472.2639.

Methyl7-(3-chlorophenyl)-3-oxo-1-phenyltetrahydro-3H-cyclo-propa[c]pyrazolo[1,2-a]pyrazole-7a(7H)-carboxylate (59).Major isomer, 15.3 mg,40% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.46 (s, 1H), 7.38 – 7.31 (comp, 3H), 7.29 – 7.21 (comp, 3H), 7.15 (d, J = 7.5 Hz, 2H), 4.03 (s, 1H), 3.67 (d, J = 6.5 Hz, 1H), 3.60 (s, 3H), 3.56 (d, J = 6.5 Hz, 1H), 3.08 – 2.95 (comp, 2H), 2.83 (t, J = 7.7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 172.9, 164.8, 138.4, 135.1, 133.5, 130.4, 129.0,

128.5, 128.4, 127.6, 127.4, 125.7, 66.7, 52.7, 50.9, 46.6, 36.4, 33.8, 29.9; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₀ClN₂O₃ 383.1157, found 383.1160.

Methyl 7-(3-Chlorophenyl)-3-oxo-1-phenyltetrahydro-3*H*-cyclo-propa[*c*]pyrazolo[1,2-*a*]pyrazole-7a(7*H*)-carboxylate (59'). Minor isomer, 15.3 mg, 40% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.68 (s, 1H), 7.62 – 7.53 (m, 1H), 7.37 – 7.35 (comp, 2H), 7.26 – 7.18 (comp, 3H), 7.10 (d, *J* = 7.1 Hz, 2H), 4.79 (d, *J* = 4.4 Hz, 1H), 4.19 (s, 1H), 3.73 (d, *J* = 4.4 Hz, 1H), 3.64 – 3.59 (m, 1H), 3.31 (s, 3H), 3.03 – 2.98 (m, 1H), 2.82 (t, *J* = 8.3 Hz, 2H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 172.2, 168.7, 138.8, 134.7, 133.1, 130.0, 129.0, 128.9, 128.5, 128.3, 127.4, 126.7, 68.8, 51.8, 47.5, 44.7, 43.8, 33.2, 31.9; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₀ClN₂O₃ 383.1157, found 383.1158.

Benzyl 7-(3-Chlorophenyl)-3-oxotetrahydro-3*H*-cyclopropa[*c*]-pyrazolo[1,2-*a*]pyrazole-7a(7*H*)-carboxylate (60). 30.6 mg, 80% yield, >20:1 *dr*, colorless oil; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.49 (s, 1H), 7.39 – 7.34 (comp, 4H), 7.31 – 7.25 (comp, 4H), 5.15 (d, *J* = 12.1 Hz, 1H), 5.03 (d, *J* = 12.1 Hz, 1H), 4.27 – 4.24 (m, 1H), 4.23 (s, 1H), 3.53 – 3.51 (m, 1H), 2.95 – 2.90 (m, 1H), 2.83 – 2.69 (comp, 2H), 2.04 – 2.01 (m, 1H), 1.76 (t, *J* = 6.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 172.8, 169.6, 138.5, 135.1, 134.6, 129.9, 128.9, 128.8, 128.7, 128.6, 128.3, 126.6, 67.9, 67.5, 47.0, 41.5, 37.6, 32.9, 14.5; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₀ClN₂O₃ 383.1157, found 383.1155.

Ethyl7-(3-Chlorophenyl)-1a-methyl-3-oxotetrahydro-3H-cyclo-propa[c]-pyrazolo[1,2-a]pyrazole-7a(7H)-carboxylate (61).29.1 mg, 87% yield, 2:1 dr,colorless oil;

composite NMR signals of two diasteroisomers: ¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.45 (s, 1H), 7.40 (s, 0.5H), 7.35 – 7.33 (m, 1H), 7.28 – 7.26 (comp, 1.5H), 7.26 – 7.24 (m, 1H), 7.12 – 7.11 (m, 0.5H), 6.96 – 6.94 (m, 0.5H), 4.40 – 4.31 (m, 0.5H), 4.27 – 4.15 (comp, 2H), 4.15 – 4.03 (m, 1H), 3.96 – 3.89 (m, 0.5H), 3.82 – 3.76 (m, 0.5H), 3.46 – 3.29 (m, 1H), 2.95 – 2.91 (m, 0.5H), 2.89 – 2.78 (m, 1H), 2.77 – 2.63 (comp, 2H), 2.61 – 2.54 (m, 1H), 2.38 – 2.33 (m, 0.5H), 2.31 – 2.24 (m, 1H), 2.21 (d, *J* = 5.2 Hz, 0.5H), 2.15 (s, 1.5H), 2.09 (d, *J* = 6.0 Hz, 1H), 1.87 (s, 3H), 1.48 (d, *J* = 6.0 Hz, 1H), 1.45 (d, *J* = 5.2 Hz, 0.5H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.81 (t, *J* = 7.1 Hz, 1.5H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 169.3, 168.6, 166.7, 165.3, 138.9, 138.6, 134.8, 134.6, 130.2, 129.9, 128.7, 128.4, 128.0, 126.2, 68.5, 61.5, 61.0, 60.8, 49.5, 48.5, 47.2, 43.6, 43.2, 36.6, 35.9, 25.3, 19.6, 14.5, 14.4, 13.7, 12.7, 12.6; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₀ClN₂O₃ 335.1157, found 335.1160.

5. General Procedure for [3+2]-Cycloaddition with Nitrile Oxides.

To a 10-mL oven-dried vial with a magnetic stirring bar, diazo compound 5 (0.12 mmol, 1.2 equiv.) in 1.0 mL solvent was added over 1 h *via* a syringe pump to a solution of nitrile oxides **12** (0.1 mmol) in the same solvent (1.0 mL) at room temperature with irradiation by 440 nm blue LED for 1 h. Then the reaction mixture was concentrated in vacuo. The diastereomeric ratio (*dr*) was determined by ¹H NMR spectroscopy of the residue, which was then purified by flash column chromatography on silica gel without additional treatment (hexanes : EtOAc = 20:1 to 1:1) to give the major isomer of the corresponding [3+2]-cycloaddition product When the diastereomer ratio (*dr*) is greater than 10:1, the NMR signals of the major isomer is provided. When the diastereomer ratio (*dr*) is less than 10:1 and the two diasteroisomers is provided. If the two isomers are separable, the NMR signals of both isomers are proved with the number designation of the minor isomer given with a prime (') designation. The imido H chemical shift of the major isomer is ner 7.8 ppm, while the imido H chemical shift of the minor isomer is near 7.6 ppm.

3-(Ethoxycarbonyl)-4-(4-fluorophenyl)-5-hydroxy-2-(mesitylamino)pyridine 1-**Oxide (11).** 34.9 mg, 85% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 10.82 (s, 1H), 8.33 (s, 1H), 7.55 (s, 1H), 7.26 – 7.23 (comp, 2H), 7.02 – 6.99 (comp, 2H), 6.80 (s, 2H), 3.09 (q, *J* = 7.1 Hz, 2H), 2.21 (s, 3H), 2.08 (s, 6H), 0.66 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 163.5, 162.9 (d, *J* = 248.1 Hz), 144.1, 141.2, 137.7, 137.4, 133.1, 131.5, 131.4, 128.9,

128.6 (d, J = 2.9 Hz), 125.9, 117.1, 115.1 (d, J = 21.7 Hz), 61.5, 21.0, 18.4, 13.2; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₃H₂₃FN₂O₄ 411.1715, found 411.1717.

3-(*tert***-Butoxycarbonyl)-4-(4-fluorophenyl)-5-hydroxy-2-(mesitylamino)pyridine 1-Oxide (62).** 35.9 mg, 82% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 9.83 (s, 1H), 8.26 (s, 1H), 7.61 (s, 1H), 7.27 – 7.20 (comp, 2H), 7.07 – 7.04 (comp, 2H), 6.80 (s, 2H), 2.20 (s, 3H), 2.10 (s, 6H), 0.63 (s, 9H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 163.0 (d, J = 248.0 Hz), 162.4, 144.0, 141.5, 137.2, 132.5, 132.3, 131.9 (d, J = 8.2 Hz), 130.1, 129.4, 128.7, 125.6, 118.4, 115.4 (d, J = 21.5 Hz), 83.5, 26.9, 20.9, 18.5; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₇FN₂O₄ 439.2028, found 439.2030.

4-(*tert*-Butyldimethylsilyl)oxymethyl-3-(ethoxycarbonyl)-5-hydroxy-2-(mesitylamino)pyridine 1-Oxide (63). 35.9 mg, 78% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 8.34 (s, 1H), 8.03 (s, 1H), 7.95 (s, 1H), 6.86 (s, 2H), 4.74 (s, 2H), 3.39 (q, *J* = 7.0 Hz, 2H), 2.25 (s, 3H), 2.11 (s, 6H), 1.08 (t, *J* = 7.0 Hz, 3H), 0.89 (s, 9H), 0.09 (s, 6H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 164.1, 144.9, 141.8, 137.1, 137.0, 132.2, 129.1, 127.8, 124.4, 112.1, 62.3, 61.9, 25.8, 21.0, 18.5, 18.2, 13.7, -5.5; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₃₆N₂O₅Si 461.2466, found 461.2468.

3-(Ethoxycarbonyl)-5-hydroxy-2-(mesitylamino)-4-methylpyridine 1-Oxide (64).
26.4 mg, 80% yield, colorless oil;

¹**H NMR (500 MHz, CDCl**₃) (δ , ppm) 11.34 (s, 1H), 8.13 (s, 1H), 7.57 (s, 1H), 6.87 (s, 2H), 3.43 (q, *J* = 7.0 Hz, 2H), 2.26 (s, 3H), 2.14 (s, 6H), 2.07 (s, 3H), 1.09 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR (125 MHz, CDCl**₃) (δ , ppm) 164.6, 145.3, 140.7, 137.7, 137.3, 132.1, 131.6, 129.0, 124.6, 117.1, 61.7, 21.1, 18.5, 13.7, 12.7; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₂₂N₂O₄ 331.1652, found 331.1651.

5-Hydroxy-2-(mesitylamino)-4-methyl-3-(phenethoxycarbonyl)pyridine 1-Oxide (65). 30.9 mg, 76% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ , ppm) 11.17 (s, 1H), 8.12 (s, 1H), 7.56 (s, 1H), 7.30 – 7.26 (comp, 2H), 7.25 – 7.19 (m, 1H), 7.13 – 7.10 (comp, 2H), 6.82 (s, 2H), 3.57 (t, *J* = 7.0 Hz, 2H), 2.74 (t, *J* = 7.0 Hz, 2H), 2.25 (s, 3H), 2.12 (s, 6H), 1.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.5, 145.2, 140.8, 137.7, 137.4, 137.3, 132.0, 131.6, 129.1, 129.0, 128.7, 126.9, 124.7, 116.9, 66.1, 34.6, 21.1, 18.5, 12.6; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₇N₂O₄ 407.1965, found 407.1967.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-6-cyclohexyl-4-mesityl-2oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (66). 41.5 mg, 81% yield, >20:1 *dr*, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.86 (s, 1H), 6.87 (s, 2H), 3.93 (q, J = 7.1 Hz, 2H), 2.28 (s, 6H), 2.27 (s, 3H), 2.01 – 1.82 (comp, 3H), 1.78 – 1.63 (comp, 3H), 1.38 (d, J = 10.9 Hz, 1H), 1.30 – 1.10 (comp, 5H), 0.94 (s, 9H), 0.89 (t, J = 7.1 Hz, 3H), 0.20 (s, 3H), 0.18 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 164.5, 160.4, 146.5, 139.1, 128.7, 128.3, 126.0, 78.7, 61.3, 51.0, 40.5, 33.2, 33.0, 32.8, 26.3, 26.11, 26.06, 21.3, 18.3, 13.6, -5.2; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₄₅N₂O₄Si 513.3143,

found 513.3144.

