1	Supporting Information
2 3	Associations of Ambient Particulate Matter with Maternal Thyroid Autoimmunity and Thyroid Function in Early Pregnancy
4	
5 6	Enjie Zhang ^{1,†} , Zheng Zhang ^{1,†} , Gongbo Chen ^{2,†} , Yun-Ting Zhang ^{3,†} , Shaofei Su ¹ , Shen Gao ¹ , Shuanghua Xie ¹ , Jianhui Liu ¹ , Yue Zhang ⁴ , Wentao Yue ⁴ , Qingqing Wu ⁵ , Yi
7	Chen ⁶ , Bo-Yi Yang ³ , Yuming Guo ⁷ , Ruixia Liu ^{1,*} , Guang-Hui Dong ^{3,*} , Chenghong
8	Yin ^{1,*}
9	
10	¹ Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital,
11	Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing
12	100026, China.
13	² Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine,
14	Monash University. Melbourne, VIC 3004, Australia.
15	³ Guangdong Provincial Engineering Technology Research Center of Environmental
16	and Health risk Assessment, Department of Occupational and Environmental Health,
17	School of Public Health, Sun Yat-sen University. Guangzhou 510080, China.
18	⁴ Department of Research Management, Beijing Obstetrics and Gynecology Hospital,
19	Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing
20	100026, China.
21	⁵ Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital
22	Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026,
23	China.
24	^o Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital
25	Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026,
26	
27	⁷ Department of Epidemiology and Preventive Medicine, School of Public Health and
28	Preventive Medicine, Monash University. Melbourne, VIC 3004, Australia.
29	
30	[†] These systems contributed conclusion this work and shows first systemship
31 32	These authors contributed equally to this work and share first authorship.
33	This file includes:
34	Number of pages: 21
35	Number of Tables: 14 (Page S3-S18)
36	Number of Figures: 4 (Page S19-S20)

Contents of Tables and Figures 37 Table S1. Previous studies of associations of PM with thyroid autoimmunity or thyroid function 38 39 Table S2. Comparison of characteristics among pregnant women who included and excluded in 40 41 42 43 Table S4. Adjusted associations between PM₁, PM_{1-2.5}, PM_{2.5} and thyroid autoimmunity with 44 45 Table S5. Estimated changes and 95% CIs of thyroid function biomarkers at 50th, 75th, and 95th 46 47 Table S6. Association between PM₁ exposure and FT4, stratified by potential modifiers.....S10 48 Table S7. Association between PM_{1-2.5} exposure and FT4, stratified by potential modifiersS11 49 Table S8. Association between PM_{2.5} exposure and FT4, stratified by potential modifiers......S12 50 Table S9. Association between PM₁ exposure and TSH, stratified by potential modifiersS13 Table S10. Association between PM_{1-2.5} exposure and TSH, stratified by potential modifiers 51 52 S14 53 Table S11. Association between PM_{2.5} and TSH, stratified by potential modifiersS15 54 Table S12. The interaction between PM₁ and PM_{1-2.5} in TPOAb positiveS16 55 Table S13. The interaction between PM1 and PM1-2.5 in maternal FT4......S17 56 Table S14. The interaction between PM1 and PM1-2.5 in maternal TSH......S18 Figure S1. Location of study populations and PM₁ concentrations, 2018-2020......S19 57 58 Figure S2. Location of study populations and PM_{2.5} concentrations, 2018-2020......S19 59 Figure S3. Directed acyclic graph (DAG) for the association between PM exposure and thyroid 60 autoimmunity during pregnancy using DAGitty (http://dagitty.net/)......S20 61 Figure S4. Flowchart of study enrolment, with the participants selected from Beijing Obstetrics 62 63

64

author, year	study design	study population	sample size	ambient particulate matters	thyroid hormones	main findings
Janssen et al., 2017 ¹	Cohort	Belgium	431	PM _{2.5}	FT3; FT4; TSH; FT4/FT3	Third-trimester PM _{2.5} exposure was inversely but not significantly associated with maternal blood FT4 levels collected 1 day after delivery.
Zhao et al., 2019 ²	Cohort	China	8077	PM _{2.5}	FT4; TSH; TPOAb; hypothyroxinemia	FT4 levels were significantly inversely associated with $PM_{2.5}$ exposure; $PM_{2.5}$ associated with elevated odds of hypothyroxinemia. The associations of air pollution exposure with FT4 levels were stronger in TPOAb positive women.
Ghassabian et al., 2019 ³	Cohort	Netherlands Spain Greece America	9931	PM _{2.5} , PM _{2.5-10} , PM ₁₀	Hypothyroxinemia; high TSH; TPOAb	Higher exposure to $PM_{2.5}$ was associated with higher odds of hypothyroxinemia; $PM_{2.5}$ was significantly associated with thyroid autoimmunity only in one of the four cohorts
Wang et al., 2019 ⁴	Cohort	China	433	$PM_{2.5}$, OM, BC, SO_4^{2-} , NO_3^{-} , and NH_4^+ and soil dust	FT4; TSH; TPOAb	Maternal exposure to $PM_{2.5}$ in the first trimester inversely associated with FT4 but positively associated with TPOAb levels in the second trimester.
Ilias et al., 2020 ⁵	Case only study	Greece	293	PM _{2.5} , PM ₁₀	TSH	A dose-response relationship between PM _{2.5} and TSH was shown.

