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Peer Review File

Gene expression signatures in blood from a West African 
sepsis cohort define host response phenotypes



REVIEWER COMMENTS 
 
Reviewer #2 (Remarks to the Author): 
 
Chenoweth et al performed blood RNA-sequencing on a Ghanaian cohort of sepsis patients to 
characterize host immune signatures in individuals from low- and middle-income countries. They 
used a variety of computational methods, including principal components analysis, CIBERSORT 
deconvolution, and CoGAPS factorization, to identify gene patterns and clinical variables that 
associate with disease progression and mortality. The authors used transfer learning and analysis 
of external bulk and single cell RNA-seq datasets to validate and interpret the gene patterns from 
their primary analysis. 
 
Overall, the manuscript is well written and their analysis is well executed. The multiple timepoints 
profiled and integration with external datasets are key strengths of their study. In addition, this 
manuscript provides a valuable resource to compare findings with existing studies of sepsis host 
responses, which were primarily conducted in Western countries. 
 
Suggestions to improve the manuscript: 
 
1. Septic patients often have long-term sequelae and sepsis survivors have poor overall prognosis. 
The authors mention in their discussion that it is not clear whether there were differences between 
28-day survivors and healthy individuals. It appears in Fig 1A that there is some separation 
between transcriptomes from healthy individuals and sepsis survivors, primarily in PC2. Perhaps 
the authors could look into PC2 and perform a focused analysis of late timepoints from survivors 
vs. healthy to identify patterns that discriminate recovered patients from healthy individuals. 
 
2. The study finds a couple of neutrophil-associated patterns in their analysis, but the single cell 
datasets utilized in their manuscript have limited representation of neutrophils. A scRNA-seq study 
of neutrophils from sepsis patients was published recently (Kwok et al, 2023). The reviewer 
suggests mapping these patterns on this dataset to aid their interpretation of their neutrophil 
patterns. 
 
3. The authors mention in their introduction that a number of endotype classifications have been 
proposed for patients with sepsis. Do the authors see similar groupings in their datasets? Are there 
similarities between existing endotype genes and those found in their CoGAPS patterns? 
 
4. The authors show that a combination of patterns P3, P4, P12, and P23 is predictive of 28d 
mortality in their cohort. Could the authors test if a composite gene signature derived from these 
patterns (perhaps by taking the top associated genes) performs similarly in other datasets? The 
authors could utilize additional datasets, such as those from a recent mortality meta-analysis of 
sepsis datasets (Sweeney, et al, 2018). 
 
Minor comments: 
 
1. The COVID-19 dataset analyzed is incorrectly attributed in the main and supplementary figures 
to Reyes et al. The data was generated in a study by Wilk et al. 
 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
I am grateful for the opportunity to review this manuscript. The topic is of importance: there is a 
need to better understand the host response of sepsis and the authors are to be applauded that 
they have conducted a gene expression signature study in West Africa given the fact that most of 
these studies are performed in high-income settings. Cited references are adequate. However, this 
reviewer has a number of significant concerns. 
 



Major 
- The paper is difficult to follow. What is the main message/overall narrative of this paper? Is the 
goal to predict mortality or to define characteristics of subpopulations (eg. hyperinflammation vs. 
immune suppression) or to find a model that differentiates between viral and bacterial infection? 
Now, the authors have all incorporated this into one single paper, making it less concise and 
therefore less comprehensible. In line, there are several overly complicated statistical / 
mathematical methods used and graphs presented, which do not add to a robust narrative. Some 
of the graphs are just too difficult to fully understand with limited legends. 
- The patients are not well characterized making any meaningful link to the clinical syndrome of 
sepsis very difficult. Although this reviewer appreciates that performing clinical research in some 
resource refrained settings can be challenging, just the basic clinical information is missing. 
Previous clinical studies from the teaching hospital in Kumasi have been great. A Table 1 with 
baseline characteristics is missing. What was the source and microbiological cause of sepsis of the 
included patients? At what department were the patients treated and for how long? What about 
comorbidities? Treatment etc. etc. 
 
Other 
- How were the 120 patients selected for RNAseq? Inclusion criteria are reported only very briefly; 
there is only a reference to another article which mentions 187 included patients from Ghana. 
- Unclear what is meant by Supp Tab (line 70) and Supp File (line 93). There is one supplementary 
file with multiple supplementary figures, but no tables. 
- For timepoints 0h and 6h the AUC of qSOFA alone is calculated and found to be better than the 
AUC of PC1. However, the AUC of qSOFA for 72h is not shown. What was this value and how does 
it compare to the AUC of PC1 at 72h? 
- All the AUCs shown seem to be from a discovery/derivation cohort. It seems that they need to be 
validated as they could very well be overfitted? 
- Have the authors considered survivorship bias in any of their analyses? It seems that PC1 at later 
timepoints predicts mortality better. How many non-survivors are left after 72 hours? 
- There are no healthy controls displayed in Fig S2. How relevant is the trajectory of survivor’s vs 
non-survivors if there are no healthy controls? 
- With regards to Fig S3A: the second microarray batch overlap between bacterial and viral which 
makes one wonder if the PC1 really differentiates there? 
- The following sentences could perhaps be better placed in results instead of the methods section 
(line 361 – 365): “Five of the 30 patterns were identified as the most informative in this model 
(P23, P4, P27, P12, 362 P3.) Pattern 23 and 4 were the top 2 most significant predictors of 28-day 
mortality in the random forest model which is consistent with their individual performance at both 
early and later timepoints using logistic regression. Both of these approaches random forest and 
traditional logistic regression support this result.” 
- With regard to the Legend of Fig. 2: it states “Would be good to add an indication in A of which 2 
patterns are in B (* or arrows?).” I guess this just needs to be deleted? 
- No abstract has been included in the version of this reviewer. 
- The limited set of protein measurements: these are mentioned in the Methods but are mentioned 
only very briefly in the Results section of the main document. 
- Some examples of excerpts that need more clarification. Line 91: Projection of public data from 
bacterial and viral infections indicates that PC1 describes cellular components of the immune 
response to bacterial infections (Fig S3A and B and Supp File 2). Line 158 – 160: These results 
indicate that dynamic gene expression patterns are linked to cellular components of the immune 
response while prognostic patterns that distinguish survivors and non-survivors at enrollment 
better capture physiology. Line 342-344: Projection of CoGAPS and principal component gene 
weights defines relationships between samples in a new data set given relationships discovered in 
the primary sepsis RNA-seq dataset. 
 
