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eAppendix. Supplementary Information  

1.0 Overview 

The Prevention and Rescue of Fentanyl and Other Opioid Overdoses Using Optimized 

Naloxone Distribution Strategies (PROFOUND) model is an open-source, individual-

based microsimulation model designed to enhance the effectiveness of overdose 

prevention programs by optimizing naloxone distribution strategies. The PROFOUND 

model simulates the populations of people who are at risk of opioid overdose residing 

in each geospatial subregion within a given jurisdiction to evaluate the population-level 

impact and costs of different naloxone distribution strategies. The model provides 

evidence and outcomes to guide policy makers in choosing the overdose prevention 

strategies that maximize the use of scarce financial and organizational resources to 

save lives. Model parameters and inputs are adaptable to different jurisdictions. The 

model is intended to be tool for decision makers seeking to use available overdose 

surveillance data to set program priorities for overdose fatality prevention and rescue, 

while maintaining flexibility to respond to temporal and geographic changes in the 

opioid overdose burden. Our model code is publicly available at 

https://github.com/pph-collective/profound-model. To facilitate the use of the model in 

resource allocation decisions for naloxone distribution, we also developed a webtool 

to help disseminate the model, visualize model outcomes, and allow users to explore 

results by choosing modeling scenarios and varying a few key model parameters. This 

webtool is available at https://profoundmodel.org/ (access to the code is available upon 

request). In the current study, we aimed to compare alternative strategies to increase 

naloxone distribution through community-based programs in Rhode Island.  

https://github.com/pph-collective/profound-model
https://profoundmodel.org/
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2.0 Model description 

2.1 Model structure overview 

The PROFOUND model is an individual-based model composed of a microsimulation 

and a decision tree model. The individual-based microsimulation allows the inclusion 

of stochastic variation as well as variation due to individual characteristics, capturing 

population heterogeneities.1 It also overcomes the Markovian assumption required by 

Markov models by allowing for “memory” in the model’s structure, such as the 

individual’s history of overdose. The microsimulation model is used to track changes 

in health and drug use states and to forecast overdose events among simulated 

individuals. The decision tree is used to determine the potential pathway and 

consequence of each overdose event. 

2.2 Study population 

We initialized the simulated study population representing all individuals in Rhode 

Island age 12 years and older who are at risk for opioid overdose, including people 

with exclusive prescription opioid misuse (excluding those who also use illicit opioids), 

any non-injection illicit opioid use (excluding those who also inject illicit opioids), any 

illicit opioid use via injection, and people who exclusively use stimulants without 

intended opioid use (but whose substances may be contaminated by fentanyl, see 

eFigure 1). We also included people with an opioid use history but who are currently 

not actively using opioids. In addition, we characterized the simulated study population 

by sex (male/female), age (continuous), race/ethnicity (Black/African American [Black], 

Hispanic/Latino [Hispanic], non-Hispanic white [White], and other [Other]), city/town of 

residence (39 in total), overdose history (yes/no), and fentanyl exposure (yes/no).  

 

eFigure 1. Drug Use State Stratification 

* Whose drugs may be contaminated with fentanyl; ** exclusive prescription opioid misuse. 

In this study, we defined city/town as the subregion in Rhode Island (eFigure 2). In the 

study population initialization for the microsimulation, we first determined the 
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population size and size of each demographic group (race * age group * sex) in each 

city/town based on the American Community Survey (2010 Census) for Rhode Island.2 

Using the National Survey on Drug Use and Health (NSDUH) data (northeast region),3 

we also estimated the prevalence of opioid misuse (all types) and exclusive stimulant 

use (cocaine and methamphetamine) among each demographic group. We then 

combined results from these two datasets to estimate the opioid misuse populations 

within each demographic group in each city/town. We compared the resulting 

estimated total number of people with opioid misuse with the Rhode Island’s overall 

estimate, based on a statewide assessment of the prevalence of opioid use disorder 

for Rhode Island (5.2%)4 and the state population, and adjusted the demographic and 

jurisdiction-specific estimates by a multiplier that reflects the difference between the 

two statewide assessments. We determined the population who exclusively use 

stimulants (without intended opioid use) within each demographic group in each 

city/town using the NSDUH data without adjustment (eTable 1).  
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eFigure 2. Map of Cities/Towns in Rhode Island 