65 Table S1. Previous studies of associations of PM with thyroid autoimmunity or thyroid function biomarkers during pregnancy.

Li et al., 2021 ⁶	Cohort	China	551	PM _{2.5}	FT3; FT4; TSH; FT4/FT3	PM _{2.5} exposure during preconception and the first trimester was significantly associated with decreased maternal FT4 level.
Zhang et al., 2022 ⁷	Cohort	China	921	PM _{2.5} ; PM ₁₀	FT3; FT4; TSH; FT4/FT3	Higher ambient PM _{2.5} , not PM ₁₀ , exposed during the first trimester of pregnancy were associated with a significant decrease in maternal serum FT4 concentrations and FT4/FT3 ratio.
Qiu et al., 2022 ⁸	Cohort	China	2528	$PM_{2.5}$ and its bound metals, PM_{10}	FT3; FT4; TSH; TPOAb; TgAb	$PM_{2.5}$ and PM_{10} were associated with decreased FT3 and FT4 concentrations, and TPOAb or TgAb status had no effect modification on the observed associations.
Zhou et al., 2022 ⁹	Cohort	China	1060	PM _{2.5} and its constituents	FT3; FT4; TSH; FT4/FT3	Early pregnancy $PM_{2.5}$ exposure was positively associated with maternal TSH but negatively associated with FT4 and the FT4/FT3 ratio.

66 PM: particulate matter; FT4, free thyroxine; FT3, free triiodothyronine; TSH, thyroid-stimulating hormone; OM, organic matter; BC, organic matter; SO₄²⁻, sulfate; NO₃⁻,

67 nitrate; NH₄⁺, ammonium; TPOAb, thyroid peroxidase antibodies; and TgAb, thyroglobulin antibody.

variables	all participants	participants included	participants excluded	P value
	(n = 20,008)	(n = 15,664)	(n = 4344)	
age, mean (SD), years	31.81 (3.85)	31.78 (3.82)	31.93 (4.05)	0.315
prepregnancy BMI, mean (SD), kg/m ²	21.83 (3.27)	21.72 (3.17)	22.01 (3.57)	0.061
annual household income, n (%)				0.439
< 200,000 CNY	7334 (36.7)	5683 (36.3)	1651 (38.0)	
≥ 200,000 CNY	12,674 (63.3)	9981 (63.7)	2693 (62.0)	
ethnicity, n (%)				0.762
Han	18,411 (92.0)	14,449 (92.2)	3962 (91.2)	
Minority	1597 (8.0)	1215 (7.8)	382 (8.8)	
educational levels, n (%)				0.884
< 16 years	4408 (22.0)	3448 (22.0)	960 (22.1)	
\geq 16 years	15,600 (78.0)	12,216 (78.0)	3384 (77.9)	
smoking status, n (%)				0.635
Yes	661 (3.3)	492 (3.1)	169 (3.9)	
No	19,347 (96.7)	15,172 (96.9)	4175 (96.1)	
alcohol consumption, n (%)				0.578
Yes	898 (4.5)	720 (4.6)	178 (4.1)	
No	19,110 (95.5)	14,944 (95.4)	4166 (95.9)	
gravidity, n (%)				0.627
1	10,673 (53.3)	8375 (53.5)	2298 (52.9)	
≥2	9335 (46.7)	7289 (46.5)	2046 (47.1)	
season of enrollment, n (%)				< 0.001
spring	5084 (25.4)	4024 (25.7)	1060 (24.4)	

68 Table S2. Comparison of characteristics among pregnant women who included and excluded in this study.

summer	4551 (22.7)	3582 (22.8)	969 (22.3)	
autumn	5017 (25.1)	3883 (24.8)	1134 (26.1)	
winter	5356 (26.8)	4175 (26.7)	1181 (27.2)	
PM_1 , median (Quartile), $\mu g/m^3$	33.90 (27.28, 38.84)	33.83 (27.14, 38.55)	33.99 (26.64, 39.30) ¹	0.514
PM _{2.5} , median (Quartile), $\mu g/m^3$	45.07 (36.23, 53.17)	45.04 (36.12, 52.75)	45.21 (35.86, 53.41) ¹	0.857

¹Due to 772 participants missing residential address, only 3572 participants included in the analyses. SD, standard difference; BMI, body mass index; CNY, Chinese

yuan. PM1, particulate matter with an aerodynamic diameter less than or equal to 1 µm; and PM2.5, particulate matter with an aerodynamic diameter less than or

71 equal to 2.5 μm.

outcome verichles	oin pollutonto	AIC of	AIC of	
	air ponutants	nonlinear model	linear model	P value
TPOAb positive	PM_1	11008.80	11005.60	0.461
TPOAb positive	PM _{1-2.5}	11008.56	11005.13	0.335
TPOAb positive	PM _{2.5}	11009.77	11005.37	0.206
FT4	PM_1	64059.25	64081.71	0.000
FT4	PM _{1-2.5}	64061.27	64112.96	0.000
FT4	PM _{2.5}	64062.91	64137.37	0.000
TSH	PM_1	48821.32	48825.09	0.022
TSH	PM _{1-2.5}	48822.54	48825.35	0.028
TSH	PM _{2.5}	48822.77	48825.87	0.029

72 Table S3. Likelihood ratio test between nonlinear model and linear model.

73 Both nonlinear model and linear model were adjusted for maternal age, prepregnancy BMI, annual

household income, ethnicity, educational levels, smoking status, alcohol consumption, gravidity,

r5 seasons of enrollment, and gestational week. AIC, Akaike information criterion; TPOAb, thyroid

76 peroxidase antibodies; FT4, free thyroxine; TSH, thyroid-stimulating hormone; PM₁, particulate

matter with an aerodynamic diameter less than or equal to 1 μ m; PM_{1-2.5}, particulate matter with

an aerodynamic diameter between 1 and 2.5 μ m; and PM_{2.5}, particulate matter with an aerodynamic diameter less than or equal to 2.5 μ m.