 
 
 
Reviewer #4 (Remarks to the Author): 
 
This work states that using dimension reduction and transfer learning techniques along with 
additional public RNA sequencing data, transcriptional phenotypes in a West-African cohort were 



defined, which were shared across diverse cohorts and infection contexts. These gene expression 
phenotypes map a physiological landscape of host response to sepsis and support interventions 
that target immunophenotypes to promote improved sepsis outcomes. 
 
I do not see significance to the field in this work because it does not provide an original method, it 
is the sum of a number of already available classical models in machine learning. 
 
I do not see how does it compare to the established literature because there is no comparison to 
other related works. 
 
I am afraid that there some flaws in the data analysis, interpretation and conclusions. 
It is not completetly clear to me whether the use of transfer learning in this work is actually the 
correct one. 
It is widely understood that Transfer learning (TL) is a technique in machine learning in which 
knowledge learned from a task is re-used in order to boost performance on a related task. And the 
key word here is LEARNING. Some knowledge LEARNED in one domain is transfered to another 
specific task, which also involves LEARNING AND also FINE-TUNING, maybe. 
For example, for image classification, knowledge gained while learning to recognize cats could be 
applied when trying to recognize lions. However, in this work there is not such a thing. There is no 
knowledge learnt and then transferred. 
 
First of all, a simple PCA is donde on all data. 
Then, to assess the generality of the dynamic over the PC1, authors state that used "used 
transfer-learning techniques by feature mapping projection between two datasets. We downloaded 
public leukocyte gene expression data from healthy donors and subjects that progress to septic 
shock. Projection of these expression data onto PC1 of the Ghana cohort recapitulates the 
segregation of healthy controls from septic subjects". I really don´t think that this can be called 
transfer learning. There is not learning at all! It is the projection of one dataset into another one, 
independent one. 
 
Moreover, authors state that the total RNA from peripheral blood was sequenced from 120 subjects 
in Ghana. 
However, there is no indication of sex and gender of these participants to the study. The authors 
have not complied with the following recommendations related to this point: it is expected that the 
title and/or abstract must indicate when findings apply to only one sex or gender. The methods 
section should include whether sex and/or gender were considered in the study design and 
whether sex and/or gender of participants was determined based on self-report or assigned (and 
methodology used). Data should be reported disaggregated for sex and gender where this 
information has been collected. 
 
Then, to determine if PC1 is useful for predicting mortality, authors generated ROC curves using 
host gene expression PC1 values at different times. It nos specified with which model the ROIC 
curves were built. 
 
Authors used (CoGAPS) a sparse Bayesian non-negative matrix factorization (NMF) method that 
decomposes expression data into component patterns and can identify gene expression modules 
that are specific for sub-groups of patients, diseases, transient processes, etc. 
Then, a standard Random Forest (RF) technique was used to determine important CoGAPS 
patterns. For this analysis data was split into training and test sets in the ratio of 70:30 
respectively. This is another methodological flaw: several cross-validation folds, at least 3, should 
have been used. 
 
I don´t think there enough detail provided in the methods for the work to be reproduced, mainly 
because no source code data nor a repo url were provided. 
 



To all reviewers:  We appreciate the insightful suggestions and critical review of our work and are 
excited to provide a revised version of the manuscript titled “Gene Expression Signatures in Blood that 
Predict Mortality in a West African Sepsis Cohort Define Host Response Phenotypes.”  Please find below 
the point-by-point responses to the reviewer's comments.   
 
Reviewer #2 (Remarks to the Author): 

 

Chenoweth et al performed blood RNA-sequencing on a Ghanaian cohort of sepsis patients to 

characterize host immune signatures in individuals from low- and middle-income countries. They used a 

variety of computational methods, including principal components analysis, CIBERSORT deconvolution, 

and CoGAPS factorization, to identify gene patterns and clinical variables that associate with disease 

progression and mortality. The authors used transfer learning and analysis of external bulk and single 

cell RNA-seq datasets to validate and interpret the gene patterns from their primary analysis.  

 

Overall, the manuscript is well written and their analysis is well executed. The multiple timepoints 

profiled and integration with external datasets are key strengths of their study. In addition, this 

manuscript provides a valuable resource to compare findings with existing studies of sepsis host 

responses, which were primarily conducted in Western countries. 

We thank the reviewer for their summary of our work and the recognition of the value of longitudinal 

sampling to define the host response to sepsis.  Second, we are excited that the reviewer identified the 

knowledge gap from low-resource countries that is addressed in our study.  This is a current area that 

key leaders in the field continue to identify as critical towards generalizing sepsis endotypes (van Amstel 

RBE, Kennedy JN, Scicluna BP, et al. Uncovering heterogeneity in sepsis: a comparative analysis of 

subphenotypes. Intensive Care Med. 2023;49(11):1360-1369).   

 

Suggestions to improve the manuscript: 

 

1. Septic patients often have long-term sequelae and sepsis survivors have poor overall prognosis. The 

authors mention in their discussion that it is not clear whether there were differences between 28-day 

survivors and healthy individuals. It appears in Fig 1A that there is some separation between 

transcriptomes from healthy individuals and sepsis survivors, primarily in PC2. Perhaps the authors could 

look into PC2 and perform a focused analysis of late timepoints from survivors vs. healthy to identify 

patterns that discriminate recovered patients from healthy individuals.   

