

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Community-acquired pneumonia – Use of clinical characteristics of acutely admitted patients for the development of a diagnostic model: A cross-sectional multicentre study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-079123
Article Type:	Original research
Date Submitted by the Author:	22-Aug-2023
Complete List of Authors:	Cartuliares, Mariana; University Hospital of Southern Denmark, Department of Emergency Medicine ; University of Southern Denmark, Department of Regional Health Research Mogensen, Christian Backer; University of Southern Denmark, Institute for Regional Health Research; University Hospital of Southern Denmark, Department of Emergency Medicine Rosenvinge, Flemming; Odense Universitetshospital, Department of Clinical Microbiology; University of Southern Denmark, Research Unit of Clinical Microbiology; University Hospital of Southern Denmark, Department of Biochemistry and Immunology Lorentzen, Morten; University Hospital of Southern Denmark, Department of Emergency Medicine ; University of Southern Denmark, Department of Emergency Medicine ; University of Southern Denmark, Department of Regional Health Research Heltborg, Anne; University Hospital of Southern Denmark, Department of Regional Health Research Hertz, Mathias ; University of Southern Denmark, Department of Regional Health Research Hertz, Mathias ; University Hospital, Infectious Diseases Department Kaldan, Frida; University Hospital of Southern Denmark, Department of Emergency Medicine Specht, Jens ; University Hospital of Southern Denmark, Department of Emergency Medicine Skjøt-Arkil, Helene; University Hospital of Southern Denmark, Department of Emergency Medicine Skjøt-Arkil, Helene; University Hospital of Southern Denmark, Department of Emergency Medicine
Keywords:	ACCIDENT & EMERGENCY MEDICINE, INFECTIOUS DISEASES, Aged

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TITLE

Community-acquired pneumonia – Use of clinical characteristics of acutely admitted patients for the development of a diagnostic model: A cross-sectional multicentre study

Authors

Mariana Bichuette Cartuliares^{* 1, 2}, Christian Backer Mogensen ^{1, 2}, Flemming Schønning Rosenvinge ^{3, 4}, Thor Aage Skovsted ⁵, Morten Hjarnø Lorentzen ^{1,2}, Anne Heltborg^{1,2}, Mathias Amdi Hertz ^{6,7}, Frida Kaldan¹, Jens Juel Specht¹, Helene Skjøt-Arkil ^{1,2}

*Corresponding author: Emergency Department, University Hospital of Southern Denmark, Kresten Philipsens vej 15, 6200 Aabenraa, Denmark; Email: <u>mbc@rsyd.dk</u>

Author affiliations

¹Emergency Department, University Hospital of Southern Denmark, Aabenraa, Denmark ²Department of Regional Health Research, University of Southern Denmark, Odense, Denmark ³Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark ⁴Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark ⁵Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark ⁶Department of Clinical Research, University of Southern Denmark, Odense, Denmark ⁷ Infectious Diseases Department, Odense University Hospital, Odense, Denmark

Strength and limitations

- This is a multicentre study with prospectively collected data
- Least absolute shrinkage and selection operator regression was used to establish a score for community-acquired pneumonia, and the performance of the diagnostic model was evaluated using the area under the receiver operating characteristic curve and calibration curves.

- This diagnostic prediction model could be improved in the future by adding diagnostic tools such as imaging or serological markers.
 - External validation of the model using the clinical score for community-acquired pneumonia is lacking.

ABSTRACT

Objectives: This study aimed to describe the clinical characteristics of adults with acute communityacquired pneumonia (CAP) upon hospitalisation, evaluate their prediction performance for CAP and compare the performance of the model to the initial assessment of the physician.

Design: Cross-sectional, prospective, multicentre study.

Setting: The data originates from the INfectious DisEases in Emergency Departments study and were collected prospectively from patient interviews and medical records. The study included four Danish medical emergency departments (EDs) and was conducted between 1 March 2021 to 28 February 2022. Participants: A total of 954 patients admitted with suspected infection were included in the study. Primary and secondary outcome: The primary outcome was CAP diagnosis assessed by an expert panel. Results: According to expert evaluation, CAP had a 28% prevalence. Thirteen diagnostic predictors were identified using Least absolute shrinkage and selection operator regression to build the prediction model: dyspnea, expectoration, cough, common cold, malaise, chest pain, respiratory rate (>20/min), oxygen saturation (< 96%), abnormal chest auscultation, leucocytes (<3,5 or >8,8 10E9/L) and neutrophilocytes (>7.5 10E9/L). In addition, C-reactive protein (<20 mg/L) and having no previous event of CAP contributed negatively to the final model. The predictors yielded good prediction performance for CAP with an area under the ROC of 85% with a sensitivity of 86% (79%-93%) and specificity of 64% (57%-71%) using a 35% cut-off. However, the initial diagnosis made by the ED physician performed better, with 86% (84%-89%) sensitivity and 75% (72%-78%) specificity.

BMJ Open

Conclusion: Typical respiratory symptoms combined with abnormal vital signs and elevated infection biomarkers were predictors for CAP upon admission to an ED. The clinical value of the prediction model is questionable in our setting. Further studies adding novel diagnostic tools and using imaging or serological markers are needed to improve the model, helping diagnose CAP in an ED setting more accurately.

Keywords: community-acquired pneumonia; diagnostic prediction model; emergency department

Word count: 3.771

INTRODUCTION

Community-acquired pneumonia (CAP) is an increasing cause of hospitalisation and mortality, especially among elderly patients [1-5]. Early diagnosis and accurate treatment at the emergency department are essential to avoid serious complications such as bacteremia, sepsis, organ failure, and death [6] and to fight antimicrobial resistance [7].

Traditionally, the diagnosis of CAP generally requires a new infiltrate on chest x-ray with a clinically compatible syndrome [8]. These symptoms aren't sufficient to diagnose or exclude CAP, as they overlap with other diseases [8] and can be subtle in patients with advanced age and/or impaired immune systems [9, 10]. Chest x-ray is imprecise as diagnostic tool for CAP, risking under/over diagnosis [11, 12] and might not the optimal reference standard for CAP. This variability of clinical signs and symptoms combined with non-specific diagnostic tools [12], biomarkers [13, 14], and time-consuming microbiological tests [9] challenges physicians in differentiating CAP from other infections [10, 15].

The CAP population today has also changed with the increasing ageing [16], higher multimorbidities [17], and immunomodulatory treatments. Our knowledge of CAP symptoms and signs therefore need to be adapted to the actual population.

BMJ Open

Previously, prediction models for the diagnosis of CAP have been developed based primarily on prognostic factors including severity assessment [18, 19], observations in a primary care setting only [20-22], or an outcome diagnosis based solely on the registered discharge diagnosis in the medical record or positive chest x-ray findings [22, 23]. A valid outcome diagnosis is essential. An expert panel using several available information might be the best reference standard in pragmatic studies [11].

Therefore, there is a need to describe clinical characteristics of the current population of patients admitted with CAP and develop an improved diagnostic model to be used upon arrival at the emergency room that include physical examination, blood tests, vital signs, patient medical history, and healthcare expertise. Given the current diagnostic tool inaccuracies, an expert-panel-based diagnostic model is expected to surpass the ED physicians' initial accuracy.

Hypothesis and objectives

We hypothesised that developing of a diagnostic prediction model using well-defined clinical characteristics could assist an ED physician in an earlier, more precise CAP diagnosis. Therefore, the aim was to identify the clinical characteristics of adults admitted with CAP and evaluate their performance in a prediction model.

The objectives were:

- To investigate clinical characteristics in patients with a CAP diagnosis from i) all patients admitted with suspected infection and ii) patients suspected of CAP
- 2) To develop and evaluate a diagnostic model to identify patients with CAP among ED patients suspected of infection and to compare the performance of the model to the initial assessment of the ED physician

METHODS

The study was reported following "The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis" (TRIPOD) statement [24] and conducted in agreement with the Declaration of Helsinki-Ethical principle for medical research involving human subjects. The protocol was approved by the Regional Committee on Health Research Ethics for Southern Denmark (S- 20200188), registered by the Danish Data Protection Agency (no. 20/60508), and by ClinicalTrials.gov (NCT04681963).

Study design, source of data, and setting

This study had a prospective, analytical cross-sectional, multicentre design. The data originates from the INfectious DisEases in Emergency Departments (INDEED) study. The published study protocol provides further detailed information [25]. Four Danish medical EDs participated, covering around 775,000 inhabitants, during March 1, 2021, to February 28, 2022.

In Denmark, patients can be directed to various specialties within the ED, e.g. medical, gastrointestinal surgery, cardiology, orthopedics, gynecology, psychiatry, and intensive care [26]. Suspected infection cases usually are assigned to the medical ED.

Participants

Adult patients (≥ 18 years) admitted to the medical ED were eligible to participate. Patients were included if the ED physician suspected infection and if the patients could provide verbal and written consent. The exclusion criteria included: i) need for urgent, life-saving treatment, ii) transferal to intensive care, iii) admission within the last fortnight, iv) verified SARS-CoV-2 infection at the time of admission or within 14 days before admission, v) severe immunodeficiencies (HIV positive, with a cluster of differentiation 4 cell count <200) or treatment with immunosuppressive medicine (Anatomical Therapeutic Chemical classification L04A), corticosteroids (>20 mg/day prednisone or equivalent for >14 days within the last 30 days) or chemotherapy within 30 days.

BMJ Open

Recruitment and data collection

Six project assistants with a healthcare background (three physicians, one physiotherapist, and two finalyear medical students) were responsible for inclusion and data collection from Mondays to Fridays, 8 am to 8 pm. A project assistant consecutively identified eligible patients from the patient management system. Immediately following the initial clinical assessment, the project assistant asked the ED physician whether an infection was suspected and the most likely infection focus (CAP, urinary tract infection, or unknown origin). Generally, the clinical assessment took place within 30 minutes upon admission before blood tests or imaging was ordered, and therefore, the ED physician often had only information on the patient's signs, symptoms, and vital parameters. The study assistant collected verbal and written consent from eligible patients. All data collected was registered in the electronic study database REDCap (Research Electronic Data Capture) [27].

Outcome

The outcome was the diagnosis of CAP. An expert panel was established consisting of pairs of experienced infectious diseases and emergency medicine specialists at each site. They conducted a patient file audit and determined the final diagnosis based on all clinical information registered within the first week of ED admission. The information included routine laboratory tests of blood, -urine, and -sputum. In addition, polymerase chain reaction test of sputum, urine flow cytometry, chest x-ray, and chest computed tomography (CT) were available for some patients. The experts were blinded to each other and independently registered their assessments in a standardized electronic template [27] in the study database. Disagreements were discussed until a consensus was reached.

Predictors

All clinical characteristics were collected upon arrival at the ED. Symptoms, demographic data, and lifestyle factors were registered during a standardised bedside interview with the patient. In addition, information

about vital parameters, comorbidities, medical treatment, and blood tests were collected from the patient's medical record. The project assistants collecting data were blinded to the final diagnosis. Several candidate predictors (70) were selected from the literature and discussed with the specialists and project group [20, 28-37]. The pre-specified potential predictors with their measurement units, groups, cut-offs, and which considerations/assumptions of inclusion were selected and are described in Supplemental material, Supplementary Table S1.

- Demographic information, lifestyle factors, and comorbidities: age, sex, civil status, employment, nursing home residence, smoking, and alcohol consumption, body mass index (BMI), level of physical activity, activities of daily living score, dementia, respiratory, neurological, cardiovascular, endocrinological, nephrological and gastrointestinal comorbidities were collected.

-Patient symptoms the last two weeks before admission: malaise, fatigue, headache, dizziness, altered mental status, e.g. confusion, dyspnea, malnutrition, cough, secretions from the respiratory tract, sore throat, common cold, fever feeling, chest pain, peripheral oedema, nausea, vomiting, decreased appetite, abdominal pain, diarrhoea, and pain in muscles and joints including back pain were collected.

-Severity assessment, clinical parameters with cut-offs based on National Early Warning Score (NEWS) [38] used at the arrival of the ED and the use of medications: CURB-65 \geq 3 (confusion, uremia, respiratory rate, blood pressure, age > 65 years), triage [39], Glasgow coma scale (GCS), oxygen saturation <96%, heart rate <51 or >90/min, blood pressure (systolic <111 or >219, diastolic \leq 60 mmHg), respiratory rate >20/min, temperature > 38°C, abnormal chest auscultation, abdominal tenderness, polypharmacy (\geq 5 medications), use of analgesics, and vaccination status (SARS-CoV-2, pneumococcus, influenza) were recorded.

-Blood tests with cut-offs routinely applied at our institutions: haematocrit (%), hemoglobin (mmol/L), leukocytes (10E9/L), platelets (10E9/L), neutrophils (10E9/L), lymphocytes (10E9/L), albumin g/L, creatinine (μmol/L), blood urea nitrogen (mmol/L), sodium (mmol/L), prothrombin, bilirubin (μmol), glucose (mmol/L), and CRP (mg/L) were recorded.

BMJ Open

Statistical methods

The study sample size was estimated based on the University Hospital of Southern Denmark data. We estimated a need for at least 700 patients admitted with suspected infection. Of those, four hundred patients should be with suspected CAP and two hundred patients should have verified CAP for sufficient multivariable regression analysis. Descriptive statistics for baseline characteristics of the patients were conducted for the 70 potential predictors based on the data from the INDEED study [25]. Data were presented as means and standard deviations (SD), or medians and interguartile ranges (IQRs) for continuous variables, and numbers (n) and percentages (%) for categorical and binary variables. Extensive univariate logistic regression analyses were performed to examine the unadjusted association between each candidate predictor and the outcome CAP. Results of univariate analyses were reported with odds ratio (OR), 95% confidence intervals (CI), and statistical significance levels were two-sided reported with a p-value of <0.05 to present a descriptive overview of the individual's associations in the population. Complete case analyses were performed and the predictors were dichotomised or categorised and presented with percentages (%) for inclusion in the final model. The least absolute shrinkage and selection operator (LASSO) multivariable regression was performed with a random split-sample to develop and validate the model, using 20 % of the data for internal cross-validation. The model calibration was assessed using a likelihood ratio test, and recalibration was done based on the calibration belt and the optimal predicted proportion. In the model, age (>75 years old) was considered as an effect modifier based on several studies showing differences in symptoms and signs for a CAP diagnosis in older adults [33, 40-42]. An exploratory approach was conducted for the clinical characteristics to achieve a model with the best predictive performance, testing their performance as continuous, dichotomous, or categorical variables. In addition, the receiver-operator characteristic (ROC) curve was created to estimate the model's accuracy, and the area under the ROC curve (AUC) visualized the discrimination between true positives and negatives. The sensitivity, specificity, and positive and negative predictive values with 95% CI were calculated using the best threshold criteria of the predicted probability of the ROC curve. The same

threshold was implemented in developing a CAP score, including the predictor variables. A CAP score> 0 represents the presence of CAP, and < 0 indicates the absence of CAP. Sensitivity, specificity, and positive and negative predictive values with 95% CI were calculated from the initial diagnosis made by the ED physician. Analyses were performed using STATA 17.0 (Texas, USA).

Patient and public involvement

Patients and/or the public were not directly involved in this study.

RESULTS

Participants

We recruited 954 patients admitted to the ED with suspected infection, representing 43% screened for eligibility. Of those, the attending physician suspected 402 (42%) had CAP. Patients with verified CAP diagnosis by the expert panel comprised of 265 (28%) of the recruited patients (Figure 1).

Figure 1: Trial population, green boxes showing the numbers of patients with CAP.

BMJ Open

Characteristics of patients with suspected infections

We compared the clinical characteristics of patients with verified CAP to patients with suspected infection
(954) without verified CAP. Median age for patients with verified CAP was 75 years (IQR: 63.5; 82.0), and
over half admitted with suspected infection were males (53.8%). Univariate analysis revealed that verified
CAP patients were more often previous smokers [OR 1.83 (CI: 1.30-2.57) p<0.001] with smoking history
compared non-CAP cases. Strongly independent predictors for CAP were symptoms such as dyspnea,
cough, expectoration, chest pain, and cold symptoms (all p<0.001). Compared to patients without CAP, the
risk of having CAP increased fivefold if the patient had chest auscultation abnormalities [OR 5.67 (CI: 4.15-
7.75) p<0.001] and decreased by half in case of abdominal tenderness by palpation [OR 0.52 (CI: 0.35-0.78)
p=0.002]. CAP patients often had comorbidities related to other pulmonary diseases (p<0.001) and had
more previous CAP infections (p<0.001). These patients were more acutely ill when assessed by triage
(p<0.001), with fever > 38°C (p=0.036), higher respiratory rate [median 20.0 (IQR 18.0; 24.0) p<0.001],
higher heart rate [mean 93.2 (SD 18.9) (p<0.001], and lower oxygen saturation [median 95.0 (IQR: 93.0;
97.0) p<0.001]. Patients with verified CAP had a median CRP of 125.0 (IQR: 57.0; 203.5) versus 82.0 (IQR:
19.0; 172.0) (p<0.001) compared to the rest of the population and higher levels of neutrophilocytes
(p<0.001) and leucocytes (p<0.001). Furthermore, lymphocytes yielded a p-value of 0.018. Patients with
verified CAP were more often vaccinated against SARS-CoV-2 (p=0.033) and influenza (p=0.025), but no
differences were found regarding pneumococcal vaccination. Table 1 presents the characteristics of the
population with statistically significant results of the unadjusted association between each predictor for
patients with verified and not verified CAP. See Supplementary Table S2 for the 70 exploratory results from
continuous, dichotomous, and categorical variables tested in the diagnostic prediction model.
Table 1: Characteristics of the population with suspected infection (n=954).