	PM_1		PM _{1-2.5}		PM _{2.5}	
variables	OR (95% CI)	Pinteraction	OR (95% CI)	Pinteraction	OR (95% CI)	$P_{\text{interaction}}$
maternal age		0.874		0.781		0.575
\geq 35 years	1.06 (0.82, 1.29)		1.15 (1.05, 1.25)		1.07 (0.90, 1.24)	
< 35 years	1.05 (0.98, 1.13)		1.15 (1.09, 1.21)		1.06 (1.01, 1.12)	
prepregnancy BMI		0.744		0.581		0.639
\geq 25 kg/m ²	1.07 (0.86, 1.24)		1.17 (0.94, 1.38)		1.10 (0.87, 1.33)	
$< 25 \text{ kg/m}^2$	1.04 (0.96, 1.12)		1.13 (1.07, 1.19)		1.05 (1.00, 1.10)	
education level, years		0.549		0.668		0.894
< 16 years	1.06 (0.85, 1.27)		1.16 (1.01, 1.31)		1.07 (0.88, 1.26)	
\geq 16 years	1.02 (0.92, 1.13)		1.13 (0.99, 1.27)		1.05 (0.97, 1.13)	
annual household income		0.087		< 0.001		0.008
< 200,000 CNY	1.07 (0.90, 1.24)		1.21 (1.09, 1.33)		1.09 (1.03, 1.17)	
≥200,000 CNY	1.01 (0.92, 1.11)		1.12 (1.01, 1.23)		1.00 (0.91, 1.09)	
gravidity		0.119		0.768		0.855
1	1.07 (0.95, 1.18)		1.18 (1.05, 1.31)		1.06 (0.99, 1.12)	
≥2	0.99 (0.87, 1.09)		1.14 (1.01, 1.27)		1.05 (0.98, 1.12)	

80 Table S4. Adjusted associations between PM₁, PM_{1-2.5}, PM_{2.5} and thyroid autoimmunity with TPOAb positive, stratified by potential modifiers.

81 All models were adjusted for the maternal age, prepregnancy BMI, annual household income, ethnicity, educational levels, smoking status, alcohol consumption, 82 gravidity, seasons of enrollment, and gestational week, unless the one used as a modifier. PM_1 , particulate matter with an aerodynamic diameter less than or equal

to 1 μ m; PM_{1-2.5}, particulate matter with an aerodynamic diameter between 1 and 2.5 μ m; PM_{2.5}, particulate matter with an aerodynamic diameter less than or

equal to 2.5 μm; BMI, body mass index; and CNY, Chinese Yuan.

	Min ¹	50 ^{th, 2}	75 ^{th, 3}	95 ^{th, 4}
FT4 (pmol/L)				
\mathbf{PM}_1	Ref	-0.42 (-0.79, 0.04)	-0.57 (-0.97, -0.18)	-0.90 (-1.29, -0.51)
PM _{1-2.5}	Ref	-1.31 (-1.69, -0.98)	-0.95 (-1.29, -0.61)	-0.73 (-1.09, -0.37)
PM _{2.5}	Ref	-0.77 (-1.05, -0.49)	-0.76 (-1.05, -0.48)	-0.86 (-1.15, -0.57)
TSH (mIU/L)				
\mathbf{PM}_1	Ref	0.22 (-0.01, 0.45)	0.17 (-0.07, 0.41)	0.20 (-0.04, 0.44)
PM _{1-2.5}	Ref	0.13 (-0.06, 0.32)	0.16 (-0.04, 0.36)	0.15 (-0.02, 0.32)
PM _{2.5}	Ref	0.26 (0.09, 0.43)	0.30 (0.13, 0.48)	0.30 (0.12, 0.48)

Table S5. Estimated changes and 95% CIs of thyroid function biomarkers at 50th, 75th, and 95th percentiles of PM exposure against the minimal percentile of PM in natural cubic splines.

87 All models were adjusted for the maternal age, prepregnancy BMI, annual household income,

88 ethnicity, educational levels, smoking status, alcohol consumption, gravidity, seasons of enrollment,

and weeks of gestation. PM₁, particulate matter with an aerodynamic diameter less than or equal

90 to 1 μ m; PM_{1-2.5}, particulate matter with an aerodynamic diameter between 1 and 2.5 μ m; PM_{2.5},

91 particulate matter with an aerodynamic diameter less than or equal to $2.5 \mu m$; Min, minimum;

92 Ref, reference; FT4, free thyroxine; and TSH, thyroid-stimulating hormone.

93 ¹ The minimum of PM₁, PM_{1-2.5} and PM_{2.5} are 6.92 μ g/m³, 0.02 μ g/m³ and 9.64 μ g/m³ respectively.

² The 50th percentile of PM₁, PM_{1-2.5} and PM_{2.5} are 33.83 μ g/m³, 13.26 μ g/m³ and 45.04 μ g/m³ respectively.