We agree that long-term sequelae are an important area of investigation when noting that there is 

significant mortality in survivors of sepsis in the 2-to-3-month period following initial presentation 

(Delano MJ, Ward PA. 2016 Jan;126(1):23-31. PMID: 26727230).  Although we see this as outside the 

scope of the current study, our approaches presented here could be used to look for these signatures 

and we are actively pursuing this with larger sample sizes and a focus on long-term outcomes that 

require additional clinical adjudication.  Specifically, regarding the observation in PC2, we have identified 

an RNA sequencing batch effect in this dimension that precludes analysis.  However, the value of using 

the CoGAPS tool is that it effectively decomposes the data in a manner that accounts for any batch or 

technical effects (Stein-O'Brien GL, Clark BS, Sherman T, et al. 2021;12(2):203). 



 

 

2. The study finds a couple of neutrophil-associated patterns in their analysis, but the single cell datasets 

utilized in their manuscript have limited representation of neutrophils. A scRNA-seq study of neutrophils 

from sepsis patients was published recently (Kwok et al, 2023). The reviewer suggests mapping these 

patterns on this dataset to aid their interpretation of their neutrophil patterns.   

This is an excellent suggestion by the reviewer.  In response we have assessed the contribution of the 

top differentially expressed features in four classes of neutrophils from the Kwok et al. manuscript in our 

CoGAPS gene expression patterns.  We now show that the immature IL1R2 neutrophil features from 

Kwok et al. are enriched in our CoGAPS gene expression patterns that predict day 28 mortality, most 

notably Pattern 15.  This is consistent with our transfer learning using datasets from Wilk AJ 2020 where 

they describe a cell type that they name “developing neutrophils” that is specifically enriched in CoGAPS 

pattern 15.  These results have been added as Fig. 5d and Supplementary Fig. 7. 

 

3. The authors mention in their introduction that a number of endotype classifications have been 

proposed for patients with sepsis. Do the authors see similar groupings in their datasets? Are there 

similarities between existing endotype genes and those found in their CoGAPS patterns?   

This is an important question at the center of the paradigm shift that is aimed at moving beyond the 

“one size fits all” approach to improving sepsis outcomes.  As the reviewer indicates, we highlight some 

of the important published studies in our introduction that have used genomic approaches to identify 

patient subgroups with shared mechanisms and clinical outcomes.  A recent comparative analysis of 

these subphenotypes (van Amstel 2023) has recognized that a lack of data from low-income countries is 

a critical limitation to the field.  Although a formal comparison of our results to these datasets is outside 

the scope of the study here, in this revision we did make significant new efforts to relate our data to the 

endotypes reported by Scicluna 2017, Davenport 2016, and Sweeney 2018.  

To compare host gene expression in our Ghanaian cohort to the reported sepsis response signatures 

SRS1 and SRS2 from Davenport 2016, we used the published machine learning tool SepstratifieR (Cano-

Gamez 2022).  Using this algorithm, we showed that our cohort was most aligned with the high-

mortality SRS1 group.  Taking advantage of our longitudinal data we show that the probability of being 

in SRS1 decreases over time in subjects that survive in our cohort (Fig. 1g, h).  Examination of subject-

level data shows that some subjects move between SRS1 and SRS2 through time (Supplementary Fig. 

1e).   

Sweeney 2018 reports three endotypes - Adaptive, Coagulopathic, and Inflammopathic.  Although we 

could not formally quantify membership in these groups for our data because the source gene-level data 

is not readily available, the fold-change versus healthy controls was available from Sweeney 2018.  

Therefore, we looked at how the fold-change versus healthy in our cohort at each timepoint compared 

to the reported fold-change versus sepsis in the Sweeney 2018 study.  Qualitatively our cohort was 

aligned most closely to the Inflammopathic group, and we could see the differences between sepsis 

subjects and healthy controls resolve through time in our West-African cohort.  These data have been 

added as Supplementary Fig. 1c.  



Finally, we also assessed the MARS 1-4 groups from Scicluna 2017 in our dataset. We used gene 

expression change signatures (Discovery vs Healthy) published by the authors in the supplementary 

appendix table and correlated these values to the log2 fold changes (Sepsis vs Healthy) of the same 

genes in the Ghanaian data set. At time 0h, our sepsis cohort subjects most resembled the MARS 4 

group (Pearson r=0.85) followed by MARS 2, MARS3, and MARS1 (Pearson r=0.45). Over time we saw a 

similar pattern here as with other public data sets – with time and return to health MARS signatures 

became progressively diminished and, in some cases, even anticorrelated. All the results are shown in 

Supplementary Fig. 1.  

 

4. The authors show that a combination of patterns P3, P4, P12, and P23 is predictive of 28d mortality in 

their cohort. Could the authors test if a composite gene signature derived from these patterns (perhaps 

by taking the top associated genes) performs similarly in other datasets? The authors could utilize 

additional datasets, such as those from a recent mortality meta-analysis of sepsis datasets (Sweeney, et 

al, 2018).   

We recognize the interest and value of reducing the CoGAPS patterns into informative sets of genes or 

“biomarkers”, especially for translational applications.  However, in this revision, we have reduced the 

emphasis on classifier development to highlight the focus on underlying biology and phenotypes.  A 

formal feature selection and classifier development with external validation is outside of the scope of 

this work.  However, we do think it is important and exciting to show that the data decomposition 

approaches used here can be translated.  A statistic has been published called “patternMarkers” that is 

designed specifically to do this with CoGAPS patterns (Stein-O’Brien 2017).  We used the top 10 genes 

from patternMarkers for CoGAPS Pattern 23 in a recursive feature elimination followed by an exhaustive 

feature selection, both using a logistic regression classifier with stratified 5-fold cross-validation 

selecting for the outcome of 28-day mortality. All time points were included. The gene TPST1 provided 

the best area under the ROC curve (AUROC) with a performance of 0.844. This provided comparable 

performance to the model in revised Supplementary Fig. 4c that uses patterns 15, 4, 27, and 23. This 

result with TPST1 is not included in this new revision because we have reduced the emphasis on 

prognostic modeling in this new version. 