Channa stanistica	Patients suspected of infection at admission		Missings		
Characteristics	CAP n (%)	Not CAP n (%)	n (%)	OR (95% CI)	p-value
Total of patients	265 (27.8)	689 (72.2)	0 (0.0)	-	-
LIFESTYLE FACTORS					

2
С
5
4
5
2
o
7
8
0
9
10
11
11
12
13
1/
14
15
16
17
17
18
19
20
20
21
22
~~
23
24
25
25
26
27
20
28
29
30
21
31
32
33
22
34
35
36
50
37
38
20
22
40
41
12
42
43
44
AE.
40
46
47
40
48
49
50
50
51
52
52
54
55
56
57
58
50
59

	1	I			1
Smoking status			33 (3.5)		
No	66 (26.0)	257 (38.5)		1 (reference)	
Current smoker	54 (21.3)	125 (18.7)		1.68 (1.10-2.55)	0.015
Previous smoker	134 (52.8)	285 (42.7)		1.83 (1.30-2.57)	<0.001
SYMPTOMS					
Malaise	173 (67.8)	386 (58.7)	41 (4.3)	1.48 (1.09-2.01)	0.010
Dyspnea	171 (67.3)	208 (31.5)	39 (4.1)	4.48 (3.29-6.11)	<0.001
Cough	173 (68.1)	185 (28.0)	39 (4.1)	5.49 (4.01-7.52)	<0.001
Expectoration	140 (55.1)	139 (21.0)	39 (4.1)	4.61 (3.38-6.28)	<0.001
Sore throat	39 (15.4)	65 (9.8)	39 (4.1)	1.66 (1.08-2.54)	0.019
Common cold	45 (17.7)	50 (7.6)	39 (4.1)	2.63 (1.70-4.05)	<0.001
Chest pain	71 (28.1)	97 (14.7)	40 (4.2)	2.26 (1.60-3.21)	<0.001
Oedema	10 (4.0)	69 (10.4)	40 (4.2)	0.35 (1,17-0.69)	0.002
Vomiting	40 (15.8)	150 (22.6)	38 (4.0)	0.64 (0.43-0.94)	0.023
Gastrointestinal pain	40 (15.8)	153 (23.1)	38 (4.0)	0.62 (0.42-0.91)	0.016
Muscular pain	79 (31.3)	265 (40.3)	44 (4.6)	0.67 (0.49-0.92)	0.013
COMORBIDITIES					
Pulmonary diseases	105 (39.6)	164 (23.8)	0 (0.0)	2.10 (1.55-2.84)	<0.001
Prior pneumonia			100 (10.5)	· · · · · ·	
No	79 (33.3)	331 (53.6)		1 (reference)	
Yes, one time	50 (21.1)	130 (21.1)		1.61 (1.07-2.42)	0.022
Yes, more than one time	108 (45.6)	156 (25.3)		2.90 (2.05-4.10)	<0.001
VACCINATIONS					
SARS-CoV-2 †	222 (83.8)	534 (77.5)	0 (0.0)	1.49 (1.03-2.17)	0.033
Influenza	191 (72.1)	444 (64.4)	0 (0.0)	1.42 (1.04-1.94)	0.025
CLINICAL ASSESSMENT				· · ·	
Abnormal chest auscultation*	168 (65.4)	161 (25.0)	52 (5.4)	5.67 (4.15-7.75)	<0.001
Abdominal tenderness	37 (15.0)	155 (25.0)	86 (9.0)	0.52 (0.35-0.78)	0.002
SEVERITY ASSESSMENT				, , , , , , , , , , , , , , , , , , ,	
Triage**			59 (6.2)		
Green/Blue	37 (14.8)	146 (22.6)		1 (reference)	
Yellow	126 (50.4)	353 (54.7)		1.40 (0.93-2.13)	0.105
Red/Orange	87 (34.8)	146 (22.6)		2.35 (1.50-3.67)	<0.001
VITAL PARAMETERS				, , , , , , , , , , , , , , , , , , ,	
Respiratory rate >20/min	124 (47.0)	161 (23.5)	5 (0.5)	2.88 (2.13-3.88)	<0.001
Oxygen saturation < 96 %	162 (61.1)	231 (33.7)	4 (0.4)	3.09 (2.30-4.14)	<0.001
Heart rate <51 or >90/min	148 (55.8)	312 (45.3)	1 (0.1)	1.52 (1.14-2.02)	0.003
Fever > 38°C	77 (29.3)	156 (22.7)	5 (0.5)	1.40 (1.02-1.93)	0.036
BLOOD TESTS		100 (11.1)	0 (0.0)	110 (102 100)	
Leukocytes <3.5 or > 8.8 10E9/L	214 (80.8)	456 (66.2)	0 (0.0)	2.14 (1.52-3.02)	<0.001
Neutrophilocytes > 7.5 10E9/L	187 (71.1)	362 (53.2)	10 (1.0)	2.16 (1.59-2.94)	<0.001
Lymphocytes [†] <1.00 or > 4.00 10E9/L	53 (55.2)	92 (40.9)	633 (66.3)	1.78 (1.10-2.88)	0.018
C-Reactive protein mg/L			0 (0.0)		
(20	21 (7 9)	175 (25.4)		1 (reference)	

י כ
2
2 1
4 5
5
6 7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
27
27 20
20
27 ∕10
40 41
41 42
4Z
43 44
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

21-99 mg/L	86 (32.5)	205 (29.8)	3.49 (2.08-5.86)	<0.001
≥ 100 mg/L	158 (59.6)	309 (44.8)	4.26 (2.60-6.96)	<0.001

The predictors in the table are those dichotomised or categorised as they were later incorporated into the final diagnostic model. Only statistically significant results of the unadjusted association between each candidate predictor and the outcome CAP are presented. *Abnormal chest auscultation: Any abnormal findings such as crackles and rhonchi. ** Triage: Danish emergency process triage [39]. † Variables not included in the multivariate model.

Characteristics of patients suspected of CAP

Using the 70 candidate predictors, we compared clinical characteristics of patients with verified CAP to patients with suspected (402) but not verified CAP.

Statistically significant differences are shown in Table 2. Of the 402 patients with suspected CAP, half of the patients, 229 (57%) had verified CAP. Patients with suspected CAP had a median age of 74.0 (IQR: 62.0; 82.0), and half were male (52.7%). Patients with verified CAP reported more respiratory symptoms, such as cough (p=0.009) and expectoration (p=0.037), and more gastrointestinal symptoms, such as nausea (p=0.033) and loss of appetite (p=0.030), compared to those without CAP. Fewer patients with verified CAP had a CURB-65 \geq 3 (p=0.047), and more patients had oxygen saturation <96% (p<0.001), a heart rate of <51 or >100bpm/min (p=0.045), and fever >38 °C (p=0.011). Elevated infection biomarkers (leukocytes, neutrophilocytes, CRP, all p<0.001), and plasma natrium (p<0.001) were highly associated with CAP. Fewer patients with CAP. Fewer

 Table 2: Characteristics of the population with suspected CAP (n=402) by the physician at admission.

	Patients suspected o	f CAP at admission	Missings		
Characteristics	CAP n (%)	Not CAP n (%)	n (%)	OR (95% CI)	p-value
Total of patients	229 (57.0)	173 (43.0)	0 (0.0)		
SYMPTOMS					
Cough	168 (75.7)	104 (63.4)	16(4.0)	1.79 (1.15-2.79)	0.009
Expectoration	132 (59.5)	80 (48.8)	16 (4.0)	1.54 (1.02-2.31)	0.037
Nausea	70 (31.8)	36 (22.0)	18 (4.5)	1.65 (1.04-2.64)	0.033
Loss of appetite	137 (62.3)	84 (51.2)	18 (4.5)	1.57 (1.04-2.36)	0.030
SEVERITY ASSESSMENT					
CURB65 ≥3 *	23 (10.4)	30 (17.3)	8 (2.0)	0.55 (0.30-0.99)	0.047
VITAL PARAMETERS					
Oxygen saturation <96%	147 (64.2)	79 (46.0)	1 (0.2)	2.11 (1.40-3.15)	<0.001

Heart rate < 51 or >100 bpm/min	129 (56.3)	80 (46.2)	0 (0.0)	1.49 (1.00-2.23)	0.045
Fever >38°C	64 (28.2)	30 (17.3)	2 (0.5)	1.87 (1.14-3.05)	0.011
BLOOD TESTS					
Leukocytes <3.5 or > 8.8 10E9/L	191 (83.4)	106 (61.3)	0 (0.0)	3.17 (1.99-5.04)	<0.001
Neutrophilocytes > 7.5 10E9/L	166 (73.1)	81 (47.6)	5 (1.2)	2.99 (1.96-4.55)	<0.001
Natrium <137 or > 145 mmol/L	114 (49.8)	55 (31.8)	0 (0.0)	2.12 (1.40-3.21)	<0.001
Bilirubin<5 or >25 mmol/L	32 (14.0)	37 (21.8)	4 (1.0)	0.58 (0.34-0.98)	0.045
C-Reactive Protein mg/L, n (%)			0 (0.0)		
<20 mg/L	15 (6.6)	59 (34.1)		1 (reference)	
21-99 mg/L	74 (32.3)	64 (37.0)		4.54 (2.35-8.78)	<0.001
> 100 mg/L	140 (61.1)	50 (28.9)		11.01 (5.73-21.14)	<0.001

Statistically significant results from the unadjusted association between each candidate predictor and the outcome CAP.* CURB65: confusion, uremia, respiratory rate, blood pressure, age > 65 years.

Model development and performance

We developed a prediction model for diagnosing pneumonia in patients admitted with suspected infection

(n=954) and compared it with the clinician's presumptive diagnosis. Supplementary table S3 presents the

characteristics of the population randomised in the training and validation sets.

The predictors associated with CAP in our final model are presented in Table 3.

Table 3: The complete diagnostic model, including the intercept

Intercept and predictors	ß Coefficient
Intercept	-1.66192
Dyspnea (yes)	0.35172
Expectoration (yes)	0.36250
Cough (yes)	0.39671
Common cold (yes)	0.34374
Malaise (yes)	0.07475
Chest pain (yes)	0.20499
Respiratory rate >20/min	0.14566
Oxygen saturation < 96%	0.24303
Abnormal auscultation findings (yes)	0.56758
Leucocytes*	0.00322
Neutrophilocytes**	0.08338
C-reactive protein <20 mg/L	-0.64269
Previous event of CAP (no)	-0.12006
Age of ≥ 75 and cough (yes)	0.53816
Age of ≥ 75 and oedema (no)	-0.05797
Age of ≥ 75 and glucose >11.0 mmol/L	0.88124
ROC AUC† (95% CI)	0.85 (0.77-0.92)

BMJ Open

* Cut-off for leucocyttes: normal values 3.5 -8.8 10E9/L **Neutrophilocytes: > 7.5 10E9/L + ROC AUC = receiver-operating characteristic area under the curve

The model performance yielded an AUC of 0.85 (CI: 0.77-0.92) and the calibration of the model yielded p=0.227 after recalibration, demonstrating a good prediction of the proportion of CAP patients in the test sample (Supplementary figures S4 and S5).

Based on a lambda result of λ =0.0402856 and a probability threshold of 0.35, the LASSO calculation with characteristics predictive of CAP and the calculation of the final model with a cut-off value greater than 0 indicating the diagnosis CAP are presented in Supplemental material (Supplementary formulas S6 and S7).

At the optimal cut-off of 0.35, the prediction model yielded an 86.1% sensitivity and 64.1% specificity. Based on the trial population (Figure 1), the sensitivity of the prediction model was comparable to the initial diagnosis made by the ED physicians. However, the specificity and positive predictive value were significantly lower (Table 4).

Table 4: Performance of the predictive model compared to the initial diagnosis made by the ED physicians.

Performance	Sensitivity % (Cl %)	Specificity % (Cl %)	Positive predictive value % (CI %)	Negative predictive value % (CI %)
Predictive model	86.1 (79.1-93.1)	64.1 (57.1-71.1)	41.6 (34.6-48.6)	93.9 (86.9-100)
Physicians	86.4 (84.2-88.6)	74.9 (72.1-77.6)	57.0 (53.8-60.1)	93.5 (92.0-95.0)

The predictive model had a 35% cut-off and a prevalence of 22%. The prevalence of CAP was 28% in the population of 954 patients suspected of infection.

Model specification

The final model did not include the following possible predictors: lymphocytes, SARS-CoV-2, and BMI. The reasons were a high percentage of missings (lymphocytes 66.3%), clinical relevance, and statistical performance (BMI and SARS-CoV-2). These considerations are described in detail in Supplemental material.

DISCUSSION

More than every fourth patient with suspected infection was diagnosed with CAP (28%). The ED physicians suspected CAP in almost half (42%) of patients admitted with suspected infection. Patients with suspected CAP included 57% with a final expert diagnosis of CAP and 43% without CAP. We have identified twenty-seven clinical characteristics for patients diagnosed with CAP among those admitted suspected of infection. Patients with CAP were characterised by having more often a history of smoking, previous CAP, respiratory symptoms, abnormal lung auscultation, worse triage, and abnormal levels of infection biomarkers. Fewer clinic characteristics (thirteen) were identified for patients diagnosed with CAP among patients suspected of CAP by the ED physician and included typical respiratory symptoms but also gastrointestinal symptoms, abnormal vital signs, increased blood markers, and lower CURB-65 scores. The final diagnostic prediction model yielded thirteen diagnostic predictors for CAP recognised by the literature. The model performance was similar to the diagnosis made by the ED physicians regarding sensitivity and negative predictive value but not as good in determining the specificity and positive predictive values.

Our prediction model had a good performance (AUC 85%) and calibration (p=0.227), and with the best cutoff of 35%, the sensitivity reached 86.1% and specificity 64.1%. Therefore, the model could be tested externally and contribute to the initial management of CAP, guiding further clinical investigation. In this study, ED physicians who generally only had the patient's history and the results from a simple clinical examination diagnosed CAP with a comparable negative predictive value (93% vs. 94%) and a better positive predictive value (57% vs. 42%). Even though our model is not entirely comparable to the initial diagnosis made by the ED physicians due to the difference in the prevalence of CAP, our results are similar to a recent systematic review [43]. Other studies reported that ED physicians' accuracy in diagnosing CAP ranged from 76% to 96% [44], and artificial intelligence predicted the presence of pneumonia with a sensitivity of 94% and specificity of 50% [45]. These results show that there is room for improvement in diagnosing CAP. It could be achieved by including additional predictors such as biomarkers, e.g.,

BMJ Open

procalcitonin, YKL-40, and surfactant protein-D [46, 47], molecular detection of respiratory pathogens [48], and/or improved imaging modalities [12, 14].

This prospective study highlights the challenges in identifying patients with CAP based on patient history, vital signs, and symptoms upon admission [20, 22, 46]. The initial CAP diagnosis often differs from the discharge diagnosis [10, 49]. A plausible cause for uncertainty in diagnosing CAP was the heterogenic presentation of symptoms overlapping with other diseases. We found that patients with verified CAP often had gastrointestinal symptoms, whereas patients not verified with CAP sometimes presented with typical respiratory symptoms and had more severe conditions measured by CURB-65. Typical respiratory symptoms could explain some CAP misclassification. Misclassification of CAP may lead to unnecessary or ineffective antibiotic treatment, increased healthcare costs, delayed diagnosis, increased mortality, and increased risk of bacterial resistance [44, 50].

The predictors of CAP identified in this study are strongly represented in the literature [9, 20, 36, 37, 42, 46, 49]. Most prediction models for ED patients with CAP aim to predict prognostic outcomes such as disease severity and mortality [51]. Prior studies have investigated only a few diagnostic predictors or studied very selected patients [20, 22, 52]. The main reason for including several potential predictors and having age as a cross-factor in the development of our model was the expectation of finding predictors not represented in the literature and predictors specific for older patients (\geq 75 years). This is considered very relevant as the population worldwide ages [4, 16]. An age of \geq 75 interacted with the symptoms of cough, blood glucose levels, and peripheral oedema. Peripheral oedema was associated with an absence of CAP where symptoms may be explained by other infections such as erysipelas or cardiac heart failure patients with respiratory symptoms. In addition, hyperglycemia has been recognized as a predictor associated with poorer patient outcomes for elderly CAP patients, regardless of their history of diabetes [53, 54]. Even though the literature highlights malnutrition as a strong prognostic predictor for CAP [33, 35, 55], we excluded BMI from our final model. Measuring weight and height is not a priority in acute settings where vital parameters, symptoms, and point-of-care biomarkers are the primary observations in the diagnostic

BMJ Open

process. Another concern was that BMI was missing in 26.3% of the population, and bias may arise due to systematic differences between subjects with complete datasets and subjects with missing data. Patients with missing BMI data may be more frail, incapable, or difficult to transfer. A model including BMI could be a better choice in a primary care setting, where patients are not necessarily as acutely ill and may be able to weigh themselves.

A major strength of this study is the completeness of data from medical charts and patient interviews combined with CAP diagnoses assigned by a panel of experts. The experts had a range of information from the patient's medical records, including chest x-ray, chest CT for patients suspected of CAP, and microbiology results available for many of the patients. In addition, to identifying possible predictors, we included many relevant and easily accessible clinical parameters. Finally, we excluded patients infected with SARS-CoV-2 from the study to increase the potential generalisability for CAP patients after the pandemic.

This study also has several limitations. Multiple testing and mass significance are potentially a problem in this study. Methods, such as Bonferroni-Holm correction, could have been applied to counteract this problem [56]. However, the univariate analyses were conducted for exploratory and descriptive purposes only. Therefore, these results should be interpreted cautiously, and the findings should be used as hypothesis-generating rather than conclusive. Another concern is that even though the reference standard of CAP was the same for the model performance and the initial diagnosis of the ED physicians, the expert panel might have a better prerequisite to diagnose CAP in suspected CAP patients due to the availability of results from imaging and microbiological tests, and better register of patient's symptoms. It might lead to differential verification bias overestimating the ED physician's accuracy in diagnosing CAP [57]. This assumption may be supported by the higher specificity of CAP diagnoses from ED physicians. Another limitation is the selected population of the patients allocated to the internal medicine specialty that may have masked atypical predictors from patients assigned to other specialities. Furthermore, some patients with atypical clinical presentation might have an infection that the ED physician had not suspected

BMJ Open

upon admission and therefore was not included in our study. Patients with severe condition or acute cognitive impairment who could not consent were excluded. A broader patient inclusion may contribute to a model that identifies other predictors assisting in diagnosing CAP as the clinical presentation might differ from those admitted with suspected CAP and capable of consent. Another limitation of the development of the model, was the choice of cut-offs for blood tests routinely used in our institutions, this pragmatic choice reflects our clinical practice. However, it does raise questions about the applicability in other settings that apply different cut-offs.

This population cohort could be applicable as a test validation cohort for future models as the data collection of these well-known predictors of CAP is reproducible across EDs. The development of automatic extraction for a prediction model from electronic medical records using artificial intelligence could be of great value in a busy ED. In conclusion, typical respiratory symptoms combined with abnormal vital signs and elevated infection biomarkers are predictors for CAP upon admission to an ED. A diagnostic prediction model based on these predictors is of limited value. Future prediction models should include novel diagnostic tools, imaging, PCR analysis, and/or serological markers not routinely used in clinical practice to improve model performance, helping diagnose CAP more accurately at the ED.

Acknowledgements: The authors appreciate text editing from the research consultant Caroline Moos, statistician support from Andreas Kristian Pedersen and Sofie Ronja Petersen at the University Hospital of Southern Denmark, and from OPEN (Open Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark).

Authors' contributions: MBC, FSR, CBM, TS, HSA, MHL, AH, and MAH were involved in the study's design. MBC performed the literature search and drafted the original work. MBC, MHL, AH, MAH, JJS, and FK recruited patients and collected data. CBM and MAH participated in the expert panel. HSA was the study investigator-, and coordinated and supervised the project. MBC performed the statistical analyses. CBM

was the chief research officer responsible for supervising the overall study. All authors, MBC, FSR, CBM, TS, HSA, MHL, AH, MAH, FK, and JJS critically revised and approved the final manuscript.

Funding: University of Southern Denmark (17/10636), University Hospital of Southern Denmark (20/20505), The funders of this study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Competing interests: The authors declare that they have no competing interests.

Patient and public involvement: Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research.

Patient consent for publication: Not required.

Ethics approval and consent to participate: Ethics approval and consent to participate: Approval was obtained from the Regional Committee for Health Research Ethics in Southern Denmark (S-20200188). In addition, informed verbal and written consent was obtained from each participant before enrolment in the study. This study was conducted in agreement with the Declaration of Helsinki-Ethical principle for medical research involving human subjects.

Availability of data and materials: Due to Danish laws on personal data, data cannot be shared publicly. To request data, please contact the corresponding author for more information. The person responsible for the research was the principal investigator and corresponding author (MBC) in collaboration with the University Hospital of Southern Denmark. This organization owns the data and can provide access to the final data set.