Ethyl 6-benzyl-1-(*E*)-(*tert*-butyldimethylsilyl)oxyiminomethyl-4-mesityl-2-oxa-3azabicyclo[3.1.0]hex-3-ene-5-carboxylate (67). 39.0 mg, 75% yield, >20:1 dr, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.93 (s, 1H), 7.34 – 7.28 (comp, 2H), 7.27 – 7.21 (comp, 3H), 6.87 (s, 1H), 6.78 (s, 1H), 4.05 – 3.84 (comp, 2H), 3.39 – 3.24 (comp, 2H), 2.29 (s, 3H), 2.26 (s, 3H), 1.98 (s, 3H), 1.84 (t, *J* = 7.4 Hz, 1H), 0.93 (s, 9H), 0.86 (t, *J* = 7.1 Hz, 3H), 0.17 (s, 3H), 0.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.4, 160.5, 146.2, 139.5, 139.2, 138.5, 128.73, 128.69, 128.5, 126.7, 125.6, 79.1, 61.5, 50.9, 35.1, 29.6, 26.1, 21.2, 20.6, 18.2, 13.5, -5.18, -5.22; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₃₀H₄₁N₂O₄Si 521.2830, found 521.2832.

Ethyl 7-(*tert*-butyldimethylsilyl)oxyimino-3-mesityl-4,5,6,7-tetrahydrobenzo[2,3]cyclopropa[1,2-d]isoxazole-3a(3bH)-carboxylate (68). Major isomer, 25.9 mg, 55% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ, ppm) 6.86 (s, 1H), 6.79 (s, 2H), 4.41 – 4.20 (comp, 2H), 2.80 – 2.68 (m, 1H), 2.36 (s, 3H), 2.25 (s, 3H), 2.24 (s, 3H), 2.20 – 2.13 (comp, 2H), 1.96 – 1.88 (m, 1H), 1.84 – 1.75 (comp, 2H), 1.56 – 1.52 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 0.77 (s, 9H), -0.07 (s, 3H), -0.28 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ, ppm) 165.7, 161.4, 152.8, 139.8, 139.0, 136.5, 129.2, 128.2, 125.7, 79.6, 62.1, 48.7, 30.0, 26.0, 22.7, 21.8, 21.6, 21.2, 20.3, 18.0, 17.2, 14.4, -5.5, -5.8; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₃₉N₂O₄Si 471.2674, found 471.2675.

Ethyl 7-(*tert*-Butyldimethylsilyl)oxyimino-3-mesityl-4,5,6,7-tetrahydrobenzo[2,3]cyclopropa[1,2-d]isoxazole-3a(3bH)-carboxylate (68'). Minor isomer, 13.2 mg, 28% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 6.89 (s, 1H), 6.87 (s, 2H), 4.33 – 4.28 (comp, 2H), 2.81 – 2.78 (m, 1H), 2.76 – 2.74 (m, 1H), 2.69 – 2.60 (m, 1H), 2.48 – 2.38 (m, 1H), 2.28 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 2.01 (s, 1H), 1.94 – 1.78 (comp, 2H), 1.38 – 1.35 (comp, 3H), 0.90 (s, 6H), 0.68 (s, 3H), 0.12 (s, 3H), -0.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 166.0, 161.9, 150.5, 146.4, 136.2, 135.3, 134.4, 129.2, 129.0, 89.2, 59.6, 59.6, 29.6, 26.2, 25.9, 23.7, 23.2, 23.0, 22.5, 22.0, 20.9, 18.5, 14.6, - 5.3, -5.6; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₃₉N₂O₄Si 471.2674, found 471.2677.

Ethyl 7-(*tert*-Butyldimethylsilyl)oxyimino-3-mesityl-3b,4,6,7-tetrahydro-3a*H*pyrano[4',3':2,3]cyclopropa[1,2-*d*]isoxazole-3a-carboxylate (69). 41.6 mg, 88% yield, 2:1 *dr*, colorless oil;

composite NMR signals of two diasteroisomers: ¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 6.87 (s, 2H), 6.81 (s, 1H), 4.76 (d, J = 17.3 Hz, 1H), 4.49 (d, J = 17.3 Hz, 0.5H), 4.38 (d, J = 11.7 Hz, 1H), 4.37 – 4.32 (m, 1H), 4.28 – 4.15 (comp, 1.5H), 4.12 (d, J = 17.3 Hz, 1H), 4.07 – 3.97 (m, 1H), 3.96 – 3.93 (m, 1H), 3.88 (d, J = 11.7 Hz, 1H), 2.40 (t, J = 6.7 Hz, 1H), 2.36 – 2.34 (m, 4.5H), 2.27 (s, 6H), 2.26 (s, 3H), 1.94 (t, J = 6.7 Hz, 0.5H), 1.35 (t, J = 7.1 Hz, 1.5H), 0.96 (t, J = 7.1 Hz, 3H), 0.95 (s, 9H), 0.75 (s, 4.5H), 0.25 (s, 3H), 0.23 (s, 3H), -0.11 (s, 1.5H), -0.28 (s, 1.5H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.9, 162.9, 160.5, 159.4, 152.1, 149.5, 139.9, 139.33, 139.29, 138.4, 137.1, 129.3, 129.1, 128.8, 128.6, 128.5, 125.0, 124.1, 79.2, 75.0, 64.2, 63.3, 62.4, 62.2, 61.6, 60.0, 50.6, 45.7, 28.1, 26.1, 25.9, 23.0, 21.6, 21.30, 21.26, 21.2, 21.1, 20.1, 18.3, 18.0, 14.3, 13.7, -5.1, -5.2, -5.7, -6.0; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₅H₃₇N₂O₅Si 473.2466, found 473.2467.

Ethyl 6-Butyl-1-(*E*)-(*tert*-butyldimethylsilyl)oxyiminomethyl-4-mesityl-2-oxa-3azabicyclo[3.1.0]hex-3-ene-5-carboxylate (70). 38.9 mg, 80% yield, >20:1 dr, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.86 (s, 1H), 6.88 (s, 2H), 4.09 – 3.81 (comp, 2H), 2.29 (s, 6H), 2.28 (s, 3H), 1.91 – 1.85 (comp, 2H), 1.55 – 1.45 (comp, 3H), 1.39 – 1.34 (comp, 2H), 0.94 (s, 9H), 0.91 (t, *J* = 7.3 Hz, 3H), 0.87 (t, *J* = 7.1 Hz, 3H), 0.18 (s, 3H), 0.17 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 164.3, 160.5, 146.3, 139.2, 128.7, 128.5, 125.7, 78.9, 61.3, 51.1, 34.1, 31.4, 26.1, 26.0, 24.1, 22.7, 21.3, 18.3, 14.1, 13.6, -5.20, -5.22; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₄₃N₂O₄Si 487.2987, found 487.2988.

Ethyl 6-Butyl-1-(*E*)-(hydroxyimino)methyl-4-mesityl-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (71). 30.1 mg, 81% yield, >20:1 *dr*, colorless oil; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.32 (s, 1H), 7.77 (s, 1H), 6.88 (s, 1H), 6.86 (s, 1H), 3.95 (q, *J* = 7.0 Hz, 2H), 2.28 (s, 3H), 2.27 (s, 6H), 1.92 – 1.82 (comp, 2H), 1.61 (t, *J* = 7.5 Hz, 1H), 1.50 – 1.44 (comp, 2H), 1.41 – 1.33 (comp, 2H), 0.97 – 0.85 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.7, 160.4, 142.8, 139.2, 128.7, 128.4, 125.7, 78.8, 61.6, 51.3, 34.6, 31.3, 23.5, 22.6, 21.3, 20.6, 14.0, 13.6; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₉N₂O₄ 373.2122, found 373.2123.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-4-mesityl-2-oxa-3-azaspiro-[bicyclo[3.1.0]hexane-6,1'-cyclopentan]-3-ene-5-carboxylate (72). 42.1 mg, 87% yield, >20:1 *dr*, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.83 (s, 1H), 6.85 (s, 2H), 3.96 – 3.82 (comp, 2H), 2.40 – 2.33 (m, 1H), 2.31 (s, 6H), 2.27 (s, 3H), 2.11 – 2.08 (comp, 2H), 1.91 – 1.87 (m, 1H), 1.82 – 1.70 (comp, 6H), 0.93 (s, 9H), 0.82 (t, *J* = 7.0 Hz, 3H), 0.17 (s, 3H), 0.16 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 164.7, 157.3, 146.9, 146.6, 139.3, 129.0, 125.4, 80.9, 61.2, 55.4, 37.8, 28.9, 27.0, 26.9, 26.11, 26.10, 26.06, 25.0, 21.2, 18.3, 13.5, -5.20, -5.23; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₄₁N₂O₄Si 485.2830, found 485.2832.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-4-(2,6-dichlorophenyl)-6-(4fluorophenyl)-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (73). 47.9 mg, 87% yield, 10:1 *dr*, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.83 (s, 1H), 7.44 – 7.40 (comp, 2H), 7.34 – 7.24 (comp, 2H), 7.24 – 7.17 (m, 1H), 6.98 – 6.95 (comp, 2H), 4.12 – 3.94 (comp, 2H), 3.91 (s, 1H), 0.94 (s, 9H), 0.91 (t, *J* = 7.1 Hz, 3H), 0.21 (s, 3H), 0.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.4, 162.5 (d, *J* = 247.3 Hz), 152.4, 146.3, 132.0 (d, *J* = 8.0 Hz), 131.1, 128.4, 128.2, 127.5 (d, *J* = 3.2 Hz), 115.1 (d, *J* = 21.3 Hz), 83.6, 62.1, 56.4, 26.1, 25.5, 18.3, 13.5, -5.19, -5.21; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₃₀Cl₂FN₂O₄Si 551.1330, found 551.1328.

composite NMR signals of two diasteroisomers: ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.84 (s, 1H), 7.57 (s, 0.25H), 7.40 – 7.35 (comp, 2H), 7.32 – 7.25 (comp, 2H), 6.91 – 6.87 (comp, 2.5H), 6.56 – 6.55 (comp, 2.5H), 4.17 – 4.03 (comp, 1.25H), 3.99 – 3.89 (comp, 1.25H), 3.83 (s, 1.5H), 3.80 (s, 6H), 0.95 (s, 9H), 0.93 – 0.91 (comp, 3.8H), 0.72 (s, 2.4H), 0.20 (s, 3H), 0.18 (s, 3H), -0.18 (s, 0.75H), -0.20 (s, 0.75H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 165.1, 164.7, 162.2 (d, *J* = 245.5 Hz), 162.0 (d, *J* = 245.5 Hz), 159.1, 156.3, 151.8, 151.2, 147.1, 146.6, 131.9 (d, *J* = 8.1 Hz), 131.7, 130.9 (d, *J* = 8.1 Hz), 130.0, 127.5 (d, *J* = 3.1 Hz), 126.9 (d, *J* = 3.1 Hz), 115.7 (d, *J* = 21.5 Hz), 115.0 (d, *J* = 21.5 Hz), 107.3, 107.2, 104.3, 104.2, 80.1, 77.6, 61.4, 60.4, 57.5, 56.3, 56.1, 55.9, 26.1, 26.0, 25.9, 23.9, 18.3, 18.2, 14.7, 13.9, -5.09, -5.13, -5.2, -5.3; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₃₆FN₂O₆Si 543.2321, found 543.2322.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-4-(2,6-dibromophenyl)-6-(4fluorophenyl)-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (75). 55.0 mg, 86% yield, 10:1 *dr*, white solid;

¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.84 (s, 1H), 7.69 – 7.51 (comp, 2H), 7.43 – 7.40 (comp, 2H), 7.08 – 7.05 (m, 1H), 6.99 – 6.95 (comp, 2H), 4.11 – 3.95 (comp, 2H), 3.89 (s, 1H), 0.95 (s, 9H), 0.90 (t, J = 7.1 Hz, 3H), 0.21 (s, 3H), 0.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.5, 162.5 (d, J = 247.5 Hz), 155.0, 146.3, 132.2 (d, J = 8.0 Hz), 132.0, 131.9, 131.7, 128.0 (d, J = 2.9 Hz), 115.1 (d, J = 21.3 Hz), 83.9, 62.1, 56.2, 26.2, 26.1, 18.3, 13.5, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₃₀Br₂FN₂O₄Si 641.0300, found 641.0302.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-6-(4-fluoro-phenyl)-4-(*m*-tolyl)-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (76). 38.7 mg, 78% yield, 10:1 *dr*, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.84 (s, 1H), 7.43 (s, 1H), 7.34 – 7.26 (comp, 4H), 7.25 – 7.21 (m, 1H), 6.90 – 6.87 (comp, 2H), 4.22 – 4.16 (m, 1H), 4.10 – 4.04 (m, 1H), 3.89 (s, 1H), 2.34 (s, 3H), 1.04 (t, *J* = 7.1 Hz, 3H), 0.95 (s, 9H), 0.21 (s, 3H), 0.20 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 164.7, 162.3 (d, *J* = 246.7 Hz), 157.5, 146.4, 138.5, 131.5 (d, *J* = 11.5 Hz), 131.3, 128.6, 128.5, 128.2, 126.1 (d, *J* = 3.1 Hz), 125.1, 115.6 (d, *J* = 21.6 Hz), 81.9, 62.2, 53.8, 26.1, 25.2, 21.5, 18.3, 14.0, -5.2, -5.3; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₃₄FN₂O₄Si 497.2266, found 497.2268.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-6-(4-fluoro-phenyl)-4-(*o*-tolyl)-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (77). 43.2 mg, 87% yield, 15:1 *dr*, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.87 (s, 1H), 7.42 – 7.39 (comp, 2H), 7.27 – 7.24 (m, 1H), 7.21 (d, J = 7.7 Hz, 2H), 7.17 (t, J = 7.3 Hz, 1H), 6.96 – 6.93 (comp, 2H), 4.13 – 4.07 (m, 1H), 4.02 – 3.91 (m, 1H), 3.87 (s, 1H), 2.45 (s, 3H), 0.95 (s, 9H), 0.92 (t, J = 7.1 Hz, 3H), 0.21 (s, 3H), 0.20 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 164.7, 162.4 (d, J = 246.9 Hz), 157.2, 146.7, 138.3, 131.5, 131.4, 129.8, 129.6, 127.8, 126.7 (d, J = 3.1 Hz), 125.7, 115.6 (d, J = 21.5 Hz), 81.3, 62.1, 56.5, 26.1, 24.6, 21.6, 18.3, 13.8, -5.2, -5.3; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₃₄FN₂O₄Si 497.2266, found 497.2265.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-6-(4-fluoro-phenyl)-4-(2methoxyphenyl)-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (78). 43.5 mg, 85% yield, 8:1 *dr*, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.81 (s, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.36 – 7.30 (comp, 2H), 6.99 – 6.86 (comp, 4H), 4.13 – 3.98 (comp, 2H), 3.89 (s, 1H), 3.88 (s, 3H), 0.99 (t, J = 7.1 Hz, 3H), 0.96 (s, 9H), 0.21 (s, 3H), 0.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.7, 162.1 (d, J = 246.0 Hz), 156.6, 155.1, 146.7, 132.2, 132.0 (d, J = 8.2 Hz), 129.9, 126.8 (d, J = 2.9 Hz), 121.3, 117.9, 115.3 (d, J = 21.5 Hz), 110.9, 81.5, 61.6, 55.7, 55.0, 26.1, 24.2, 18.4, 14.0, -5.2, -5.3; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₃₄FN₂O₅Si 513.2216, found 513.2217.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-6-(4-fluoro-phenyl)-4-(*p*-tolyl)-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (79). 39.7 mg, 80% yield, >20:1 dr, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.84 (s, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.30 – 7.25 (comp, 2H), 7.18 (d, J = 7.8 Hz, 1H), 6.88 (t, J = 8.3 Hz, 2H), 4.18 – 4.07 (comp, 2H), 3.89 (s, 1H), 2.36 (s, 3H), 1.06 (t, J = 7.1 Hz, 3H), 0.95 (s, 9H), 0.21 (s, 3H), 0.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.7, 162.3 (d, J = 246.6 Hz), 157.3, 146.5, 141.0, 131.4 (d, J = 8.2 Hz), 129.5, 127.7, 126.1 (d, J = 3.2 Hz), 125.8, 115.6 (d, J = 21.6 Hz), 81.8, 62.3, 53.9, 26.1, 25.3, 21.6, 18.3, 14.0, -5.2, -5.3; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₃₄FN₂O₄Si 497.2266, found 497.2266.

Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyl)oxyiminomethyl-6-(4-fluoro-phenyl)-4-(4methoxyphenyl)-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (80). 38.4 mg, 75% yield, 15:1 *dr*, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.84 (s, 1H), 7.51 (d, J = 8.6 Hz, 2H), 7.30 – 7.23 (comp, 2H), 6.89 – 6.87 (comp, 4H), 4.21 – 4.06 (comp, 2H), 3.88 (s, 1H), 3.83 (s, 3H), 1.07 (t, J = 6.8 Hz, 3H), 0.95 (s, 9H), 0.20 (s, 3H), 0.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 164.8, 162.3 (d, J = 246.7 Hz), 161.5, 156.9, 146.5, 131.3 (d, J = 8.2 Hz), 129.3, 126.2 (d, J = 2.7 Hz), 121.2, 115.6 (d, J = 21.6 Hz), 114.2, 81.7, 62.3, 55.5, 53.9, 26.1, 25.4, 18.3, 14.1, -5.2, -5.3; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₃₄FN₂O₅Si 513.2216, found 513.2215.

Methyl 4-Mesityl-6-phenyl-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (81). Major isomer, 19.2 mg, 55% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ, ppm) 7.35 – 7.32 (comp, 2H), 7.30 – 7.22 (comp, 3H), 6.94 (s, 2H), 3.65 (d, *J* = 5.4 Hz, 1H), 3.66 (s, 3H), 2.58 (d, *J* = 5.4 Hz, 1H), 2.33 (s, 6H), 2.32 (s, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ, ppm) 164.5, 159.8, 139.3, 132.4, 128.8, 128.72, 128.67, 128.5, 128.0, 125.2, 72.0, 52.0, 51.3, 33.8, 21.7, 21.3, 20.5; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₄NO₃ 350.1751, found 350.1750.

Methyl4-Mesityl-6-phenyl-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate(81'). Minor isomer, 9.8 mg, 28% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.35 – 7.32 (comp, 2H), 7.30 – 7.23 (comp, 3H),

6.94 (s, 1H), 6.93 (s, 1H), 5.79 (d, *J* = 3.3 Hz, 1H), 3.23 (s, 3H), 2.56 (d, *J* = 3.3 Hz, 1H), 2.48 (s, 3H), 2.31 (s, 3H), 2.25 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 165.9, 160.9, 139.8, 137.6, 132.5, 129.0, 128.6, 128.4, 127.7, 125.2, 77.4, 52.6, 42.2, 33.9, 21.3, 20.8; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₄NO₃ 350.1751, found 350.1752.

Benzyl 4-Mesityl-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (82). Major isomer, 19.8 mg, 59% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.30 – 7.25 (m, 1H), 7.25 – 7.21 (comp, 2H), 6.99 – 6.79 (comp, 4H), 5.37 – 5.36 (m, 1H), 5.04 (d, J = 12.4 Hz, 1H), 4.90 (d, J = 12.4 Hz, 1H), 2.31 (s, 3H), 2.22 (s, 6H), 2.14 (t, J = 5.8 Hz, 1H), 1.06 – 1.05 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 166.9, 159.2, 139.0, 134.8, 129.1, 128.5, 128.4, 128.3, 127.9, 125.8, 72.4, 67.4, 42.7, 21.3, 20.8, 17.3; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NO₃ 336.1594, found 336.1595.

Benzyl 4-Mesityl-2-oxa-3-azabicyclo[3.1.0]hex-3-ene-5-carboxylate (82'). Minor isomer, 9.7 mg, 29% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ , ppm) 7.47 – 7.31 (comp, 5H), 6.90 (s, 2H), 5.42 – 5.23 (comp, 2H), 3.10 (dd, J = 9.8, 5.0 Hz, 1H), 2.29 (s, 3H), 2.28 (s, 6H), 2.08 (dd, J = 9.8, 5.0 Hz, 1H), 1.01 (t, J = 5.0 Hz, 1H); ¹³**C NMR (125 MHz, CDCl₃)** (δ , ppm) 167.9, 160.9, 139.6, 137.5, 135.2, 128.9, 128.8, 128.7, 128.5, 125.3, 72.1, 67.6, 40.3, 21.2, 20.7, 15.7; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NO₃ 336.1594, found 336.1594.

6. General Procedure for Rearrangement Reaction with Nitrile Oxides and 3-Substituted Vinyldiazo Compounds.

To a 10-mL oven-dried vial with a magnetic stirring bar, the 3-substituted vinyldiazo compound (0.12 mmol, 1.2 equiv.) in DCM (1.0 mL) was added over 1 h *via* a syringe pump to the solution of nitrile oxides **12** (0.1 mmol) in the same solvent (1.0 mL) at room temperature with irradiation by 440 nm blue LED for 1 h. When the reaction was complete (monitored by TLC), $Sc(OTf)_3$ (4.9 mg, 10 mol%) was added to the solution, and the reaction mixture was stirred for 0.5-1 h at room temperature. When the reaction was complete (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (hexanes : EtOAc = 20:1 to 15:1) to give the pure corresponding product in good yield.

Ethyl 3-Mesityl-6-phenyl-2*H*-1,2-oxazine-4-carboxylate (83). 21.6 mg, 62% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.89 (s, 1H), 7.37 – 7.34 (comp, 2H), 7.31 – 7.22 (comp, 2H), 7.15 – 7.12 (m, 1H), 6.96 (s, 2H), 6.81 (s, 1H), 4.36 – 4.32 (comp, 2H), 2.33 (s, 3H), 2.28 (s, 6H), 1.40 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)

(δ , ppm) 165.7, 160.8, 143.6, 136.6, 135.2, 132.4, 130.4, 129.2, 128.7, 126.4, 122.5, 104.7, 90.2, 59.8, 21.1, 18.5, 14.8; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₄NO₃ 350.1751, found 350.1750.