We then used the NSDUH dataset to derive, among the people with opioid misuse of 

different sex, the proportion of each type of opioid use. The variable names we used 

in the estimation process with the NSDUH data are presented in eTable 2. We also 

used a statewide cross-sectional assessment of the cascade of care for opioid use 

disorder in Rhode Island4 to determine the proportion of the simulated people with an 

opioid use history but who are currently not actively using opioids (defined as in 

recovery from opioid use disorder).  

eTable 1. Past Year Opioid Misuse and Exclusive Stimulant Use Based on the 

NSDUH Data (Before Adjustment) 

Sex Race/ethnicity Age group 
Past year opioid 

misuse, percentage 

Past year stimulant 

use, percentage 

Male White 12 to 17 0.0249 0.0039 

Male White 18 to 25 0.0671 0.0561 

Male White 26 to 34 0.0700 0.0485 

Male White 35 to 49 0.0570 0.0224 

Male White 50 to 64 0.0377 0.0128 

Male White ≥ 65 0.0159 0.0022 

Male Black 12 to 17 0.0261 0.0011 

Male Black 18 to 25 0.0537 0.0166 

Male Black 26 to 34 0.0689 0.0203 

Male Black 35 to 49 0.0414 0.0190 

Male Black 50 to 64 0.0376 0.0376 

Male Black ≥ 65 0.0251 0.0068 

Male Hispanic 12 to 17 0.0244 0.0034 

Male Hispanic 18 to 25 0.0629 0.0409 

Male Hispanic 26 to 34 0.0592 0.0394 

Male Hispanic 35 to 49 0.0460 0.0258 

Male Hispanic 50 to 64 0.0267 0.0120 

Male Hispanic ≥ 65 0.0291 0.0030 

Male Other 12 to 17 0.0222 0.0038 

Male Other 18 to 25 0.0556 0.0453 

Male Other 26 to 34 0.0603 0.0377 

Male Other 35 to 49 0.0418 0.0259 

Male Other 50 to 64 0.0301 0.0152 

Male Other ≥ 65 0.0180 0.0058 

Female White 12 to 17 0.0277 0.0034 

Female White 18 to 25 0.0675 0.0392 

Female White 26 to 34 0.0595 0.0274 

Female White 35 to 49 0.0437 0.0103 

Female White 50 to 64 0.0313 0.0063 

Female White ≥ 65 0.0117 0.0010 

Female Black 12 to 17 0.0352 0.0015 
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Female Black 18 to 25 0.0463 0.0121 

Female Black 26 to 34 0.0447 0.0109 

Female Black 35 to 49 0.0308 0.0122 

Female Black 50 to 64 0.0313 0.0146 

Female Black ≥ 65 0.0083 0.0000 

Female Hispanic 12 to 17 0.0361 0.0038 

Female Hispanic 18 to 25 0.0524 0.0317 

Female Hispanic 26 to 34 0.0478 0.0229 

Female Hispanic 35 to 49 0.0307 0.0114 

Female Hispanic 50 to 64 0.0132 0.0051 

Female Hispanic ≥ 65 0.0209 0.0000 

Female Other 12 to 17 0.0303 0.0046 

Female Other 18 to 25 0.0609 0.0322 

Female Other 26 to 34 0.0478 0.0174 

Female Other 35 to 49 0.0299 0.0100 

Female Other 50 to 64 0.0240 0.0051 

Female Other ≥ 65 0.0139 0.0000 

 

eTable 2. Variable Names Used in the NSDUH Data Derivation 

Variable Variable name  Definition in NSDUH Estimation 

Opioid misuse HERPNRYR HEROIN USE AND/OR PAIN 

RELIEVER MISUSE - PAST 

YEAR 

 

Illicit opioid use HERYR HEROIN - PAST YEAR USE  

Prescription opioid 

misuse 

  (HERPNRYR = 1) – 

(HERYR = 1) 

Illicit opioid use 

(Injection) 

HRNDLREC TIME SINCE LAST USED 

NEEDLE TO INJECT HEROIN 

(within in the past 12 months) 

 

Illicit opioid use 

(Injection) 

  (HERYR = 1) – 

(HRNDLREC = 1) 

Stimulant use 

(without opioid use) 

COCYR 

METHAMYR 

COCAINE - PAST YEAR USE 

METHAMPHETAMINE - PAST 

YEAR USE 

(COCYR = 1) OR 

(METHAMYR = 1) – 

(HERPNRYR = 1) 

We then assigned the initial overdose history variable value (yes/no) to simulated study 

individuals, stratified by type of drug use based on evidence from literature (eTable 3). 