5 6

REFERENCES

7 8 1. Søgaard M, Nielsen RB, Schønheyder HC, Nørgaard M, Thomsen RW. Nationwide trends in pneumonia 9 hospitalization rates and mortality, Denmark 1997-2011. Respir Med. 2014;108(8):1214-10 11 22.doi:10.1016/j.rmed.2014.05.004 12 2. McLaughlin JM, Khan FL, Thoburn EA, Isturiz RE, Swerdlow DL. Rates of hospitalization for community-13 acquired pneumonia among US adults: A systematic review. Vaccine. 2020;38(4):741-14 51.doi:10.1016/j.vaccine.2019.10.101 15 3. Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among 16 adults in Europe. Thorax. 2012;67(1):71-9 17 4. Laporte L, Hermetet C, Jouan Y, Gaborit C, Rouve E, Shea KM, et al. Ten-year trends in intensive care 18 19 admissions for respiratory infections in the elderly. Ann Intensive Care. 2018;8(1):84.doi:10.1186/s13613-20 018-0430-6 21 5. GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national 22 morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a 23 systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191-24 210.doi:10.1016/s1473-3099(18)30310-4 25 6. Meehan TP, Fine MJ, Krumholz HM, Scinto JD, Galusha DH, Mockalis JT, et al. Quality of care, process, 26 and outcomes in elderly patients with pneumonia. JAMA. 1997;278(23):2080-27 4.doi:10.1001/jama.1997.03550230056037 28 29 7. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the 30 effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014;14 (1):13.doi:10.1186/1471-31 2334-14-13 32 8. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et al. Diagnosis and treatment of 33 adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic 34 Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45-35 e67.doi:10.1164/rccm.201908-1581ST 36 9. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med. 2014;371(17):1619-37 28.doi:10.1056/NEJMra1312885 38 39 10. Chandra A, Nicks B, Maniago E, Nouh A, Limkakeng A. A multicenter analysis of the ED diagnosis of 40 pneumonia. Am J Emerg Med. 2010;28(8):862-5.doi:10.1016/j.ajem.2009.04.014 41 11. Claessens YE, Debray MP, Tubach F, Brun AL, Rammaert B, Hausfater P, et al. Early chest computed 42 tomography scan to assist diagnosis and guide treatment decision for suspected community-acquired 43 pneumonia. Am J Respir Crit Care Med. 2015;192(8):974-82.doi:10.1164/rccm.201501-0017OC 44 12. Ye X, Xiao H, Chen B, Zhang S. Accuracy of Lung Ultrasonography versus Chest Radiography for the 45 Diagnosis of Adult Community-Acquired Pneumonia: Review of the Literature and Meta-Analysis. PLoS One. 46 2015;10(6):e0130066.doi:10.1371/journal.pone.0130066 47 48 13. Kamat IS, Ramachandran V, Eswaran H, Guffey D, Musher DM. Procalcitonin to distinguish viral from 49 bacterial pneumonia: a systematic review and meta-analysis. Clin Infect Dis. 2020;70(3):538-50 42.doi:10.1093/cid/ciz545 51 14. Gentilotti E, De Nardo P, Cremonini E, Górska A, Mazzaferri F, Canziani LM, et al. Diagnostic accuracy of 52 point-of-care tests in acute community-acquired lower respiratory tract infections. A systematic review and 53 meta-analysis. Clin Microbiol Infect. 2022;28(1):13-22.doi:10.1016/j.cmi.2021.09.025 54 15. Welker JA, Huston M, McCue JD. Antibiotic timing and errors in diagnosing pneumonia. Arch Intern 55 Med. 2008;168(4):351-6.doi:10.1001/archinternmed.2007.84 56 16. World Health Organization. Aging and Health [Internet]. 2022 October 1 [cited 2022 October 28]. 57 58 Available from: <u>https://www.who.int/news-room/fact-sheets/detail/ageing-and-health</u>. 59 60

BMJ Open

1 2

3 4 17. Weir DL, Majumdar SR, McAlister FA, Marrie TJ, Eurich DT. The impact of multimorbidity on short-term 5 events in patients with community-acquired pneumonia: prospective cohort study. Clin Microbiol Infect. 6 2015;21(3):264.e7-.e13.doi:10.1016/j.cmi.2014.11.002 7 18. Sakakibara T, Shindo Y, Kobayashi D, Sano M, Okumura J, Murakami Y, et al. A prediction rule for severe 8 adverse events in all inpatients with community-acquired pneumonia: a multicenter observational study. 9 BMC Pulm Med. 2022;22(1):34.doi:https://dx.doi.org/10.1186/s12890-022-01819-0 10 11 19. Gong L, He D, Huang D, Wu Z, Shi Y, Liang Z. Clinical profile analysis and nomogram for predicting in-12 hospital mortality among elderly severe community-acquired pneumonia patients with comorbid 13 cardiovascular disease: a retrospective cohort study. BMC Pulm Med. 2022;22(1):312.doi:10.1186/s12890-14 022-02113-9 15 20. Ding F, Han L, Yin D, Zhou Y, Ji Y, Zhang P, et al. Development and validation of a simple tool composed 16 of items on dyspnea, respiration rates, and C-reactive protein for pneumonia prediction among acute 17 febrile respiratory illness patients in primary care settings. BMC Med. 2022;20(1):360.doi:10.1186/s12916-18 19 022-02552-5 20 21. Hammond A, Halliday A, Thornton HV, Hay AD. Predisposing factors to acquisition of acute respiratory 21 tract infections in the community: a systematic review and meta-analysis. BMC Infect Dis. 22 2021;21(1):1254.doi:10.1186/s12879-021-06954-3 23 22. Ebell MH, Chupp H, Cai X, Bentivegna M, Kearney M. Accuracy of signs and symptoms for the diagnosis 24 of community-acquired pneumonia: a meta-analysis. Acad Emerg Med. 2020;27(7):541-25 53.doi:10.1111/acem.13965 26 23. Kitazawa T, Yoshihara H, Seo K, Yoshino Y, Ota Y. Characteristics of pneumonia with negative chest 27 radiography in cases confirmed by computed tomography. J Community Hosp Intern Med Perspect. 28 29 2020;10(1):19-24.doi:10.1080/20009666.2020.1711639 30 24. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steverberg EW, et al. Transparent 31 reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation 32 and elaboration. Ann Intern Med. 2015;162(1):W1-W73.doi:10.7326/m14-0698 33 25. Skjøt-Arkil H, Heltborg A, Lorentzen MH, Cartuliares MB, Hertz MA, Graumann O, et al. Improved 34 diagnostics of infectious diseases in emergency departments: a protocol of a multifaceted multicentre 35 diagnostic study. BMJ Open. 2021;11(9):e049606.doi:10.1136/bmjopen-2021-049606 36 26. Nørgaard B, Mogensen CB, Teglbjærg LS, Brabrand M, Lassen AT. Diagnostic packages can be assigned 37 accurately in emergency departments. A multi-centre cohort study. Dan Med J. 2016;63(6) 38 39 27. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: building 40 an international community of software platform partners. J Biomed Inform. 41 2019;95:103208.doi:10.1016/j.jbi.2019.103208 42 28. Mutepe ND, Cockeran R, Steel HC, Theron AJ, Mitchell TJ, Feldman C, et al. Effects of cigarette smoke 43 condensate on pneumococcal biofilm formation and pneumolysin. Eur Respir J. 2013;41(2):392-44 5.doi:10.1183/09031936.00213211 45 29. Samokhvalov AV, Irving HM, Rehm J. Alcohol consumption as a risk factor for pneumonia: a systematic 46 review and meta-analysis. Epidemiol Infect. 2010;138(12):1789-95.doi:10.1017/s0950268810000774 47 48 30. Torres A, Peetermans WE, Viegi G, Blasi F. Risk factors for community-acquired pneumonia in adults in 49 Europe: a literature review. Thorax. 2013;68(11):1057-65.doi:10.1136/thoraxjnl-2013-204282 50 31. Barbagelata E, Cillóniz C, Dominedò C, Torres A, Nicolini A, Solidoro P. Gender differences in 51 community-acquired pneumonia. Minerva Med. 2020;111(2):153-65.doi:10.23736/s0026-4806.20.06448-4 52 32. Baik I, Curhan GC, Rimm EB, Bendich A, Willett WC, Fawzi WW. A prospective study of age and lifestyle 53 factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med. 54 2000;160(20):3082-8.doi:10.1001/archinte.160.20.3082 55 33. Cillóniz C, Dominedò C, Pericàs JM, Rodriguez-Hurtado D, Torres A. Community-acquired pneumonia in 56 critically ill very old patients: a growing problem. Eur Respir Rev. 57 58 2020;29(155):190126.doi:10.1183/16000617.0126-2019 59 60

3	
4	34 Reisinger FC Fritzsche C Krause R Kreis GL Diarrhea caused by primarily non-gastrointestinal
5	infactions. Nat Clin Brast Castroontorol Honatol. 200E:2/E):216-22
6	
7	35. Riquelme OR, Riquelme OM, Rioseco ZML, Gomez MV, Cardenas G, Torres C. Neumonia adquirida en la
8	comunidad en el anciano hospitalizado: Aspectos clínicos y nutricionales. [Community-acquired pneumonia
9	in the elderly: clinical and nutritional aspects]. Rev Med Chil. 2008;136(5):587-93.doi:10.4067/S0034-
10	98872008000500006
11	36 Moore M Stuart B Little P Smith S Thompson ML Knox K et al. Predictors of pneumonia in lower
12	so: Woore W, Staart B, Eltier F, Shinin S, Mompson WS, Klox K, et al. Fredetors of pheumonia in lower
13	respiratory tract infections. So prospective cough complication conort study. Eur Respir J.
14	201/;50(5).doi:10.1183/13993003.00434-2017
15	37. van Vugt SF, Broekhuizen BD, Lammens C, Zuithoff NP, de Jong PA, Coenen S, et al. Use of serum C
15	reactive protein and procalcitonin concentrations in addition to symptoms and signs to predict pneumonia
10	in patients presenting to primary care with acute cough: diagnostic study. BMJ.
17	2013·346·f2450 doi:10 1136/bmi f2450
10	2013)3 1012 130,00110,1130,011,12130
19	58. Aldin N, Vegung E, Houben E, Van Berker B, Vaughan E, Kramer Min, et al. Exploring the performance of
20	the National Early Warning Score (NEWS) in a European emergency department. Resuscitation.
21	2015;90:111-5.doi:10.1016/j.resuscitation.2015.02.011
22	39. Plesner LL, Iversen AKS, Langkjær S, Nielsen TL, Østervig R, Warming PE, et al. The formation and design
23	of the TRIAGE study-baseline data on 6005 consecutive patients admitted to hospital from the emergency
24	department, Scand J Trauma Resusc Emerg Med. 2015;23:106.doi:10.1186/s13049-015-0184-1
25	40 Ravioli S. Germann C. Gygli R. Exadaktylos AK. Lindner G. Age- and sex-related differences in
26	community acquired pnoumonia at presentation to the omergency department: a retrespective cohort
27	continuinty-acquired pheumonia at presentation to the emergency department, a remospective conort
28	study. Eur J Emerg Med. 2022;29(5):366-72.doi:10.1097/mej.000000000000933
29	41. Akhtar A, Hassali MAA, Zainal H, Ali I, Iqbal MS, Khan AH. Respiratory-tract infections among geriatrics:
30	prevalence and factors associated with the treatment outcomes. Ther Adv Respir Dis.
31	2021;15:1753466620971141.doi:10.1177/1753466620971141
32	42. Metlay JP. Schulz R. Li YH. Singer DE. Marrie TJ. Coley CM. et al. Influence of age on symptoms at
33	presentation in patients with community-acquired pneumonia. Arch Intern Med. 1997:157(13):1453-
34	0 doi:doi:10.1001/archinto.1007.00440240080000
35	
36	43. Dale AP, Marchello C, Ebell MH. Clinical gestalt to diagnose pneumonia, sinusitis, and pharyngitis: a
37	meta-analysis. Br J Gen Pract. 2019;69(684):e444-e53.doi:10.3399/bjgp19X704297
38	44. Ray P, Birolleau S, Lefort Y, Becquemin MH, Beigelman C, Isnard R, et al. Acute respiratory failure in the
39	elderly: etiology, emergency diagnosis and prognosis. Crit Care. 2006;10(3):R82.doi:10.1186/cc4926
40	45. Heckerling PS, Gerber BS, Tape TG, Wigton RS. Prediction of community-acquired pneumonia using
41	artificial neural networks. Med Decis Making. 2003:23(2):112-21 doi:10.1177/0272989x03251247
42	A6 Htun TD Sun V Chua HL Dang L Clinical features for diagnosis of pneumonia among adults in primary
43	40. That I'r, sun T, chua HE, Fang J. chinear leadures for diagnosis of pheumonia among adults in primary
44	care setting: A systematic and meta-review. Sci kep. 2019;9(1):7600.doi:10.1038/s41598-019-44145-y
45	47. Spoorenberg SM, Vestjens SM, Rijkers GT, Meek B, van Moorsel CH, Grutters JC, et al. YKL-40, CCL18
46	and SP-D predict mortality in patients hospitalized with community-acquired pneumonia. Respirology.
47	2017;22(3):542-50.doi:10.1111/resp.12924
48	48. Gastli N, Loubinoux J, Daragon M, Lavigne JP, Saint-Sardos P, Pailhoriès H, et al. Multicentric evaluation
49	of BioFire FilmArray Pneumonia Panel for rapid bacteriological documentation of pneumonia. Clin Microbiol
50	Infect 2021.27(9).1308-14 doi:10.1016/i.cmi 2020.11.014
51	40 Motloy ID Fine MI Testing strategies in the initial management of nations with community acquired
52	49. We day JP, Fine MJ. Testing strategies in the initial management of patients with community-acquired
53	pneumonia. Ann Intern Med. 2003;138(2):109-18.doi:10.7326/0003-4819-138-2-200301210-00012
54	50. Kanwar M, Brar N, Khatib R, Fakih MG. Misdiagnosis of community-acquired pneumonia and
55	inappropriate utilization of antibiotics: side effects of the 4-h antibiotic administration rule. Chest.
56	2007;131(6):1865-9.doi:10.1378/chest.07-0164
57	51. Loke YK, Kwok CS, Niruban A, Myint PK. Value of severity scales in predicting mortality from
58	community-acquired pneumonia: systematic review and meta-analysis. Thorax, 2010;65(10):884-
59	90 doi:10 1136/thy 2000 13/072
60	JU. GUILLOUT LIN. 2003. L34072

52. Okimoto N, Yamato K, Kurihara T, Honda Y, Osaki K, Asaoka N, et al. Clinical predictors for the detection of community-acquired pneumonia in adults as a guide to ordering chest radiographs. Respirology. 2006;11(3):322-4.doi:10.1111/j.1440-1843.2006.00846.x

53. Zeng W, Huang X, Luo W, Chen M. Association of admission blood glucose level and clinical outcomes in elderly community-acquired pneumonia patients with or without diabetes. Clin Respir J. 2022;16(8):562-71.doi:10.1111/crj.13526

54. Barmanray RD, Cheuk N, Fourlanos S, Greenberg PB, Colman PG, Worth LJ. In-hospital hyperglycemia but not diabetes mellitus alone is associated with increased in-hospital mortality in community-acquired pneumonia (CAP): a systematic review and meta-analysis of observational studies prior to COVID-19. BMJ Open Diabetes Res Care. 2022;10(4).doi:10.1136/bmjdrc-2022-002880

55. Yeo HJ, Byun KS, Han J, Kim JH, Lee SE, Yoon SH, et al. Prognostic significance of malnutrition for longterm mortality in community-acquired pneumonia: a propensity score matched analysis. Korean J Intern Med. 2019;34(4):841-9.doi:10.3904/kjim.2018.037

56. Sedgwick P. Multiple significance tests: the Bonferroni correction. BMJ. 2012;344

57. Rutjes AW, Reitsma JB, Di Nisio M, Smidt N, van Rijn JC, Bossuyt PM. Evidence of bias and variation in diagnostic accuracy studies. CMAJ. 2006;174(4):469-76.doi:10.1503/cmaj.050090

Supplemental material

Community-acquired pneumonia – Use of clinical characteristics of acutely admitted patients for the development of a diagnostic model: A cross-sectional multicentre study

Mariana Bichuette Cartuliares MSC* 1, 2, Christian Backer Mogensen 1, 2, Flemming Schønning Rosenvinge 3, 4, Thor Aage Skovsted 5, Morten Hjarnø Lorentzen ^{1,2}, Anne Heltborg Kristensen^{1,2}, Mathias Amdi Hertz ^{6,7}, Frida Kaldan¹, Jens Juel Specht¹, Helene Skjøt-Arkil 1,2

Affiliations

¹Emergency Department, University Hospital of Southern Denmark, Aabenraa, Denmark ²Department of Regional Health Research, University of Southern Denmark, Odense, Denmark ³Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark ⁴Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark ⁵Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark ⁶Department of Clinical Research, University of Southern Denmark, Odense, Denmark 7 Infectious Diseases Department, Odense University Hospital, Odense, Denmark elie

* Corresponding author: mbc@rsyd.dk

Table of Contents

Supplementary tables	
Table S1: Description of the 70 pre-specified predictors for CAP	2
Table S2: Characteristics of CAP	8
Table S3: Characteristics of the training set and the validation set	11
Supplementary figures	
Figure S4: Performance of the prediction model	14
Figure S5: Calibration of the model	15
Supplementary formulas	
Formula S6: LASSO calculation with characteristics predictive of CAP.	15
Formula S7: CAP score	16
Model specification	16
References	17

Table S1: Description of the 70 pre-specified predictors for CAP

		Source: The patient inter	view
Group	Variable name	Measurement	Consideration/assumption
			Considerations to collect data from these predictors were based on the described literature and expert consensus together with the project group
Demographic information	Age	Continuous, years	Age is a risk factor for CAP [1]. Several studies stratify age groups when investigating pneumonia due to several atypical symptoms and signs and the absence of respiratory symptoms among the elderly. Stratifiec age groups differ in cut-offs between the ages of ≥65 to ≥80 years old [2-7].
	Gender	Binary 1=Male 0=Female	The risk of CAP is higher for males [8].CAP is more severe [7] leading to higher mortality in males [9]. Males' lifestyle factors differ from women resulting in higher risk of CAP [10].
	Civil status (Living alone)	Binary (Yes/no)	Living alone has a two-fold association with having or or more respiratory tract infections [11].
	Nursing home residence	Binary (Yes/no)	Nursing home residents were found to have several comorbidities [12] and lower physical functioning levels, which might result in a higher risk of CAP [13].
	Employment	Categorical: 1=Working 2=Retired 0=Others (e.g. students, flex job)	Low income and unemployment are associated with readmissions after CAP [14].
Symptoms	Feeling unwell/ Malaise	Binary (Yes/No) Symptoms within 14 days prior to ED admission.	Malaise has been identified as one of the most frequent symptoms for patients infected with <i>Mycoplasma pneumoniae</i> [15].
	Fatigue		Fatigue is associated with pneumonia especially in elderly patients [4].
	Headache	2	Headache is one of the clinical findings of symptoms CAP [7, 15]. However, headaches were less common the older population [7].
	Dizziness		The rationale of the presence of dizziness as a symptom relied on the assumption that several facto such as polypharmacy[16], combined with comorbidities such as cardiovascular diseases [17], symptoms such as confusion, conditions of frailty and malnutrition [18], and lower oxygen saturation [19] could contribute to dizziness
	Confusion		Confusion e.g. altered mental status or delirium was significantly more frequent in CAP patients [2, 4].
	Dyspnea		Dyspnea was identified as a strong prediction of CAP among febrile patients [20] and one of the main symptoms of pneumonia [2, 21].
	Cough		Cough is a common symptom and one of the most frequent increasing the likelihood of detecting a viral pathogen among CAP patients [15, 22]. Algorithms included cough as a diagnostic predictor [23], and dry cough was a strong predictor in a prediction model for <i>Legionella pneumoniae</i> [24]. Cough was less common in older population [7].
	Secretions		Purulent secretions were a significant symptom and predictor for CAP patients [20, 21].
	Sore throat		Some studies identified sore throat as a symptom of CAP [15], and one included the symptom in the prediction rules of pneumonia [5]

	Colu		the most frequent, with symptoms similar to CAP
	Fever feeling	1	Quantified from reported chills or night sweat or
	Chast pain	-	measured at home. Included as a rationale of feve
			[18, 20, 23] or a combined diagnostic predictor [2
			and may present as a secondary symptom of coug
			or pleuritic involvement [26]. However, chest pair
	Perinheral edema	-	less common in the older population [7].
	Fenpheraledellia		possible predictor is that it is included in the clinic
			assessment at admission. In case of peripheral ed
			and respiratory symptoms of dyspnea, chest pain
			history of cardiovascular disease, CAP could be ru
			cardiovascular disease.
	Nausea	1	Gastrointestinal symptoms such as nausea, vomit
			and diarrhea manifests in 20% of the CAP populat
	Vomiting	-	[26].
	Vorniting		and diarrhea manifests in 20% of the CAP populat
			[26].
	Loss of appetite	R	Loss of appetite could be present in the case of
			gastrointestinal symptoms [26] and could result fi
	Abdominal pain		Abdominal pain may be present in the case of
			gastrointestinal symptoms described above and,
			therefore, is included in the model [26].
	Diarrhea		Gastrointestinal symptoms such as nausea, vomit
			[26].
	Pain in muscles and		Muscle and joint pain are associated with viral
	joints including back		pneumonia as influenza, especially among younge
Provious overt of	pain Provious event of CAP	Categorical:	patients and therefore is included in our model [2
CAP	Previous event of CAP	0= Never	robust evidence as a risk factor for CAP [1].
		1= Once	Furthermore, any hospitalization in the previous f
		2= More than once	years was reported as a predisposing factor for C/
Lifestyle factors	Smoke	Categorical:	Smoking has been associated with an increased ri CAP in several studies [1, 8, 10, 17], and has a stre
		1=Current smoker	association with the treatment outcomes of elder
		2=Previous smoker	individuals with respiratory tract infections [28].
	Alcohol	Doses per week (a dose=12 grams	Alcohol has also been associated with increased (
		(1, 5 CI) alconol). Categories based on the Danish	individuals with higher consumption (>41 g/day)
		Board of Health recommendations	compared to those who consume no alcohol [10,
		[29].	28].
		U=No alcohol	
		recommended for women	
		2=8-14 doses/week maximum dose	
		recommended for men	
	Physical activity levels	5- >14 doses We categorized physical activity	The risk of CAP decreased in physically active wo
	. Hydroar docivity levels	levels based on recommendations	[10]. In addition, a high level of activity protects
		from the world health organization	against upper respiratory tract infections and red
		tor adults with a minimum 150	the severity and symptoms of the infection [13].
		1= Not physically active	
		2= Less than 2.5hrs/week	
		3= More than 2.5hrs/week	
	Activities of daily living	Binary (yes/no)	Difficulty in maintaining toilet hygiene, preparing
		dependencies regarding.	means, and being unable to transfer were associate with an increased risk of respiratory infections [3]
		bathing, dressing, toileting.	
		0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	