  

 

Minor comments: 

 

1. The COVID-19 dataset analyzed is incorrectly attributed in the main and supplementary figures to 

Reyes et al. The data was generated in a study by Wilk et al. 

We thank the reviewer for identifying this error.  This has been corrected.  

 

 

Reviewer #3 (Remarks to the Author): 

 

I am grateful for the opportunity to review this manuscript. The topic is of importance: there is a need to 

better understand the host response of sepsis and the authors are to be applauded that they have 

conducted a gene expression signature study in West Africa given the fact that most of these studies are 



performed in high-income settings. Cited references are adequate. However, this reviewer has a number 

of significant concerns. 

We appreciate the interest of the reviewer in this study.  Both reviewers 2 and 3 share our recognition 

of the important contribution of the host response to solving sepsis and note the gap in non-Western 

datasets that our work fills.    

 

Major 

- The paper is difficult to follow. What is the main message/overall narrative of this paper? Is the goal to 

predict mortality or to define characteristics of subpopulations (eg. hyperinflammation vs. immune 

suppression) or to find a model that differentiates between viral and bacterial infection? Now, the 

authors have all incorporated this into one single paper, making it less concise and therefore less 

comprehensible. In line, there are several overly complicated statistical / mathematical methods used 

and graphs presented, which do not add to a robust narrative. Some of the graphs are just too difficult 

to fully understand with limited legends.   

We thank the reviewer for this high-level comment.  In this new revision, we have made significant 

efforts to narrow the focus of the work to present a more robust narrative.  Specifically, we address the 

major goals of the sepsis community to identify complementary phenotypes across diverse populations 

that are candidates for treatable traits or therapeutic intervention (Maslove 2022 and van Amstel 2023).  

Our work shows that through host-gene expression analysis, we can identify cellular 

immunophenotypes (patterns) of importance for sepsis outcomes in an understudied West African 

population.  Furthermore, we have performed new analyses to relate our work to published sepsis 

subtypes to generalize these new findings.  Finally, we have reduced the figure count and removed 

analyses that do not add significantly to the narrative, while adding graphics and improved legends to 

guide the reader through the study.      

 

- The patients are not well characterized making any meaningful link to the clinical syndrome of sepsis 

very difficult. Although this reviewer appreciates that performing clinical research in some resource 

refrained settings can be challenging, just the basic clinical information is missing. Previous clinical 

studies from the teaching hospital in Kumasi have been great. A Table 1 with baseline characteristics is 

missing. What was the source and microbiological cause of sepsis of the included patients? At what 

department were the patients treated and for how long? What about comorbidities? Treatment etc. etc.  

We thank the reviewer for recognizing the challenges of clinical research in diverse low-resource 

settings which impacts available clinical information.  This Ghanaian cohort was previously described in 

Blair 2023 PMID 36806137 which highlights key characteristics of the population.  We have now 

provided a Table 1 in the Supplementary Data 1 file which includes some basic characteristics of the 

subjects used in this study and added a Study Cohorts section to the methods.  In addition, we have 

added references from our co-authors at KATH that provide insight into the Kumasi clinical population. 

 

Other 

- How were the 120 patients selected for RNAseq? Inclusion criteria are reported only very briefly; there 

is only a reference to another article which mentions 187 included patients from Ghana. 



These 120 patients were selected out of the previously reported 187 using a nested case-control design 

based on 28-day mortality outcome considering age and sex.  Other criteria included the availability of 

longitudinal biospecimens and RNA quality following specimen extraction as well as cost constraints for 

RNA sequencing. 

 

- Unclear what is meant by Supp Tab (line 70) and Supp File (line 93). There is one supplementary file 

with multiple supplementary figures, but no tables. 

We apologize for this confusion.  This new revision has updated Supplementary Information and Data 

with appropriate identifiers. 

 

- For timepoints 0h and 6h the AUC of qSOFA alone is calculated and found to be better than the AUC of 

PC1. However, the AUC of qSOFA for 72h is not shown. What was this value and how does it compare to 

the AUC of PC1 at 72h?  

The Glasgow Coma Scale was not assessed at 72 hours in this Ghanaian cohort so unfortunately, we 

cannot calculate qSOFA and perform this comparison.  These analyses have been removed from the new 

revision to better focus the manuscript on the phenotypes revealed by gene expression versus 

prognostic classifier development.   

 

- All the AUCs shown seem to be from a discovery/derivation cohort. It seems that they need to be 

validated as they could very well be overfitted?  

We have removed a significant portion of the modeling in this new revision to focus on the biological 

phenotypes versus classifier development as stated in the reply to the above comment.   

 

- Have the authors considered survivorship bias in any of their analyses? It seems that PC1 at later 

timepoints predicts mortality better. How many non-survivors are left after 72 hours?  

At 72 hours we have data available for 35 survivors and 22 non-survivors.  We have removed all of the 

modeling using PCA weights as discussed in the previous two replies. 

 

- There are no healthy controls displayed in Fig S2. How relevant is the trajectory of survivor’s vs non-

survivors if there are no healthy controls?   