This variable is updated during the micro-simulation when overdoses occur. The initial 

level of fentanyl exposure (intentional use of fentanyl or fentanyl-contaminated drugs) 

was also estimated from the literature.5-8 We assumed that fentanyl exposure is limited 

to people who use illicit opioids, stimulants, and prescription opioids not from 

prescribers, whereas people who exclusively misuse prescription opioids sourced from 

prescribers (including those from friends/relatives who were prescribed these opioids) 

are not at risk for fentanyl exposure. Estimates for the source of prescription opioids 
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were based on NSDUH data. We also applied a monthly increase of 0.5% [0% - 1%]9 

in the proportion of individuals exposed to fentanyl (same growth rate applied to people 

who use illicit opioids, stimulants, and prescription opioids not from prescribers) to 

account for secular trends in the period before March 2020. eTable 3 presents the 

resulting list of parameters used in defining the study population.  

eTable 3. Study Population Parameters 

Parameter Value Range Source 

Population size in Rhode Island 1,059,000  2 

Prevalence of opioid misuse 5.2% 3.7% – 6.7% 4 

Proportion of illicit opioid use among males 

who misuse opioids 
16.6%  NSDUH 

Proportion of illicit opioid use among females 

who misuse opioids 
12.1%  NSDUH 

Proportion of illicit opioid use (via injection) 

among males who use illicit opioids 
48.6%  NSDUH 

Proportion of illicit opioid use (via injection) 

among females who use illicit opioids  
41.1%  NSDUH 

Proportion of stimulant use (via injection) 

among people who exclusively use stimulants 
13.3%  3 

Proportion of inactive opioid use status among 

people who misuse opioids 
9.1% 8.6% – 9.6% 4 

Proportion of people with prescription opioid 

misuse who have ever overdosed 
19.1%  10 

Proportion of people with illicit opioid use 

(non-injection) who have ever overdosed 
25.2%  11 

Proportion of people with illicit opioid use 

(injection) who have ever overdosed 
47.9%  12 

Proportion of people with stimulant use 

(without opioid use) who have ever overdosed 
25.2%  11 

Proportion of prescription opioids from 

sources other than from doctor 
19.23%  NSDUH 

Initial proportion of fentanyl exposure among 

people who use non-prescription opioids 
56.4% 41.6% - 86.6% 5-7 

Initial proportion of fentanyl exposure among 

people who exclusively use stimulants  
15.7% 14.3% - 17.0% 8 

Monthly growth in fentanyl exposure 0.5% 0 – 1% 9 

2.3 Opioid overdose risk (microsimulation) 

Naloxone is only effective in reversing overdoses caused by opioids. We modeled 

opioid overdose only and assumed different monthly risks of overdose for different 

patterns of opioid use based on the literature (eTable 4). Overdose events in each 

monthly time-step are randomly drawn among simulated individuals according to these 

probabilities of experiencing overdose. In general, people who use illicit opioids face a 

higher risk of overdose than those with exclusive prescription opioid misuse and those 
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who use injection illicit opioids have a higher risk of overdose than those who use non-

injection illicit opioids. We accounted for several factors that can elevate risk of 

overdose: (1) fentanyl exposure; (2) overdose history, where risk for subsequent 

overdose was assumed to be higher than risk for the initial overdose; and (3) first 

month of opioid use after being in the inactive opioid use state (see Section 2.4 below), 

to account for elevated risk associated with decreased tolerance for opioids after a 

period of abstinence. We assumed that the risk of opioid overdose was zero for people 

in the inactive opioid use state and people who exclusively use stimulants but whose 

drugs are not contaminated by fentanyl. In the absence of clear evidence about the 

risk of opioid overdose among those whose stimulants were contaminated by fentanyl, 

we assumed this risk was equal to the risk for those whose non-injection illicit opioids 

contain fentanyl.  

Simulated individuals who experience opioid overdose in each monthly time-step are 

assigned subsequent outcomes using the decision tree (see Section 2.5 below). 

eTable 4. Risk of Opioid Overdose for Each Opioid Use Health State 

Parameter Value Range Source 

Monthly probability of overdose 

(subsequent), exclusive prescription 

opioid misuse 

0.0026 0.00121 – 0.00455 13 

Monthly probability of overdose 

(subsequent), non-injection illicit opioid 

use 

0.0154 0.0122 – 0.0186 14 

Relative risk of overdose for injection 

opioid use (compared to non-injection 

illicit opioid use) 

3.1 1.8 – 4.4 15,16 

Relative risk of overdose for fentanyl 

exposure 
6.07 3.63 – 10.16 17,18 

Relative risk of overdose during the 

first month of opioid relapse 
4.3 3.6 – 5.2 19 

Relative risk of overdose for 

subsequent versus first overdose 
3.5 1.9 – 6.4 14 

 

2.4 Transitions between health states (microsimulation) 

Individuals’ transitions between health states are determined using a random process 

drawn from a transition probability matrix (eTable 5). Transition probabilities were 

estimated from the published literature.  