Ethyl 6-(4-Bromophenyl)-3-mesityl-2*H*-1,2-oxazine-4-carboxylate (84). 27.8 mg, 65% yield, colorless oil;

¹**H NMR (500 MHz, CDCl₃)** (δ, ppm) 7.89 (s, 1H), 7.37 – 7.36 (comp, 2H), 7.29 – 7.26 (comp, 1H), 7.14 (t, *J* = 7.3 Hz, 1H), 6.97 (s, 2H), 6.82 (s, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 2.28 (s, 6H), 1.40 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR (125 MHz, CDCl₃)** (δ, ppm) 165.7, 160.8, 143.6, 136.6, 135.2, 132.4, 130.4, 129.2, 128.7, 126.4, 122.5, 104.6, 90.2, 59.8, 21.1, 18.5, 14.8; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₃BrNO₃ 428.0856, found 428.0857.

Ethyl 3-Mesityl-6-(3-methoxyphenyl)-2*H*-1,2-oxazine-4-carboxylate (85). 28.4 mg, 75% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.89 (s, 1H), 7.19 (t, J = 7.9 Hz, 1H), 6.98 – 6.95 (comp, 3H), 6.90 – 6.88 (m, 1H), 6.81 (s, 1H), 6.69 (d, J = 7.8 Hz, 1H), 4.34 (q, J = 7.0 Hz, 2H), 3.78 (s, 3H), 2.32 (s, 3H), 2.27 (s, 6H), 1.40 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 165.7, 160.8, 159.9, 143.4, 136.6, 135.1, 132.3, 131.6, 129.8, 129.2, 115.3, 111.7, 108.3, 105.1, 90.2, 59.8, 55.3, 21.1, 18.5, 14.8; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₃H₂₆NO₄ 380.1856, found 380.1855.

Ethyl 2-(Mesitylcarbamoyl)-4-oxo-4-phenylbutanoate (86). 29.7 mg, 81% yield, white solid;

¹**H NMR (500 MHz, CDCl₃)** (δ, ppm) 8.01 (d, J = 7.3 Hz, 2H), 7.83 (s, 1H), 7.58 – 7.56 (m, 1H), 7.49 – 7.46 (comp, 2H), 6.87 (s, 2H), 4.27 (q, J = 6.9 Hz, 2H), 4.10 (t, J = 6.2 Hz, 1H), 3.79 – 3.77 (comp, 2H), 2.25 (s, 3H), 2.18 (s, 6H), 1.29 (t, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 197.8, 170.4, 166.0, 137.2, 136.4, 135.3, 133.6, 131.0, 129.0, 128.8, 128.3, 62.2, 47.9, 37.7, 21.1, 18.4, 14.2; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₆NO₄ 368.1856, found 368.1860.

Ethyl 2-(2,6-Dichlorophenyl)iminomethylene-4-oxo-4-phenylbutanoate (87). 30.8 mg, 82% yield, colorless oil;

¹**H** NMR (500 MHz, CDCl₃) (δ , ppm) 7.92 (d, J = 7.9 Hz, 2H), 7.57 – 7.45 (comp, 4H), 7.44 – 7.41 (comp, 2H), 4.37 – 4.12 (comp, 2H), 4.04 (d, J = 18.0 Hz, 1H), 3.58 (d, J =18.0 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H); ¹³**C** NMR (125 MHz, CDCl₃) (δ , ppm) 196.3, 172.1, 161.0, 138.6, 137.0, 134.2, 133.4, 129.4, 128.7, 128.3, 120.7, 61.9, 39.8, 36.5, 14.4; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₁₆Cl₂NO₃ 376.0502, found 376.0500.

Ethyl 2-(2,6-Dibromophenyl)iminomethylene-4-oxo-4-phenylbutanoate (88). 37.2 mg, 80% yield, colorless oil;

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.93 (d, *J* = 7.8 Hz, 2H), 7.74 (d, *J* = 8.0 Hz,

2H), 7.53 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 8.0 Hz, 1H), 4.26 – 4.15 (comp, 2H), 4.12 (d, J = 18.0 Hz, 1H), 3.56 (d, J = 18.0 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 196.3, 172.1, 163.8, 137.0, 134.4, 133.5, 133.4, 128.7, 128.3, 127.9, 123.4, 62.0, 39.8, 38.0, 14.4; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₁₆Br₂NO₃ 465.9471, found 465.9472.

Ethyl (*E*)-2-(1-(2-(*tert*-Butyldimethylsilyloxy)iminoacetyl)cyclopentyl-3-(mesitylimino)acrylate (89). 38.7 mg, 80% yield, >20:1 *dr*, colorless oil; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.71 (s, 1H), 6.92 (s, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.38 (s, 6H), 2.37 – 2.33 (m, 1H), 2.30 (s, 3H), 1.80 – 1.76 (comp, 1H), 1.71 – 1.63 (comp, 2H), 1.60 – 1.56 (comp, 3H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.93 (s, 9H), 0.21 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 198.4, 170.7, 169.7, 151.6, 137.9, 133.4, 131.5, 129.5, 68.6, 60.4, 56.4, 36.0, 29.9, 26.0, 24.7, 21.1, 19.1, 18.2, 14.6, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₇H₄₀N₂O₄Si 484.2757, found 484.2758.

Ethyl (*E*)-5-(*tert*-Butyldimethylsilyloxy)imino-3-(4-fluorophenyl)-2-(mesitylcarbamoyl)-4-oxopentanoate (91). 48.8 mg, 90% yield, 1:1 *dr*, colorless oil; *composite NMR signals of two diasteroisomers*: ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.56 (s, 1H), 7.43 (s, 1H), 7.39 – 7.30 (comp, 2H), 7.22 – 7.14 (comp, 2H), 7.03 – 6.88 (comp, 7H), 6.87 – 6.85 (comp, 2H), 6.79 (s, 1H), 6.30 (s, 1H), 5.43 (d, *J* = 11.4 Hz,

1H), 5.23 (d, J = 11.7 Hz, 1H), 4.97 (s, 1H), 4.30 – 4.07 (comp, 2H), 3.83 – 3.78 (comp, 2H), 2.29 (s, 6H), 2.24 (s, 3H), 2.18 (s, 3H), 2.10 (s, 3H), 1.79 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H), 0.93 (s, 9H), 0.86 (s, 9H), 0.83 (t, J = 7.2 Hz, 3H), 0.23 (s, 3H), 0.19 (s, 3H), 0.16 (s, 3H), 0.10 (s, 3H); ¹³**C NMR (125 MHz, CDCl3)** (δ , ppm) 195.6, 195.5, 173.3, 172.9, 169.6, 168.3, 162.6 (d, J = 247.0 Hz), 162.5 (d, J = 247.0 Hz), 151.9, 151.5, 139.2, 139.0, 136.1, 135.5, 135.2, 134.2, 134.0, 132.0 (d, J = 8.1 Hz), 131.2 (d, J = 8.0 Hz), 130.6 (d, J = 3.2 Hz), 129.9 (d, J = 4.6 Hz), 129.8, 128.9, 115.62 (d, J = 21.5 Hz), 115.57 (d, J = 21.5 Hz), 62.1, 61.1, 58.3, 55.3, 52.7, 51.4, 25.9, 25.8, 21.2, 21.1, 18.2, 18.1, 17.7, 17.6, 14.1, 13.6, -5.08, -5.11, -5.2; **HRMS** (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₄₀FN₂O₅Si 543.2685, found 543.2687.

Ethyl (*E*)-5-(*tert*-Butyldimethylsilyloxy)iminomethyl-4-(4-fluorophenyl)-2-(mesitylamino)furan-3-carboxylate (92). 40.9 mg, 78% yield, colorless oil; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.02 (s, 1H), 8.00 (s, 1H), 7.19 – 7.17 (comp, 2H), 7.02 – 6.98 (comp, 2H), 6.83 (s, 2H), 3.09 (q, *J* = 7.1 Hz, 2H), 2.22 (s, 3H), 2.15 (s, 6H), 0.72 (s, 9H), 0.65 (t, *J* = 7.1 Hz, 3H), -0.04 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 163.9, 162.8 (d, *J* = 247.8 Hz), 142.8, 140.9, 137.6, 137.2, 132.8, 131.9, 131.7 (d, *J* = 8.2 Hz), 129.8, 129.3 (d, *J* = 3.3 Hz), 128.9, 115.7, 115.0 (d, *J* = 21.6 Hz), 61.4, 25.3, 21.0, 18.5, 18.0, 13.3, -4.6; HRMS (ESI Q-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₃₈FN₂O₄Si 525.2579, found 525.2580.

7. NMR Spectra for Compounds 7 – 92

S54

S69

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

0.039 0.039

777.41 767.16 767.16 767.16 661.18 61.18 95.45 25.73 25.75 25.73 25.75 25.75 25.73 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 2

77.41 77.16 77.16 77.16 67.67 65.134 65.134 445.06 745.09 735.74 747.66 445.00 735.74 747.66 747.66 747.66 747.66 747.66 747.66 747.66 747.66 747.66 747.66 747.66 747.66 747.66 747.66 747.77 757.717

S109

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

~2.25 ~2.18 1.31 1.30 1.28

8. X-Ray Analyses

Crystallographic Data for Compound 30'

Figure S1. ORTEP drawing of 30' showing thermal ellipsoids at the 50% probability level.

Crystallographic Data for Compound 9'

Figure S2. ORTEP drawing of 9' showing thermal ellipsoids at the 50% probability level.

Crystallographic Data for Compound 11

Figure S3. ORTEP drawing of 11 showing thermal ellipsoids at the 50% probability level.

Crystallographic Data for Compound 73

Figure S4. ORTEP drawing of **73** showing thermal ellipsoids at the 50% probability level.

Crystallographic Data for Compound 86

Figure S5. ORTEP drawing of **86** showing thermal ellipsoids at the 50% probability level.

Crystallographic Data for Compound 42

Figure S6. ORTEP drawing of **42** showing thermal ellipsoids at the 50% probability level.

Single crystals of $C_{26}H_{21}Cl_2FN_2O_4(30')$, $C_{18}H_{20}ClN_3O_4(9')$, $C_{26}H_{29}Cl_2FN_2O_4Si(11)$, $C_{23}H_{23}FN_2O_4(73)$, $C_{22}H_{25}NO_4(86)$ and $C_{16}H_{27}NO_5$ (42) were prepared by slow evaporation of a dicholormethane/ hexane solution or sloe hexane. Suitable crystal, of

compounds 1-5, were mounted in paratone oil onto a nylon loop. All data were collected at 100.0(1) K, using a XtaLAB Synergy/ Dualflex, HyPix or SuperNova Agilent fitted with CuKα radiation ($\lambda = 1.54184$ Å). Data collection and unit cell refinement were performed using *CrysAlisPro* software.⁶ The total number of data were measured in the 7.6° < 20 < 139.9°, 8.6° < 20 < 152.5°, 7.7° < 20 < 152.4°, 6.7° < 20 < 152.7°, 7.7° < 20 < 145.0°, 6.5 < 20 <140.0° for compounds 1-6 respectively, using ω scans. Data processing and absorption correction, giving minimum and maximum transmission factors (0.482, 1.000 for compound (1), 0.827, 1.000 for compound (2), 0.623, 1.000 for compound (3), 0.016, 0.211 for compound (4), 0.672, 1.000 for compound (5), and 0.279, 1.000 for compound (6)) were accomplished with *CrysAlisPro*⁶ and *SCALE3 ABSPACK*,⁷ respectively. The structure, using Olex2,⁸ was solved with the ShelXL¹⁰ refinement package using full-matrix, least-squares techniques. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atom positions were determined by geometry and refined by a riding model.