We have removed this analysis from the revised manuscript to simplify the narrative but have provided 

an explanation below.   In Figure S2 from the initial submission, we were asking if the main variation 

described by PC1 in the Ghana cohort from the initial submission Figure 1 is conserved in another 

independent cohort from Cambodia (Blair 2023).  To do this we used the transfer learning technique 

“projectR” that “exploits the fact that if two datasets share common latent spaces, a feature mapping 

between the two can identify and characterize relationships between the data defined by individual 

latent spaces.”   In the original version Figure 1 we show that PC1 in the Ghana gene expression dataset 

is a trajectory from disease to health and the inclusion of healthy controls is important to identify this 

transition.  However, once this trajectory is learned or defined mathematically, we can ask how ANY 



sample set maps onto this space, even without healthy controls using the “projectR” algorithm.  We 

would hypothesize that the samples derived from Cambodian survivors at later time points would be 

separated from their earlier time points if the trajectory initially defined by the Ghana dataset was 

shared and generalizable.  This was demonstrated in the original version of Figure S2 along the X-axis 

“Projected Ghana PC1.”  To better clarify this use of “projectR” throughout the paper we have updated 

main Figure 1 with a graphical cartoon in Fig. 1c of the revised manuscript. 

   

- With regards to Fig S3A: the second microarray batch overlap between bacterial and viral which makes 

one wonder if the PC1 really differentiates there? 

To create a more robust narrative with a clear objective we have removed this analysis from the revised 

manuscript, however, we have provided the following in response to the reviewer’s question.  Original 

manuscript Figure S3A is simply a PCA deconvolution of the public dataset we downloaded from 

GSE63990 Tsalik et al. 2016.   As part of our quality assurance process, we look at the main variation in 

any public dataset before using it alongside our data.  We noted here that the authors had a technical 

batch effect that accounted for the largest variation in the gene expression data.  However, this batch 

effect seemingly did not preclude the authors in Tsalik et al. 2016 from using supervised analysis to 

generate bacterial and viral and non-infectious gene expression classifiers.  For our purposes, because 

we used this public gene expression dataset in our transfer learning to interpret our CoGAPS gene 

expression patterns in the Ghana dataset, it was most transparent to treat these two batches 

independently as displayed in the original version Figure S3B and S7.   

 

- The following sentences could perhaps be better placed in results instead of the methods section (line 

361 – 365): “Five of the 30 patterns were identified as the most informative in this model (P23, P4, P27, 

P12, 362 P3.) Pattern 23 and 4 were the top 2 most significant predictors of 28-day mortality in the 

random forest model which is consistent with their individual performance at both early and later 

timepoints using logistic regression. Both of these approaches random forest and traditional logistic 

regression support this result.” 

We have revised this modeling as per the suggestion of the last reviewer and added details to the 

methods but also included an updated legend in Supplementary Figure 4. 

 

- With regard to the Legend of Fig. 2: it states “Would be good to add an indication in A of which 2 

patterns are in B (* or arrows?).” I guess this just needs to be deleted? 

We thank the reviewer for identifying this error.  We have updated all the legends in the revised version 

of the manuscript. 

 

- No abstract has been included in the version of this reviewer.  

The abstract has now been provided. 



 

- The limited set of protein measurements: these are mentioned in the Methods but are mentioned only 

very briefly in the Results section of the main document. 

As noted by the reviewer this study included a limited analysis of circulating proteins which we used 

primarily to aid in the biological interpretation of the CoGAPS patterns.  We have now added new 

content to the discussion to indicate how these protein results in combination with the gene expression 

data point to potential treatable traits or targets for sepsis. 

 

- Some examples of excerpts that need more clarification. Line 91: Projection of public data from 

bacterial and viral infections indicates that PC1 describes cellular components of the immune response 

to bacterial infections (Fig S3A and B and Supp File 2).  

We have removed this sentence as its content did not fit into the updated and streamlined version of 

the manuscript.  

Line 158 – 160: These results indicate that dynamic gene expression patterns are linked to cellular 

components of the immune response while prognostic patterns that distinguish survivors and non-

survivors at enrollment better capture physiology.  

This sentence has been rewritten in a simplified version for clarity.  “These results indicate that CoGAPS 

gene expression patterns are linked to physiological and cellular components of the immune response in 

sepsis.” 

Line 342-344: Projection of CoGAPS and principal component gene weights defines relationships 

between samples in a new data set given relationships discovered in the primary sepsis RNA-seq 

dataset. 

 

We have rewritten this sentence for clarity in the methods. 

 

 

 

Reviewer #4 (Remarks to the Author): 

We appreciate the reviewer’s critical reading and assessment of our manuscript.  Below are responses 

to the evaluation and description of updates we have provided to better highlight the key contributions 

of our study to the sepsis field.  

 

This work states that using dimension reduction and transfer learning techniques along with additional 

public RNA sequencing data, transcriptional phenotypes in a West-African cohort were defined, which 

were shared across diverse cohorts and infection contexts. These gene expression phenotypes map a 

physiological landscape of host response to sepsis and support interventions that target 

immunophenotypes to promote improved sepsis outcomes. 

 



I do not see significance to the field in this work because it does not provide an original method, it is the 

sum of a number of already available classical models in machine learning. 

We have updated the manuscript to better communicate the major contributions of this work to the 

sepsis field.  The reviewer recognizes the approach in our study which is to apply a combination of 

proven bioinformatic approaches and methods to a unique high-dimensional dataset.  The study design 

did not intend to develop an original analytic method, and this is better reflected in the revised version 

of the manuscript.    

I do not see how does it compare to the established literature because there is no comparison to other 

related works.  

We thank the reviewer for their suggestion to highlight comparisons to related works.  Our goal with this 

work was to assess sepsis phenotypes in longitudinal datasets in a population that has been 

understudied.  We have provided additional context, references, and data analysis to better 

communicate the advancement of this work for the sepsis field and in light of established literature.  in 

this revision we made significant new efforts to relate our data to the sepsis endotypes reported by 

Scicluna 2017, Davenport 2016, and Sweeney 2018.  Please see Fig. 1g, h and Supplementary Fig. 1c, d, e 

for these new analyses.  Also, we compared our work to a recent publication by Kwok et al. 2023 that 

identifies sepsis-enriched neutrophil subtypes in Fig. 5d and Supplementary Fig. 7. 

