Supporting Information

Impact of oligoether side-chain length on the thermoelectric properties of a polar polythiophene

Mariavittoria Craighero¹, Jiali Guo², Sepideh Zokaei¹, Sophie Griggs³, Junfu Tian³, Jesika Asatryan⁴, Joost Kimpel¹, Renee Kroon,⁵ Kai Xu², Juan Sebastian Reparaz², Jaime Martín ^{4,6}, Iain McCulloch³, Mariano Campoy-Quiles², Christian Müller¹*

¹Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Goteborg 41296, Sweden *e-mail: christian.muller@chalmers.se

²Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain

³Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom

⁴ Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, 15403, Ferrol, Spain

⁵Laboratory of Organic Electronics, Linköping University, 60174, Norrköping, Sweden

⁶ POLYMAT, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain

Figure S1. UV-vis absorbance spectra, with the absorbance *A* normalized by the film thickness *d*, of $p(g_32T-T)$ before (green) and after co-processing with 1 mol%, 5 mol%, 10 mol%, 20 mol% and 30 mol% F₄TCNQ (blue).

Figure S2. Thermoelectric properties of $p(g_32T-T)$ co-processed with 1, 5, 10, 20 and 30 mol% F_4TCNQ .

Figure S3. UV-vis (a,b) and transmission FTIR (c,d) absorbance spectra, with the absorbance *A* normalized by the film thickness *d*, of $p(g_x 2T-T)$ before (light color) and after co-processing with 20 mol% F₄TCNQ (dark color).

Figure S4. UV-vis spectra of $p(g_32T-T)$ (a), $p(g_42T-T)$ (b) and $p(g_62T-T)$ (c) films coprocessed with 20 mol% F₄TCNQ (dark grey), of neutral F₄TCNQ and its anion in acetonitrile from Kiefer et al., Nature Mater. 2019, 18, 149-155 (blue and yellow filled curves) and fit of the measured spectra in the UV region composed of the spectra of neutral F₄TCNQ and its anion as well as a vertical offset (red). The experimental spectra were fitted with a superposition of a horizontal baseline (grey) and the spectra of neutral F₄TCNQ and its anion (blue and yellow). The ratio of ionized and neutral dopant molecules *f* was calculated by comparing the contributions of their respective UV-vis spectra to the fit.

Calculation of number of charge carriers (polarons) per unit volume

The number of charge carriers (polarons) N_p^{UVvis} per unit volume was estimated according to:

$$N_{p}^{UVvis} = \eta_{ion} \cdot x_{d} \left(\frac{M_{g_{\chi^{2T}-T}}}{3 \cdot \rho_{p(g_{\chi^{2T}-T})}} (100 - x_{d}) + \frac{M_{F_{4}TCNQ}}{\rho_{F_{4}TCNQ}} x_{d} \right)^{-1}$$
(S1)

where x_d is the dopant molar concentration (i.e. 20 mol% F₄TCNQ), $\rho_{p(g_x 2T - T)} = 1$ g cm⁻³ and $\rho_{F_4TCNQ} = 1.6$ g cm⁻³ are the assumed density of p(g_x2T-T) and F₄TCNQ, and $M_{g_x 2T - T} =$ 570, 659 or 835 g mol⁻¹ and $M_{F_4TCNQ} = 276$ g mol⁻¹ are the molecular weight of the g_x2T-T repeat unit and F₄TCNQ.

Table S1. Electrical properties of thin films co-processed with 20 mol% F₄TCNQ per thiophene ring: polymer, number of polarons N_p^{FTIR} per unit volume (estimated error of 30% from the thickness measurement and the applied fitting procedure) and ionization efficiency η_{ion}^{FTIR} from analysis of FTIR spectra, electrical conductivity σ (error represents the standard deviation of five measurements on the same sample), charge mobility μ .

polymer	N_p^{FTIR}	η_{ion}^{FTIR}	σ	μ
	(10^{26} m^{-3})	(%)	(S cm ⁻¹)	$(cm^2 V^{-1} s^{-1})$
p(g ₃ 2T-T)	2.2 ± 0.7	31 ± 9	830 ± 15	23.9 ± 7.2
p(g ₄ 2T-T)	4.2 ± 1.3	60 ± 18	56 ± 3	0.8 ± 0.3
p(g ₆ 2T-T)	3.3 ± 1.0	47 ± 14	51 ± 4	1.0 ± 0.3

Figure S5. Electrical conductivity (a,d), Seebeck coefficient (b,e) and power factor (c,f) vs aging time of $p(g_42T-T)$ and $p(g_62T-T)$ co-processed with 20 mol% of F₄TCNQ as-cast and aged at ambient conditions.

Figure S6. GIWAXS patterns of $p(g_32T-T)$ (a,b), $p(g_42T-T)$ (c,d) and $p(g_62T-T)$ (e,f) neat and co-processed with 20 mol% F₄TCNQ.

Figure S7. Transmission WAXS diffractograms of (a) $p(g_32T-T)$, (b) $p(g_42T-T)$ and (c) $p(g_62T-T)$ (c) co-processed with 20 mol% F_4TCNQ . The additional peaks between 1.3 and 1.6 Å⁻¹ likely arise because of the presence of excess F_4TCNQ .

Figure S8. UV-vis and transmission FTIR absorbance spectra, with the absorbance *A* normalized by the film thickness *d*, of $p(g_32T-T)$ (a), $p(g_42T-T)$ (b) and $p(g_62T-T)$ (c) neat and doped with 20 mol% F₄TCNQ samples as-cast and aged at ambient conditions for 3 months.

Figure S9. Tensile storage (dark brown) and loss (light brown) modulus, *E*' and *E*'', and $tan\delta = E''/E'$ (green) of neat p(g₃2T-T) (a), p(g₄2T-T) (b) and p(g₆2T-T) (c) recorded as a function of temperature on samples supported by a glass fiber mesh.

Figure S10. GPC traces of $p(g_32T-T)$ (a) and $p(g_62T-T)$ (b) at 343 K in DMF with 0.1 wt% LiBr at a polymer concentration of 1 mg mL⁻¹. Detectors showcased in traces are refractive index (orange) and light scattering (green).