Supporting Information for

Impact of the copper second coordination sphere on catalytic performance and substrate specificity of a bacterial LPMO

Kelsi R. Hall^{1,2}, Maja Mollatt¹, Zarah Forsberg¹, Ole Golten¹, Lorenz Schwaiger³, Roland Ludwig³, Iván Ayuso-Fernández¹, Vincent G.H Eijsink¹, Morten Sørlie^{1*}

¹ Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.

² Current address – School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.

³ Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria.

*Correspondence to: morten.sorlie@nmbu.no

This PDF file includes:

1. List of Supplementary Figures and Tables

Figure S1. Phylogenetic tree of AA10 LPMOs.

Table S1: Primers used for site directed mutagenesis of *Ma*AA10B.

Table S2: Theoretical extinction coefficients for all proteins purified in this study.

Figure S2. Prevalence of second sphere residue in cellulose-active AA10 LPMOs.

Figure S3. Structural superposition of second sphere residues in *Ma*AA10B and *Sc*AA10C.

Supplementary Discussion. Mutagenesis strategy.

Table S3. Initial catalytic rates of *Ma*AA10B variants.

Figure S4. Binding of full length and truncated *Ma*AA10B to PASC and β -chitin.

Figure S5. Release of oxidised products by WT *Ma*AA10B and the HEY and REY mutants

in reactions supplemented with H_2O_2 and assessment of enzyme inactivation.

Figure S1. **Phylogenetic tree of AA10 LPMOs**. 3129 unique AA10 LPMO sequences were retrieved from dbCAN¹ (version 07262023) and aligned using MAFFT² under automatic selection of parameters. The tree was built using fasttree with default parameters. The overall topology of the tree consisted of two clades: Clade I, corresponding to C1 chitin-active LPMOs, and Clade II, with several activities. To identify functional subclades in clade II, sequences of known activity according to Forsberg et al., $(2019)^3$ and Votvik et al., $(2023)^4$ were added to the dataset. The LPMOs used in this study for assessing the occurrence of second sphere motifs appear in the blue and green subclades.

Table S1: Primers used for site directed mutagenesis of *Ma***AA10B**. The underlined sequences show the mutated codon. Note that the template gene was codon-optimised for *E. coli* expression.

* Variants which were ordered as gene fragments (RQF, REY, REF and REFex) were cloned into a pRSETB backbone which was amplified alongside the linker region and the CBM2.

Table S2: Theoretical extinction coefficients for all proteins purified in this study.

Coefficients were calculated using the ExPASy ProtParam tool.

Figure S2. Prevalence of second sphere residue in cellulose-active AA10 LPMOs. All cellulose-active AA10 LPMOs (including those with mixed activity) from the CAZy database $(n = 466)$ were aligned to determine the frequency of different amino acids at positions 1, 2 and 3 (see Figure 1). Prior to the alignment, the sequences were separated into two groups based on whether they contained a CBM or only a catalytic domain. The amino acid combinations found in *Ma*AA10B (HQY) and *Sc*AA10C (REF) are shown in darker yellow and blue respectively.

Figure S3. Structural superposition of second sphere residues in *Ma***AA10B (yellow carbons; PDB 5OPF) and** *Sc***AA10C (blue carbons; PDB 4OY7).** The structural alignment of *Ma*AA10B and *Sc*AA10C was performed using the align function in PyMOL. (A) View highlighting positions 2 (glutamine/glutamate) and 3 (tyrosine/phenylalanine). The histidine brace and bound copper ion of both enzymes are shown for reference. Side chains at position 1 are not shown for a clearer view of positions 2 and 3. (B) View highlighting position 1 (histidine/arginine). For clarity the histidine brace and the glutamate/glutamine at position 2 are not shown. The side chains of the histidine and arginine are in the same position in the active site, but the histidine (\triangle) originates from a different position in the main chain compared to the arginine (\star) . An aspartate (D214) occurs at the equivalent position of the histidine in *Sc*AA10C and an alanine (A214) is located at the equivalent position of the arginine in $MaAA10B$. The closest distance between the headgroups of $Arg²¹²$ and $Asp²¹⁴$ in *Sc*AA10C is 2.8 Å. (C) View highlighting the loop regions in which the second sphere residues shown in panel B are located; the loops are shown as solid lines in yellow (*Ma*AA10B) or blue (*Sc*AA10C). In one of the *Ma*AA10B variants (REFex) the complete 214-219 loop was exchanged; see main text and the Supplementary Discussion below for more details.