 

I am afraid that there some flaws in the data analysis, interpretation and conclusions. It is not 

completetly clear to me whether the use of transfer learning in this work is actually the correct one. It is 

widely understood that Transfer learning (TL) is a technique in machine learning in which knowledge 

learned from a task is re-used in order to boost performance on a related task. And the key word here is 

LEARNING. Some knowledge LEARNED in one domain is transfered to another specific task, which also 

involves LEARNING AND also FINE-TUNING, maybe.  For example, for image classification, knowledge 

gained while learning to recognize cats could be applied when trying to recognize lions. However, in this 

work there is not such a thing. There is no knowledge learnt and then transferred. 

As highlighted by the reviewer in a point above, our study uses a “sum” of previously developed tools to 

decompose and interpret host gene expression in sepsis subjects.  One of these tools is the R package 

“projectR” which has been successfully applied to gene expression datasets in several peer-reviewed 

manuscripts to map target datasets into learned latent spaces (Sharma G, et al. projectR: an 

R/Bioconductor package for transfer learning via PCA, NMF, correlation, and clustering. 

Bioinformatics. 2020;36(11):3592-3593.).  This package has been developed to leverage “the machine-

learning subdomain of transfer learning that exploits the fact that if two datasets share common latent 

spaces, a feature mapping between the two can identify and characterize relationships between the data 

defined by individual latent spaces.”  Here, one dataset is the source in which the latent space 

representation is learned, and another is the target that is mapped into the latent spaces learned in the 

source.  This transfer learning by dimensionality reduction is also described by Pan, S.J., Kwok, J.T., and 

Yang, Q. (2008). Transfer learning via dimensionality reduction. Proceedings of the Twenty-Third AAAI 

Conference on Artificial Intelligence. 677–682. Our choice of this data analysis package was chosen so 

we could take advantage of the readily available, sophisticated, well-annotated, and defined public gene 

expression datasets in the sepsis and infectious disease field and learn from information relevant for our 



understudied Ghanaian population cohort.  Our choice of the “transfer-learning” terminology was based 

upon these peer-reviewed published articles. 

 

 

 

First of all, a simple PCA is donde on all data. 

Then, to assess the generality of the dynamic over the PC1, authors state that used "used transfer-

learning techniques by feature mapping projection between two datasets. We downloaded public 

leukocyte gene expression data from healthy donors and subjects that progress to septic shock. 

Projection of these expression data onto PC1 of the Ghana cohort recapitulates the segregation of 

healthy controls from septic subjects". I really don´t think that this can be called transfer learning. There 

is not learning at all! It is the projection of one dataset into another one, independent one. 

We appreciate the reviewer restating the method, and apologize that it wasn’t written clearly enough to 

impart its real meaning. We would like to refer the reviewer to above mentioned Pan et.al., 2008 paper 

describing the use of our transfer learning methods. To clarify further, we do not project dataset 1 into 

dataset 2, we learn dimensions from our data (PCA or NMF) and then transfer these dimensions into the 

second dataset (public), and then explore any dynamics in the new dataset.   

 

Moreover, authors state that the total RNA from peripheral blood was sequenced from 120 subjects in 

Ghana. However, there is no indication of sex and gender of these participants to the study. The authors 

have not complied with the following recommendations related to this point: it is expected that the title 

and/or abstract must indicate when findings apply to only one sex or gender. The methods section 

should include whether sex and/or gender were considered in the study design and whether sex and/or 

gender of participants was determined based on self-report or assigned (and methodology used). Data 

should be reported disaggregated for sex and gender where this information has been collected.  

 

We thank the reviewer for highlighting the lack of study cohort information. To ameliorate this 

shortcoming we have included additional descriptions of this study (Figure 1a, b, c), a sex-specific 

breakdown of our cohort and mortality (Figure 1d) and generated a `Table 1` summarizing cohort 

demographics (Supplementary Data 1). The details regarding the subject enrolment criteria and subject 

metadata have been previously published (Blair et.al., 2023). However, we now also include the ‘Study 

Cohorts’ section in the materials and methods providing basic cohort information. Sex or Gender were 

not the subject of this study, however, were still considered to ensure they do not introduce bias into 

our analyses.  

 

Then, to determine if PC1 is useful for predicting mortality, authors generated ROC curves using host 

gene expression PC1 values at different times. It nos specified with which model the ROIC curves were 

built. 

This sentence and analysis were removed along with a significant portion of the modeling. Per the 

suggestion of this and other reviewers, the manuscript was revised to simplify and streamline the focus 

on biological phenotypes versus classifier development.  



 

Authors used (CoGAPS) a sparse Bayesian non-negative matrix factorization (NMF) method that 

decomposes expression data into component patterns and can identify gene expression modules that 

are specific for sub-groups of patients, diseases, transient processes, etc. 

Then, a standard Random Forest (RF) technique was used to determine important CoGAPS patterns. For 

this analysis data was split into training and test sets in the ratio of 70:30 respectively. This is another 

methodological flaw: several cross-validation folds, at least 3, should have been used. 

We thank the reviewer for identifying an issue with the modeling. We have revisited the Random Forest 

model and added 10 cross-validation folds as well as repeating the 70:30 test\train split 10 times.  This 

new analysis is provided in Supplementary Fig. 4a along with a detailed “Modeling” methods section.   

 

I don´t think there enough detail provided in the methods for the work to be reproduced, mainly 

because no source code data nor a repo url were provided. 