Comorbidities (diseases)	Neurological	Binary (Yes/no)	Cerebrovascular disease/stroke and Parkinson disease approximately doubled the risk of CAP
(uiseases)	Pulmonary	one of these diagnoses.	A history of pneumonia increased the risk of car subsequent episode and patients with chronic respiratory diseases, including chronic obstruc pulmonary disease, bronchitis or asthma, had
	Endocrinological		fourfold increase in the risk of CAP [1, 4, 17]. Chronic liver conditions were reported as a ris of CAP [8]. Recently, diabetes mellitus has bee described as an independent risk factor for sel secondary to CAP in very old patients [4] and c several studies showed an association betwee diabetes mellitus and moderate risk of CAP [1]
	Renal Cardiovascular		Chronic renal disease was reported as an indep risk factor for sepsis secondary to CAP in very patients [4, 8] and chronic renal disease increa risk of CAP twofold [17]. Chronic cardiovascular disease increased the r CAP up to threefold [4, 17].
	Gastrointestinal		The rationale for including gastrointestinal dis the model was that CAP patients have gastroir symptoms that could be related to a differenti diagnosis besides CAP.
	Dementia Cancer	Č,	Dementia approximately doubles the risk of Cancer was associated with a moderate increat risk, and a single study reported a fivefold increation risk of CAP for patients with lung cancer [17].
	Rheumatological		A moderate risk of CAP was found in patients rheumatological diseases [17].
treatments	Polypharmacy	Regular consumption of at least five medications	patients increased number of comorbidities of old patients increases the risk of polypharmacy [4 prevalence of polypharmacy reached almost 4 among individuals with respiratory tract infect above age 65 years and had a twofold associat treatment outcomes of respiratory tract infect [28]. Furthermore, the prevalence of polyphar increased from 45% to 74%, irrespective of an use if patients were hospitalized with CAP [16]
	Analgesics	Binary (Yes/no) Regular consumption of analgesics	A systematic review reported an association b prescribed opioids and CAP [33].
	Vaccination SARS-CoV-2	Binary (Yes/no) Recent vaccination for SARS-CoV-2	SARS-CoV-2 vaccination was reported during t clinical assessment but was taken out of the m the model would be used after the pandemic vaccination for SARS-CoV-2 rates might decrea However, the inclusion of this variable did not the final predictive model
	Vaccination pneumococcus	Binary (Yes/no) Pneumococcus vaccine (not specified) within 5 years	Streptococcus pneumoniae is one of the most pathogens of CAP and the vaccine could be a p protective predictor for CAP as the risk of CAP increases among those unvaccinated [1, 34, 32
	Vaccination influenza	Binary (Yes/no) Season influenza vaccine 2020/2021	Influenza vaccine can reduce hospitalization b questionable if it could have a protective effect admitted patients [1, 36], therefore, we includ possible predictor to investigate if it could hav protective role in our population.
Severity assessment	CURB-65	Binary ≥ 3 points (Yes/no) Definition: Confusion, urea >7 mmol/L, respiratory rate ≥ 30 bpm, blood pressure (≤90 for systolic blood pressure or ≤60 for diastolic blood pressure, age > 65 years) Score: one point for each present	CURB65 is an assessment tool for the severity [37] recommended by the guidelines in Europe including in Denmark [39].

	Triage	Based on the 5-level triage system "Danish emergency department triage" (DEPT) [40, 41], we categorized the following:	DEPT is a Danish adaption and modification of the "Adaptive Process Triage" (ADAPT) developed in Sweden [42]. DEPT was chosen as it is routinely used i the three included sites. Furthermore, in Denmark, most EDs have implemented formalized triage called "Danish Emergency Process Triage" DEPT charge core
		pooled due to few patients in the blue and red groups: 1= Red/Orange 2= Yellow	similarities with widespread standardized 5-level triag systems [43].
		3= Green/Blue	
Vital parameters	Oxygen saturation	Binary < 96 % (Yes/no)	A similar cut-off of oxygen saturation has been used in investigating predictors for CAP [19].
All vital parameters		The cut-off was based on The	
regardless of		National Early Warning Score	
diastolic blood		(NEWS) [44]. However, we did not	
pressure were		differentiate between patients with	
based on The		chronic obstructive pulmonary	
Marning Score	lloart rate	Disease.	Compartudies have investigated and pointed out that
(NEWS) [44].	Heart rate	Binary < 51 or >90 ppm (Yes/no)	higher heart rate with similar cut-offs as a predictor for CAP [19, 45, 46].
This score was	Blood pressure systolic	Binary <111 or >219 mmHg	Other cut-offs based on the CURB65-score or lower
chosen as it is		(Yes/no)	level of triage (<90mmHg) have been used to predict a
routinely used in			high risk of adverse events among inpatients with CAF
the three EDs			[47]. This cut-off was also explored in our model
included in this			without resulting in any difference.
study and cut-offs	Blood pressure diastolic	Binary ≤60 mmHg (Yes/no)	CURB-65 is routinely used in Denmark as a severity
CAP are similar from			score and is included in the guidelines for antibiotic
the literature		Based on severity assessment	treatment [39]. As systolic blood pressure has been
the interature.		CURB65-score [37]. The NEWS does	Investigated in prediction rules, we added diastolic
		and therefore the value from	a predictor for CAP
		CLIBB-65 was chosen	a predictor for CAP.
	Respiratory rate (RR)	Binary >20 breaths/min (Yes/no)	There are different cut-offs of RR in the literature [20]
			47]. RR> 20/min was defined as a strong prediction of CAP among febrile patients [20].
	Temperature	Binary >38 °C (Yes/no)	Different cut-offs have been investigated, including th cut-off of >38°C used in this study [49]. Independent c
		Measured with ear thermometer [48].	cut-offs, several studies have identified fever as a predictor of CAP [19-21, 23, 45]. However, fever is less common and generally absent in the older population [7]
	Glascow coma score	Binary >15 (Yes/no)	Cognitive impairment [32] has been reported as a strong risk factor for delirium and confusion as a predictor of the severity of CAP [47]. Altered mental status is associated with CAP, especially in the elderly [18]
Blood tests	Hematocrit	Hematocrit (%). median (IOR)	A hematocrit value of less than 35% was an
The Prese L		Binary (Yes/no)	independent predictor for severity and 2 years of
ne interature does		Cut off: 40-50 for malor	mortainty ($p = 0.035$) [50].
cut-off for the		and 35-46 for females	
diagnosis of CAP		Yes= outside of the cut-off	
We chose a		No= within the cut-off	
pragmatic approach	Hemoglobin	Hemoglobin mmol/L. median (IOR)	Hemoglobin correlates with frailty in the elderly and
and applied the cut-		Binary (Yes/no)	indirectly could be a predictor that should be
offs of serum		/ · · · · /	investigated [51].
biomarkers used in		Cut-off: 8.3-10.5 for males and 7.3-	
the EDs from our		9.5 for females	
institution to roflact		Yes= outside of the cut-off	
institution to reflect	1	No= within the cut-off	
reality.			Elevente d'have a state have been averaged at a second state
reality.	Leukocytes	Leukocytes 10E9/L, median (IQR)	Elevated leucocytes have been reported as a predicto
Most of the serological	Leukocytes	Leukocytes 10E9/L, median (IQR) Binary (Yes/no)	for CAP, especially in pneumonia with negative chest ray [52].
Most of the serological biomarkers have	Leukocytes	Leukocytes 10E9/L, median (IQR) Binary (Yes/no) Cut-off: 3.5-8.8	for CAP, especially in pneumonia with negative chest ray [52].
Most of the serological biomarkers have been studied for	Leukocytes	Leukocytes 10E9/L, median (IQR) Binary (Yes/no) Cut-off: 3.5-8.8 Yes= outside of the cut-off	for CAP, especially in pneumonia with negative chest ray [52].

purposes. We have included these as potential predictors	Platelets	Platelets 10E9/L, median (IQR) Binary (Yes/no)	Platelet count < 171 × 109/L was included in a prediction model for <i>legionella pneumoniae</i> showing a high diagnostic accuracy [AUC 0.89 (95% CI 0.86–0.93)]
for CAP to investigate their diagnostic		Cut-off: 145-350 for males and 165-400 for females Yes= outside of the cut-off	[24].
performance combined with signs	Neutrophils	No= within the cut-off Neutrophilocytes 10E9/L, median (IQR)	The neutrophil to lymphocyte ratio had a high diagnostic value for CAP patients [53]. Furthermore,
Binary (Yes/no)		Cut-off: > 7.5	measured in the early stage of CAP could contribute to the diagnostic and disease severity [54].
measures. Yes= abnormal/		Yes= >7.5 No= ≤ 7.5	The sector data to the sector of the sector
off No= normal/ within	Lymphocytes	Binary (Yes/no)	prognostic studies and is associated with higher mortality risk in CAP patients and if measured in the
the cut-off		Cut-of: 1.00-4.00 Yes= outside of the cut-off No= within the cut-off	early stage of CAP could contribute to the diagnostic and disease severity [54].
	Albumin	Albumin g/L, median (IQR) Binary (Yes/no)	The ratio of blood urea and albumin has been investigated as a predictive factor for CAP, but poor
		Cut-off: 34-45 Yes= outside of the cut-off	model performance advocated for further investigation [55]. Furthermore, albumin correlates with frailty in the elderly and indirectly could be a predictor that
		No= within the cut-off	should be investigated as frailty has been associated with an increased risk of CAP [51]. In addition, serum
		0	mortality for elderly patients with CAP [18] and was included in a prediction rule for severe adverse events in patients hospitalized with CAP ($< 2 p/d$] 2 points: 2–
			3 g/dL, 1 point) [47].
	Creatinine	Creatinine µmol/L, median (IQR) Binary (Yes/no)	Elevated creatinine levels have been reported with almost a sixfold association of poor CAP outcome (OR=5.67: 95%(I: 1.72-18.65) [56]. This result is
		Cut-off: 60-105 for males and 45-90 for females Yes= outside of the cut-off	supported by another study that showed that serum creatinine levels of \geq 2.8 were a strong predictor of inhospital mortality in adults with CAP when compared with CAP when compared
	Blood urea	Blood urea nitrogen mmol/L	The ratio of blood urea and albumin has been
		median (IQR) Binary (Yes/no)	investigated as a predictive factor for CAP, but poor model performance advocated for further investigation
		Cut-off: 3-5-8.1 for males and 3.1- 7.9 for females	
		Yes= outside of the cut-off No= within the cut-off	3
	Natrium	Natrium mmol/L, median (IQR) Binary (Yes/no)	Hyponatremia < 133 mmol/L was one of the strong predictors in the prediction of CAP caused by <i>legionella pneumoniae</i> [24].
		Cut-off: 137-145 Yes= outside of the cut-off No= within the cut-off	
	Prothrombin time- international normalized ratio	Prothrombin (IQR) Binary (Yes/no)	Prothrombin time-international normalized ratio was investigated to distinguish Influenza A (H1N1) from other pneumonia. Prothrombin times were lower in
		Cut-off: <1.2 Yes= ≥ 1.2 No= <1.2	H1N1 compared with non-H1N1 pneumonia patients (p=0.04) [58]. Furthermore, it has been investigated as a factor that could be associated with decreased
			sensitivity in negative urinary antigen (UAT) tests in CAP caused by pneumococcal. Prothrombin was 50% higher in the UAT-negative patients than in the UAT-
			positive patients [59]. We chose to include prothrombin in the diagnostic model to explore its significance in or rule out CAP, furthermore, the
			marker is routinely measured in acutely admitted patients.

2
-
3
4
_
5
6
-
/
8
0
9
10
11
12
13
1.5
14
15
16
10
17
18
10
19
20
21
21
22
ົ້
23
24
25
25
26
27
20
28
29
20
50
31
22
52
33
34
25
35
36
27
37
38
20
22
40
41
40
42
43
11
44
45
46
4-
47
48
40
49
50
51
51
52
53
55
54
55
55
56
57
50
20
59

-

	Bilirubin	Bilirubin µmol/L, median (IQR) Binary (Yes/no)	Bilirubin levels were lower in patients with influenza A (H1N1) compared to non-H1N1 pneumonia (p= 0.02) [58]. This marker could add value to a prediction
		Cut-off: <5 or >25 Yes= outside of the cut-off No= within the cut-off	model.
	Glucose	Glucose mmol/L, median (IQR) Binary (Yes/no) Cut-off: > 11.00 Yes= >11.00	Patients with CAP frequently present with admission hyperglycemia and have poorer outcomes [60, 61]. Therefore, glucose is included as a potential predictor.
		$N_{0} = \le 11.00$	
	C- reactive protein (CRP)	C-Reactive Protein, median (IQR) Binary (Yes/no)	The diagnostic accuracy of CRP in differentiating between bacterial and viral infections of the lower respiratory tract is guestionable [62]. However, CRP at
	~	The cut-off of CRP in our institution is < 5 mg/L at the ED. However, the literature suggests optional cut- offs. Based on the literature and	different cut-offs increased the performance of prediction models for CAP. It included a cut-off of >20 [20], >30 [63], 50 [23] \geq 98 [46], and a meta-analysis investigated all three cut-offs of 20, 50, and 100 [64].
		the range of the results from the CRP as continuous variable, we defined the following categories: 1= <20mg/L 2= 20-100 mg/L 3= >100 mg/L	CRP levels were found higher when CAP was detected both by a chest x-ray and a chest tomography [52].
Clinical assessment	Stethoscope findings	Binary (Yes/no) Yes for any abnormal stethoscope findings such as crackles and rhonchi.	Several studies investigated associations between abnormal stethoscope findings and the probability of the presence of CAP. They increased the likelihood of CAP [21, 65] and crackles on auscultation had a twofold increase in the prediction of pneumonia [19].
	Abdominal pain on palpation	Binary (Yes/no)	The rationale for including abdominal pain in the clinical assessment was that the literature reported that 20% of symptoms reported by patients with CAP were gastrointestinal symptoms [26].
	Body mass index (BMI).	The BMI was calculated including the high and weight of the patients. The BMI classification was based on "The Centers for diseases control and prevention" [66] and defined with the following categories:	The literature reported the association of several nutritional factors related to CAP and including malnutrition [1, 18], being underweight [8, 17], and BMI was directly associated with an increased risk of CAP among women [10].
		1= Underweight, BMI < 18.5 2= Healthy weight, BMI from 18.5 to <25 3= Overweight, BMI from 25.0 to <30 4= Obesity, BMI from ≥ 30.0	0

Table S2: Characteristics of CAP in the population of patients admitted with an infection (n=954). The values presented of data as continuous, dichotomous or categorical were tested in the model during explorative analysis to identify the best model performance.

Characteristics	Total, n	CAP, n	Not CAP, n	Missings n (%)	OR (95% CI)	p-value
Total of patients	954 (100)	265 (27.8)	689 (72.2)	0 (0.0)		
DEMOGRAPHIC DATA						
Age, median (IQR)	73.0 (59.0; 81.0)	75.0 (63.5; 82.0)	73.0 (57.0; 80.0)	0 (0.0)	1.01 (1.005-1.02)	<0.001
Age ≥75 years	440 (46.1)	133 (50.2)	307 (44.6)	0 (0.0)	1.25 (0.94-1.66)	0.118
Gender male	513 (53.8)	137 (51.7)	376 (54.6)	0 (0.0)	0.89 (0.67-1.18)	0.425
Marital status, Living alone	618 (66.0)	166 (63.8)	452 (66.9)	18 (1.9)	0.87 (0.64-1.18)	0.382
Nursing home resident	66 (7.0)	26 (9.9)	40 (5.9)	13 (1.4)	1.75 (1.05-2.94)	0.317
Occupation				21 (2.2)		
Others	67 (7.2)	17 (6.5)	50 (7.4)		1 (reference)	
Working	202 (21.7)	44 (16.9)	158 (23.5)		0.81 (0.43-1.55)	0.543
Retired	664 (71.2)	200 (76.6)	464 (69.0)		1.26 (0.71-2.25)	0.418
LIFESTYLE FACTORS						
Smoking status				33 (3.5)		
No	323 (35.1)	66 (26.0)	257 (38.5)		1 (reference)	
Current smoker	179 (19.4)	54 (21.3)	125 (18.7)		1.68 (1.10-2.55)	0.015
Previous smoker	419 (45.5)	134 (52.8)	285 (42.7)		1.83 (1.30-2.57)	<0.001
Alcohol status				35 (3.7)		
No alcohol	356 (38.7)	99 (39.1)	257 (38.6)		1 (reference)	
1-7 doses	385 (41.9)	105 (41.5)	280 (42.0)		0.97 (0.70-1.34)	0.870
8-14 doses	105 (11.4)	31 (12.3)	74 (11.1)		1.08 (0.67-1.75)	0.732
> 14 doses	73 (7.9)	18 (7.1)	55 (8.3)		0.84 (0.47-1.51)	0.582
Physically activity				52 (5.4)		
Not physical active	263 (29.2)	74 (29.8)	189 (28.9)		1 (reference)	
Physical activity < 2,5 hr/week	231 (25.6)	64 (25.8)	167 (25.5)		0.97 (0.66-1.45)	0.915
Physical activity ≥ 2,5 hr/week	408 (45.2)	110 (44.4)	298 (45.6)		0.94 (0.66-1.33)	0.735
Body Mass Index, median (IQR)	26.5 (23.2; 30.8)	26.2 (22.9; 29.5)	26.7 (23.3; 31.2)	249 (26.1)	0.97 (0.94-0.99)	0.031
Body Mass Index ⁺				249 (26.1)		
Healthy weight	246 (34.9)	74 (36.1)	172 (34.4)		1 (reference)	
Obese	193 (27.4)	45 (22.0)	148 (29.6)		0.70 (0.45-1.08)	0.114
Overweight	239 (33.9)	74 (36.1)	165 (33.0)		1.04 (0.70-1.53)	0.833
Underweight	27 (3.8)	12 (5.9)	15 (3.0)		1.85 (0.83-4.16)	0.132
ADL dependence*	260 (28.0)	81 (31.2)	179 (26.8)	25 (2.6)	1.23 (0.90-1.69)	0.180
SYMPTOMS						
Feeling unwell	559 (61.2)	173 (67.8)	386 (58.7)	41 (4.3)	1.48 (1.09-2.01)	0.010
Feeling tired	657 (72.6)	190 (75.4)	467 (71.5)	49 (5.1)	1.22 (0.87-1.70)	0.241
Headache	351 (38.3)	99 (38.8)	252 (38.1)	37 (3.9)	1.03 (0.76-1.38)	0.832
Dizziness	346 (37.7)	96 (37.6)	250 (37.8)	37 (3.98)	0.99 (0.73-1.34)	0.973
Confusion	207 (22.6)	58 (22.7)	149 (22.5)	37 (3.89)	1.01 (0.71-1.43)	0.938
Dyspnea	379 (41.4)	171 (67.3)	208 (31.5)	39 (4.1)	4.48 (3.29-6.11)	<0.001
Cough	358 (39 1)	173 (68 1)	185 (28 0)	39 (4 1)	5.49 (4.01-7 52)	<0.001