Supplementary Discussion: mutagenesis strategy

Although the headgroups of the histidine (in HQY) and arginine (in REF) residues are in the same position in the active sites of *Ma*AA10B and *Sc*AA10C the main chains differ (Figure S3B). Consequently, the histidine could not be directly mutated to an arginine, as this would cause steric hindrance. Therefore, the histidine was mutated to a smaller amino acid, glycine, to make room for the side chain of an arginine, which was introduced to replace alanine at position 214. Ideally, the histidine residue in *Ma*AA10B would have been replaced with an aspartate, as this residue is present in *Sc*AA10C, but modelling studies indicated that this would lead to steric hindrance in arginine containing *Ma*AA10B, due to other differences in the loop regions of the two enzymes (Figures S3B and C). In addition to variants containing this double mutation (H216G/ A214R), referred to as RQY, REY, RQF and REF, one additional triple variant was generated, referred to as REFex. In this variant the complete loop from residues Ala²¹⁴- Gln²¹⁹ (ASHLDQ), which includes His²¹⁶ at position 1 and Gln²¹⁹ at position 2, was replaced by the corresponding loop in *ScAA10C* (residues $Arg²¹²-Glu²¹⁷$; RSDSQE), including Arg^{212} at position 1 and Glu²¹⁷ in position 2. One motivation for this mutation was to investigate the importance of the salt bridge between $Arg²¹²$ and $Asp²¹⁴$.

Table S3. Initial catalytic rates of *Ma***AA10B variants.** The values provided are the initial rate of the release of oxidised products from PASC or β-chitin (μM/min) under apparent monooxygenase conditions (Figure 2A and B) and the initial rate of the oxidase activity (s^{-1}) (Figure 2C). The rates were determined by fitting the data by linear regression. These rates were used to calculate the fold change in activity reported in Figure 2D.

Figure S4. Binding of full length and truncated *Ma***AA10B to PASC (A) and -chitin (B).** Solid lines represent binding of full-length *Ma*AA10B (catalytic domain-linker-CBM2), whereas the dashed lines show binding for the catalytic domain of *Ma*AA10B (*Ma*AA10B^{CD}). 3 µM LPMO was incubated with 0.5 % (w/v) PASC (A) or 1% (w/v) β -chitin (B) in 20 mM sodium phosphate, pH 6.0, at 40 °C and 1000 rpm. Error bars show the standard deviation of triplicate reactions.

Figure S5. Release of oxidised products by WT *Ma***AA10B and the HEY and REY mutants in reactions supplemented with H2O2 and assessment of enzyme inactivation.** All reactions were performed at 40 °C, 1000 rpm and contained 1 μ M LPMO, 100 μ M H₂O₂, and 0.1% (w/v) PASC (A, B) or 1% (w/v) β-chitin (C, D & E) in 20 mM sodium phosphate, pH 6.0. The reactions were initiated with the addition of 1 mM ascorbate. After 30 minutes, reactions were split and an additional 1 μ M enzyme (squares, \Box), 1 mM ascorbate (triangles, Δ) or both enzyme and ascorbate (inverted triangle, ∇), or buffer only (circles, \circ) were added to the reaction. Note that, within the time frame used here, addition of fresh enzyme to a reaction mixture that is depleted for H_2O_2 will not lead to detectable additional product formation. Error bars show the standard deviations of triplicate reactions.

Supplementary References.

(1) Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.; Busk, P. K.; Xu, Y.; Yin, Y. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. *Nucleic Acids Res.* **2018**, *46*, W95-W101.

(2) Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* **2002**, *30*, 3059-3066.

(3) Forsberg, Z.; Sørlie, M.; Petrovic, D.; Courtade, G.; Aachmann, F. L.; Vaaje-Kolstad, G.; Bissaro, B.; Røhr, Å. K.; Eijsink, V. G. H. Polysaccharide degradation by lytic polysaccharide monooxygenases. *Current Opinion in Structural Biology* **2019**, *59*, 54-64.

(4) Votvik, A. K.; Røhr, Å. K.; Bissaro, B.; Stepnov, A. A.; Sørlie, M.; Eijsink, V. G. H.; Forsberg, Z. Structural and functional characterization of the catalytic domain of a cell-wall anchored bacterial lytic polysaccharide monooxygenase from *Streptomyces coelicolor*. *Sci. Rep.* **2023**, *13*, 5345.