We recognize the limited methods of our previous submission. To address it, we significantly expanded 

the methods section adding information on cohorts, public data sets and their analysis, gene expression 

analysis, and updated modeling section. During this study, we did not create any new software and used 

previously published programming packages, all of which are detailed in the updated methods of the 

manuscript. The software was used according to published manuals and any specific settings are 

mentioned in the manuscript.  To further promote scientific data sharing, we created a GitHub 

(https://github.com/HJF-ACESO/Sepsis_Ghana/) repository where we describe the strategy for the data 

decomposition and projections, as well as the code used for modeling. All the cohort metadata and raw 

data will be deposited in dbGAP repository and accession links published with the publication of the 

manuscript.  

 

 

 



REVIEWER COMMENTS 
 
Reviewer #2 (Remarks to the Author): 
 
In their revised manuscript, Chenoweth et al incorporated additional analysis to understand the 
relationship of their sepsis cohort to published sepsis endotypes and the overlap between their 
gene program patterns and neutrophil transcriptional states. The authors have sufficiently 
addressed my concerns and I have no further comments. 
 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
Thank you for the opportunity to review this revised manuscript. This reviewer recognizes and 
appreciates that the authors have simplified their narrative, resulting in a more concise article. 
However, this reviewer still has two remarks on the transfer learning approach, patient selection 
and the lack of clinical characteristics of the patients. 
 
1. Re the transfer learning approach: Line 92: In order to assess generalizability of the dynamic 
PC1 pattern that is found, transfer learning is used to compare the data to publically available 
datasets. This reviewer would need some more background whether transfer learning is a valid 
technique to compare these datasets. In order to use transfer learning, the information learnt in 
the source model must be applicable to the target data. The authors have not provided any 
additional information on the methods used for this, for example whether any fine tuning was 
necessary and how this was done. Since the use of transfer learning has limited added value to 
this paper, this reviewer would politely suggest to consider to either omit the section or provide 
additional information on the methods used. If the use of transfer learning is not valid, the 
question arises of whether the CoGAPS patterns found in the Ghana cohort are applicable outside 
of this cohort. No formal validation was done without the use of transfer learning. 
 
2. Re clinical data: The reviewer has not been able to find a Table 1 with clinical information 
pertaining to this transcriptome cohort. In PMID 36806137 (Blair et al.) clinical information is 
given of a larger cohort. It is key to include clinical information of the studied transcriptome cohort 
(n=120). 
 
3. Other: Line 340: it remains unclear how the cohort was selected from parent cohort. It seems 
that patients were selected based on sex, age and survival. How was this done and why was this 
method chosen? Random sampling of patients might result in a less biased selection of patients. 
 
 
 
 
Reviewer #4 (Remarks to the Author): 
 
I do not see significance to the field in this work because it is just a simple pipeline for data 
processing. It does not provide an original method, it is the sum of a number of already available 
classical (also old) tools in machine learning. Authors themselves stated that "The study design did 
not intend to develop an original analytic method". 
 
Moreover, the methodology and the choice of such tools is not justified at all. For example, why 
random forest and not neural networks, that are known to be better models? Or at least several 
classifiers should have been used and then compared, in order to have more robust results. Also 
PCA (30`s) for dimensional reduction, why? there are many other new and better methods (t-SNE, 
UMAP, ICA, etc). 
 
The use of the term transfer learning is incorrect. Just because authors used an R package that 
has transfer learning in its name, it does not mean that what they have done is transfer learning. 
They have just applied a package for data projection. 
 



To all reviewers:  We appreciate the second round of suggestions following review of our work 

and are excited to provide a revised version of the manuscript titled “Gene Expression Signatures 

in Blood that Predict Mortality in a West African Sepsis Cohort Define Host Response 

Phenotypes.”  Please find below the point-by-point responses to the reviewer's comments.   

 

Reviewer #2 (Remarks to the Author): 

 

In their revised manuscript, Chenoweth et al incorporated additional analysis to understand the 

relationship of their sepsis cohort to published sepsis endotypes and the overlap between their 

gene program patterns and neutrophil transcriptional states. The authors have sufficiently 

addressed my concerns and I have no further comments. 

 

We thank the reviewer for prior constructive feedback and are glad we were able to satisfy all the 

requests. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Thank you for the opportunity to review this revised manuscript. This reviewer recognizes and 

appreciates that the authors have simplified their narrative, resulting in a more concise article. 

However, this reviewer still has two remarks on the transfer learning approach, patient selection 

and the lack of clinical characteristics of the patients.  

 

1. Re the transfer learning approach: Line 92: “In order to assess generalizability of the dynamic 

PC1 pattern that is found, transfer learning is used to compare the data to publically available 

datasets”. This reviewer would need some more background whether transfer learning is a valid 

technique to compare these datasets. In order to use transfer learning, the information learnt in 

the source model must be applicable to the target data. The authors have not provided any 

additional information on the methods used for this, for example whether any fine tuning was 

necessary and how this was done. Since the use of transfer learning has limited added value 

to this paper, this reviewer would politely suggest to consider to either omit the section or 

provide additional information on the methods used. If the use of transfer learning is not 

valid, the question arises of whether the CoGAPS patterns found in the Ghana cohort are 

applicable outside of this cohort. No formal validation was done without the use of transfer 

learning. 

 

We would like to thank the reviewer for additional feedback.  In response we have provided 

additional information on the rationale and methods used here for the transfer learning performed 

using the data analysis package “projectR” both in the main text and in the methods.   

 

In layman’s terms, the innovation of “projectR” is the use of a mathematical mapping function 

defined from the latent spaces (or gene expression patterns) in a source data set, which enables the 

transfer of associated cellular phenotypes, annotations, and other metadata to samples in a target 

dataset.  We would refer the reviewer to Stein-O’Brien 2019 PMID 31121116 where the sensitivity 

and specificity of “projectR” has formally been demonstrated and validated and the mathematical 

basis explained.  All the packages including “projectR” were used with standard settings and no 



tuning as communicated in the computational methods and code demonstration in our Github 

whose link is provided in the Data Availability Statement.   