96 ³ The 75th percentile of PM₁, PM_{1-2.5} and PM_{2.5} are 38.55 μ g/m³, 19.23 μ g/m³ and 52.75 μ g/m³ 97 respectively.

98 ⁴ The 95th percentile of PM₁, PM_{1-2.5} and PM_{2.5} are 42.53 μ g/m³, 23.46 μ g/m³ and 58.31 μ g/m³

99 respectively.

	50 th		75 th		95 th	
air pollution	β (95% CI)	Pinteraction	β (95% CI)	Pinteraction	β (95% CI)	Pinteraction
age		0.405		0.453		0.510
\geq 35 years	-0.09 (-0.96, 0.78)		-0.26 (-1.18, 0.66)		-0.63 (-1.53, 0.28)	
< 35 years	-0.50 (-0.91, -0.08)		-0.65 (-1.08, -0.22)		-0.96 (-1.39, -0.54)	
prepregnancy BMI		0.453		0.467		0.365
\geq 25 kg/m ²	-0.77 (-1.74, 0.19)		-0.93 (-1.94, 0.07)		-1.35 (-2.35, -0.35)	
$< 25 \text{ kg/m}^2$	-0.37 (-0.78, 0.03)		-0.53 (-0.95, -0.10)		-0.85 (-1.27, -0.43)	
education level		0.950		0.897		0.715
< 16 years	-0.42 (-0.83, 0.00)		-0.58 (-1.02, -0.14)		-0.94 (-1.37, -0.50)	
\geq 16 years	-0.39 (-1.22, 0.45)		-0.51 (-1.38, 0.35)		-0.76 (-1.62, 0.11)	
annual household income		0.022		0.011		0.029
< 200,000 CNY	-1.05 (-1.71, -0.39)		-1.29 (-1.98, -0.61)		-1.53 (-2.22, -0.85)	
≥ 200,000 CNY	-0.11 (-0.56, 0.33)		-0.22 (-0.69, 0.25)		-0.61 (-1.08, -0.14)	
gravidity		0.722		0.838		0.995
1	-0.35 (-0.88, 0.19)		-0.52 (-1.09, 0.04)		-0.90 (-1.45, -0.34)	
≥2	-0.48 (-1.00, 0.03)		-0.60 (-1.14, -0.07)		-0.90 (-1.44, -0.36)	
TPOAb status		0.699		0.763		0.775
negative	-0.56 (-0.98, -0.13)		-0.88 (-1.30, -0.47)		-0.87 (-1.38, -0.36)	
positive	-0.73 (-1.76, 0.31)		-1.05 (-2.07, -0.02)		-1.16 (-1.89, -0.43)	

100 Table S6. Association between PM₁ exposure and FT4, stratified by potential modifiers.

101 The model was adjusted for the maternal age, prepregnancy BMI, annual household income, ethnicity, educational levels, smoking status, alcohol consumption, 102 gravidity, seasons of enrollment, and weeks of gestation, unless the one used as a modifier. PM_1 , particulate matter with an aerodynamic diameter less than or equal 103 to 1 µm; BMI, body mass index; CNY, Chinese Yuan; and TPOAb, thyroid peroxidase antibodies. The reference of PM_1 exposure is 6.92 µg/m³. The 50th, 75th and 95th

104 percentile of PM₁ exposure is 33.83 μ g/m³, 38.55 μ g/m³ and 42.53 μ g/m³.

	50 th		75 th		95 th	
air pollution	β(95% CI)	Pinteraction	β(95% CI)	Pinteraction	β(95% CI)	Pinteraction
age		0.897		0.472		0.309
\geq 35 years	-1.30 (-1.93, -0.67)		-0.98 (-1.68, -0.28)		-0.65 (-1.37, 0.07)	
< 35 years	-1.32 (-2.01, -0.63)		-0.90 (-1.60, -0.21)		-0.79 (-1.51, -0.06)	
prepregnancy BMI		0.573		0.359		0.792
\geq 25 kg/m ²	-1.33 (-2.05, -0.61)		-0.61 (-1.41, 0.19)		-0.71 (-1.42, 0.01)	
< 25 kg/m ²	-1.28 (-2.03, -0.53)		-0.79 (-1.10, -0.49)		-0.76 (-1.47, -0.05)	
education level		0.398		0.426		0.501
< 16 years	-1.32 (-1.91, -0.73)		-1.03 (-1.72, -0.34)		-0.77 (-1.47, -0.07)	
\geq 16 years	-0.99 (-1.85, -0.13)		-0.92 (-1.60, -0.24)		-0.63 (-1.33, 0.07)	
annual household income		< 0.001		< 0.001		< 0.001
< 200,000 CNY	-1.46 (-2.18, -0.74)		-1.11 (-1.76, -0.46)		-1.04 (-1.74, -0.37)	
≥200,000 CNY	-0.95 (-1.69, -0.21)		-0.77 (-1.47, -0.07)		-0.55 (-1.26, -0.16)	
gravidity		0.591		0.678		0.826
1	-1.37 (-2.07, -0.67)		-0.96 (-1.65, -0.27)		-0.73 (-1.45, -0.01)	
≥2	-1.25 (-1.95, -0.55)		-0.92 (-1.61, -0.23)		-0.75 (-1.56, 0.06)	
TPOAb status		0.322		0.514		0.317
negative	-1.24 (-1.96, -0.52)		-0.86 (-1.56, -0.16)		-0.69 (-1.39, 0.01)	
positive	-1.41 (-2.13, -0.69)		-1.03 (-1.73, -0.33)		-0.81 (-1.51, -0.11)	