2 3						
4 5	Expectoration	279 (30.5)	140 (55.1)	139 (21.0)	39 (4.1)	4.61 (3.38-6.28)
6	Sore throat	104 (11.4)	39 (15.4)	65 (9.8)	39 (4.1)	1.66 (1.08-2.54)
7	Cold (common cold)	95 (10.4)	45 (17.7)	50 (7.6)	39 (4.1)	2.63 (1.70-4.05)
8	Fever feling at home	612 (64.2)	169 (63.8)	443 (64.3	0 (0.0)	0.97 (0.72-1.31)
9 10	Chest pain	168 (18.4)	71 (28.1)	97 (14.7)	40 (4.2)	2.26 (1.60-3.21)
11	Oedema	79 (8.6)	10 (4.0)	69 (10.4)	39 (4.1)	0.35 (1,17-0.69)
12	Nausea	304 (33.2)	76 (30.0)	228 (34.4)	38 (3.9)	0.81 (0.59-1.112)
13	Vomiting	190 (20.7)	40 (15.8)	150 (22.6)	38 (3.9)	0.64 (0.43-0.94)
14 15	Loss of appetite	524 (57.2)	149 (58.9)	375 (56.6)	38 (3.9)	1.00 (0.82-1.47)
16	Gastrointestinal pain	193 (21.1)	40 (15.8)	153 (23.1)	38 (3.9)	0.62 (0.42-0.91)
17	Diarrhoea	134 (14.6)	29 (11.5)	105 (15.8)	38 (3.9)	0.68 (0.44-1.06)
18	Muscular pain	344 (37.8)	79 (31.3)	265 (40.3)	44 (4.6)	0.67 (0.49-0.92)
19 20	Back pain	132 (14.5)	33 (13.1)	99 (15.0)	44 (4.6)	0.85 (0.55-1.29)
20	CLINICAL ASSESSMENT					
22	Positive stethoscope findings	329 (36.5)	168 (65.4)	161 (25.0)	52 (5.4)	5.67 (4.15-7.75)
23	Abdominal pain by palpation	192 (22.1)	37 (15.0)	155 (25.0)	86 (9.0)	0.52 (0.35-0.78)
24 25	COMORBIDITIES					
25	Dementia	32 (3.4)	9 (3.4)	23 (3.3)	0 (0.0)	1.01 (0.46-2.22)
27	Neurological diseases	172 (18.0)	53 (20.0)	119 (17.3)	0 (0.0)	1.19 (0.83-1.71)
28	Respiratory diseases	269 (28.2)	105 (39.6)	164 (23.8)	0 (0.0)	2.10 (1.55-2.84)
29	Endocrinological diseases	296 (31.0)	80 (30.2)	216 (31.3)	0 (0.0)	0.94 (0.69-1.28)
30 31	Nephrological diseases	252 (26.4)	60 (22.6)	192 (27.9)	0 (0.0)	0.75 (0.54-1.05)
32	Cardiovascular diseases	390 (40.9)	116 (43.8)	274 (39.8)	0 (0.0)	1.17 (0.88-1.57)
33	Gastrointestinal diseases	100 (10.5)	23 (8.7)	77 (11.2)	0 (0.0)	0.75 (0.46-1.23)
34 25	Rheumatological diseases	118 (12.4)	27 (10.2)	91 (13.2)	0 (0.0)	0.74 (0.47-1.17)
36	Cancer diseases	85 (8.9)	26 (9.8)	59 (8.6)	0 (0.0)	1.16 (0.71-1.88)
37	Prior pneumonia			4	100 (10.5)	
38	No	410 (48.0)	79 (33.3)	331 (53.6)		1 (reference)
39 40	Yes, one time	180 (21.1)	50 (21.1)	130 (21.1)		1.61 (1.07-2.42)
40	Yes, more than one time	264 (30.9)	108 (45.6)	156 (25.3)		2.90 (2.05-4.10)
42	SEVERITY ASSESSMENT					
43	CURB65 ≥3 **	122 (13.0)	29 (11.3)	93 (13.7)	16 (1.7)	0.80 (0.51-1.25)
44 45	Triage***				59 (6.2)	
46	Green/Blue	183 (20.4)	37 (14.8)	146 (22.6)		1 (reference)
47	Yellow	479 (53.5)	126 (50.4)	353 (54.7)		1.40 (0.93-2.13)
48	Red/Orange	233 (26.0)	87 (34.8)	146 (22.6)		2.35 (1.50-3.67)
49 50	VITAL PARAMETERS					
50	Respiratory rate, median(IQR)	18.0 (16.0; 22.0)	20.0 (18.0; 24.0)	18.0 (16.0; 20.0)	5 (0.5)	1.10 (1.07-1.13)
52	Respiratory rate >20/min	285 (30.0)	124 (47.0)	161 (23.5)	5 (0.5)	2.88 (2.13-3.88)
53	Oxygen saturation % n/min, median				4 (0.4)	0.84 (0.00.0.00)
54 55	(IQK) Oxygen saturation < 96 %	96.0 (94.0; 98.0)	95.0 (93.0; 97.0)	97.0 (95.0; 98.0)	4 (0.4)	0.84 (0.80-0.88)
55 56	Heart rate/min mean (cd)	393 (41.4)	162 (61.1)	231 (33.7)	4 (0.4)	3.09 (2.30-4.14)
57	Heart rate $<51 \text{ or } >0/min$	90.1 (18.3)	93.2 (18.9)	88.9 (18.0)	1 (0.1)	1.01 (1.005-1.02)
58	Systolic blood pressure mmHg. mean	460 (48.3)	148 (55.8)	312 (45.3)	1 (0.1)	1.52 (1.14-2.02)
59 60	(sd)	132.8 (22.5)	134.2 (21.0)	132.2 (23.1)	3 (0.3)	1.003 (0.99-1.01

BMJ Open

0.215

< 0.001 0.019 < 0.001 0.880 < 0.001 0.002 0.211 0.023 0.523 0.016 0.095 0.013 0.455

< 0.001 0.002

0.964 0.326 < 0.001 0.728 0.101 0.259 0.260 0.205 0.544

0.022 < 0.001

0.336

0.105 < 0.001

< 0.001 < 0.001 < 0.001 < 0.001 0.001 0.003
2 3							
4 5	Systolic blood pressure <111 or >219 mmHg	156 (16.4)	38 (14.4)	118 (17.2)	3 (0.3)	0.81 (0.54-1.21)	0.314
6	Diastolic blood pressure mmHg, mean				- ()		
7	(sd)	74.8 (15.3)	74.2 (13.6)	75.0 (15.8)	3 (0.3)	0.99 (0.98-1.006)	0.483
8		163 (17.1)	40 (15.2)	123 (17.9)	3 (0.3)	0.82 (0.55-1.21)	0.329
9 10		37.5 (1.0)	37.6 (1.0)	37.4 (0.9)	5 (0.5)	1.22 (1.05-1.40)	0.006
11	Fever > 38°C	233 (24.6)	77 (29.3)	156 (22.7)	5 (0.5)	1.40 (1.02-1.93)	0.036
12		31 (3.3)	12 (4.6)	19 (2.8)	5 (0.5)	0.59 (0.28-1.24)	0.168
13	BLOOD TESTS						
14 15	Haematocrit, median (IQR)	38.0 (35.0; 42.0)	38.0 (35.0; 42.0)	39.0 (35.0; 42.0)	260 (27.2)	0.98 (0.95-1.01)	0.465
16	Haematocrit	268 (38.6)	85 (38.6)	183 (38.6)	260 (27.2)	1.001 (0.72-1.39)	0.994
17	Haemoglobin mmol/L, median (IQR)	8.0 (7.2; 8.7)	7.9 (7.2; 8.6)	8.0 (7.3; 8.8)	0 (0.0)	0.90 (0.80-1.02)	0.127
18	Haemoglobin mmol/L	402 (42.1)	118 (44.5)	284 (41.2)	0 (0.0)	1.14 (0.86-1.52)	0.354
19 20	Leukocytes 10E9/L, median (IQR)	11.1 (8.3; 14.8)	12.2 (9.5; 15.8)	10.7 (8.0; 14.2)	0 (0.0)	1.05 (1.02-1.07)	<0.001
20 21	Leukocytes 10E9/L	670 (70.2)	214 (80.8)	456 (66.2)	0 (0.0)	2.14 (1.52-3.02)	<0.001
22	Platelets 10E9/L, median (IQR)	240.0 (189.0; 307.8)	260.5 (211.0; 330.8)	232.0 (182.3; 296.0)	10 (1.0)	1.002 (1.001- 1.004)	<0.001
23 24	Platelets 10E9/L	201 (21.3)	63 (23.9)	138 (20.3)	10 (1.0)	1.23 (0.87-1.72)	0.229
25	Neutrophilocytes 10E9/L, median (IQR)	8.4 (6.0; 12.2)	9.7 (7.2; 13.0)	8.0 (5.6; 11.6)	10 (1.0)	1.06 (1.03-1.09)	<0.001
26	Neutrophilocytes 10E9/L	549 (58.2)	187 (71.1)	362 (53.2)	10 (1.0)	2.16 (1.59-2.94)	<0.001
27	Lymphocytes ⁺ 10E9/L, median (IQR)	1.1 (0.7; 1.6)	0.9 (0.6; 1.5)	1.2 (0.8; 1.8)	633 (66.3)	0.98 (0.85-1.12)	0.797
28	Lymphocytes† 10E9/L	145 (45.2)	53 (55.2)	92 (40.9)	633 (66.3)	1.78 (1.10-2.88)	0.018
29 30	Albumin g/L, median (IQR)	39.0 (36.0; 42.0)	39.0 (35.0; 41.0)	39.0 (36.0; 42.0)	7 (0.7)	0.96 (0.93-0.99)	0.029
31	Albumin g/L	160 (16.9)	39 (14.9)	121 (17.6)	7 (0.7)	0.82 (0.55-1.21)	0.323
32 33	Creatinine µmol/L, median (IQR)	84.0 (67.0; 113.0)	81.0 (64.0; 108.0)	86.0 (67.5; 114.0)	0 (0.0)	0.996 (0.993- 0.998)	0.003
34	Creatinine µmol/L	374 (39.2)	106 (40.0)	268 (38.9)	0 (0.0)	1.04 (0.78-1.39)	0.754
35 36	Blood urea nitrogen mmol/L, median (IQR)	6.2 (4.4; 8.9)	6.2 (4.5; 8.6)	6.2 (4.4; 9.1)	9 (0.9)	0.99 (0.96-1.02)	0.657
37	Blood urea nitrogen mmol/L	377 (39.9)	99 (38.1)	278 (40.6)	9 (0.9)	0.90 (0.67-1.20)	0.482
38 39	Natrium mmol/L, median (IQR)	137.0 (134.0; 139.0)	137.0 (134.0; 139.0)	137.0 (134.0; 139.0)	0 (0.0)	0.98 (0.95-1.01)	0.394
40	Natrium mmol/L	432 (45.3)	128 (48.3)	304 (44.1)	0 (0.0)	1.18 (0.89-1.57)	0.245
41	Prothrombin, median (IQR)	1.1 (1.0; 1.2)	1.1 (1.0; 1.2)	1.1 (1.0; 1.2)	3 (0.3)	1.18 (0.89-1.58)	0.231
42	Prothrombin	234 (24.6)	65 (24.5)	169 (24.6)	3 (0.3)	0.99 (0.71-1.38)	0.972
43 44	Bilirubin µmol/L, median (IQR)	9.0 (6.0; 13.0)	9.0 (6.0; 12.0)	9.0 (6.0; 14.0)	11 (1.1)	0.97 (0.95-0.99)	0.254
45	Bilirubin µmol/L	152 (16.1)	38 (14.4)	114 (16.8) 🦳	11 (1.1)	0.83 (0.55-1.24)	0.369
46	Glucose mmol/L, median (IQR)	6.7 (5.9; 7.9)	6.9 (6.2; 8.1)	6.6 (5.8; 7.8)	9 (0.9)	1.04 (0.99-1.10)	0.052
47	Glucose mmol/L	51 (5.4)	19 (7.3)	32 (4.7)	9 (0.9)	1.59 (0.88-2.85)	0.120
48 49	C-Reactive Protein mg/L, median (IQR)	95.5 (30.0; 179.3)	125.0 (57.0; 203.5)	82.0 (19.0; 172.0)	0 (0.0)	1.003 (1.001- 1.004)	<0.001
50	C-Reactive Protein mg/L				0 (0.0)		
51	Low <20mg/L	196 (20.5)	21 (7.9)	175 (25.4)		1 (reference)	
5∠ 53	Moderate 21-99 mg/L	291 (30.5)	86 (32.5)	205 (29.8)		3.49 (2.08-5.86)	<0.001
54	High >=100	467 (49.0)	158 (59.6)	309 (44.8)		4.26 (2.60-6.96)	<0.001
55	VACCINE AND MEDICAMENTATIONS						
56	SARS-CoV-2 †	756 (79.2)	222 (83.8)	534 (77.5)	0 (0.0)	1.49 (1.03-2.17)	0.033
5/ 58	Pneumococcal	530 (55.6)	160 (60.4)	370 (53.7)	0 (0.0)	1.31 (0.98-1.75)	0.063
59 60	Influenza	635 (66.6)	191 (72.1)	444 (64.4)	0 (0.0)	1.42 (1.04-1.94)	0.025

Analgesics	404 (42.3)	115 (43.4)	289 (41.9)	0 (0.0)	1.06 (0.79-1.41)	0.684
Polypharmacy****	544 (57.0)	163 (61.5)	381 (55.3)	0 (0.0)	1.29 (0.96-1.72)	0.082

Values are numbers (percentages) unless otherwise specified. *ADL dependence: If the patient had one or more dependencies regarding bathing, dressing, toileting, transfer, continence, and feeding. ** CURB65: confusion, uraemia, respiratory rate, blood pressure, age > 65 years. ***Triage: Danish emergency process triage [40] ****Polypharmacy: regular consumption of at least five medications ⁺ variables not included in the multivariate model

Table S3: Characteristics of the 954 patients with suspected infection enrolled in the study. It presents the 70 predictors included in the multivariate analysis and randomization of the training set and validation set.

.		_		Missings	
Characteristics	lotal, n	Training set, n	Validation set, n	n (%)	p-value
Total of patients	954 (100)	766 (80.3)	188 (19.7)	0 (0.0)	
DEMOGRAPHIC DATA					
Age, median (IQR)	73.0 (59.0; 81.0)	75.0 (63.5; 82.0)	74.0 (60.0; 82.0)	0 (0.0)	0.54
Age ≥75 years	440 (46.1)	348 (45.4)	92 (48.9)	0 (0.0)	0.39
Gender male	513 (53.8)	408 (53.3)	105 (55.9)	0 (0.0)	0.52
Marital status, Living alone	618 (66.0)	488 (65.0)	130 (70.3)	18 (1.9)	0.17
Nursing home resident	66 (7.0)	55 (7.3)	11 (5.9)	13 (1.4)	0.53
Occupation				21 (2.2)	0.62
Others	67 (7.2)	57 (7.6)	10 (5.5)		
Working	202 (21.7)	162 (21.6)	40 (22.0)		
Retired	664 (71.2)	532 (70.8)	132 (72.5)		
LIFESTYLE FACTORS					
Smoking status		7		33 (3.5)	0.76
No	323 (35.1)	256 (34.5)	67 (37.4)		
Current smoker	179 (19.4)	145 (19.5)	34 (19.0)		
Previous smoker	419 (45.5)	341 (46.0)	78 (43.6)		
Alcohol status				35 (3.7)	0.60
No alcohol	356 (38.7)	283 (38.2)	73 (40.8)		
1-7 doses	385 (41.9)	315 (42.6)	70 (39.1)		
8-14 doses	105 (11.4)	81 (10.9)	24 (13.4)		
> 14 doses	73 (7.9)	61 (8.2)	12 (6.7)		
Physically activity				52 (5.4)	0.76
Not physical active	263 (29.2)	214 (29.4)	49 (28.2)		
Physical activity < 2,5 hr/week	231 (25.6)	189 (26.0)	42 (24.1)		
Physical activity ≥ 2,5 hr/week	408 (45.2)	325 (44.6)	83 (47.7)		
Body Mass Index ⁺				249 (26.1)	0.74

Healthy weight	246 (34.9)	202 (35.8)	44 (31.2)		
Obese	193 (27.4)	154 (27.3)	39 (27.7)		
Overweight	239 (33.9)	187 (33.2)	52 (36.9)		
Underweight	27 (3.8)	21 (3.7)	6 (4.3)		
ADL dependence*	260 (28.0)	203 (27.1)	57 (31.7)	25 (2.6)	0.22
SYMPTOMS					
Malaise	559 (61.2)	458 (62.0)	101 (58.0)	41 (4.3)	0.34
Feeling tired	657 (72.6)	540 (74.0)	117 (66.9)	49 (5.1)	0.06
Headache	351 (38.3)	287 (38.8)	64 (36.0)	37 (3.9)	0.48
Dizziness	346 (37.7)	287 (38.8)	59 (33.1)	37 (3.98)	0.16
Confusion	207 (22.6)	164 (22.2)	43 (24.2)	37 (3.89)	0.57
Dyspnea	379 (41.4)	309 (42.0)	70 (39.1)	39 (4.1)	0.48
Cough	358 (39.1)	294 (39.9)	64 (35.8)	39 (4.1)	0.30
Fever feeling at home	612 (64.2)	464 (64.5)	118 (62.8)	0 (0.0)	0.66
Expectoration	279 (30.5)	224 (30.4)	55 (30.7)	39 (4.1)	0.94
Sore throat	104 (11.4)	86 (11.7)	18 (10.1)	39 (4.1)	0.54
Cold (common cold)	95 (10.4)	81 (11.0)	14 (7.8)	39 (4.1)	0.21
Chest pain	168 (18.4)	134 (18.2)	34 (19.0)	40 (4.2)	0.81
Oedema	79 (8.6)	61 (8.3)	18 (10.1)	39 (4.1)	0.45
Nausea	304 (33.2)	247 (33.4)	57 (32.2)	38 (3.9)	0.76
Vomiting	190 (20.7)	154 (20.8)	36 (20.3)	38 (3.9)	0.88
Loss of appetite	524 (57.2)	424 (57.4)	100 (56.5)	38 (3.9)	0.83
Gastrointestinal pain	193 (21.1)	145 (19.6)	48 (27.1)	38 (3.9)	0.03
Diarrhoea	134 (14.6)	107 (14.5)	27 (15.3)	38 (3.9)	0.79
Muscular pain	344 (37.8)	289 (39.5)	55 (30.9)	44 (4.6)	0.03
Back pain	132 (14.5)	110 (15.0)	22 (12.4)	44 (4.6)	0.36
CLINICAL ASSESSMENT					
Positive stethoscope findings	329 (36.5)	263 (36.5)	66 (36.5)	52 (5.4)	1.00
Abdominal pain by palpation	192 (22.1)	151 (21.7)	41 (23.7)	86 (9.0)	0.58
COMORBIDITIES		. ,			
Dementia	23 (3.0)	9 (4.8)	23 (3.3)	0 (0.0)	0.22
Neurological diseases	137 (17.9)	35 (18.6)	119 (17.3)	0 (0.0)	0.82
Pulmonary diseases	212 (27.7)	57 (30.3)	164 (23.8)	0 (0,0)	0.47
Endocrinological diseases	239 (31 2)	57 (30.3)	216 (21 2)	0 (0.0)	0.81
	200 (26 1)	52 (27 7)	102 (27.0)	0 (0.0)	0.67
mephrological diseases	200 (20.1)	52 (27.7)	197 (51.9)	U (U.U)	0.07