  

However, although the rationale and mathematics behind “projectR” are published in many peer-

reviewed studies (Sharma 2020 PMID 32167521, Davis-Marcisak 2021 PMID 34376232), we do 

want to highlight to the reviewer that we do not rely solely on this transfer learning package for 

key conclusions and to show that the CoGAPS patterns identified in the source Ghana dataset are 

relevant to outside target datasets.  To emphasize this point we have revised Figure 2 to highlight 

the complementary findings between computational approaches and clinical datas.  Indeed the 

“projectR” package was used to support the identity and interpretation of key cellular phenotypes, 

but the same conclusions can be seen in Figure 2 using hematology and CIBERSORT that use 

direct cell measures or completely different algorithms respectively.   

 

Despite this, we do want to highlight the added value of the “projectR” transfer learning data 

analysis package to justify inclusion in our study.  Although some of our conclusions could be 

independent of this approach as highlighted in Figure 2, this tool enabled us to readily look for 

cellular phenotypes that are not routinely measured with clinical hematology or accessible due to 

limits of analytical tools in low resource settings.   In response to the reviewer’s concerns that we 

have no formal validation of these conclusions outside “projectR”, we have revised main Figure 5 

to include a panel from the supplement where we used a different approach to classify neutrophil-

associated CoGAPS patterns that validates and reinforces the transfer learning approach.     

 

 

 

2. Re clinical data: The reviewer has not been able to find a Table 1 with clinical information 

pertaining to this transcriptome cohort. In PMID 36806137 (Blair et al.) clinical information is 

given of a larger cohort. It is key to include clinical information of the studied transcriptome 

cohort (n=120). 

 

We would like to draw reviewers' attention to the file “Supplementary Data 1” that includes two 

tables that describe the transcriptome cohort split by day 28 mortality in tab 1 and gender in tab 2.  

Per the reviewer's suggestion, we have included additional clinical information to better describe 

the transcriptome cohort including demographics, medical history, clinical laboratory measures 

and sepsis clinical tool scores.  

 

 

3. Other: Line 340: it remains unclear how the cohort was selected from parent cohort. It seems 

that patients were selected based on sex, age and survival. How was this done and why was this 

method chosen? Random sampling of patients might result in a less biased selection of patients.  

 

We apologize to the reviewer for not providing sufficient information to clarify this selection 

process in our previous responses.  We used a nested case-cohort design that is a well-defined 

method for selecting a subpopulation of a cohort study population (Prentice RL. A case-cohort 

design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986;73:1–11). 

A nested design is typically used when it is unnecessary or unfeasible to test a full cohort study 

population to answer a research question. The two primary nested study designs are nested case-



control and nested case-cohort. In a nested case-cohort design, a random selection of the cohort is 

selected plus all of the participants with the specific outcome of interest (for this research question 

the outcome of interest was 28-day mortality). We chose the nested case-cohort design because 

the random sub-cohort could be used in the future in combination with all of the participants with 

a different outcome of interest to constitute a new nested case-cohort study. 

 

 

 

Reviewer #4 (Remarks to the Author): 

 

I do not see significance to the field in this work because it is just a simple pipeline for data 

processing. It does not provide an original method, it is the sum of a number of already available 

classical (also old) tools in machine learning. Authors themselves stated that "The study design 

did not intend to develop an original analytic method".  

 

We appreciate the reviewers' feedback. The objective of this study was to address a gap in the 

sepsis field that has been highlighted by key leaders.  There is a critical lack of data from diverse 

populations and low to middle income countries with respect to sepsis phenotypes (van Amstel 

2023 PMID 37851064, Mount 2023 PMID 37409899, Giamarellos-Bourboulis 2024 PMID 

38168953).  We use well-established tools tools (CoGAPS, NMF, projectR) to analyze data from 

an understudied population to fill this gap in the sepsis field.  

 

Moreover, the methodology and the choice of such tools is not justified at all. For example, why 

random forest and not neural networks, that are known to be better models? Or at least several 

classifiers should have been used and then compared, in order to have more robust results. Also 

PCA (30`s) for dimensional reduction, why? there are many other new and better methods (t-

SNE, UMAP, ICA, etc). 

 

To address reviewer's request for comparison of other tools, we performed added analysis and 

provide a new Supplementary Figure 4d comparing the SVM: support vector machine, LR: logistic 

regression, and RF: random forest.  When evaluating the performance of gene expression patterns 

to predict 28-day mortality the random forest feature selection revealed the best performance. 

  

We thank the reviewer for their comment. PCA is used in a very limited way in this study as a 

first-pass tool to understand data complexity.  In fact the main tool we employ throughout the 

manuscript relies on a nonnegative matrix factorization (NMF) tool CoGAPS and we specifically 

highlight the limitations of PCA on line 126 “PCA is limited by the constraint that components be 

orthogonal, and variability is maximized for the earliest components. This often leads to conflation 

where multiple biological effects can be contained in a single PC.  Other tools are needed for the 

analysis of dynamic, high-dimensional data in heterogeneous illnesses such as sepsis to gain 

biological insight.”    

 

The use of the term transfer learning is incorrect. Just because authors used an R package that 

has transfer learning in its name, it does not mean that what they have done is transfer learning. 

They have just applied a package for data projection. 

 



We have limited the designation of the approach as “transfer learning” throughout the manuscript.  

 

We would like to highlight to the reviewer that the package “projectR” does not have transfer 

learning in the name, rather it has been deployed in multiple peer reviewed transfer learning papers 

where identified latent spaces in a source dataset have been used to interrogate target datasets with 

validation (Sharma 2020 PMID 32167521, Stein-O’Brien 2019 PMID 31121116, Davis-Marcisak 

2021 PMID 34376232). 

 



REVIEWERS' COMMENTS 
 
Reviewer #4 (Remarks to the Author): 
 
OK with the responses. 
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