Supporting Information

Optimizing thermoelectric properties through compositional engineering in Ag-deficient AgSbTe₂ synthesized by arc melting

Jesús Prado-Gonjal¹*, Elena García-Calvo^{1,2}, Javier Gainza², Oscar J. Durá³, Catherine Dejoie⁴, Norbert M. Nemes⁵, José Luis Martínez², José Antonio Alonso², Federico Serrano-Sánchez²*

¹ Departamento de Química Inorgánica, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid, E-28040, Spain.

² Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid, E-28049, Spain.

³ Departamento de Física Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, E-13071 Spain.

⁴ European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France.

⁵ GFMC, Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid, E-28040 Spain.

*corresponding authors: jpradogo@ucm.es; fserrano@icmm.csic.es

SI1. Differential Scanning Calorimetry (DSC)

- SI2. Sample cutting process
- SI3. EDX analysis

SI4. Atomic displacement parameters of nominal AgSbTe₂

- SI5. Hall carrier concentration and mobility
- SI6. Thermal conductivity
- SI7. Reproducibility study

SI1. Differential Scanning Calorimetry (DSC)

Figure S1 shows the Differential scanning calorimetry (DSC) curves for the $Ag_{0.7}Sb_{1.12}Te_2$ and $Ag_{0.7}Sb_{1.12}Te_{1.95}Se_{0.05}$.

A signal around 418 K has been reported in Ag_2Te , associated with the monoclinic to cubic phase transition, that it is not present in our samples (Cao, J et al (2023). Nano Energy, 107, 108118). DSC results confirms that there is no Ag_2Te impurity in the arc-melting samples, as it was observed by synchrotron X-ray diffraction).

Figure S1. Differential scanning calorimetry (DSC) curves for the $Ag_{0.7}Sb_{1.12}Te_2$ and $Ag_{0.7}Sb_{1.12}Te_{1.95}Se_{0.05}$.

SI2. Sample cutting process

Figure S2. (a) Diagram illustrating how the different sections of the sample were cut for thermoelectric measurements. (b) ΔT and current direction in thermal diffusivity (pellet) and Seebeck coefficient (bar) measurements.

SI3. EDX analyisis

The composition has been assessed semi-quantitatively using Energy Dispersive X-ray Spectroscopy (EDX) on more than ten individual crystals for each sample. Here, we show the average % atomic values in order to compare with the formula achieved by Rietveld refinement of the synchrotron X-ray diffraction data.

1) Rietveld refinement formula: Ag_{0.86(4)}Sb_{1.06(4)}Te_{1.93(1)}

EDX analysis: Ag_{0.9}Sb_{1.04}Te₂

Table S1 EDX resu	ilts in nomina	al $Ag_{0.7}Sb_{1.12}Te_2$:
-------------------	----------------	------------------------------

Element	% atomic
Ag	20.27
Sb	26.44
Те	53.29

Figure S3. EDX spectra of nominal Ag_{0.7}Sb_{1.12}Te₂

2) Rietveld refinement analysis: $Ag_{0.8}Sb_{1.14}Te_{1.91}Se_{0.09} + Ag_{0.8}Sb_{1.14}Te_{1.97}Se_{0.03}$ (phase segregation)

EDX analysis: Ag_{0.79}Sb_{1.13}Te_{1.87}Se_{0.06}

Element	% atomic
Ag	18.28
Sb	29.52
Те	51.19
Se	1.01

Table S2. EDX results in nominal Ag_{0.7}Sb_{1.12}Te_{1.95}Se_{0.05}

Figure S4. EDX spectra of nominal $Ag_{0.7}Sb_{1.12}Te_{1.95}Se_{0.05}$

SI4. Atomic displacement parameters of nominal AgSbTe₂

Table S3. Result of Atomic displacement parameters (ADP) of nominal AgSbTe₂, adapted from ref [J. Gainza et al. *Nanomaterials* **2022**, *12* (21), 3910].

Atomic Displacement Parameters (\AA^2)						
		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}
Te1		0.022 (5)	0.04 (1)	0.022 (5)	0.00000	0.00000
Sb		0.038 (8)	0.038 (8)	0.038 (8)	0.00000	0.00000
Ag		0.036 (5)	0.036 (5)	0.005 (6)	0.00000	0.00000
<i>Sb2</i>		0.036 (5)	0.036 (5)	0.005 (6)	0.00000	0.00000

SI5. Hall carrier concentration and mobility

Nominal Composition	n _H (cm ⁻³)	$\mu_n (cm^2 V^{-1} s^{-1})$	р _н (ст ⁻³)	$\mu_p (cm^2 V^{-1} s^{-1})$
$Ag_{0.7}Sb_{1.12}Te_2$	3.7×10^{17}	64	1.5×10^{20}	2.5
Ag _{0.7} Sb _{1.12} Te _{1.95} Se _{0.05}	1.5x10 ¹⁶	83	5.7x10 ¹⁹	1.4

Table S4. Hall carrier concentration and mobility at T=300 K of the arc-melted samples.

SI6. Thermal conductivity

Figure S5 Temperature dependence of the total thermal conductivity and the thermal and electronic contributions of the thermal conductivity.

SI7. Reproducibility study

Two samples have been measured in order to assure the thermoelectric properties of the system.

Figures S6, S7 and S8 shows the temperature dependence of the Seebeck coefficient, electrical conductivity and thermal conductivity.

Figure S6. Temperature dependence of the Seebeck coefficient.

Figure S7. Temperature dependence of the electrical resistivity.

Figure S8. Temperature dependence of the thermal conductivity.