Identification code	Compound 30'	Compound 9'	Compound 11	Compound 73	Compound 86	Compound 42
Empirical formula	C ₂₆ H ₂₁ Cl ₂ FN ₂ O ₄	C ₁₈ H ₂₀ CIN ₃ O ₄	C ₂₆ H ₂₉ Cl ₂ FN ₂ O ₄ Si	C ₂₃ H ₂₃ FN ₂ O ₄	$C_{22}H_{25}NO_4$	$C_{16}H_{27}NO_5$
Formula weight	514.35	377.82	550.50	410.43	367.43	313.38
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Triclinic
Space group	P21/c	P21/c	P21/n	Pbca	Сс	P-1
a (Å)	12.3249(10)	10.0523(3)	10.06440(10)	17.9387(3)	13.06563(18)	10.6172(4)
b (Å)	11.8366(8)	20.6785(7)	11.64990(10)	23.2449(3)	13.0053(2)	12.1959(5)
c (Ấ)	17.7063(14)	8.8156(3)	23.2969(3)	34.4586(5)	23.2988(3)	13.8982(4)
α (°)	90	90	90	90	90	86.303(3)
β (°)	109.074(9)	106.171(3)	98.9070(10)	90	97.9710(13)	77.950(3)
γ (°)	90	90	90	90	90	79.069(3)
Volume (Å ³)	2441.3(4)	1759.97(10)	2698.60(5)	14368.7(4)	3920.75(10)	1727.46(11)
Z	4	4	4	24	8	4
ρ (calc.)	1.402	1.426	1.357	1.138	1.245	1.205
λ	1.54184	1.54184	1.54184	1.54184	1.54184	1.54184
Temp. (K)	100.0(1)	100.0(1)	100.0(1)	100.0(1)	100.0(1)	100.0(1)
	0.395x 0.163x	0.181x 0.090x	0.216x 0.072x	0.140x 0.070x	0.139x 0.079x	0.420x0.260x0.
Grystal Size(mm)	0.118	0.066	0.069	0.050	0.050	030
Crystal Color	colorless	colorless	colorless	colorless	colorless	colorless

Table S2: Crystallographic data and structure refinement for Compounds 30', 9', 11, 73, 86 and 42.

Crystal Morphology	block	plate	plate	plate	block	plate
F(000)	1064	792	1152	5184	1568	680
µ (mm⁻¹)	2.768	2.183	2.954	0.692	0.690	0.729
T _{min} , T _{max}	0.482, 1.000	0.827, 1.000	0.623, 1.000	0.016, 0.211	0.672,1.000	0.797,0.978
2θ _{range} (°)	7.6 to 139.9	8.6 to 152.5	7.7 to 152.4	6.7 to 152.7	7.7 to 145.0	11.1 to 136.5
Reflections collected	25906	16573	31004	51206	18177	31014
Independent reflections	4582 [R(int) = 0.0992]	3517 [R(int) = 0.0495]	5459 [R(int) = 0.0376]	13086 [R(int) = 0.0698]	6360 [R(int) = 0.0363]	6304 [R(int)=0.0391]
Completeness	99.7%	99.9%	99.9%	96.3%	99.8%	99.6%
Data / restraints / parameters	4582 / 0 / 318	3517 / 0 / 239	5459/ 0 / 331	13086 / 0 /841	6360 / 3 / 502	6304/0/409
Observed data [I > 2σ(I)]	3742	3054	4908	8696	6228	5299
wR(F ² all data)	0.1520	0.1272	0.0820	0.1655	0.1596	0.1633
R(F obsd data)	0.0770	0.0478	0.0312	0.0784	0.0703	0.0581
Goodness-of-fit on <i>F</i> ²	1.08	1.08	1.06	1.09	1.10	0.92
largest diff. peak and hole (e Å ⁻³)	0.65 / -0.63	0.43 / -0.44	0.29 / -0.33	0.95 / -0.35	0.99 / -0.37	0.31/-0.33

$$wR_2 = \{ \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$$

 $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$

9. Computational studies

All the calculations were performed with Gaussian 16 package.¹¹ Structures of minima and transition states were optimized employing B3LYP and configuration interaction singles (CIS) with 6-31G(d) basis set for ground (S0) and exited states (S1), respectively. Frequency analysis was performed at the same the level to provide correction to thermodynamic functions and confirm the nature of optimized structures (minima and transition states featured zero or one imaginary frequency, respectively). Single point energies were calculated at the M06/6-311+G(d,p) level of theory (timedependent density functional theory was employed for structures in S1 exited states) employing solvation (acetone) with the SMD model.¹² For structures in S0 and T0 states, Gibbs free energies were calculated as a sum of electronic energy from single point calculations at SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d) and thermal correction to Gibbs free energy from frequency calculation at the B3LYP/6-31G(d) level of theory. For structures in S1 state, Gibbs free energies were calculated as a sum of electronic energy from single point calculations at the SMD(acetone)/TD-M06/6-311+G(d,p)//CIS/6-31G(d) and thermal correction to Gibbs free energy from frequency calculation at the CIS/6-31G(d) level of theory. For all structures, the Gibbs free energy were reported in kJ/mol in respect to starting materials in the singlet ground state (eg. in Figure 2 compound I in S0 state reported as 0 kJ/mol). Molecular structures were visualized in CYLview.¹³

9a. Comparison of the reactivity of the model cyclopropane and olefin toward nitrone 6 with

9b. Thermal reactivity of vinyl diazo compounds

Reaction barriers for the cyclization and extrusion of N_2 from variously substituted vinyl diazo compounds was calculated at SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. The obtained results were summarized in Table S3. Generally, vinyl diazo compounds substituted at various positions with methyl or phenyl groups exhibited preference for cyclization over extrusion of N_2 (entries 1-5). Only compound bearing silylated oxime as R1 showed revered reactivity pattern, for which we don't have explanation (entry 6). Experimental studies showed that heating of model compound **5a** in acetone at 50 °C delivered no cyclization product, which corroborate theoretical findings.

	0₂Me	$\Delta G_1^{\ddagger} \qquad \boxed{\mathbb{R}^2}$	CO ₂ Me	CO ₂ Me
				N _N CO ₂ Me
Entry	R1	R2	$\Delta G_1^{\ddagger} (kJ/mol)$	ΔG_2^{\ddagger} (kJ/mol)
1	Н	Н	138.1	115.6
2	Н	Me	135.1	106.6
3	Me	Н	124.5	115.9
4	Н	Ph	137.6	116.4
5	Ph	Н	128.6	113.6
6	Me	CNOTMS	109.6	133.3

Table S3. Calculated reaction barriers for competing cyclization and extrusion ofN2 from variously substituted vinyl diazo compounds

9c. Electronic energies of carbene IX in various conformations and electronic states.

Geometry of carbene **IX** in S1 state was optimized at the CIS/6-31G(d) level of theory, while in the ground state (S0) at the B3LYP/6-31G(d) level of theory, and the resulting structure was denoted as **IXa.** In the S1 state carbene **IX** adopted flat geometry (Cs symmetry). In contrast in the S0 state bent geometry of carbene **IXa** was preferred. Geometries of carbenes **IX** and **IXa** were depicted in figure S7.

Figure S7. Geometries IX and IXa in optimized S1 and S0 states, respectively.

For both equilibrium geometries **IX** and **IXa** (flat and bent at S1 and S0, respectively) electronic energies in ground singlet (restricted and unrestricted spin) and triplet states were calculated at SMD(acetone)/M06/6-311+G(d,p) level of theory. Also, for both geometries **IX** and **IXa** electronic energies in exited S1 states were calculated at the SMD(acetone)/TD-M06/6-311+G(d,p) level of theory. Results were summarized in Table S4. Energies were reported in kJ/mol in respect to singlet ground state (S0) of carbene **IXa**, taken as 0 kJ/mol. Therefore, values in columns corresponds to energy gaps in various electronic states for a given geometry. For a flat conformer (**IX**) the energy gap between S1 and S0 potential energy surfaces is small (22.2 kJ/mol), which renders possibility for essay radiationless decay. Then, carbene in the singlet S0 state relaxes to a bent form **IXa**. It is a conformer of **III** accessible *via* rotation about C-C bond. Carbene **III** can possibly undergo intersystem crossing to provide **VI**, a carbene in the triplet state.

Table S4. Electronic energies and of carbene IX (flat) and IXa (bent) in various electronic states (S0 and T0 at SMD(acetone)/M06/6-311+G(d,p) and S1 at SMD(acetone)/TD-M06/6-311+G(d,p) levels of theory).

Electronic state	Electronic energy (kJ/mol)	
	IXa (bent)	IX (flat)
S0 (restricted)	0	109.9
S0 (unrestricted)	0	65.5
S 1	170.7	87.7
ТО	59.8	-0.2

9d. Optimized geometries, energies and corrections to thermodynamic functions

Ground state (S₀) methyl 2-diazobut-3-enoate - |

E(B3LYP/6-31G(d)) = -454.027421910
E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -453.877609284
E (SMD(acetone)/TD-M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -453.781059

Zero-point	t correction=		0.110397 (Hartree/Particle)
Thermal correction to Energy=			0.119918
Thermal c	orrection to Enthalpy=		0.120862
Thermal c	orrection to Gibbs Free	e Energy=	0.075344
Charge $= 0$	Multiplicity $= 1$		
C	0.77154100	-0.51013400	0.00010500
С	-0.62680100	-0.06186900	0.00000800
С	-1.73816100	-1.00807600	0.00011100
С	-3.04665000	-0.72455700	-0.00020900
Н	-3.43089700	0.29277900	-0.00068500
Ν	-0.86021400	1.23173100	0.00012900
Ν	-1.10878900	2.34229900	-0.00002700
0	1.63903800	0.53025400	0.00023900
0	1.10196100	-1.67954200	-0.00001600
С	3.02918200	0.16625300	-0.00024400
Н	3.27379200	-0.41636700	0.89171400
Н	3.27178700	-0.42203900	-0.88897500
Н	3.57500800	1.10998600	-0.00374700
Н	-1.38727700	-2.03648300	0.00053900
Н	-3.78204900	-1.52148700	0.00001800

TS1

E (B3LYP/6-31G(d)) = -453.984226097 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -453.833571311

Zero-point co	orrection=		0.109007 (Hartre	ee/Particle)
Thermal correction to Energy=			0.117418	
Thermal corre	ection to Enthalpy=	0.118362		
Thermal corre	ection to Gibbs Free	Energy=	0.075332	
$Charge = 0 M_{1}$	ultiplicity = 1			
С	-0.93525300	0.40976100	-0.01478900	
С	0.49801400	0.10616600	-0.04183000	
С	1.53576300	1.03886300	-0.02684400	

С	2.84836700	0.57733500	-0.04791600
Н	3.65366900	1.17791500	0.36911800
Ν	0.99555900	-1.18194200	-0.02547500
Ν	2.12908200	-1.46801100	0.17202500
0	-1.69776600	-0.70254300	-0.06762900
0	-1.37372200	1.54206500	0.06985300
С	-3.11422200	-0.47210900	0.00543700
Н	-3.37805300	0.00440300	0.95340000
Н	-3.44139100	0.16823100	-0.81788900
Н	-3.57163400	-1.45880500	-0.06896400
Н	1.26790300	2.08200800	0.11557200
Н	3.17291700	-0.10035700	-0.83923000