If a simulated individual is in the exclusive prescription opioid misuse health state, in 

each monthly time-step this individual is subject to a monthly probability of transiting 

to non-injecting illicit opioid use;20 individuals in the non-injection illicit opioid use health 

state can transition to illicit injection opioid use;21 and individuals in the illicit injection 

opioid use health state can transition back to illicit non-injection opioid use22. 

Individuals in each of these three opioid use states can also transition between these 
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opioid use states and an inactive opioid use state (due to treatment or recovery).23-25 

We also included as a separate health state for the first month of opioid use after being 

in the inactive state (relapse)26 to account for the elevated risk of overdose, after which 

the simulated individuals would transit (with a transition probability of 1) to the same 

active opioid use state prior to being in the inactive opioid use state. For simplicity, we 

did not account for potential transitions between opioid use states and stimulant use 

states, and we did not include inactive stimulant use state. 

In addition, simulated individuals in all health states are subject to age-specific risk of 

death due to causes other than overdose (“background mortality”), which we 

calculated by converting published annual death rates (based on life tables27) into 

monthly probabilities (eTable 6) and applying a multiplier to reflect higher risks among 

people who use drugs.28 

eTable 5. Monthly Health State Transition Probability Matrix 

From 

To   

Prescription 

opioid 

Non-injection 

illicit opioid 

Injection 

illicit opioid 

Inactive 

opioid use 

Prescription opioid - 0 0 0 

Illicit non-injection 

opioid 

0.000418 - 0.0148 0 

Illicit injection opioid 0 0.00824 - 0 

Inactive* 0.00374 0.00595 0.00254 - 

Relapse (1 month) 0 0 0 0.0452 

*Data presented here represent the estimates for the initial period, while the transition 

probabilities into the inactive opioid use period are subject to a monthly growth rate of 0.59% 

according to the increase in the number of people on medication assisted treatment in Rhode 

Island.29 

eTable 6. Background Age-Stratified Mortality Rate Excluding Death Due to 

Overdose 

Age group 

All-cause death rate among 

general population, per 100, 

000 

Death rate among people who 

use drugs, per 100, 000* 

 Annual Monthly Annual Monthly 

14 years and under 13.3 1.11 34.4 2.87 

15 to 24 years 70.2 5.85 181.8 15.2 

25 to 34 years 128.8 10.7 333.6 27.8 

35 to 44 years 194.7 16.2 504.3 42.1 

45 to 54 years 359.9 30.0 932.1 78.0 

55 to 64 years 886.7 74.2 2296.6 193.4 

65 years and over 4386.1 373.1 11360.0 999.9 

* Calculated using a multiplier for the mortality rate among people who use drugs compared to 

general population. Only the death rates among people who use drugs were used in the model. 
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2.5 Opioid overdose events (decision tree) 

We used a decision tree module to determine the pathways and consequences for 

each overdose event. Model parameters for the decision tree are presented in eTable 

7. In the decision tree, each node is associated with branches defined by a set of 

probabilities that add up to one. The probabilities vary depending on the characteristics 

of the simulated individuals and the outcomes from the previous nodes. These nodes 

include the setting of the overdose (public versus private/semi-private), whether the 

overdose is witnessed, whether naloxone is administered (among witnessed 

overdoses), whether emergency medical services (EMS) is called (among witnessed 

overdoses), whether the overdosed individual receives emergency department (ED) 

care (among those for whom EMS is called), and whether the individual dies or 

survives.  

In the decision tree, the probabilities of an overdose being witnessed and of a witness 

calling for help from EMS depends on the setting of overdose (public versus 

private/semi-private). The probability of dying from an overdose depends on whether 

naloxone is administered and whether EMS is called. The baseline probability of dying 

from an overdose where no naloxone is administered nor EMS called is based on 

observational studies.30,31 Unlike previous modeling studies, we did not assume the 

probability of dying when naloxone is administered is zero; instead we derived this 

estimate from a systematic review of observational studies which used a pooled 

estimate of the proportion of opioid overdoses where naloxone kits were used that 

resulted in death.32 This may be a conservative assumption about the effectiveness of 

naloxone but it may also be warranted in the current era of fentanyl use. We also 

included a lower relative risk of death from overdose when EMS is called but no 

naloxone is administered by a witness.33,34 

If the simulated individual survives, this individual then returns to the microsimulation  

either in the inactive opioid use health state35 or in the same active drug use health 

state as prior to overdose, but with a history of overdose. 