105 Table S7. Association between PM_{1-2.5} exposure and FT4, stratified by potential modifiers.

106 The model was adjusted for the maternal age, prepregnancy BMI, annual household income, ethnicity, educational levels, smoking status, alcohol consumption, 107 gravidity, seasons of enrollment, and weeks of gestation, unless the one used as a modifier. $PM_{1-2.5}$, particulate matter with an aerodynamic diameter between 1 and 108 2.5 µm; BMI, body mass index; CNY, Chinese Yuan; and TPOAb, thyroid peroxidase antibodies. The reference of $PM_{1-2.5}$ exposure is 0.02 µg/m³. The 50th, 75th and

109 95th percentile of $PM_{1-2.5}$ exposure is 13.26 µg/m³, 19.23 µg/m³ and 23.46 µg/m³.

	50 th		75 th		95 th	
air pollution	β (95% CI)	Pinteraction	β (95% CI)	Pinteraction	β (95% CI)	$P_{\text{interaction}}$
age		0.979		0.841		0.974
\geq 35 years	-0.76 (-1.41, -0.11)		-0.70 (-1.38, -0.03)		-0.86 (-1.54, -0.17)	
< 35 years	-0.77 (-1.08, -0.46)		-0.78 (-1.10, -0.46)		-0.87 (-1.19, -0.55)	
prepregnancy BMI		0.952		0.672		0.862
\geq 25 kg/m ²	-0.80 (-1.57, -0.03)		-0.61 (-1.41, 0.19)		-0.81 (-1.61, -0.01)	
$< 25 \text{ kg/m}^2$	-0.78 (-1.07, -0.48)		-0.79 (-1.10, -0.49)		-0.89 (-1.20, -0.57)	
education level		0.786		0.796		0.449
< 16 years	-0.78 (-1.10, -0.46)		-0.75 (-1.09, -0.42)		-0.92 (-1.26, -0.59)	
\geq 16 years	-0.69 (-1.25, -0.14)		-0.67 (-1.23, -0.10)		-0.67 (-1.24, -0.09)	
annual household income		0.037		0.023		0.052
< 200,000 CNY	-1.18 (-1.66, -0.69)		-1.19 (-1.68, -0.70)		-1.27 (-1.78, -0.77)	
≥200,000 CNY	-0.55 (-0.89, -0.21)		-0.49 (-0.85, -0.14)		-0.66 (-1.02, -0.31)	
gravidity		0.844		0.574		0.905
1	-0.74 (-1.13, -0.34)		-0.65 (-1.06, -0.24)		-0.89 (-1.30, -0.47)	
≥2	-0.79 (-1.19, -0.40)		-0.82 (-1.22, -0.41)		-0.85 (-1.26, -0.44)	
TPOAb status		0.552		0.634		0.424
negative	-0.74 (-1.04, -0.43)		-0.82 (-1.14, -0.51)		-0.74 (-1.04, -0.44)	
positive	-0.94 (-1.73, -0.16)		-1.17 (-1.96, -0.38)		-0.98 (-1.73, -0.23)	

110 Table S8. Association between PM_{2.5} exposure and FT4, stratified by potential modifiers.

111 The model was adjusted for the maternal age, prepregnancy BMI, annual household income, ethnicity, educational levels, smoking status, alcohol consumption, 112 gravidity, seasons of enrollment, and weeks of gestation, unless the one used as a modifier. $PM_{2.5}$, particulate matter with an aerodynamic diameter less than or equal 113 to 2.5 µm; BMI, body mass index; CNY, Chinese Yuan; and TPOAb, thyroid peroxidase antibodies. The reference of $PM_{2.5}$ exposure is 9.64 µg/m³. The 50th, 75th and

114 95th percentile of PM_{2.5} exposure is 45.04 μ g/m³, 52.75 μ g/m³ and 58.31 μ g/m³.

	50 th		75 th		95 th	
air pollution	β (95% CI)	Pinteraction	β (95% CI)	Pinteraction	β (95% CI)	$P_{\text{interaction}}$
age		0.815		0.939		0.878
\geq 35 years	0.15 (-0.41, 0.70)		0.15 (-0.39, 0.70)		0.16 (-0.37, 0.68)	
< 35 years	0.17 (-0.10, 0.44)		0.20 (-0.07, 0.46)		0.23 (-0.03, 0.48)	
prepregnancy BMI		0.347		0.386		0.393
\geq 25 kg/m ²	0.44 (-0.21, 1.10)		0.46 (-0.19, 1.12)		0.50 (-0.13, 1.13)	
< 25 kg/m ²	0.13 (-0.13, 0.39)		0.16 (-0.10, 0.41)		0.18 (-0.07, 0.43)	
education level		0.972		0.991		0.845
< 16 years	0.17 (-0.10, 0.43)		0.21 (-0.05, 0.47)		0.22 (-0.04, 0.47)	
\geq 16 years	0.16 (-0.41, 0.73)		0.15 (-0.42, 0.72)		0.23 (-0.32, 0.78)	
annual household income		0.190		0.146		0.152
< 200,000 CNY	-0.09 (-0.51, 0.34)		-0.06 (-0.48, 0.37)		-0.00 (-0.42, 0.41)	
≥ 200,000 CNY	0.29 (0.01, 0.58)		0.32 (0.03, 0.60)		0.33 (0.05, 0.60)	
gravidity		0.678		0.471		0.531
1	0.26 (-0.09, 0.62)		0.28 (-0.07, 0.62)		0.27 (-0.06, 0.61)	
≥2	0.09 (-0.24, 0.41)		0.12 (-0.20, 0.45)		0.18 (-0.13, 0.49)	
TPOAb status		0.283		0.077		0.116
negative	0.12 (-0.12, 0.36)		0.13 (-0.11, 0.36)		0.08 (-0.16, 0.32)	
positive	0.59 (-0.23, 1.41)		0.87 (0.08, 1.65)		0.77 (-0.06, 1.60)	