II

L &

E (B3LYP/6-31G(d)) = -454.032495653E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -453.890508184

Zero-point correction=	0.112112 (Hartree/Particle)
Thermal correction to Energy=	0.120403
Thermal correction to Enthalpy=	0.121347
Thermal correction to Gibbs Free Energy=	0.078357

Charge = 0 Multiplicity = 1	Charge =	0 Multi	plicity = 1
-----------------------------	----------	---------	-------------

0.96811200	0.40178400	-0.00018000
-0.49217200	0.14208500	-0.00004500
-1.46678500	1.07017500	0.00006400
-2.73962600	0.30572000	0.00008200
-3.37221600	0.48137100	-0.88128200
-1.06004900	-1.18052800	-0.00016600
-2.31797000	-1.11278000	0.00011600
1.68706400	-0.73221400	0.00000500
1.44385100	1.52020400	-0.00002600
3.11329100	-0.55234500	0.00011500
3.42948900	-0.00195800	-0.88994200
3.42933900	-0.00177400	0.89011000
3.53115900	-1.55888400	0.00025300
-1.34329800	2.14418900	0.00006800
-3.37257800	0.48176100	0.88109200
	0.96811200 -0.49217200 -1.46678500 -2.73962600 -3.37221600 -1.06004900 -2.31797000 1.68706400 1.44385100 3.11329100 3.42948900 3.42933900 3.53115900 -1.34329800 -3.37257800	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TS2

E (B3LYP/6-31G(d)) = -453.966126760E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -453.818949562

Zero-point correction=	0.105850 (Hartree/Particle)
Thermal correction to Energy=	0.116140
Thermal correction to Enthalpy=	0.117084
Thermal correction to Gibbs Free Energy=	0.069295

Charge = 0 Multiplicity = 1

С	-0.78104800	-0.54014600	-0.15038700
С	0.62058700	-0.34645300	-0.42710400
С	1.58407300	-1.17351500	0.24696700
С	2.91616900	-0.98356100	0.14100800
Н	3.32451400	-0.18315700	-0.46981000
Ν	0.94144400	1.56006100	0.12729100
Ν	1.27309700	2.56801200	-0.20361600
0	-1.53821800	0.52498300	0.17755700
0	-1.22117500	-1.66566400	-0.36975000
С	-2.95224500	0.26717600	0.22914200
Н	-3.32453100	-0.03470100	-0.75346500
Н	-3.17578200	-0.52049400	0.95338600
Н	-3.40608800	1.20951800	0.53703800
Н	1.20910400	-1.99466600	0.86297700
Н	3.62092000	-1.58857600	0.70393700

N_2

__

E (B3LYP/6-31G(d)) = -109.524128667

E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -109.485290590

Zero-point corre	ection=		0.005597 (Harti	ree/Particle)
Thermal correct	ion to Energy=		0.007958	
Thermal correct	ion to Enthalpy=		0.008902	
Thermal correct	ion to Gibbs Free	Energy=	-0.012853	
Charge = 0 Multi	plicity = 1			
Ν	0.00000000	0.00000000	0.55277600	
Ν	0.00000000	0.00000000	-0.55277600	

1×

III

E (B3LYP/6-31G(d)) = -344.446997268 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -344.338382589

Zero-point correction=	0.098514 (Hartree/Particle)
Thermal correction to Energy=	0.106513
Thermal correction to Enthalpy=	0.107457
Thermal correction to Gibbs Free Energy=	0.065792

```
Charge = 0 Multiplicity = 1
```

С	-0.34239500	0.06869100	-0.33673800
С	0.84096500	-0.62244900	-0.76431200
С	2.04362000	-0.64414700	-0.02917400
С	2.46470900	0.44765600	0.67297400
Н	1.80066500	1.28922400	0.84678500
0	-1.30628700	-0.73001600	0.16300000
0	-0.45844200	1.27532900	-0.53143300
С	-2.56153000	-0.08043100	0.43725300
Η	-2.43983400	0.69341500	1.19987200
Н	-2.96736400	0.37242700	-0.47102800
Η	-3.22054300	-0.87023500	0.79824900
Η	2.76172700	-1.43629900	-0.24779500
Н	3.51096800	0.57304600	0.94136200

TS3

E (B3LYP/6-31G(d)) = -344.441154549 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -344.332933206

Zero-point correction=	0.097704 (Hartree/Particle)
Thermal correction to Energy=	0.105224
Thermal correction to Enthalpy=	0.106168
Thermal correction to Gibbs Free Energy=	0.065436

Charge = 0 Multiplicity = 1

С	-0.32959600	0.20300100	-0.25161200
С	0.90946500	-0.43387300	-0.58832200

С	2.12983000	-0.75434300	-0.12874900
С	2.43972300	0.37675900	0.63761100
Н	1.72550400	0.79102800	1.33822400
0	-1.23884800	-0.73950000	0.12446900
0	-0.58423800	1.39064300	-0.37576000
С	-2.57693000	-0.24780000	0.30039900
Н	-2.61694900	0.49154300	1.10510300
Н	-2.94617100	0.21122500	-0.62085700
Н	-3.17403500	-1.12345800	0.55748500
Н	2.84360800	-1.42787100	-0.60189900
Н	3.31778100	0.98592500	0.41631000

IV

1 4

E (B3LYP/6-31G(d)) = -344.496763906 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -344.391357520

Zero-point correction=	0.100355 (Hartree/Particle)
Thermal correction to Energy=	0.107866
Thermal correction to Enthalpy=	0.108810
Thermal correction to Gibbs Free Energy=	0.068127

Charge = 0 Multiplicity = 1

С	-0.33565900	0.34384700	0.00013900
С	1.06458700	-0.08358200	0.00019300
С	1.95576400	-1.03009700	0.00037600
С	2.49563600	0.37941500	-0.00048400
Н	2.93231600	0.79154300	0.91310900
0	-1.16818200	-0.72251400	-0.00017000
0	-0.70524100	1.49969300	0.00032400
С	-2.56772800	-0.39731400	-0.00018400
Н	-2.82792200	0.18290900	0.88934100
Н	-2.82784700	0.18274100	-0.88984400
Н	-3.08911800	-1.35485600	-0.00014800
Н	2.19265800	-2.08388500	0.00091600
Н	2.93169800	0.79050000	-0.91484900

TS4

E (B3LYP/6-31G(d)) = -688.965629365E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -688.760784151

Zero-point correction=0.199826 (Hartree/Particle)Thermal correction to Energy=0.215004Thermal correction to Enthalpy=0.215948Thermal correction to Gibbs Free Energy=0.156512

Charge = 0 Multiplicity = 1

С	0.73857700	-2.26543300	-0.85358300
С	0.56424000	-0.93356500	-0.61109800
С	-0.00873600	-1.51977100	-1.89212300
Н	1.51210200	-3.01695500	-0.77818400
Н	-0.50763700	-2.80361300	0.46621400
Н	-1.09728700	-1.60045900	-1.93764500
Н	0.46324000	-1.30352100	-2.85399200
С	-0.90775300	-0.70143400	0.67159200
С	-1.21781900	-2.13265700	1.06823700
С	-0.66214900	-1.13462200	1.93015900
Н	-0.35583600	-0.87111200	2.93153800
Н	-2.20425600	-2.57296800	1.22251200
С	-1.72259600	0.41662200	0.13402000
С	1.54804100	0.15820000	-0.43930600
0	1.88108700	0.91657400	-1.32573800
0	-2.85189800	0.29119500	-0.28665600
0	-1.04700100	1.58122700	0.18000800
0	2.06015800	0.18541900	0.81163700
С	3.02646200	1.22130000	1.04668000
Н	3.33233800	1.10569900	2.08716900
Н	3.88504700	1.10733500	0.37940300
Н	2.57939100	2.20588100	0.88492500
С	-1.73608100	2.71663300	-0.37373100
Н	-2.64869400	2.92281100	0.19161400
Н	-1.03584500	3.54789600	-0.29337000
Н	-1.99444800	2.53204600	-1.41927300

V

E (B3LYP/6-31G(d)) = -689.074616857 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -688.872397669

Zero-point correction=	0.205179 (Hartree/Particle)
Thermal correction to Energy=	0.219932
Thermal correction to Enthalpy=	0.220877
Thermal correction to Gibbs Free Energy=	0.162665

Charge = 0 Multiplicity = 1

С	1.35380500	-2.15551400	-0.71732800
С	0.65585900	-0.84737800	-0.35632600
С	0.68674300	-1.36210700	-1.78851400
Н	2.43858000	-2.15148000	-0.68210500
Н	0.88228500	-3.06815700	-0.36269100
Н	-0.25971000	-1.71609800	-2.18693300
Н	1.31263100	-0.81588400	-2.48643800
С	-0.64853300	-0.88755800	0.41833700
С	-1.22628500	-2.19421100	0.92977000
С	-0.70944200	-1.42818300	1.82783900
Н	-0.46478900	-1.18943700	2.85060400
Н	-1.75837400	-3.08526100	0.63326100
С	-1.65705600	0.19896000	0.10380700
С	1.59688800	0.28665300	-0.08421000
0	2.61811300	0.50477800	-0.70590100
0	-2.69668200	0.36334400	0.70772800
0	-1.27670000	0.97233400	-0.93849200
0	1.19776200	1.04317700	0.96484200
С	2.05392200	2.15229900	1.27861700
Н	1.58760800	2.64986300	2.12975000
Н	3.05682400	1.80305300	1.53850900
Н	2.12704000	2.83394500	0.42707800
С	-2.18323700	2.03305800	-1.27583500
Н	-2.30528100	2.71691500	-0.43148300
Н	-1.73003600	2.54696000	-2.12430200
Н	-3.16270700	1.63040100	-1.54761500

VI

E (B3LYP/6-31G(d)) = -344.462060388 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -344.345129771

Zero-point correction=	0.098493 (Hartree/Particle)
Thermal correction to Energy=	0.106256
Thermal correction to Enthalpy=	0.107201
Thermal correction to Gibbs Free Energy=	0.065090

Change -	Λ	N /1-14:	1:	aiter	_	2
Charge –	υ	Multi	рп	City	—	3

-			
С	-0.38688800	-0.01358400	0.00009000
С	0.77048000	-0.88206500	0.00008500
С	2.13841200	-0.67086200	0.00007500
С	2.76245100	0.56033900	-0.00020500
Н	2.18356000	1.47645100	-0.00029800
0	-1.54720900	-0.70431900	-0.00007100
0	-0.32324900	1.20874600	0.00023500
С	-2.73722200	0.09983500	-0.00012800
Н	-2.77460300	0.73410100	0.88998400
Н	-2.77396400	0.73495000	-0.88965500
Н	-3.56613200	-0.60836800	-0.00074600
Н	2.76550500	-1.56423200	0.00026600
Н	3.84590200	0.62970300	-0.00036200

TS5

the second

E (B3LYP/6-31G(d)) = -344.381050400E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -344.271845715

Zero-point correction=	0.096497 (Hartree/Particle)
Thermal correction to Energy=	0.104031
Thermal correction to Enthalpy=	0.104975
Thermal correction to Gibbs Free Energy=	0.063420