eTable 7. Decision Tree Parameters 

Parameter Value Range* Source 

Proportion of overdoses occurring in public 

settings 
0.12 0.05 – 0.31 Assumption 

Probability of an overdose being witnessed in 

public settings 
0.82 0.75 – 0.88 17,18 

Relative risk of an overdose being witnessed 

in private/semi-private versus public settings 
0.6 0.2 – 1 Assumption 

Probability of witness(es) calling EMS in 

public settings 
0.66 0.56 – 0.80 19,36-38 

Relative risk of witness(es) calling EMS in 

private/semi-private versus public settings 
0.59 0.4 – 0.7 36,38 

Probability of transport to hospital for ED care  0.9 0.85 – 0.95 14 
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Probability of ceasing opioid use after 

surviving an overdose 
0.076 0.048 – 0.116 35 

Probability of dying from an overdose (no 

naloxone, no EMS) 
0.0588 0.0310 – 0.108 30,31 

Probability of dying from an overdose with 

naloxone administered 
0.0086 0.0056 – 0.0132 30,32 

Relative risk of death from overdose with EMS 

called (no naloxone) 
0.588 0.419 – 0.758 33,34 

* For parameters entering calibration, the ranges represent prior ranges before calibration  

2.6 Naloxone availability algorithm 

To estimate the probability of naloxone being available and administered during a 

witnessed overdose, we adopted a previously used approach by Irvine et al.39 

assuming the probability is a nonlinear function of the number of naloxone kits in 

circulation and the size of the population at risk for opioid overdose. These variables 

can vary by city/town: 

𝑃𝑡
𝑟 = 𝑐(1 − exp (−(𝜏/𝑐)

𝑁𝑋𝑐𝑡
𝑟 +𝑁𝑋𝑝𝑡

𝑟 ∗ 𝑅𝑒𝑓𝑓
𝑝𝑐

𝑁𝑃𝑡
𝑟 ) 

𝑁𝑋𝑐𝑡
𝑟 = 𝑁𝑋𝑐𝑡−1

𝑟 (1 − 𝑟𝑤) + 𝑁𝑋𝑐𝑦𝑟
𝑟 /12 

𝑁𝑋𝑝𝑡
𝑟 = 𝑁𝑋𝑝𝑡−1

𝑟 (1 − 𝑟𝑤) + 𝑁𝑋𝑝𝑦𝑟
𝑟 /12 

where 𝑃𝑡
𝑟 denotes the probability that naloxone is available and administered during 

a witnessed overdose in region r at time t; 𝑐 denotes the cap on naloxone availability, 

which was assumed to be 0.99; 𝜏  denotes the adjustment factor for naloxone 

availability, whose value is determined in model calibration (see Section 3.2); 𝑁𝑋𝑐𝑡
𝑟 

denotes the number of naloxone kits from OEND (community-based) programs in 

circulation in region r at time t; 𝑁𝑋𝑝𝑡
𝑟  denotes the number of naloxone kits from 

pharmacies in circulation in region r at time t; 𝑅𝑒𝑓𝑓
𝑝𝑐

 denotes the ratio of effectiveness 

of pharmacy programs in reaching at-risk population compared to OEND programs 

(0.371 [0.345, 0.4], based on an observational study for the correlates of naloxone 

recipient characteristics with distribution program characterisics40); 𝑁𝑃𝑡
𝑟 denotes the 

number of at-risk (for opioid overdose) individuals residing in region r at time t based 

on model estimates; 𝑟𝑤  denotes the monthly rate of naloxone withdrawn due to 

expiration/loss (1/15.5 months, i.e., 6.5%), based on an unpublished analysis of the 

New York City Department of Health and Mental Hygiene Naloxone Recipient Form 

data for the average circulation time for naloxone kits; 𝑁𝑋𝑐𝑦𝑟
𝑟  denotes the number of 

naloxone kits from OEND (community-based) programs received by residents in 

region r in a given year; 𝑁𝑋𝑝𝑡
𝑟 denotes the number of naloxone kits from pharmacies 

received by residents in region r in a given year. Naloxone data for the number of 

naloxone kits distributed by OEND programs and received by residents of each 

subregion (i.e., city/town) were derived from data collected by the Rhode Island 

Department of Health (RIDOH) using a statewide, standardized reporting form for each 
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individual receiving naloxone kit(s) from any OEND programs. Because subregional 

level data for naloxone distribution from pharmacies were unavailable in Rhode Island, 

we used the aggregate annual number of naloxone kits distributed by pharmacies in 

the state and assumed the amount received was proportional to the size of at-risk 

population in each subregion. 