115 Table S9. Association between PM₁ exposure and TSH, stratified by potential modifiers.

116 The model was adjusted for the maternal age, prepregnancy BMI, annual household income, ethnicity, educational levels, smoking status, alcohol consumption, 117 gravidity, seasons of enrollment, and weeks of gestation, unless the one used as a modifier. PM_1 , particulate matter with an aerodynamic diameter less than or equal 118 to 1 µm; BMI, body mass index; CNY, Chinese Yuan; and TPOAb, thyroid peroxidase antibodies. The reference of PM_1 exposure is 6.92 µg/m³. The 50th, 75th and 95th

119 percentile of PM₁ exposure is $33.83 \ \mu g/m^3$, $38.55 \ \mu g/m^3$ and $42.53 \ \mu g/m^3$.

11 .1	50 th		75 th		95 th	
air pollution	β(95% CI)	Pinteraction	β(95% CI)	Pinteraction	β(95% CI)	Pinteraction
age		0.752		0.118		0.418
\geq 35 years	0.11 (-0.19, 0.41)		0.22 (-0.11, 0.55)		0.21 (-0.09, 0.54)	
< 35 years	0.16 (-0.15, 0.47)		0.13 (-0.18, 0.44)		0.12 (-0.21, 0.45)	
prepregnancy BMI		0.230		0.185		0.836
\geq 25 kg/m ²	0.18 (-0.36, 0.72)		0.14 (-0.38, 0.66)		0.15 (-0.43, 0.73)	
$< 25 \text{ kg/m}^2$	0.13 (-0.23, 0.49)		0.21 (-0.16, 0.58)		0.19 (-0.20, 0.58)	
education level		0.246		0.665		0.134
< 16 years	0.17 (-0.27, 0.61)		0.18 (-0.26, 0.62)		0.23 (-0.22, 0.68)	
\geq 16 years	0.14 (-0.19, 0.47)		0.15 (-0.19, 0.49)		0.08 (-0.24, 0.40)	
annual household income		0.879		0.893		0.541
< 200,000 CNY	0.15 (-0.19, 0.49)		0.16 (-0.18, 0.51)		0.18 (-0.16, 0.52)	
≥ 200,000 CNY	0.16 (-0.12, 0.44)		0.17 (-0.11, 0.45)		0.14 (-0.18, 0.46)	
gravidity		0.218		0.267		0.166
1	0.21 (-0.16, 0.58)		0.21 (-0.17, 0.59)		0.26 (0.11, 0.60)	
≥2	0.13 (-0.24, 0.49)		0.11(-0.25, 0.47)		0.14 (-0.22, 0.51)	
TPOAb status		0.173		0.121		0.104
negative	0.03 (-0.49, 0.55)		0.09 (-0.45, 0.63)		0.08 (-0.47, 0.62)	
positive	0.27 (-0.71, 1.25)		0.38 (-0.59, 1.35)		0.63 (-0.34, 1.60)	

120 Table S10. Association between PM_{1-2.5} and TSH, stratified by potential modifiers.

121 The model was adjusted for the maternal age, prepregnancy BMI, annual household income, ethnicity, educational levels, smoking status, alcohol consumption, 122 gravidity, seasons of enrollment, and weeks of gestation, unless the one used as a modifier. $PM_{1-2.5}$, particulate matter with an aerodynamic diameter between 1 and 2.5

123 µm; BMI, body mass index; CNY, Chinese Yuan; and TPOAb, thyroid peroxidase antibodies. The reference of PM_{1-2.5} exposure is 0.02 µg/m³. The 50th, 75th and 95th

124 percentile of $PM_{1-2.5}$ exposure is 13.26 µg/m³, 19.23 µg/m³ and 23.46 µg/m³.