Cardiovascular diseases	303 (39.6)	87 (46.3)	274 (39.8)	0 (0.0)	0.09
Gastrointestinal diseases	81 (10.6)	19 (10.1)	77 (11.2)	0 (0.0)	0.85
Rheumatological diseases	93 (12.1)	25 (13.3)	91 (13.2)	0 (0.0)	0.67
Cancer diseases	66 (8.6)	19 (10.1)	59 (8.6)	0 (0.0)	0.52
Prior pneumonia				100 (10.5)	0.05
No	343 (50.1)	67 (39.6)	331 (53.6)		
Yes, one time	139 (20.3)	41 (24.3)	130 (21.1)		
Yes, more than one time	203 (29.6)	61 (36.1)	156 (25.3)		
SEVERITY ASSESSMENT					
CURB65 ≥3 **	103 (13.6)	19 (10.4)	93 (13.7)	16 (1.7)	0.25
Triage***				59 (6.2)	0.53
Green/Blue	185 (25.6)	48 (27.9)	146 (22.6)		
Yellow	385 (53.3)	94 (54.7)	353 (54.7)		
Red/Orange	153 (21.2)	30 (17.4)	146 (22.6)		
VITAL PARAMETERS					
Respiratory rate >20/min	285 (30.0)	235 (30.8)	50 (26.7)	5 (0.5)	0.27
Oxygen saturation < 96 %	393 (41.4)	324 (42.5)	69 (36.7)	4 (0.4)	0.15
Heart rate <51 or >90/min	460 (48.3)	377 (49.3)	83 (44.1)	1 (0.1)	0.21
Systolic blood pressure <111 or >219	155 (15.4)	125 (16.4)	31 (16.6)	2 (0 2)	0.04
	156 (16.4)	121 (17 1)	22 (17 1)	3 (0.3)	0.94
Diastolic blood pressure ≤60 mmHg	163 (17.1)	131 (17.1)	32 (17.1)	3 (0.3)	0.99
Fever > 38°C	233 (24.6)	190 (24.9)	43 (23.1)	5 (0.5)	0.61
Glascow coma scale <15	31 (3.3)	23 (3.0)	8 (4.3)	5 (0.5)	0.39
BLOOD TESTS					
Haematocrit	268 (38.6)	218 (39.2)	50 (36.2)	260 (27.2)	0.52
Haemoglobin mmol/L	402 (42.1)	329 (43.0)	73 (38.8)	0 (0.0)	0.31
Leukocytes 10E9/L	670 (70.2)	548 (71.5)	122 (64.9)	0 (0.0)	0.07
Platelets 10E9/L	201 (21.3)	168 (22.2)	33 (17.6)	10 (1.0)	0.17
Neutrophilocytes 10E9/L	549 (58.2)	454 (59.9)	95 (51.1)	10 (1.0)	0.03
Albumin g/L	160 (16.9)	130 (17.1)	30 (16.1)	7 (0.7)	0.76
Creatinine µmol/L	374 (39.2)	303 (39.6)	71 (37.8)	0 (0.0)	0.65
Blood urea nitrogen mmol/L	377 (39.9)	308 (40.5)	69 (37.5)	9 (0.9)	0.46
Natrium mmol/L	432 (45.3)	362 (47.3)	70 (37.2)	0 (0.0)	0.01
Prothrombin	234 (24.6)	186 (24.3)	48 (25.7)	3 (0.3)	0.71
Bilirubin µmol/L	152 (16.1)	119 (15.7)	33 (17.8)	11 (1.1)	0.48
	1	L	1		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Glucose mmol/L	51 (5.4)	42 (5.5)	9 (4.8)	9 (0.9)	0.71
C-Reactive Protein mg/L				0 (0.0)	0.07
<20 mg/L	196 (20.5)	151 (19.7)	45 (23.9)		
21-99 mg/L	291 (30.5)	226 (29.5)	65 (34.6)		
≥ 100 mg/L	467 (49.0)	389 (50.8)	78 (41.5)		
VACCINE AND MEDICAMENTATIONS					
Pneumococcal	530 (55.6)	414 (54.0)	116 (61.7)	0 (0.0)	0.06
Influenza	635 (66.6)	512 (66.8)	123 (65.4)	0 (0.0)	0.71
Analgesics	404 (42.3)	336 (43.9)	68 (36.2)	0 (0.0)	0.06
Polypharmacy****	544 (57.0)	443 (57.8)	101 (53.7)	0 (0.0)	0.31

Values are numbers (percentages) unless otherwise specified. *ADL dependence: If the patient had one or more dependencies regarding bathing, dressing, toileting, transfer, continence, and feeding. ** CURB65: confusion, uraemia, respiratory rate, blood pressure, age > 65 years. ***Triage: Danish emergency process triage [40] ****Polypharmacy: regular consumption of at least five medications

Figure S4: Performance of the prediction model presented with the area receiver operating

characteristic curve

Formula S6: Based on a lambda result of λ =0.0402856 and a probability threshold of 0.35, the LASSO calculation with characteristics predictive of CAP as follows:

$$\begin{split} \textit{CAP-score} &= 0.07 \cdot 1_{\textit{Unwell=yes}} + 0.35 \cdot 1_{\textit{Dyspnea=yes}} + 0.36 \cdot 1_{\textit{Expectoration=yes}} + 0.39 \cdot 1_{\textit{Cough=yes}} \\ &+ 0.34 \cdot 1_{\textit{Cold=yes}} + 0.14 \cdot 1_{\textit{Respiratory rate} > 20/\textit{min=yes}} + 0.24 \end{split}$$

$$\cdot 1_{Oxygen \ saturation < 96\% = yes} + 0.20 \cdot 1_{Chest \ pain = yes} + 0.56 \cdot 1_{Stethoscope = yes} - 0.12$$

$$\cdot 1_{Previous CAP=no} + 0.003 \cdot 1_{Leucocytes < 3.5 or > 8.8 \, 10E9 \, /L=yes} + 0.08$$

 $1_{Neutrophilocytes>7.5 \ 10E9 \ /L=yes} - 0.64 \cdot 1_{CRP<20mg \ /L=yes} + 0.53 \cdot 1_{Cough=yes} \cdot 1_{age \ge 75}$

$$\begin{array}{l} -0.05. \ 1_{Edema=yes} \cdot 1_{age \ge 75} + 0.08 \cdot 1_{Glucose > 11 \ mmol \ /L=yes} \cdot 1_{age \ge 75} + 0.04026 \\ (0.07 + 0.35 + 0.36 + 0.39 + 0.015 + 0.34 + 0.14 + 0.24 + 0.20 + 0.56 + 0.12 \end{array}$$

$$+0.003 + 0.08 + 0.64 + 0.53 + 0.05 + 0.88) - 1.66192 - \log\left(\frac{0.35}{0.65}\right)$$

For best calibration, 0.07 must be subtracted from the score if the score is between 0.08 and 0.47.

BMJ Open

Formula S7: A cutoff value greater than 0 indicates the diagnosis CAP according to our model and can be calculated using the following formula:

$$\begin{split} CAP-score &= 0.07 \cdot 1_{Unwell=yes} + 0.35 \cdot 1_{Dyspnea=yes} + 0.36 \cdot 1_{Expectoration=yes} + 0.39 \cdot 1_{Cough=yes} \\ &+ 0.34 \cdot 1_{Cold=yes} + 0.14 \cdot 1_{Respiratory\ rate\ > 20/min=yes} + 0.24 \end{split}$$

 $\cdot 1_{Oxygen saturation < 96\% = yes} + 0.20 \cdot 1_{Chest pain = yes} + 0.56 \cdot 1_{Stethoscope = yes} - 0.12$

 $\cdot 1_{Previous \ CAP=no} + 0.003 \cdot 1_{Leucocytes < 3.5 \ or \ > 8.8 \ 10E9 \ /L=yes} + 0.08$

 $\cdot 1_{Neutrophilocytes>7.5\ 10E9\ /L=yes} - 0.64 \cdot 1_{CRP<20mg\ /L=yes} + 0.53 \cdot 1_{Cough=yes} \cdot 1_{age\geq75}$

 $-0.05.1_{Edema=yes} \cdot 1_{age \ge 75} + 0.88 \cdot 1_{Glucose > 11 mmol/L=yes} \cdot 1_{age \ge 75} - 0.842742$

For best calibration, 0.07 must be subtracted from the score if the score is between 0.08 and 0.47.

Model specification

Besides the high percentage of missings from lymphocytes (66.3%), lymphocytes contributed to a significantly decreased model performance below 80% and a narrower calibration belt (p<0.001), furthermore lymphocytes were missing for 66.3% of the patients. SARS-CoV-2 vaccine was not included in the final model as the vaccine was related to a specific pandemic and did not change any final predictors or values. The inclusion of the BMI had better prediction performance AUC: 0.86 (CI: 0.79-0.93) and yielded more predictors especially related to lifestyle. The predictors that differed from the final model were: Alcohol (8-14 doses/week) 0.01792, level of physical activity under 2,5 hours/week yielded 0.01067, and obesity appeared with a coefficient of -0.93861. In addition, a symptom of diarrhea (-0.17572), muscular pain (-0.00225), gastrointestinal symptoms (-0.807885), sore throat (0.074709 for patients ≥ 75 years old) and the presence of nephrological diseases (-0.18776 for patients ≥ 75 years old) were predictors of CAP in the model constructed including BMI. From a clinical perspective, we chose to exclude the BMI as the final model would be more useful in an acute setting where reliable information about BMI is not always available. From a statistical perspective, BMI had almost 27% of missings, which would be classified as MAR and possibly selected from the population.

References

- 1. Almirall, J., et al., Risk Factors for Community-Acquired Pneumonia in Adults: A Systematic Review of Observational Studies. Respiration, 2017. 94(3): p. 299-311.
- 2. Riquelme, R., et al., Community-acquired pneumonia in the elderly. Clinical and nutritional aspects. Am J Respir Crit Care Med, 1997. 156(6): p. 1908-14.
- 3. Janssens, J.P., *Pneumonia in the elderly (geriatric) population*. Curr Opin Pulm Med, 2005. **11**(3): p. 226-30.
- 4. Cillóniz, C., et al., Community-acquired pneumonia in critically ill very old patients: a growing problem. Eur Respir Rev, 2020. 29(155).
- 5. Metlay, J.P., et al., Influence of age on symptoms at presentation in patients with communityacquired pneumonia. Arch Intern Med, 1997. 157(13): p. 1453-9.
- 6. Laporte, L., et al., Ten-year trends in intensive care admissions for respiratory infections in the elderly. Ann Intensive Care, 2018. 8(1): p. 84.
- 7. Ravioli, S., et al., Age- and sex-related differences in community-acquired pneumonia at presentation to the emergency department: a retrospective cohort study. Eur J Emerg Med, 2022. **29**(5): p. 366-372.
- 8. Hammond, A., et al., Predisposing factors to acquisition of acute respiratory tract infections in the community: a systematic review and meta-analysis. BMC Infect Dis, 2021. 21(1): p. 1254.
- 9. Barbagelata, E., et al., Gender differences in community-acquired pneumonia. Minerva Med, 2020. 111(2): p. 153-165.
- 10. Baik, I., et al., A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med, 2000. 160(20): p. 3082-8.
- 11. Heath, G.W., et al., Exercise and the incidence of upper respiratory tract infections. Medicine and science in sports and exercise, 1991. 23(2): p. 152-157.
- 12. Kim, N.E., et al., Clinical characteristics and outcomes among older nursing home residents hospitalized with pneumonia. Arch Gerontol Geriatr, 2021. 95: p. 104394.
- 13. Nieman, D.C., et al., Upper respiratory tract infection is reduced in physically fit and active adults. British journal of sports medicine, 2011. 45(12): p. 987-992.
- 14. Calvillo-King, L., et al., Impact of social factors on risk of readmission or mortality in pneumonia and heart failure: systematic review. Journal of general internal medicine, 2013. 28(2): p. 269-282.
 - 15. Clyde, W.A., Jr., Clinical overview of typical Mycoplasma pneumoniae infections. Clin Infect Dis, 1993. 17 Suppl 1: p. S32-6.
- 16. Gamble, J.M., et al., Medication transitions and polypharmacy in older adults following acute care. Ther Clin Risk Manag, 2014. 10: p. 189-96.
- 17. Torres, A., et al., Risk factors for community-acquired pneumonia in adults in Europe: a literature *review.* Thorax, 2013. **68**(11): p. 1057-65.
- 18. Riquelme, R., et al., Community-acquired pneumonia in the elderly: clinical and nutritional aspects. Revista médica de Chile, 2008. 136(5): p. 587-593.
 - 19. Moore, M., et al., Predictors of pneumonia in lower respiratory tract infections: 3C prospective cough complication cohort study. Eur Respir J, 2017. 50(5).
- 20. Ding, F., et al., Development and validation of a simple tool composed of items on dyspnea, respiration rates, and C-reactive protein for pneumonia prediction among acute febrile respiratory illness patients in primary care settings. BMC Med, 2022. 20(1): p. 360.
- 21. Nakanishi, M., et al., Significance of the progression of respiratory symptoms for predicting community-acquired pneumonia in general practice. Respirology, 2010. 15(6): p. 969-74.

60

9

18

19

20

21 22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

BMJ Open

2		
3		
4	22.	Huijskens, E.G.W., et al., The value of signs and symptoms in differentiating between bacterial, viral
5		and mixed aetiology in patients with community-acquired pneumonia. J Med Microbiol, 2014. 63(Pt
7		3): p. 441-452.
8	23.	Loubet, P., et al., Community-acquired pneumonia in the emergency department: an algorithm to
9		facilitate diagnosis and guide chest CT scan indication. Clin Microbiol Infect, 2020. 26(3): p. 382.e1-
10		382.e7.
11	24.	Beekman, R., et al., Validating a clinical prediction score for Legionella-related community acquired
12		pneumonia, BMC Infect Dis. 2022. 22 (1): p. 442.
13	25.	den Engelsen. C., et al., Infectious diseases and the use of antibiotics in outpatients at the
14		emergency department of the University Hospital of León Nicaragua. Int Linfect Dis. 2009. 13 (3): p.
15		349-54
16	26	Mandell I A Community-acquired pneumonia: An overview Postgrad Med 2015 127 (6): p 607-
1/	20.	15
18	27	Takase R et al Clinical Manifestations of Patients with Influenza Differ by Age : A Prospective
20	27.	Multi-centered Study in the Setouchi Marine Area, Acta Med Okayama, 2021, 75(5): n 567-574
20	20	Akhtar A et al. Respiratory-tract infections among geriatrics: prevalence and factors associated
22	20.	with the treatment outcomes. Therapoutic advances in respiratory disease, 2021, 15 : n
23		
24	20	1/554000209/1141.
25	29.	Sundhedsstyreisen. Sundhedsstyreisens dameidinger om dikonol. 2022 [cited 2022 December 06];
26		Available from.
27		nttps://www.sst.uk/ud/viden/Forebyggeise/Aikonol/Aikonoliorebyggeise/Sundneusstyreisens-
28	20	<u>udmeldinger-om-aikonoi</u>
29	30.	(WHO), W.H.O. [cited 2022 December 6]; Available from: chrome-
30		extension://efaidnbmnnnibpcajpcgiciefindmkaj/ <u>https://apps.wno.int/iris/bitstream/handle/10665/</u>
32	24	<u>337001/9789240014886-eng.pat</u>
33	31.	Shang, J., et al., Risk factors for infection in home health care: Analysis of national Outcome and
34		Assessment Information Set data. Res Nurs Health, 2020. 43 (4): p. 373-386.
35	32.	Guidet, B., et al., Caring for the critically ill patients over 80: a narrative review. Ann Intensive Care,
36		2018. 8 (1): p. 114.
37	33.	Steffens, C., et al., The Association Between Prescribed Opioid Receipt and Community-Acquired
38		Pneumonia in Adults: a Systematic Review and Meta-analysis. J Gen Intern Med, 2020. 35 (11): p.
39		3315-3322.
40	34.	Walters, J.A., et al., Pneumococcal vaccines for preventing pneumonia in chronic obstructive
41 42		pulmonary disease. Cochrane Database Syst Rev, 2017. 1(1): p. Cd001390.
43	35.	Kraicer-Melamed, H., S. O'Donnell, and C. Quach, The effectiveness of pneumococcal polysaccharide
44		vaccine 23 (PPV23) in the general population of 50 years of age and older: A systematic review and
45		<i>meta-analysis.</i> Vaccine, 2016. 34 (13): p. 1540-1550.
46	36.	Liang, C.Y., et al., Effectiveness of influenza vaccination in the elderly: a population-based case-
47		<i>crossover study.</i> BMJ Open, 2022. 12 (2): p. e050594.
48	37.	Chalmers, J.D., et al., Severity assessment tools for predicting mortality in hospitalised patients with
49		community-acquired pneumonia. Systematic review and meta-analysis. Thorax, 2010. 65(10): p.
50		878-83.
51	38.	Lim, W.S., et al., BTS guidelines for the management of community acquired pneumonia in adults:
52 53		<i>update 2009.</i> Thorax, 2009. 64 Suppl 3 : p. iii1-55.
53	39.	Rosenvinge, F.S. Antibiotikavejledning for Region Syddanmark. 06.10.2021 [cited 2022 22
55		september]; Available from:
56		https://ekstern.infonet.regionsyddanmark.dk/Files/Dokument547684.htm.
57	40.	Plesner, L.L., et al., The formation and design of the TRIAGE study-baseline data on 6005
58		consecutive patients admitted to hospital from the emergency department. Scandinavian journal of
59		trauma, resuscitation and emergency medicine, 2015. 23 (1): p. 1-9.
60		

2		
3		
4	41.	User Manuel Danish Emergency Process Triage.
5	42.	Nordberg, M., S. Lethvall, and M. Castrén, The validity of the triage system ADAPT. Scandinavian
0		journal of trauma, resuscitation and emergency medicine, 2010. 18: p. 1-1.
8	43.	Farrohknia, N., et al., Emergency department triage scales and their components: a systematic
9		review of the scientific evidence. Scand J Trauma Resusc Emerg Med, 2011. 19 : p. 42.
10	44.	Jones. M., NEWSDIG: The National Early Warning Score Development and Implementation Group.
11		Clin Med (Lond), 2012, 12 (6): p. 501-3.
12	45.	Htun, T.P., et al., Clinical features for diagnosis of pneumonia among adults in primary care setting:
13		A systematic and meta-review. Sci Rep. 2019. 9 (1): p. 7600.
14	46.	Gong, L., et al., Clinical profile analysis and nomogram for predicting in-hospital mortality among
15		elderly severe community-acquired pneumonia patients with comorbid cardiovascular disease: a
16		retrospective cohort study. BMC Pulm Med. 2022. 22 (1): p. 312.
1/ 10	47	Sakakibara, T., et al. A prediction rule for severe adverse events in all inpatients with community-
10	.,.	acquired nneumonia: a multicenter observational study BMC nulmonary medicine 2022 22 (1): n
20		34
21	18	Mogensen CB et al Far measurement of temperature is only useful for screening for fever in an
22	40.	adult emergency denartment BMC Emerg Med 2018 18 (1): p. 51
23	10	Mackowiak P.A. E.A. Chenyenak and A. Grünehaum. Defining Eever. Open Forum Infect Dis 2021
24	45.	9 (6): n of ab 161
25	50	O(0). p. Olabioi.
26	50.	community-acquired pneumonia Am L Pospir Crit Care Med 2004 169 (8): p. 910-4
2/	51	Zhao L H. L Chen, and R.Y. Zhu. The relationship between frailty and community-acquired
28	51.	noumonia in older nationts. Aging Clin Exp Pos. 2022. 2E (2): p. 240.255
30	52	Kitazawa T. et al. Characteristics of neumonia with negative chest radiography in cases
31	52.	confirmed by computed tomography 1 Community Hosp Intern Med Perspect 2020 10 (1): p. 19-
32		24
33	52	24. Huang V, at al. Diagnostic value of blood parameters for community acquired proving int
34	55.	Huang, 1., et al., Diagnostic value of blood parameters for community-acquired pheamonia. Int
35	E A	Alzoubi O and A Khanfar, Accordiation between neutraphilite lumphosiste ratio and mortality
36	54.	Alzoubi, O. and A. Khannar, Association between neutrophil to tymphocyte ratio and mortality
3/		anong community acquired pheamonia patients. a meta-analysis. Monalul Arch chest Dis, 2021.
20	E E	92(3). Miles C. D. V. Isseris, and V. Danavasilaiou. <i>Bland urag nitrogen to albumin ratio as a predictiva</i>
40	55.	factor for province A motor anglusic Despir Mod Dec. 2022 91 p. 100886
41	56	Juctor Jor prieumonia: A meta-analysis. Respir Med Res, 2022. 81. p. 100886.
42	50.	Rassaw, G., et al., Outcomes and Predictors of Severe Community-acquired Pheumonia Among
43		Adults Admitted to the University of Gondal Comprehensive Specialized Hospital: A Prospective
44	57	Follow-up Study. Infect Drug Resist, 2023. 10: p. 619-635.
45	57.	Aunan, M., et al., Prognostic value of five serum markers predicting in-hospital montality among adults with community acquired anotymenia. Unfect Dev Ctrice, 2022, 16(1), p. 166, 172
46	го	Dendén Demirez, E.L. et el., TCE & Blood Levels Distinguish Between Influenza A (11111) ndm00
4/	58.	Rendon-Ramirez, E.J., et al., <i>I GF-0 Blood Levels Distinguish Between Injiuenza A (H1N1)pam09</i>
48		Virus Sepsis and Sepsis due to Other Forms of Community-Acquired Pheumonia. Viral Immunol,
49 50	50	2015. 28 (5): p. 248-54.
51	59.	watanabe, H., et al., <i>Clinical factors associated with negative urinary antigen tests implemented for</i>
52		the alagnosis of community-acquirea pneumococcal pneumonia in adult patients. Med Princ Pract,
53	<u> </u>	2015. 24 (2): p. 189-94.
54	60.	Zeng, w., et al., Association of admission blood glucose level and clinical outcomes in elderly
55		<i>community-acquirea pneumonia patients with or without alabetes.</i> Clin Respir J, 2022. 16 (8): p.
56	C 1	
5/	61.	Barmanray, K.D., et al., in-nospital nypergiycemia but not diabetes mellitus alone is associated with
50 59		increased in-nospital mortality in community-acquired pneumonia (CAP): a systematic review and
60		meta-analysis of observational studies prior to COVID-19. BNJ Open Diabetes Res Care, 2022. 10 (4).