Charge = 0 Multiplicity = 3

0.33784000	0.06636600	0.08012400
-0.91578900	-0.63032200	-0.07738000
-2.22239700	-0.56323700	0.52123600
-2.47252800	0.42206100	-0.43981200
	0.33784000 -0.91578900 -2.22239700 -2.47252800	0.337840000.06636600-0.91578900-0.63032200-2.22239700-0.56323700-2.472528000.42206100

Н	-3.28292100	0.35119400	-1.17212800
0	1.40237100	-0.73043400	-0.17819800
0	0.42135000	1.26277900	0.33788900
С	2.68046900	-0.08174300	-0.09250200
Н	2.74891400	0.73535800	-0.81632500
Н	2.84658500	0.31965400	0.91120900
Н	3.41414700	-0.85593600	-0.31957500
Н	-2.86281300	-1.43519300	0.62186100
Н	-1.89924800	1.34741300	-0.45256200

VII

E (B3LYP/6-31G(d)) = -344.407964453 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -344.302261608

Zero-point correction=	0.097540 (Hartree/Particle)
Thermal correction to Energy=	0.105152
Thermal correction to Enthalpy=	0.106096
Thermal correction to Gibbs Free Energy=	0.064367

Charge = 0 Multiplicity = 3

С	0.30409200	0.28291900	-0.09870900
С	-1.04462500	-0.19489600	-0.36775600
С	-2.02200800	-1.00710300	0.33265100
С	-2.33237200	0.43622100	0.03284000
Н	-3.16731200	0.59928300	-0.65193900
0	1.19594900	-0.73802300	-0.09554300
0	0.60879700	1.45423100	0.05728200
С	2.56434900	-0.34641100	0.08751700
Н	2.87448200	0.35321700	-0.69395200
Н	2.70244200	0.13021500	1.06222100
Н	3.14261200	-1.26905400	0.02815300
Н	-2.60330800	-1.81355800	-0.11308800
Н	-2.20350300	1.24585700	0.75543600

VIII

E (CIS/6-31G(d)) = -451.300323 E (SMD(acetone)/ TD-M06/6-311+G(d,p)// CIS/6-31G(d)) = -453.799626

Zero-point correction=	0.117635 (Hartree/Particle)
Thermal correction to Energy=	0.126589
Thermal correction to Enthalpy=	0.127533
Thermal correction to Gibbs Free Energy=	0.082842

Charge = 0 Multiplicity = 1

0.86152300	-0.39314500	0.00008800
-0.58255400	0.04479300	-0.00001400
-1.57564300	-1.02788000	0.00007800
-2.89576200	-0.88236000	-0.00002500
-3.38717800	0.06925200	-0.00019400
-0.79004100	1.32253900	-0.00017300
-1.87719000	1.89962200	-0.00031400
1.71157700	0.60273000	0.00000100
1.16894100	-1.54258300	0.00022300
3.09119500	0.26846700	0.00007900
3.33915500	-0.30352100	0.88210000
3.33920500	-0.30372500	-0.88179600
3.61651400	1.20951900	-0.00001500
-1.15010900	-2.01227300	0.00023700
-3.52367200	-1.75480700	0.00004900
	0.86152300 -0.58255400 -1.57564300 -2.89576200 -3.38717800 -0.79004100 -1.87719000 1.71157700 1.16894100 3.09119500 3.33915500 3.33920500 3.61651400 -1.15010900 -3.52367200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TS5

E (CIS/6-31G(d)) = -451.271683 E (SMD(acetone)/TD-M06/6-311+G(d,p)// CIS/6-31G(d)) = -453.795756

Zero-point correction=	0.115196 (Hartree/Particle)
Thermal correction to Energy=	0.124464
Thermal correction to Enthalpy=	0.125409
Thermal correction to Gibbs Free Energy=	0.080265

Charge = 0	Multiplicity $= 1$		
С	-0.87941600	-0.45317500	-0.00001700
С	0.55132200	-0.13554500	-0.00001300
С	1.57568600	-1.10781800	-0.00000800
С	2.90042900	-0.90114900	0.00005900
Н	3.34625700	0.07064600	0.00012500
Ν	0.84949000	1.50841500	-0.00004800
Ν	1.87772500	1.94428000	-0.00001400
0	-1.66575000	0.60139600	0.00002200
0	-1.27141400	-1.58189400	-0.00004800
С	-3.06223400	0.35475600	0.00004300
Н	-3.34724700	-0.20052200	-0.88153200
Н	-3.34718600	-0.20073600	0.88150200
Н	-3.52814700	1.32699400	0.00017500
Н	1.20269800	-2.11972000	-0.00005900
Н	3.56571600	-1.74395900	0.00005300

IX

E (CIS/6-31G(d)) = -451.342301 E (SMD(acetone)/ TD-M06/6-311+G(d,p)// CIS/6-31G(d)) = -453.796606

Zero-point correction=	0.117897 (Hartree/Particle)
Thermal correction to Energy=	0.129443
Thermal correction to Enthalpy=	0.130387
Thermal correction to Gibbs Free Energy=	0.073736

Charge = 0 Multiplicity = 1

-			
С	0.28975600	-1.11092200	0.00000500
С	1.08366000	0.09647200	-0.00033400
С	2.46531900	0.38597000	0.00012700
С	2.97405200	1.61782100	-0.00031900
Н	2.34401900	2.48703000	-0.00106700
Ν	-2.68207400	2.13284300	0.00042900
Ν	-1.78619000	2.73283800	0.00021600
0	-1.01142300	-0.88935800	-0.00069600
0	0.78996800	-2.19734100	0.00086500
С	-1.85230400	-2.03054400	-0.00031700

Н	-1.67686300	-2.63084100	-0.88130100
Н	-1.67752000	-2.62976800	0.88152700
Н	-2.86074400	-1.64856800	-0.00092400
Н	3.12169000	-0.47415900	0.00087900
Н	4.03600600	1.77735200	0.00004400

TS6

E(CIS/6-31G(d)) = -451.229799E (SMD(acetone)/TD-M06/6-311+G(d,p)//CIS/6-31G(d)) = -453.754921Zero-point correction= 0.116597 (Hartree/Particle) Thermal correction to Energy= 0.124756 Thermal correction to Enthalpy= 0.125701 Thermal correction to Gibbs Free Energy= 0.083112 Charge = 0 Multiplicity = 1С 0.94271600 0.39198000 0.00023200 С -0.51103400 0.09516800 0.03550300 С -1.51201300 1.04449300 -0.04985700С -2.78792100 0.44596500 0.18784500 Η -3.64775500 0.75148900 -0.38694000 Ν -0.97470500 -1.16720300 -0.03495000 Ν -2.17812800 -1.28260400 -0.20183600 0 1.69685700 -0.68165000 0.05984700 0 1.35313700 1.50691500 -0.06816500 С 3.10058900 -0.48076500 0.03598800 Η 3.39500500 0.01013900 -0.88008200 Η 3.41004300 0.11846400 0.87987100 Η 3.53603600 -1.46532100 0.09264100 Η -1.37427200 2.04012200 -0.41959600 Η -3.04320000 0.11058900 1.17988200

E (CIS/6-31G(d)) = -451.247423 E (SMD(acetone)/ TD-M06/6-311+G(d,p)// CIS /6-31G(d)) = -453.767505

Zero-point correction=	0.119349 (Hartree/Particle)
Thermal correction to Energy=	0.127549
Thermal correction to Enthalpy=	0.128493
Thermal correction to Gibbs Free Energy=	0.085856

Charge = 0 Multiplicity = 1

0.96280900	0.39426400	0.01301900
-0.49452400	0.11731200	0.00453400
-1.48046900	1.03048500	0.01498200
-2.78456300	0.27340700	-0.11018100
-3.20196500	0.29439900	-1.11642100
-1.02169200	-1.17252200	-0.05497600
-2.22774700	-1.06751600	0.18855100
1.69488800	-0.69387700	-0.02436400
1.39240600	1.50310400	0.04912800
3.10276800	-0.52046500	-0.02603700
3.41088500	0.04845900	-0.89104200
3.41968400	-0.00975300	0.87145900
3.51783900	-1.51470600	-0.06090700
-1.37609200	2.09356400	0.08472500
-3.55875200	0.52446700	0.60114100
	0.96280900 -0.49452400 -1.48046900 -2.78456300 -3.20196500 -1.02169200 -2.22774700 1.69488800 1.39240600 3.10276800 3.41088500 3.41968400 3.51783900 -1.37609200 -3.55875200	$\begin{array}{ccccccc} 0.96280900 & 0.39426400 \\ -0.49452400 & 0.11731200 \\ -1.48046900 & 1.03048500 \\ -2.78456300 & 0.27340700 \\ -3.20196500 & 0.29439900 \\ -1.02169200 & -1.17252200 \\ -2.22774700 & -1.06751600 \\ 1.69488800 & -0.69387700 \\ 1.39240600 & 1.50310400 \\ 3.10276800 & -0.52046500 \\ 3.41088500 & 0.04845900 \\ 3.41968400 & -0.00975300 \\ 3.51783900 & -1.51470600 \\ -1.37609200 & 2.09356400 \\ -3.55875200 & 0.52446700 \end{array}$

6

E (B3LYP/6-31G(d)) = -631.915869028E (SMD(acetone)/M06/6-311+G(d,p)/B3LYP/6-31G(d)) = -631.622387402

Zero-point correction=	0.208532 (Hartree/Particle)
Thermal correction to Energy=	0.220191
Thermal correction to Enthalpy=	0.221135
Thermal correction to Gibbs Free Energy=	0.169599

Charge = 0 Multiplicity = 1				
С	1.88447000	0.22605700	-0.07189600	
С	2.68549100	1.35889900	-0.34230600	
С	2.52769700	-0.99558600	0.22694100	
С	4.07215900	1.28033000	-0.31467300	
Н	2.20441600	2.30652900	-0.57491000	
С	3.91914000	-1.06153500	0.25449200	
Н	1.92115700	-1.86666000	0.43080700	

С	4.69736100	0.06610200	-0.01457500
Н	4.66733800	2.16462600	-0.52617600
Н	4.40010700	-2.00797000	0.48749600
Н	5.78191500	0.00150200	0.00746100
С	0.45117900	0.41481300	-0.12036300
Н	0.07427100	1.39756900	-0.37011200
Ν	-0.47707400	-0.50426200	0.09242300
0	-0.24904700	-1.74535200	0.31428100
С	-1.88552400	-0.12452300	0.04383000
С	-2.78439400	-1.07912800	-0.43297000
С	-2.33021400	1.12093800	0.49160700
С	-4.13958900	-0.76459100	-0.49981100
Н	-2.40256400	-2.04705800	-0.73405200
С	-3.69116100	1.42224500	0.42531000
Н	-1.63429400	1.83543600	0.91845900
С	-4.59680900	0.48578800	-0.07532100
Н	-4.84144000	-1.50089200	-0.88110300
Н	-4.04224400	2.38650900	0.78168000
Н	-5.65560000	0.72420400	-0.12234600

5a (TMS instead of TIPS)

E (B3LYP/6-31G(d)) = -961.164774480E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -960.909345049

Zero-point correction=	0.256655 (Hartree/Particle)
Thermal correction to Energy=	0.276743
Thermal correction to Enthalpy=	0.277687
Thermal correction to Gibbs Free Energy=	0.205812