air pollution	50 th		75 th		95 th	
	β (95% CI)	Pinteraction	β (95% CI)	Pinteraction	β (95% CI)	Pinteraction
age		0.476		0.562		0.545
\geq 35 years	0.27 (0.01, 0.60)		0.35 (0.08, 0.72)		0.35 (0.08, 0.73)	
< 35 years	0.19 (-0.13, 0.52)		0.25 (-0.03, 0.59)		0.26 (-0.06, 0.62)	
prepregnancy BMI		0.649		0.805		0.493
\geq 25 kg/m ²	0.24 (-0.33, 0.71)		0.24 (-0.28, 0.77)		0.10 (-0.40, 0.60)	
$< 25 \text{ kg/m}^2$	0.19 (0.14, 0.51)		0.31 (0.13, 0.50)		0.29 (0.11, 0.47)	
education level		0.604		0.609		0.692
< 16 years	0.28 (0.07, 0.75)		0.37 (0.11, 0.75)		0.34 (0.09, 0.71)	
\geq 16 years	0.17 (0.01, 0.47)		0.28 (0.08, 0.48)		0.23 (0.04, 0.43)	
annual household income		0.934		0.955		0.960
< 200,000 CNY	0.27 (-0.00, 0.60)		0.31 (-0.00, 0.62)		0.25 (-0.05, 0.55)	
≥200,000 CNY	0.26 (0.08, 0.51)		0.30 (0.08, 0.51)		0.26 (0.06, 0.47)	
gravidity		0.908		0.961		0.289
1	0.28 (0.06, 0.57)		0.31 (0.06, 0.58)		0.36 (0.11, 0.60)	
≥2	0.24 (0.01, 0.53)		0.30 (0.06, 0.56)		0.17 (-0.06, 0.41)	
TPOAb status		0.252		0.284		0.335
negative	0.25 (0.10, 0.41)		0.23 (0.05, 0.40)		0.28 (0.10, 0.45)	
positive	0.60 (0.13, 1.11)		0.59 (0.01, 1.19)		0.63 (0.01, 1.26)	

125 Table S11. Association between PM_{2.5} and TSH, stratified by potential modifiers.

The model was adjusted for the maternal age, prepregnancy BMI, annual household income, ethnicity, educational levels, smoking status, alcohol consumption, gravidity, seasons of enrollment, and weeks of gestation, unless the one used as a modifier. $PM_{2.5}$, particulate matter with an aerodynamic diameter less than or equal to 2.5 µm; BMI, body mass index; CNY, Chinese Yuan; and TPOAb, thyroid peroxidase antibodies. The reference of $PM_{2.5}$ exposure is 9.64 µg/m³. The 50th, 75th and

to 2.5 μ m; BMI, body mass index; CNY, Chinese Yuan; and TPOAb, thyroid peroxidase antibodies. The reference of PM_{2.5} exposure is 9.64 μ g/m³. The 50th, 75th and 95th percentile of PM_{2.5} exposure is 45.04 μ g/m³, 52.75 μ g/m³ and 58.31 μ g/m³.

130 Table S12. The interaction between PM_1 and $PM_{1-2.5}$ in TPOAb positive.

	$PM_{1-2.5} < 50^{th} (n = 7832)$	$PM_{1\text{-}2.5} \ge 50^{th} \ (n=7832)$	Pinteraction	
	OR (95%CI)	OR (95%CI)		
PM_1	1.05 (0.94, 1.16)	1.06 (0.94, 1.17)	0.969	

131 The model was adjusted for the maternal age, prepregnancy BMI, annual household income, 132 ethnicity, educational levels, smoking status, alcohol consumption, gravidity, seasons of enrollment,

and weeks of gestation. PM_1 , particulate matter with an aerodynamic diameter less than or equal

134 to 1 μm; PM_{1-2.5}, particulate matter with an aerodynamic diameter between 1 and 2.5 μm; and

135 BMI, body mass index. The 50^{th} of PM_{1-2.5} exposure is 13.26 µg/m³.

136 Table S13. The interaction between PM_1 and $PM_{1-2.5}$ in maternal FT4.

PM_1	$PM_{1-2.5} < 50^{th} (n = 7832)$	$PM_{1-2.5} \ge 50^{th} (n = 7832)$	Pinteraction
	β (95%CI)	β (95%CI)	
50 th	-0.36 (-0.92, 0.20)	-0.37 (-0.93, 0.19)	0.891
75^{th}	-0.76 (-1.98, 0.46)	-0.79 (-1.35, -0.23)	0.773
95^{th}	-	-0.81 (-1.36, -0.26)	-

137 The model was adjusted for the maternal age, prepregnancy BMI, annual household income, 138 ethnicity, educational levels, smoking status, alcohol consumption, gravidity, seasons of enrollment, 139 and weeks of gestation. PM₁, particulate matter with an aerodynamic diameter less than or equal to 140 1 μ m; PM_{1-2.5}, particulate matter with an aerodynamic diameter between 1 and 2.5 μ m; and BMI, 141 body mass index. The 50th of PM_{1-2.5} exposure is 13.26 μ g/m³. The 50th, 75th and 95th percentile of 142 PM₁ exposure is 33.83 μ g/m³, 38.55 μ g/m³ and 42.53 μ g/m³.

143 Table S14. The interaction between PM_1 and $PM_{1-2.5}$ in maternal TSH.

PM_1	$PM_{1-2.5} < 50^{th} (n = 7832)$	$PM_{1\text{-}2.5} \ge 50^{th} \ (n=7832)$	Pinteraction
	β (95%CI)	β (95%CI)	
50 th	0.13 (-0.11, 0.37)	0.13 (-0.13, 0.39)	0.912
75^{th}	0.33 (-1.25, 1.91)	0.35(-0.06, 0.76)	0.852
95 th	-	0.32 (-0.06, 0.81)	-

144 The model was adjusted for the maternal age, prepregnancy BMI, annual household income, 145 ethnicity, educational levels, smoking status, alcohol consumption, gravidity, seasons of enrollment, 146 and weeks of gestation. PM₁, particulate matter with an aerodynamic diameter less than or equal to 147 1 μ m; PM_{1-2.5}, particulate matter with an aerodynamic diameter between 1 and 2.5 μ m; and BMI, 148 body mass index. The 50th of PM_{1-2.5} exposure is 13.26 μ g/m³. The 50th, 75th and 95th percentile of 149 PM₁ exposure is 33.83 μ g/m³, 38.55 μ g/m³ and 42.53 μ g/m³.