1 2		
3		
4 5	62.	van der Meer, V., et al., <i>Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review.</i> Bmj, 2005. 331 (7507): p. 26.
6 7 8	63.	van Vugt, S.F., et al., Use of serum C reactive protein and procalcitonin concentrations in addition to symptoms and signs to predict pneumonia in patients presenting to primary care with acute cough: diagnostic study Bmi 2013 346 : p. f2450
9 10 11	64.	Ebell, M.H., et al., <i>Accuracy of Biomarkers for the Diagnosis of Adult Community-acquired</i> <i>Pneumonia: A Meta-analysis.</i> Acad Emerg Med, 2020. 27 (3): p. 195-206.
12 13	65.	Ebell, M.H., et al., <i>Accuracy of Signs and Symptoms for the Diagnosis of Community-acquired</i> Pneumonia: A Meta-analysis. Acad Emerg Med, 2020. 27 (7): p. 541-553.
14 15 16	66.	Division of Nutrition, P.A., and Obesity, National Center for Chronic Disease Prevention and Health Promotion. 3 June 2022 [cited 2023 2 March]; Available from: https://www.cdc.gov/obesity/basics/adult-defining.html
17 18 10		neps//www.ede.go//obcs//ddited/ddited/ddited/ning.nem.
20 21		
22		
24 25		
26 27		
28 29		
30 31		
32 33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic	Item		Checklist Item	Page
The and abstract			Identify the study as developing and/or validating a multivariable prediction model, the	
Title	1	D;V	target population and the outcome to be predicted	1
			Provide a summary of objectives study design setting participants sample size predictors	
Abstract	2	D;V	outcome, statistical analysis, results, and conclusions.	2
Introduction	1	1		
			Explain the medical context (including whether diagnostic or prognostic) and rationale for	
Background and	3a	D;V	developing or validating the multivariable prediction model, including references to existing	3
objectives			models.	
objectives	3h	D.V	Specify the objectives, including whether the study describes the development or validation	4
	50	5,1	of the model or both.	•
Methods	1	1		
	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data),	5
Source of data		-	separately for the development and validation data sets, if applicable.	
	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end	5
			Of 10110w-up.	
	5a	D;V	population) including number and location of centres	5
Participants	5h	D·V	Describe eligibility criteria for participants	5
	50 50	D,V D·V	Give details of treatments received if relevant	n/a
	50	D, (Clearly define the outcome that is predicted by the prediction model including how and	n/u
Outcome	6a	D;V	when assessed.	6
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	6
		, , ,		6+77 + additional
Duadiator	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction	file (table S1 and
Predictors			model, including now and when they were measured.	S2)
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	7
Sample size	8	D;V	Explain how the study size was arrived at.	8
Missing data	9	D·V	Describe how missing data were handled (e.g., complete-case analysis, single imputation,	8
wiissing data		D, v	multiple imputation) with details of any imputation method.	0
	10a	D	Describe how predictors were handled in the analyses.	8
	10b	D	Specify type of model, all model-building procedures (including any predictor selection),	8
Statistical	10	-	and method for internal validation.	-
analysis methods	10c	V	For validation, describe how the predictions were calculated.	9
	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple	9
	10a	V	Inducts.	8
Pick groups	11	V D:V	Describe any model updating (e.g., recardination) ansing from the varidation, if done.	0 n/a
Development vs	11	D, v	For validation identify any differences from the development data in setting, eligibility	11/a
validation	12	V	criteria outcome and predictors	n/a
Results		1		
			Describe the flow of participants through the study, including the number of participants	
	13a	D;V	with and without the outcome and, if applicable, a summary of the follow-up time. A	9
			diagram may be helpful.	
			Describe the characteristics of the participants (basic demographics, clinical features	10-12 (Table 1,
Participants	13b	D.V	available predictors), including the number of participants with missing data for predictors	Table 2) +
		2,.	and outcome.	additional file (table
		_		S2)
	13c	v	For validation, show a comparison with the development data of the distribution of	additional file
	140	D	Specify the number of participants and outcome quents in each analysis	(table \$3)
Model	148		specify the number of participants and outcome events in each analysis.	10-14 10-14(Table 1)
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	10-14(1able 1) + table 2
			Present the full prediction model to allow predictions for individuals (i.e. all regression	1010 2
Model	15a	D	coefficients, and model intercept or baseline survival at a given time point)	14
specification		-		14 + additional file
r	15b	D	Explain how to the use the prediction model.	(formula S6 +S7)
Model	1.5	D.1.		
performance	16	D;V	Report performance measures (with CIs) for the prediction model.	13
Model un detter	17	X7	If done, report the results from any model updating (i.e., model specification, model	1 /
woder-updating	1/	v	performance).	14
Discussion				
Limitations	18	D:V	Discuss any limitations of the study (such as nonrepresentative sample, few events per	17
		_,,	predictor, missing data).	
	19a	v	For validation, discuss the results with reference to performance in the development data,	n/a
Interpretation			and any other validation data.	
•	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from	15+16+17
Implications	20	DW	Similar studies, and other relevant evidence.	15 - 16 - 17 - 10
Other information	20	D;v	Discuss the potential chilical use of the model and implications for future research.	13+10+1/+18
Supplementary			Provide information about the availability of supplementary resources, such as study	
information	21	D;V	protocol Web calculator and data sets	5
Funding	22	D·V	Give the source of funding and the role of the funders for the present study	19
	1.1.1		, site and source of running and the fole of the funders for the prosent study.	1/

TRIPOD Checklist: Prediction Model Development and Validation

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

For beer terien only

BMJ Open

Community-acquired pneumonia – Use of clinical characteristics of acutely admitted patients for the development of a diagnostic model: A cross-sectional multicentre study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-079123.R1
Article Type:	Original research
Date Submitted by the Author:	25-Apr-2024
Complete List of Authors:	Cartuliares, Mariana; University Hospital of Southern Denmark, Department of Emergency Medicine ; University of Southern Denmark, Department of Regional Health Research Mogensen, Christian Backer; University of Southern Denmark, Institute for Regional Health Research; University Hospital of Southern Denmark, Department of Emergency Medicine Rosenvinge, Flemming; Odense Universitetshospital, Department of Clinical Microbiology; University of Southern Denmark, Research Unit of Clinical Microbiology Skovsted, Thor; University Hospital of Southern Denmark, Department of Biochemistry and Immunology Lorentzen, Morten; University Hospital of Southern Denmark, Department of Emergency Medicine ; University of Southern Denmark, Department of Regional Health Research Heltborg, Anne; University Hospital of Southern Denmark, Department of Regional Health Research Heltborg, Anne; University Hospital of Southern Denmark, Department of Regional Health Research Hertz, Mathias ; University Hospital of Southern Denmark, Department of Regional Health Research Hertz, Mathias ; University Hospital, Infectious Diseases Department Kaldan, Frida; University Hospital of Southern Denmark, Department of Emergency Medicine Specht, Jens ; University Hospital of Southern Denmark, Department of Emergency Medicine Specht, Jens ; University Hospital of Southern Denmark, Department of Emergency Medicine Skjøt-Arkil, Helene; University Hospital of Southern Denmark, Department of Emergency Medicine Skjøt-Arkil, Helene; University Hospital of Southern Denmark, Department of Emergency Medicine
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Infectious diseases
Keywords:	ACCIDENT & EMERGENCY MEDICINE, INFECTIOUS DISEASES, Aged

1	
2	
3	
4	SCHOLARONE
5	Manuscripts
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
28 50	
5 7 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~~	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

TITLE

Community-acquired pneumonia – Use of clinical characteristics of acutely admitted patients for the development of a diagnostic model: A cross-sectional multicentre study

Authors

Mariana Bichuette Cartuliares^{* 1, 2}, Christian Backer Mogensen ^{1, 2}, Flemming Schønning Rosenvinge ^{3, 4}, Thor Aage Skovsted ⁵, Morten Hjarnø Lorentzen ^{1,2}, Anne Heltborg^{1,2}, Mathias Amdi Hertz ^{6,7}, Frida Kaldan¹, Jens Juel Specht¹, Helene Skjøt-Arkil ^{1,2}

*Corresponding author: Emergency Department, University Hospital of Southern Denmark, Kresten Philipsens vej 15, 6200 Aabenraa, Denmark; Email: <u>mbc@rsyd.dk</u>

Author affiliations

¹Emergency Department, University Hospital of Southern Denmark, Aabenraa, Denmark
²Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
³Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
⁴Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
⁵Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark

⁶Department of Clinical Research, University of Southern Denmark, Odense, Denmark

⁷ Infectious Diseases Department, Odense University Hospital, Odense, Denmark

ABSTRACT

Objectives: This study aimed to describe the clinical characteristics of adults with suspected acute community-acquired pneumonia (CAP) upon hospitalisation, evaluate their prediction performance for CAP and compare the performance of the model to the initial assessment of the physician.

Design: Cross-sectional, multicentre study.

Setting: The data originated from the INfectious DisEases in Emergency Departments study and were collected prospectively from patient interviews and medical records. The study included four Danish medical emergency departments (EDs) and was conducted between 1 March 2021 and 28 February 2022. Participants: A total of 954 patients admitted with suspected infection were included in the study. Primary and secondary outcome: The primary outcome was CAP diagnosis assessed by an expert panel. Results: According to expert evaluation, CAP had a 28% prevalence. Thirteen diagnostic predictors were identified using Least absolute shrinkage and selection operator regression to build the prediction model: dyspnea, expectoration, cough, common cold, malaise, chest pain, respiratory rate (>20/min), oxygen saturation (< 96%), abnormal chest auscultation, leukocytes (<3,5 or >8,8 10E9/L) and neutrophils (>7.5 10E9/L). C-reactive protein (<20 mg/L) and having no previous event of CAP contributed negatively to the final model. The predictors yielded good prediction performance for CAP with an area under the ROC of 0.85 [CI: 0.77-0.92]. However, the initial diagnosis made by the ED physician performed better, with an AUROC of 0.86 [CI:84%-89%].

Conclusion: Typical respiratory symptoms combined with abnormal vital signs and elevated infection biomarkers were predictors for CAP upon admission to an ED. The clinical value of the prediction model is questionable in our setting as it does not outperform the clinician's assessment. Further studies that add novel diagnostic tools and use imaging or serological markers are needed to improve a model that would help diagnose CAP in an ED setting more accurately.

Strength and limitations

-This was a multicentre study with prospectively collected data

BMJ Open

-Least absolute shrinkage and selection operator regression was used to establish a score for CAP, and the performance of the diagnostic model was evaluated using the area under the receiver operating characteristic curve and calibration curves.

-This diagnostic prediction model could have been improved by adding other diagnostic tools, such as imaging or serological markers.

-Lack of external validation of the model using the clinical score for community-acquired pneumonia was a limitation

Keywords: community-acquired pneumonia; diagnostic prediction model; emergency department

Word count: 3.966

INTRODUCTION

Community-acquired pneumonia (CAP) is an increasing cause of hospitalisation and mortality, especially among elderly patients [1-5]. Early diagnosis and accurate treatment at the emergency department are essential to avoid serious complications such as bacteremia, sepsis, organ failure, and death [6] and to fight antimicrobial resistance [7].

The diagnosis of CAP generally requires a new infiltrate on a chest x-ray with a clinically compatible syndrome (e.g. fever, dyspnea, cough and sputum production) [8]. These symptoms are not sufficient to diagnose or exclude CAP, as they overlap with other diseases [8] and can be subtle in patients with advanced age and/or impaired immune systems [9, 10]. The chest X-ray is an imprecise diagnostic tool for CAP, risking under/overdiagnosis [11, 12] and might not be the optimal reference standard for CAP. This variability in clinical signs and symptoms combined with non-specific diagnostic tools [12], biomarkers [13, 14], and time-consuming microbiological tests [9] challenges physicians in differentiating CAP from other infections [10, 15].

The CAP population today has also changed with increased ageing [16], multimorbidities [17], and immunomodulatory treatments. Therefore, our knowledge of CAP symptoms and signs needs to be adapted to the actual population.

Previously, prediction models for the diagnosis of CAP were developed on prognostic factors, including severity assessment [18, 19], observations in a primary care setting only [20-22], or a reference diagnosis based solely on the registered discharge diagnosis in the medical record or positive chest X-ray findings [22, 23]. A valid outcome diagnosis was essential. However, in pragmatic studies, an expert panel using available information has been deemed a better reference standard [11].

Therefore, there is a need to describe the clinical characteristics of the current population of patients admitted with suspected CAP and develop a diagnostic model that includes physical examination, blood tests, vital signs, patient medical history, and healthcare expertise. Given the current diagnostic tool inaccuracies, an expert-panel-based diagnostic model was expected to surpass the ED physicians' initial accuracy.

Hypothesis and objectives

We hypothesised that a diagnostic prediction model based on well-defined clinical characteristics could assist an ED physician to make an earlier, more precise CAP diagnosis. Therefore, the aim was to identify the clinical characteristics of adults admitted with CAP and evaluate the performance of these characteristics in a prediction model.

The objectives were:

- 1) To compare clinical characteristics of patients with a CAP diagnosis from i) all patients admitted with suspected infection and ii) patients suspected of CAP
- 2) To develop and evaluate a diagnostic model to identify patients with CAP among ED patients suspected of infection and to compare the performance of the model to the initial assessment of the ED physician

METHODS

The study was reported following "The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis" (TRIPOD) statement [24] and conducted in agreement with the Declaration of Helsinki-Ethical principle for medical research involving human subjects. The protocol was approved by the Regional Committee on Health Research Ethics for Southern Denmark (S- 20200188), registered by the Danish Data Protection Agency (no. 20/60508), and in ClinicalTrials.gov (NCT04681963).

Study design, source of data, and setting

This study had an analytical, cross-sectional, multicentre design. The data was collected prospectively and originated from the INfectious DisEases in Emergency Departments (INDEED) study. The published study protocol provides further detailed information [25]. Four Danish medical EDs participated, with a catchment area of around 775,000 inhabitants, between March 1, 2021 and February 28, 2022.

In Denmark, patients can be directed to various specialties within the ED, e.g. medical, gastrointestinal surgery, cardiology, orthopaedics, gynaecology, psychiatry, and intensive care [26]. Suspected infection cases are usually assigned to a medical ED.

Participants

Adult patients (≥ 18 years) admitted to a medical ED were eligible to participate. Patients were included if the ED physician suspected infection and the patient could provide verbal and written consent. The exclusion criteria were: i) need for urgent, life-saving treatment, ii) transferal to intensive care, iii) admission within the last fortnight, iv) verified SARS-CoV-2 infection at the time of admission or within 14 days before admission, v) severe immunodeficiencies (HIV positive, with a cluster of differentiation 4 cell count <200) or treatment with immunosuppressive medicine (Anatomical Therapeutic Chemical classification L04A), corticosteroids (>20 mg/day prednisone or equivalent for >14 days within the last 30 days) or chemotherapy within 30 days.

Six project assistants with healthcare backgrounds (three physicians, one physiotherapist, and two finalyear medical students) were responsible for inclusion and data collection from Mondays to Fridays, 8 am to 8 pm. The population was a convenient sample of eligible patients consecutively identified from the patient management system by a project assistant. Immediately following the initial clinical assessment, the project assistant asked the ED physician whether an infection was suspected and the most likely infection focus (CAP, urinary tract infection, or unknown origin). Generally, the clinical assessment took place within the first 30 minutes of admission before blood tests or imaging were ordered, and therefore, the ED physician often relied only on information from the patient's signs, symptoms, and vital parameters. The study assistant collected verbal and written consent from eligible patients. All data collected was registered in the electronic study database REDCap (Research Electronic Data Capture) [27].

Reference diagnosis

The reference diagnosis was the diagnosis of CAP assessed by an expert panel. The expert panel consisted of eight clinical experts at consultant level in the fields of infectious diseases and emergency medicine working in pairs. They conducted a patient file audit and determined the final diagnosis based on all clinical information registered within the first week of ED admission. The information included routine laboratory tests of blood, -urine, and -sputum. In addition, polymerase chain reaction tests of sputum, urine flow cytometry, chest X-ray, and chest computed tomography (CT) were available for some patients. The experts had access to all images, including the radiologist's interpretation and documentation. The experts were blinded to each other and independently registered their assessments in a standardized electronic template [27] in the study database. In case of disagreement, the two specialists re-evaluated the medical record and collectively reached a consensus.

Predictors

All clinical characteristics were collected upon arrival at the ED. Symptoms, demographic data, and lifestyle factors were registered during a standardised bedside interview with the patient. In addition, information about vital parameters, comorbidities, medical treatment, and blood tests were collected from the patient's medical record. The project assistants collecting data were blinded to the final diagnosis.

Seventy candidate predictors were selected from the literature and discussed with the specialists and project group [20, 28-37]. The pre-specified potential predictors with measurement units, groups, cut-offs, and considerations/assumptions of inclusion were selected (see Supplementary Table S1).

- Demographic information, lifestyle factors, and comorbidities: age, sex, civil status, employment, nursing home residence, smoking, and alcohol consumption, body mass index (BMI), level of physical activity, activities of daily living score, dementia, respiratory, neurological, cardiovascular, endocrinological, nephrological and gastrointestinal comorbidities were collected.

-Patient symptoms two weeks before admission: malaise, fatigue, headache, dizziness, altered mental status, e.g. confusion, dyspnea, malnutrition, cough, secretions from the respiratory tract, sore throat, common cold, fever feeling, chest pain, peripheral oedema, nausea, vomiting, decreased appetite, abdominal pain, diarrhoea, and pain in muscles and joints including back pain were collected.

-Severity assessment, clinical parameters with cut-offs based on National Early Warning Score (NEWS) [38] used at the arrival of the ED and the use of medications: CURB-65 \geq 3 (confusion, uremia, respiratory rate, blood pressure, age > 65 years), triage [39], Glasgow coma scale (GCS), oxygen saturation <96%, heart rate <51 or >90/min, blood pressure (systolic <111 or >219, diastolic \leq 60 mmHg), respiratory rate >20/min, temperature > 38°C, abnormal chest auscultation, abdominal tenderness, polypharmacy (\geq 5 medications), use of analgesics, and vaccination status (SARS-CoV-2, pneumococcus, influenza) were recorded.

-Blood tests with cut-offs routinely applied at our institutions: haematocrit (%), haemoglobin (mmol/L), leukocytes (10E9/L), platelets (10E9/L), neutrophils (10E9/L), lymphocytes (10E9/L), albumin g/L, creatinine (μmol/L), blood urea nitrogen (mmol/L), sodium (mmol/L), prothrombin, bilirubin (μmol), glucose (mmol/L), and CRP (mg/L) were recorded.

Statistical methods

The study sample size was estimated using data from the University Hospital of Southern Denmark. We estimated a need for at least 700 patients admitted with suspected infection. Of those, four hundred patients should have suspected CAP and two hundred patients should have verified CAP to complete a reasonable multivariable regression analysis. Descriptive statistics for baseline characteristics of the patients were conducted for the 70 potential predictors based on the data from the INDEED study [25]. Data were presented as means and standard deviations (SD), or medians and interguartile ranges (IQRs) for continuous variables, and numbers (n) and percentages (%) for categorical and binary variables. Extensive univariate logistic regression analyses were performed to examine the unadjusted association between each candidate predictor and the outcome CAP. Results of univariate analyses were reported with odds ratio (OR), 95% confidence intervals (CI), and statistical significance levels were two-sided reported with a p-value of <0.05 to present a descriptive overview of the individual's associations in the population. Complete case analyses were performed, and the predictors were dichotomised or categorised and presented with percentages (%) for inclusion in the final model. The least absolute shrinkage and selection operator (LASSO) multivariable regression was performed with a random split-sample to develop and validate the model, using 20 % of the data for internal cross-validation. The model calibration was assessed using a likelihood ratio test, and recalibration was done based on the calibration belt and the optimal predicted proportion. In the model, age (≥75 years old) was considered an effect modifier based on several studies showing differences in symptoms and signs of a CAP diagnosis in older adults [33, 40-42]. An exploratory approach was conducted for the clinical characteristics to achieve the model with the best predictive performance, testing performances with continuous, dichotomous, or categorical variables. In

BMJ Open

addition, the receiver-operator characteristic (ROC) curve was created to estimate the model's accuracy, and the area under the ROC curve (AUC) visualized any discrimination between true positives and negatives. The sensitivity, specificity, and positive and negative predictive values with 95% CI were calculated using the best threshold criteria of the predicted probability of the ROC curve. The same threshold was implemented in developing a CAP score, including the predictor variables. A CAP score> 0 represents the presence of CAP, and < 0 indicates the absence of CAP. Sensitivity, specificity, and positive and negative predictive values with 95% CI were calculated from the initial diagnosis made by the ED physician. Analyses were performed using STATA 17.0 (Texas, USA).