2.7 Population dynamics 

When simulated individuals leave the model due to age-stratified background mortality 

(eTable 6) or overdose death (eTable 7), the deceased individuals were replaced by 

new ones with the same initial characteristics except for overdose history (reset as 0). 

This allowed us to maintain a fixed size of the simulated population of people at risk of 

overdose in Rhode Island. For simplicity we did not include in-migration/out-migration 

at the state or city/town level. 
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3.0 Model calibration 

Model calibration refers to the process of matching model outcomes with observed 

data by adjusting uncertain model parameters and establishing plausible ranges that 

provide the best fit to available data.41 Calibrating model inputs to observed 

epidemiological endpoints ensures the credibility of model results and thus strengthens 

our confidence in model inferences. We used a two-step calibration procedure for the 

PROFOUND model. First, we conducted an initial calibration of a smaller set of model 

parameters associated with overdose setting that are only used in the decision tree 

model. We then conducted a formal calibration for the entire model.  

3.1 Initial calibration to determine overdose setting parameters in the decision tree 

During data collection to inform our model, we identified substantial differences 

between the settings of fatal opioid overdoses in data from the State Unintentional 

Drug Overdose Reporting Surveillance42 and Rhode Island Office of the State Medical 

Examiners43 compared to data on the settings of non-fatal opioid overdose collected 

by the Rhode Island Emergency Medical Services (EMS) Information System.44 In the 

first source approximately 10% of fatal opioid overdoses were reported to occur in 

public settings, as compared to approximately 31% of non-fatal opioid overdose 

reported in EMS data. This difference is likely attributable to the overrepresentation of 

opioid overdoses occurring in public captured by the EMS system and/or higher 

survival rates from overdoses occurring in public as a result of higher likelihood of 

being intervened and rescued. To address these differences, we performed calibration 

for three parameters: (1) proportion of overdoses occurring in public settings; (2) 

relative risk of overdose being witnessed in private/semi-private versus public settings; 

and (3) relative risk of witness(es) calling EMS in private/semi-private versus public 

settings. The calibration was compared against the two targets for opioid overdose 

setting derived from fatal overdose surveillance data and EMS data (for non-fatal 

overdoses). The prior values and distributions for the calibration parameters and 

targets are presented in eTable 8. 

In this initial calibration, we used a Bayesian method with the incremental mixture 

importance sampling (IMIS) algorithm45 (using R package IMIS46). Given the 

challenges in calibrating a stochastic model (due to Monte Carlo error),45 we first 

transformed the decision tree model from individual-based to cohort-based (i.e., from 

stochastic to deterministic) assuming a cohort of 10,000 individuals experiencing 

overdose. All other decision tree parameters were held fixed at their prior point 

estimates, since they were independently defined from the calibration targets and had 

low influence on the calibration targets.45 We generated a posterior sample of one 

million parameter sets from the IMIS algorithm. The results, including the posterior 

distribution of calibrated parameters and model fit to calibration targets, are presented 

in eFigure 2. 
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eFigure 3. Results of Preliminary Model Calibration to Observed Fatal and Non-Fatal Overdose Setting Data 

RR: relative risk 
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eTable 8. Preliminary Calibration Parameters and Targets 

 

3.2 Formal calibration of the entire model before 2020 

In the formal calibration for the entire model before 2020, we used a random search 

calibration approach to repeatedly sample from estimated uncertainty ranges for 16 

key model parameters that had the greatest influence on target estimates (eTable 9). 