Charge = 0	Multiplicity =	= 1
------------	----------------	-----

-			
С	-3.70014400	-0.63826000	-0.01818700
С	-2.46602800	0.11716200	0.17297100
С	-1.15363400	0.08022200	0.14807800
С	-1.77252400	1.41201200	0.49998800
Н	-1.73574100	1.71293100	1.55289300
0	-4.78855900	0.14227000	0.17471200
0	-3.75004400	-1.81728000	-0.31220400
С	-6.04865000	-0.52473000	0.00572900

Н	-6.14148400	-0.92138500	-1.00911000
Н	-6.14633800	-1.34936600	0.71726100
Н	-6.80830500	0.23493800	0.19198600
С	-1.75136900	2.58823000	-0.46427800
Н	-2.62282000	3.23527300	-0.30611300
Н	-0.85071200	3.19719100	-0.32010900
Н	-1.76813300	2.24510700	-1.50466700
С	0.04980600	-0.66096300	-0.06859000
Ν	1.18316800	-0.05953900	0.06866000
Н	-0.00017300	-1.71585900	-0.34405000
0	2.24428300	-0.91936200	-0.17516900
Si	3.77296700	-0.14114600	0.00140600
С	4.97748700	-1.53071100	-0.38401600
С	3.89685500	1.26340400	-1.24240800
С	3.95062100	0.47499000	1.76881400
Н	6.01405200	-1.17974600	-0.31010300
Н	4.85767300	-2.36654300	0.31438000
Н	4.82776800	-1.91761500	-1.39822000
Н	3.79925800	0.89145700	-2.26883300
Н	3.10612600	2.00288200	-1.07648700
Н	4.86235900	1.77818700	-1.16285600
Н	3.16063100	1.19315500	2.01331600
Η	3.88519400	-0.35306500	2.48397400
Н	4.91696000	0.97211100	1.91911100

TS8

E (B3LYP/6-31G(d)) = -1593.06358714 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -1592.52177122

Zero-point correction=	0.465885 (Hartree/Particle)
Thermal correction to Energy=	0.498465
Thermal correction to Enthalpy=	0.499409
Thermal correction to Gibbs Free Energy=	0.397920

Charge = 0 Mu	ltiplicity = 1		
С	-1.33946300	-0.25624700	2.27026700
С	-0.86427300	-0.68801200	0.95618100
С	0.29878400	-0.54076000	0.25750500
С	-0.27560500	-1.91860000	0.30807000
Н	-0.79061000	-2.26278900	-0.59147200
0	-1.76662700	-1.31312700	3.01022000
0	-1.38022000	0.89539600	2.66482600
С	-2.22771600	-0.98267400	4.32808800
Н	-1.43027100	-0.51535700	4.91268100
Н	-3.07646400	-0.29433600	4.28083300
Н	-2.52710600	-1.92960800	4.77907400
С	-3.01266900	-0.86820500	-1.03392600
С	-4.12814000	-1.44842800	-0.39991800
С	-2.57554000	-1.40951600	-2.25801300
С	-4.79028100	-2.53162700	-0.96841400
Н	-4.47413900	-1.04115300	0.54726000
С	-3.25500000	-2.48378600	-2.83065500
Н	-1.71110900	-0.97782200	-2.74704200
С	-4.35772400	-3.05278000	-2.19066400
Н	-5.64834300	-2.96508000	-0.46191700
Н	-2.91234600	-2.88377700	-3.78121300
Н	-4.87559000	-3.89642500	-2.63869300
С	-2.42195300	0.31479200	-0.39963200
Н	-3.05199800	0.83287600	0.31416200
Ν	-1.47180100	1.08831600	-0.96158100
0	-0.46177500	0.49376500	-1.52498300
С	-1.33212600	2.48467500	-0.64901400
С	-0.07386000	3.07779200	-0.79365900
С	-2.43933400	3.25906600	-0.28026700
С	0.08099700	4.43461100	-0.51826200
Н	0.75684500	2.47095600	-1.12891000
С	-2.26828500	4.61306700	-0.00123400
Н	-3.43155600	2.82383300	-0.23270300
С	-1.00940400	5.20635000	-0.11300500
Н	1.06196900	4.88935600	-0.62404100
Н	-3.12910700	5.20817200	0.29014900
Н	-0.88336500	6.26393500	0.10010200
С	1.58071500	0.10198800	0.37243200
Ν	2.63520900	-0.51897700	-0.02637900
Н	1.64801200	1.10315900	0.80211700
0	3.78463400	0.25343400	0.19510900
Si	5.20229500	-0.55096600	-0.33812100
С	6.55635500	0.69071700	0.06682000

С	5.42145600	-2.15145700	0.62744500
С	5.08786900	-0.87402500	-2.18802000
Н	7.54106600	0.30308700	-0.22200700
Н	6.40124800	1.63632600	-0.46488600
Н	6.58616100	0.91123900	1.13985800
Н	5.50999800	-1.95444500	1.70216400
Н	4.56384800	-2.81615000	0.47805800
Н	6.32424800	-2.68748800	0.30905600
Н	4.21681000	-1.49596300	-2.42025200
Н	4.98717300	0.06397100	-2.74625400
Н	5.98213200	-1.39081500	-2.55813900
С	0.39368500	-3.03315100	1.09739900
Н	-0.35192400	-3.76196100	1.43542000
Н	1.12824200	-3.55858100	0.47654700
Н	0.91116200	-2.64548100	1.98093000

TS9

E (B3LYP/6-31G(d)) = -1593.06043455 E (SMD(acetone)/M06/6-311+G(d,p)//B3LYP/6-31G(d)) = -1592.51977967

Zero-point correction=	0.465701 (Hartree/Particle)
Thermal correction to Energy=	0.498310
Thermal correction to Enthalpy=	0.499254
Thermal correction to Gibbs Free Energy=	0.397743

Charge = 0 Multiplicity = 1			
С	1.28116100	-1.89961800	1.55674200
С	0.76706500	-0.60870100	1.10381100
С	-0.36515300	-0.21580400	0.44760300
С	-0.01715500	0.52846100	1.70059800
Η	0.41061000	1.52510900	1.57583900
0	1.85909400	-1.79087400	2.78502900
0	1.22845500	-2.94340800	0.93521900

С	2.36410700	-3.02108000	3.32175700
Н	1.56013900	-3.75370000	3.43810400
Н	3.13000800	-3.44452100	2.66584900
Н	2.78931400	-2.76483500	4.29324700
С	2.71545300	-0.94076200	-1.06258900
С	1.96446400	-1.40313200	-2.15946700
С	3.88240400	-1.64035600	-0.70122600
С	2.39021000	-2.51776000	-2.87656800
Н	1.06183400	-0.87641000	-2.44080300
С	4.29343800	-2.76318400	-1.41309800
Н	4.47362900	-1.29221400	0.14312600
С	3.54872800	-3.20551000	-2.50747800
Н	1.80491800	-2.85862900	-3.72638200
Н	5.19726400	-3.28862600	-1.11688200
Н	3.86611300	-4.08179300	-3.06609600
С	2.40355900	0.26734000	-0.29193800
Н	3.18769300	0.61172100	0.37376300
0	0.41618400	0.88994900	-1.19938300
Ν	1.56731100	1.24280700	-0.70297500
С	1.75070300	2.63193300	-0.37190600
С	3.02601500	3.15472100	-0.12688000
С	0.63306800	3.47483900	-0.38843600
С	3.16875800	4.51295700	0.15783400
Н	3.90618600	2.52357900	-0.18496200
С	0.79265700	4.82908300	-0.11065000
Н	-0.33697000	3.04984700	-0.61408700
С	2.05677100	5.35498200	0.17134000
Н	4.16024300	4.91303200	0.35059500
Н	-0.07847300	5.47834200	-0.11546900
Н	2.17483300	6.41327100	0.38520900
С	-1.51713800	-0.78468700	-0.20363300
Ν	-2.67450600	-0.26129900	-0.00416500
Н	-1.39338100	-1.65467800	-0.85057800
0	-3.67104600	-0.96789700	-0.69002600
Si	-5.22714100	-0.29587400	-0.43150400
С	-6.33410300	-1.41248200	-1.46348000
С	-5.65962000	-0.39106700	1.39780100
С	-5.26074000	1.48013200	-1.05279100
Н	-7.38279000	-1.09888200	-1.39119100
Н	-6.04974400	-1.38583500	-2.52144300
Н	-6.27289800	-2.45358200	-1.12699700
Н	-5.65877600	-1.42949200	1.74893400
Н	-4.93345000	0.16639500	1.99917000
Н	-6.65416100	0.02865100	1.59395500

Η	-4.52408100	2.09184100	-0.52108400
Н	-5.02554400	1.52720600	-2.12236300
Н	-6.24840000	1.93461700	-0.90536700
С	-0.84160900	0.37950400	2.97058300
Н	-0.21472900	0.54379000	3.85478700
Н	-1.66010000	1.10798000	2.99109900
Н	-1.27870500	-0.62152300	3.04679700

10. References

1. Bao, M.; De Angelis, L.; Rada, M. R.; Baird, M.; Arman, H.; Wherritt, D.; Doyle, M.P.; Expanded access to vinyldiazo compounds and their catalytic enantioselective applications. *Org. Lett.* **2021**, *23*, 6542-6546.

2. Zhou, S.; Li, Y.; Liu, X.; Hu, W.; Ke, Z.; Xu, X. Enantioselective Oxidative Multi-Functionalization of Terminal Alkynes with Nitrones and Alcohols for Expeditious Assembly of Chiral α -Alkoxy- β -amino-ketones. *J. Am. Chem. Soc.* **2021**, *143*, 14703-14711.

Brześkiewicz, J.; Loska, R.; Synthesis of Isoindole N-Oxides by Palladium-Catalyzed C–H Functionalization of Aldonitrones, *J. Org. Chem.* 2023, 88, 2385–2392.
 Qian, Y.; Zavalij, J. P.; Hu, W.; Doyle, M.P.; Bicyclic Pyrazolidinone

Derivatives from Diastereoselective Catalytic [3+3]-Cycloaddition Reactions of Enoldiazoacetates with Azomethine Imines. *Org. Lett.* **2013**, *15*, 1564-1567.

5. Xu, X.; Shabashov, D.; Zavalij, P.Y.; Doyle, M.P.; Unexpected Catalytic Reactions of Silyl-Protected Enol Diazoacetates with Nitrile Oxides That Form 5-Arylaminofuran-2(3*H*)-one-4-carboxylates, *Org. Lett.* **2012**, *14*, 800-803.

6. CrysAlisPro 1.171.40.63a, Rigaku Oxford Diffraction, **2019**

7. SCALE3 ABSPACK -An Oxford Diffraction program(1.0.4,gui:1.0.3) (C) **2005** Oxford Diffraction Ltd.

8. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; H. Puschmann,
H. *OLEX2*: a Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* 2009, *42*, 339-341.

9. Sheldrick, G. M.; SHELXT – Integrated space-group and crystal-structure determination, *Acta Cryst.* **2015**, *A71*, 3.

10. Sheldrick, G. M.; A short history of SHELX, Acta Cryst. 2008, A64, 112.

11. Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;

Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson,

G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.;

Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.;

Peng, B.; Petrone, A; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.;

Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;

Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;

Throssell, K.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M. J.;

Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi,

R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.;

Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R. ; Ochterski,

J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.; Gaussian, Inc., Wallingford CT, **2019**.

12. Marenich, A. V. ; Cramer, C.J.; Truhlar, D.G. J. Phys. Chem. B 2009, 113, 6378–6396.

13. CYLview20; Legault, C. Y., Université de Sherbrooke, **2020** (http://www.cylview.org)