151 Figure S1. Location of study populations and PM₁ concentrations, 2018-2020.

152

153 Figure S2. Location of study populations and PM_{2.5} concentrations, 2018-2020.

154

155

156 Figure S3. Directed acyclic graph (DAG) for the association between PM exposure and thyroid

157 autoimmunity during pregnancy using DAGitty (http://dagitty.net/).

20,008 pregnant women enrolled from Beijing, China between February 2018 and February 2020

158

15,664 pregnant women were included in our study

- 159 Figure S4. Flowchart of study enrolment, with the participants selected from Beijing Obstetrics and
- 160 Gynecology Hospital during February 2018 and February 2020 (n = 15,664).

161 **References**

- (1) Janssen, B. G.; Saenen, N. D.; Roels, H. A.; Madhloum, N.; Gyselaers, W.; Lefebvre, W.; Penders,
 J.; Vanpoucke, C.; Vrijens, K.; Nawrot, T. S. Fetal Thyroid Function, Birth Weight, and in Utero Exposure
 to Fine Particle Air Pollution: A Birth Cohort Study. *Environ Health Perspect.* 2017, *125* (4), 699-705;
 DOI: 10.1289/EHP508.
- (2) Zhao, Y.; Cao, Z.; Li, H.; Su, X.; Yang, Y.; Liu, C.; Hua, J. Air pollution exposure in association
 with maternal thyroid function during early pregnancy. *J Hazard Mater.* 2019, *367*, 188-193; DOI:
 10.1016/j.jhazmat.2018.12.078.
- 169 (3) Ghassabian, A.; Pierotti, L.; Basterrechea, M.; Chatzi, L.; Estarlich, M.; Fernandez-Somoano, A.;
- 170 Fleisch, A. F.; Gold, D. R.; Julvez, J.; Karakosta, P.; Lertxundi, A.; Lopez-Espinosa, M. J.; Mulder, T. A.;
- 171 Korevaar, T. I. M.; Oken, E.; Peeters, R. P.; Rifas-Shiman, S.; Stephanou, E.; Tardon, A.; Tiemeier, H.;
- Vrijheid, M.; Vrijkotte, T. G. M.; Sunyer, J.; Guxens, M. Association of Exposure to Ambient Air
 Pollution With Thyroid Function During Pregnancy. *JAMA Netw Open.* 2019, *2* (10), e1912902; DOI:
 10.1001/jamanetworkopen.2019.12902.
- (4) Wang, X.; Liu, C.; Zhang, M.; Han, Y.; Aase, H.; Villanger, G. D.; Myhre, O.; Donkelaar, A. V.;
 Martin, R. V.; Baines, E. A.; Chen, R.; Kan, H.; Xia, Y. Evaluation of Maternal Exposure to PM(2.5) and
 Its Components on Maternal and Neonatal Thyroid Function and Birth Weight: A Cohort Study. *Thyroid*.
 2019, *29* (8), 1147-1157; DOI: 10.1089/thy.2018.0780.
- (5) Ilias, I.; Kakoulidis, I.; Togias, S.; Stergiotis, S.; Michou, A.; Lekkou, A.; Mastrodimou, V.; Pappa,
- A.; Venaki, E.; Koukkou, E. Atmospheric Pollution and Thyroid Function of Pregnant Women in Athens,
 Greece: A Pilot Study. *Med Sci (Basel)*. 2020, 8 (2); DOI: 10.3390/medsci8020019.
- (6) Li, J.; Liao, J.; Hu, C.; Bao, S.; Mahai, G.; Cao, Z.; Lin, C.; Xia, W.; Xu, S.; Li, Y. Preconceptional
 and the first trimester exposure to PM(2.5) and offspring neurodevelopment at 24 months of age:
 Examining mediation by maternal thyroid hormones in a birth cohort study. *Environ Pollut.* 2021, 284,
 117133; DOI: 10.1016/j.envpol.2021.117133.
- (7) Zhang, X.; Huels, A.; Makuch, R.; Zhou, A.; Zheng, T.; Xia, W.; Gaskins, A.; Makuch, J.; Zhu, Z.;
 Zhu, C.; Qian, Z.; Xu, S.; Li, Y. Association of exposure to ambient particulate matter with maternal
 thyroid function in early pregnancy. *Environ Res.* 2022, *214* (Pt 2), 113942; DOI:
 10.1016/j.envres.2022.113942.
- 190 (8) Qiu, L.; Shen, W.; Ye, C.; Wu, J.; Zheng, S.; Lou, B.; Chen, Z.; Xu, P.; Xu, D.; Wang, X.; Feng, B.
- Association of exposure to PM(2.5)-bound metals with maternal thyroid function in early pregnancy. *Sci*
- 192 *Total Environ.* **2022**, *810*, 151167; DOI: 10.1016/j.scitotenv.2021.151167.
- 193 (9) Zhou, Y.; Zhu, Q.; Wang, P.; Li, J.; Luo, R.; Zhao, W.; Zhang, L.; Shi, H.; Zhang, Y. Early pregnancy
- PM(2.5) exposure and its inorganic constituents affect fetal growth by interrupting maternal thyroid
 function. *Environ Pollut.* 2022, *307*, 119481; DOI: 10.1016/j.envpol.2022.119481.
- 196