We compared model projections against three targets in each year between 2016 to 

2019 in Rhode Island reported by the Rhode Island Department of Health: (1) the 

number of opioid overdose deaths (OODs); (2) the percentage of OODs involving 

fentanyl; and (3) the number of emergency department visits related to opioid overdose 

(eTable 9). We used a Latin hypercube sampling method47 to draw one million random 

parameters sets from the parameters’ uncertainty range, augmented them with the one 

million sets of overdose setting parameters from the initial calibration and one million 

random seeds (to ensure reproducibility of results), simulated the model with these 

sets of inputs and seeds, and compared the resulting model projections against the 

selected calibration targets. We identified 500 calibrated subsets (and seeds) providing 

the best goodness-of-fit statistics for subsequent analysis. The goodness-of-fit (GoF) 

was measured by the mean percentage deviation, as shown in the equation below: 

𝐺𝑜𝐹 =
1

𝑁
∑

|𝑝𝑟𝑜𝑗𝑖 − 𝑜𝑏𝑠𝑖|

𝑜𝑏𝑠𝑖
𝑖

 

where N represents the number of calibration targets, 𝑝𝑟𝑜𝑗𝑖 represents the model-

projected result for the 𝑖𝑡ℎ target, and 𝑜𝑏𝑠𝑖 represents the observed estimate for the 

𝑖𝑡ℎ target. Smaller values of the GoF indicate a better fit to the observed data. 

This approach, together with the stochastic process embedded within the 

microsimulation design, allowed us to derive calibrated model parameters providing 

 Prior value Prior distribution Source 

Model parameter    

Proportion of overdoses occurring 

in public settings 
0.12 Uniform (0.05, 0.31) Assumption 

Relative risk of an overdose being 

witnessed in private/semi-private 

versus public settings 

0.6 Uniform (0.2, 1) Assumption 

Relative risk of witness(es) calling 

EMS in private/semi-private versus 

public settings 

0.59 Uniform (0.4, 0.7) 36 

Calibration target*    

Percentage of non-fatal opioid 

overdoses resulting in EMS in 

public settings 

30.8% Normal (0.308, 0.0314) 42,43 

Percentage of fatal opioid 

overdoses in public settings 
10% Normal (0.1, 0.0102) 44 
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good fit to observed targets while simultaneously exploring the uncertainty of model 

outcomes resulting from both parameter uncertainty (the uncertainty in estimation of 

the parameter of interest) and stochastic uncertainty (random variability in outcomes 

between identical simulated agents).41 We present in eTable 9 the posterior value of 

parameters after this calibration. 

eTable 9. Calibrated Parameters and Values 

Parameters Table Prior value Prior range 
Posterior range (95% 

credible interval) 

Baseline prevalence of fentanyl in 

opioids from non-prescription sources 
eTable 3 56.4% 41.6% – 72.4% 56.8% (42.3% – 71.5%) 

Monthly growth in fentanyl prevalence eTable 3 0.5% 0 – 1% 0.82% (0.44% – 1%) 

Monthly probability of subsequent 

overdose, prescription opioid use 
eTable 4 0.0026 0.00121 – 0.00455 0.0024 (0.0013 – 0.0040) 

Monthly probability of subsequent 

overdose, non-injection illicit opioid use 
eTable 4 0.0154 0.0122 – 0.0186 0.0154 (0.0123 – 0.0184) 

Relative risk of overdose for injection 

opioid use 
eTable 4 3.1 1.8 – 4.4 3.07 (1.85 – 4.33) 

Relative risk of overdose for fentanyl 

exposure 
eTable 4 6.07 3.63 – 10.16 6.50 (3.94 – 9.77) 

Relative risk of overdose during the first 

month of opioid relapse 
eTable 4 4.3 3.6 – 5.2 4.42 (3.66 – 5.17) 

Relative risk of overdose for first versus 

subsequent overdose 
eTable 4 3.5 1.9 – 6.4 4.39 (2.24 – 6.30) 

Probability of dying from an overdose 

(no naloxone, no EMS) 
eTable 7 0.0588 0.0310 – 0.108 0.040 (0.032 – 0.053) 

Probability of dying from an overdose 

with naloxone administered 
eTable 7 0.0086 0.0056 – 0.0132 0.010 (0.0058 – 0.013) 

Relative risk of death from overdose with 

EMS called (no naloxone) 
eTable 7 0.588 0.419 – 0.758 0.58 (0.43 – 0.75) 

Probability of an overdose being 

witnessed in public settings 
eTable 7 0.82 0.75 – 0.88 0.81 (0.76 – 0.88) 

Probability of witness(es) calling EMS in 

public settings 
eTable 7 0.66 0.56 – 0.80 0.69 (0.57 – 0.79) 

Probability of transport to hospital for ED 

care  
eTable 7 0.9 0.85 – 0.95 0.90 (0.85 – 0.95) 

Probability of ceasing opioid use after 

surviving an overdose 
eTable 7 0.076 0.048 – 0.116 0.080 (0.050 – 0.114) 

Adjustment factor for naloxone 

availability 
Assumed 1 0.75 – 1.25 1.00 (0.77 – 1.23) 
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3.3 Calibration of model after 2020 

Incorporating the most recent naloxone distribution data between 2020 to 2022,48 we 

updated our model by calibrating it to match the observed annual number of OODs in 

2020 and 2021 to capture the spike in OODs during the COVID-19 pandemic.9 The 

surveillance data showed that the annual number of drug overdose deaths involving 

cocaine increased by nearly 50% from 2019 to 2021. Using the same 500 sets of 

calibrated parameters from the previous model calibration before 2020, we iteratively 

adjusted a multiplier to the proportion of fentanyl exposure among people who 

exclusively use stimulants from March 2020 onwards (using the parameter value from 

December 2019 as a basis). We assumed a prior range for this multiplier to be 1 to 2, 

and we adjusted this multiplier until the model projected number of OODs in 2020 and 

2021 matched with the observed numbers. Through calibration, we determined this 

multiplier to be 1.52. Please see eFigure 4 for calibration results. Subsequently, we 

maintained this parameter at the newly calibrated value throughout our scenario 

evaluation period (2022 to 2025). 
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eFigure 4. Model Calibration to Observed Opioid Overdose Deaths in Rhode Island (2016-2021) 

SI: simulation interval 
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4.0 Model validation 

Model validation refers to the process of evaluating a model’s accuracy in making relevant projections.49 In particular, external validation entails the 

comparison of model projections to external estimates of key clinical and epidemiological data not used in the model. Given that our model was calibrated 

to epidemiological targets at the state level but our model was built to replicate the opioid overdose epidemics in each city/town, we compared our 

projections for the annual number of OODs in each city/town from the 500 calibrated parameter sets with Rhode Island Department of Health surveillance 

data at the city/town level from 201950 to examine whether the observed numbers fall within the 95% simulation intervals of the model estimates in each 

jurisdiction (eFigure 5). The results show that the surveillance data for all cities/towns but one (Lincoln) fell within the 95% simulation intervals of the 

model estimates. 

 

eFigure 5. Model validation to the City/Town-Level Number of Opioid Overdose Deaths in 2019 

Legend: suppressed numbers for cities/towns with <5 OODs (required by RIDOH) were recoded as 4 for visualizations purposes and to match the state-level total
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eTable 10. Model Results for Annual Opioid Overdose Deaths in 2025 Under Different Modeling 

Scenarios 

Overdose witness in 

private/semi-private settings 
Status quo naloxone 

Opioid settlement, 

supply-based 

Opioid settlement, 

Demand-based 

Baseline witness 
384  

[279, 507] 

360 (-6.3%) 

[260, 486] 

351 (-8.8%) 

[246, 483] 

Witness * 1.1 
367 (-4.5%) 

[363, 488] 

341 (-11.4%) 

[235, 461] 

331 (-13.9%) 

[222, 452] 

Witness * 1.2 
352 (-8.5%) 

[247, 472] 

323 (-16.0%) 

[213, 450] 

313 (-18.7%) 

[205, 430] 

Witness * 1.3 
337 (-12.3%) 

[231, 460] 

305 (-20.6%) 

[197, 431] 

294 (-23.6%) 

[176, 422] 

Witness * 1.4 
319 (-17.1%) 

[216, 440] 

286 (-25.5%) 

[180, 411] 

273 (-28.9%) 

[161, 399] 

Witness * 1.5 
305 (-20.7%) 

[201, 427] 

270 (-29.9%) 

[168, 394] 

256 (-33.4%) 

[151, 379] 

Witness * 1.6 
292 (-24.1%) 

[196, 412] 

256 (-33.5%) 

[157, 370] 

241 (-37.4%) 

[137, 365] 

The results are presented by the mean value (relative reduction compared to status quo naloxone 

with baseline overdose witness) and [95% simulated interval] based on the 500 calibrated model 

parameter sets. 
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5.0 Sensitivity analysis 

To account for the potential increase in solitary drug use during the COVID-19 pandemic period that 

may have influenced the opioid overdose deaths and uncertainty surrounding the persistence of the 

pandemic's impact, we also performed sensitivity analysis for two scenarios: (1) a scenario where the 

probability of overdose witnessing was reduced by 50% from March 2020 onward (eFigure 6); (2) a 

scenario where the increase in proportion of fentanyl exposure among people who exclusively use 

stimulants was eliminated from January 2023 onward (eFigure 7).
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eFigure 6. Sensitivity analysis on the Reduced Probability of Witnessed Overdoses 
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eFigure 7. Sensitivity Analysis on the Persistence of the COVID-19 Impacts 
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