Patient and public involvement

Patients and/or the public were not directly involved in this study.

RESULTS

Participants

We recruited 954 patients admitted to the ED with suspected infection, representing 43% of the population screened for eligibility. Of those, the attending physician suspected that 402 (42%) had a CAP diagnosis. The expert panel verified a CAP diagnosis in 265 (28%) of the recruited patients (Figure 1). The evaluation of 332 chest CT scans showed that 188 (57%) patients had verified pneumonia, and from those, 148 (76%) had CAP assessed by the expert panel and confirmed by a chest CT scan. Most patients (65%) with CAP were discharged to an internal medicine ward, whilst 29% of the patients diagnosed with CAP by the expert panel were discharged directly home. There were 2.5% , 2.5% and 1.0% of the population with CAP that were discharged to the ICU, surgical, other wards respectively.

We compared the clinical characteristics of patients with verified CAP to patients with suspected infection (954). Median age for patients with verified CAP was 75 years (IQR: 63.5; 82.0), and over half admitted with suspected infection were males (53.8%). Univariate analysis revealed that verified CAP patients were more often previous smokers [OR 1.83 (CI: 1.30-2.57) p<0.001] with smoking history compared to suspected infection cases. Strongly independent predictors for CAP were symptoms such as dyspnea, cough, expectoration, chest pain, and cold symptoms (all p<0.001). Compared to patients without CAP, the risk of having CAP increased fivefold if the patient had chest auscultation abnormalities [OR 5.67 (CI: 4.15-7.75)] p<0.001] and decreased by half in case of abdominal tenderness by palpation [OR 0.52 (CI: 0.35-0.78) p=0.002]. CAP patients often had comorbidities related to other pulmonary diseases (p<0.001) and often had had previous CAP infections (p<0.001). These patients were more acutely ill when assessed by triage (p<0.001), with fever > 38°C (p=0.036), higher respiratory rate [median 20.0 (IQR 18.0; 24.0) p<0.001], higher heart rate [mean 93.2 (SD 18.9) (p<0.001], and lower oxygen saturation [median 95.0 (IQR: 93.0; 97.0) p<0.001]. Patients with verified CAP had a median CRP of 125.0 (IQR: 57.0; 203.5) versus 82.0 (IQR: 19.0; 172.0) (p<0.001) compared to the rest of the population and higher levels of neutrophils (p<0.001) and leukocytes (p<0.001). Furthermore, lymphocytes yielded a p-value of 0.018. Patients with verified CAP were more often vaccinated against SARS-CoV-2 (p=0.033) and influenza (p=0.025), but no differences were found regarding pneumococcal vaccination. Table 1 presents the characteristics of the population with statistically significant results of the unadjusted association between each predictor for patients with verified and not verified CAP. See Supplementary Table S2 for the 70 exploratory results from continuous, dichotomous, and categorical variables tested in the diagnostic prediction model.

Table 1: Characteristics of the population with suspected infection (n=954).

Characteristics	Patients suspected of infection at admission		Missings		
	CAP n (%)	Not CAP n (%)	n (%)	OR (95% CI)	p-value
Total of patients	265 (27.8)	689 (72.2)	0 (0.0)	-	-
LIFESTYLE FACTORS					

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
2/	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	

Smoking status			33 (3 5)		
No.	66 (26 0)	257 (29 5)	55 (5.5)	1 (reference)	
	56 (20.0)	257 (38.5)			0.015
	54 (21.3)	125 (18.7)		1.68 (1.10-2.55)	0.015
	134 (52.8)	285 (42.7)		1.83 (1.30-2.57)	<0.001
Malaise	173 (67.8)	386 (58.7)	41 (4.3)	1.48 (1.09-2.01)	0.010
Dyspnea	171 (67.3)	208 (31.5)	39 (4.1)	4.48 (3.29-6.11)	<0.001
Cough	173 (68.1)	185 (28.0)	39 (4.1)	5.49 (4.01-7.52)	<0.001
Expectoration	140 (55.1)	139 (21.0)	39 (4.1)	4.61 (3.38-6.28)	<0.001
Sore throat	39 (15.4)	65 (9.8)	39 (4.1)	1.66 (1.08-2.54)	0.019
Common cold	45 (17.7)	50 (7.6)	39 (4.1)	2.63 (1.70-4.05)	<0.001
Chest pain	71 (28.1)	97 (14.7)	40 (4.2)	2.26 (1.60-3.21)	<0.001
Oedema	10 (4.0)	69 (10.4)	40 (4.2)	0.35 (1,17-0.69)	0.002
Vomiting	40 (15.8)	150 (22.6)	38 (4.0)	0.64 (0.43-0.94)	0.023
Gastrointestinal pain	40 (15.8)	153 (23.1)	38 (4.0)	0.62 (0.42-0.91)	0.016
Muscular pain	79 (31.3)	265 (40.3)	44 (4.6)	0.67 (0.49-0.92)	0.013
COMORBIDITIES					
Pulmonary diseases	105 (39.6)	164 (23.8)	0 (0.0)	2.10 (1.55-2.84)	<0.001
Prior pneumonia			100 (10.5)		
No	79 (33.3)	331 (53.6)		1 (reference)	
Yes, one time	50 (21.1)	130 (21.1)		1.61 (1.07-2.42)	0.022
Yes more than one time	108 (45.6)	156 (25.3)		2 90 (2 05-4 10)	<0.001
VACCINATIONS	100 (43.0)	150 (25.5)		2.50 (2.05 4.10)	0.001
SARS-CoV-2 †	222 (83.8)	534 (77.5)	0 (0.0)	1.49 (1.03-2.17)	0.033
Influenza	191 (72.1)	444 (64.4)	0 (0.0)	1.42 (1.04-1.94)	0.025
CLINICAL ASSESSMENT					
Abnormal chest auscultation*	168 (65.4)	161 (25.0)	52 (5.4)	5.67 (4.15-7.75)	<0.001
Abdominal tenderness	37 (15.0)	155 (25.0)	86 (9.0)	0.52 (0.35-0.78)	0.002
SEVERITY ASSESSMENT					
Triage**			59 (6.2)		
Green/Blue	37 (14.8)	146 (22.6)		1 (reference)	
Yellow	126 (50.4)	353 (54.7)		1.40 (0.93-2.13)	0.105
Red/Orange	87 (34.8)	146 (22.6)		2.35 (1.50-3.67)	<0.001
VITAL PARAMETERS					
Respiratory rate >20/min	124 (47.0)	161 (23.5)	5 (0.5)	2.88 (2.13-3.88)	<0.001
Oxygen saturation < 96 %	162 (61.1)	231 (33.7)	4 (0.4)	3.09 (2.30-4.14)	<0.001
Heart rate <51 or >90/min	148 (55.8)	312 (45.3)	1 (0.1)	1.52 (1.14-2.02)	0.003
Fever > 38°C	77 (29.3)	156 (22.7)	5 (0.5)	1.40 (1.02-1.93)	0.036
BLOOD TESTS			,	, ,	
Leukocytes <3.5 or > 8.8 10E9/L	214 (80.8)	456 (66.2)	0 (0.0)	2.14 (1.52-3.02)	<0.001
Neutrophils > 7.5 10E9/L	187 (71.1)	362 (53.2)	10 (1.0)	2.16 (1.59-2.94)	<0.001
Lymphocytes ⁺ <1.00 or > 4.00 10E9/L	53 (55.2)	92 (40.9)	633 (66.3)	1.78 (1.10-2.88)	0.018
C-Reactive protein mg/L			0 (0.0)	· · ·	
. 0,	İ	1	, -,		

21-99 mg/L	86 (32.5)	205 (29.8)	3.49 (2.08-5.86)	<0.001
≥ 100 mg/L	158 (59.6)	309 (44.8)	4.26 (2.60-6.96)	<0.001

The predictors in the table are those dichotomised or categorised as they were later incorporated into the final diagnostic model. Only statistically significant results of the unadjusted association between each candidate predictor and the outcome CAP are presented. *Abnormal chest auscultation: Any abnormal findings such as crackles and rhonchi. ** Triage: Danish emergency process triage [39]. † Variables not included in the multivariate model.

Characteristics of patients suspected of CAP

Using the 70 candidate predictors, we compared the clinical characteristics of patients with verified CAP to patients with suspected but not verified CAP (402).

Statistically significant differences are shown in Table 2. Of the 402 patients with suspected CAP, half of the patients, 229 (57%) had verified CAP. Patients with suspected CAP had a median age of 74.0 (IQR: 62.0; 82.0), and half were male (52.7%). Patients with verified CAP reported more respiratory symptoms, such as cough (p=0.009) and expectoration (p=0.037), and more gastrointestinal symptoms, such as nausea (p=0.033) and loss of appetite (p=0.030), compared to those without CAP. Fewer patients with verified CAP had a CURB-65 \geq 3 (p=0.047), and more patients had oxygen saturation <96% (p<0.001), a heart rate of <51 or >100bpm/min (p=0.045), and fever >38 °C (p=0.011). Elevated infection biomarkers (leukocytes, neutrophils, CRP, all p<0.001), and plasma natrium (p<0.001) were highly associated with CAP. Fewer patients with CAP. Fewer

Table 2: Characteristics of the population with suspected CAP (n=402) by the physician at admission.

	Patients suspected o	f CAP at admission	Missings		
Characteristics	CAP n (%)	Not CAP n (%)	n (%)	OR (95% CI)	p-value
Total of patients	229 (57.0)	173 (43.0)	0 (0.0)		
SYMPTOMS					
Cough	168 (75.7)	104 (63.4)	16(4.0)	1.79 (1.15-2.79)	0.009
Expectoration	132 (59.5)	80 (48.8)	16 (4.0)	1.54 (1.02-2.31)	0.037
Nausea	70 (31.8)	36 (22.0)	18 (4.5)	1.65 (1.04-2.64)	0.033
Loss of appetite	137 (62.3)	84 (51.2)	18 (4.5)	1.57 (1.04-2.36)	0.030
SEVERITY ASSESSMENT					
CURB65 ≥3 *	23 (10.4)	30 (17.3)	8 (2.0)	0.55 (0.30-0.99)	0.047
VITAL PARAMETERS					
Oxygen saturation <96%	147 (64.2)	79 (46.0)	1 (0.2)	2.11 (1.40-3.15)	<0.001

Heart rate < 51 or >100 bpm/min	129 (56.3)	80 (46.2)	0 (0.0)	1.49 (1.00-2.23)	0.045
Fever >38°C	64 (28.2)	30 (17.3)	2 (0.5)	1.87 (1.14-3.05)	0.011
BLOOD TESTS					
Leukocytes <3.5 or > 8.8 10E9/L	191 (83.4)	106 (61.3)	0 (0.0)	3.17 (1.99-5.04)	<0.001
Neutrophils > 7.5 10E9/L	166 (73.1)	81 (47.6)	5 (1.2)	2.99 (1.96-4.55)	<0.001
Natrium <137 or > 145 mmol/L	114 (49.8)	55 (31.8)	0 (0.0)	2.12 (1.40-3.21)	<0.001
Bilirubin<5 or >25 mmol/L	32 (14.0)	37 (21.8)	4 (1.0)	0.58 (0.34-0.98)	0.045
C-Reactive Protein mg/L, n (%)			0 (0.0)		
<20 mg/L	15 (6.6)	59 (34.1)		1 (reference)	
21-99 mg/L	74 (32.3)	64 (37.0)		4.54 (2.35-8.78)	<0.001
≥ 100 mg/L	140 (61.1)	50 (28.9)		11.01 (5.73-21.14)	<0.001

Statistically significant results from the unadjusted association between each candidate predictor and the outcome CAP.* CURB65: confusion, uremia, respiratory rate, blood pressure, age > 65 years.

Model development and performance

We developed a prediction model for diagnosing pneumonia in patients admitted with suspected infection

(n=954) and compared it with the clinician's presumptive diagnosis. Supplementary Table S3 presents the

characteristics of the population randomised in the training and validation sets.

The predictors associated with CAP in our final model are presented in Table 3.

Table 3: The complete diagnostic model, including the intercept

Intercept and predictors	ß Coefficient
Intercept	-1.66192
Dyspnea (yes)	0.35172
Expectoration (yes)	0.36250
Cough (yes)	0.39671
Common cold (yes)	0.34374
Malaise (yes)	0.07475
Chest pain (yes)	0.20499
Respiratory rate >20/min	0.14566
Oxygen saturation < 96%	0.24303
Abnormal auscultation findings (yes)	0.56758
Leukocytes*	0.00322
Neutrophils**	0.08338
C-reactive protein <20 mg/L	-0.64269
Previous event of CAP (no)	-0.12006
Age of ≥ 75 and cough (yes)	0.53816
Age of ≥ 75 and oedema (no)	-0.05797
Age of ≥ 75 and glucose >11.0 mmol/L	0.88124
ROC AUC† (95% CI)	0.85 [0.77-0.92]

* Cut-off for leucocyttes: normal values 3.5 -8.8 10E9/L **Neutrophils: > 7.5 10E9/L + ROC AUC = receiver-operating characteristic area under the curve

The model performance yielded an AUC of 0.85 [CI: 0.77-0.92], and the calibration of the model yielded p=0.227 after recalibration, demonstrating a good prediction of the proportion of CAP patients in the test sample (Supplementary figure S1 and Supplementary figure S2).

Based on a lambda result of λ =0.0402856 and a probability threshold of 0.35, the LASSO calculation with characteristics predictive of CAP and the calculation of the final model with a cut-off value greater than 0 indicating the diagnosis CAP are presented in supplemental material (Supplementary formula S1 and Supplementary formula S2).

At the optimal cut-off of 0.35, the prediction model yielded an 86.1% sensitivity and 64.1% specificity. Based on the trial population (Figure 1), the sensitivity of the prediction model was comparable to the initial diagnosis made by the ED physicians. However, the specificity and positive predictive value were significantly lower (Table 4).

Table 4: Performance of the predictive model compared to the initial diagnosis made by the ED physicians.

Performance	Sensitivity % [Cl %]	Specificity % [Cl %]	Positive predictive value % [Cl %]	Negative predictive value % [Cl %]
Predictive model	86.1 [79.1-93.1]	64.1 [57.1-71.1]	41.6 [34.6-48.6]	93.9 [86.9-100]
Physicians	86.4 [84.2-88.6]	74.9 [72.1-77.6]	57.0 [53.8-60.1]	93.5 [92.0-95.0]

The predictive model had a 35% cut-off and a prevalence of 22%. The prevalence of CAP was 28% in the population of 954 patients suspected of infection.

Model specification

The final model did not include the following possible predictors: lymphocytes, SARS-CoV-2, and BMI. The reasons were a high percentage of missings (lymphocytes 66.3%), clinical relevance, and statistical performance (BMI and SARS-CoV-2). These considerations are described in detail in Supplemental material.

DISCUSSION

More than every fourth patient with suspected infection was diagnosed with CAP (28%). The ED physicians suspected CAP in almost half (42%) of patients admitted with suspected infection. Patients with suspected CAP included 57% with a final expert diagnosis of CAP and 43% without CAP. We have identified twenty-seven clinical characteristics for patients diagnosed with CAP among those admitted suspected of infection. Patients with CAP were characterised more often with a history of smoking, previous CAP, respiratory symptoms, abnormal lung auscultation, worse triage, and abnormal levels of infection biomarkers. Fewer clinic characteristics (thirteen) were identified for patients diagnosed with CAP among patients suspected of CAP by the ED physician and included typical respiratory symptoms but also gastrointestinal symptoms, abnormal vital signs, increased blood markers, and lower CURB-65 scores. The final diagnostic prediction model yielded thirteen diagnostic predictors for CAP recognised by the literature. The model performance was similar to the diagnosis made by the ED physicians regarding sensitivity and negative predictive value but not as good in determining the specificity and positive predictive values.

Our prediction model had a good performance (AUC 0.85) and calibration (p=0.227), and with the best cutoff at 35%, the sensitivity reached 86.1% and specificity 64.1%. Therefore, the model could be tested externally at other sites, especially where clinicians are not always available due to the lack of resources, and contribute to the initial management of CAP, guiding further clinical investigation. In this study, ED physicians relied upon the patient's history and the results from a simple clinical examination to diagnose CAP with a comparable negative predictive value (93% vs. 94%) and a better positive predictive value (57% vs. 42%). Even though our model is not entirely comparable to the initial diagnosis made by the ED physicians due to the difference in the prevalence of CAP, our results are similar to a recent systematic review [43]. Other studies reported that ED physicians' accuracy in diagnosing CAP ranged from 76% to 96% [44], and artificial intelligence predicted the presence of pneumonia with a sensitivity of 94% and specificity of 50% [45]. These results show that there is room for improvement in diagnosing CAP. It could be achieved

by including additional predictors such as biomarkers, e.g., procalcitonin, YKL-40, and surfactant protein-D [46, 47], molecular detection of respiratory pathogens [48], and/or improved imaging modalities [12, 14]. This prospective study highlights the challenges in identifying patients with CAP based on patient history, vital signs, and symptoms upon admission [20, 22, 46]. An initial CAP diagnosis may often differ from the discharge diagnosis [10, 49]. A plausible cause for uncertainty in diagnosing CAP was the heterogenic presentation of symptoms overlapping with other diseases. We found that patients with verified CAP often had gastrointestinal symptoms, whereas patients not verified with CAP sometimes presented with typical respiratory symptoms and had more severe conditions measured by CURB-65. Typical respiratory symptoms could explain some CAP misclassification. Misclassification of CAP may lead to unnecessary or ineffective antibiotic treatment, increased healthcare costs, delayed diagnosis, increased mortality, and increased risk of bacterial resistance [44, 50].

The predictors of CAP identified in this study are strongly discussed in the literature [9, 20, 36, 37, 42, 46, 49]. Most prediction models for ED patients with CAP aim to predict prognostic outcomes such as disease severity and mortality [51]. Prior studies have either included few diagnostic predictors or very selected patients [20, 22, 52]. The main reason for including several potential predictors and having age as a cross-factor in the development of our model was the expectation of finding predictors not represented in the literature and predictors specific for older patients (\geq 75 years). This is considered very relevant as the population worldwide ages [4, 16]. An age of \geq 75 interacted with the symptoms of cough, blood glucose levels, and peripheral oedema. Peripheral oedema was associated with an absence of CAP, and symptoms may be explained by other infections, such as erysipelas or heart failure. In addition, hyperglycemia has been recognized as a predictor associated with poorer patient outcomes for elderly CAP patients, regardless of their history of diabetes [53, 54].

Even though the literature highlights malnutrition as a strong prognostic predictor for CAP [33, 35, 55], we excluded BMI from our final model. Measuring weight and height is not a priority in acute settings where vital parameters, symptoms, and point-of-care biomarkers are the primary observations in the diagnostic

BMJ Open

process. Another concern was that BMI was missing in 26.3% of the population, and bias may arise due to systematic differences between subjects with complete datasets and subjects with missing data. Patients with missing BMI data may be more frail, incapable, or difficult to transfer. A model including BMI could be a better choice in a primary care setting, where patients are not necessarily as acutely ill and may be able to weigh themselves.

A major strength of this study is the completeness of data from medical charts and patient interviews combined with CAP diagnoses assigned by a panel of experts. The experts had a range of information from the patient's medical records, including chest X-ray, chest CT for patients suspected of CAP, and microbiology results. In addition to identifying possible predictors, we included many relevant and easily accessible clinical parameters. Finally, we excluded patients infected with SARS-CoV-2 from the study to increase the potential generalisability for CAP patients after the pandemic.

This study has limitations. Multiple testing and mass significance are potentially a problem in this study. Methods, such as Bonferroni-Holm correction, could have been applied to counteract this problem [56]. However, the univariate analyses were conducted for exploratory and descriptive purposes only. Therefore, these results should be interpreted cautiously, and the findings should be used as hypothesis-generating rather than conclusive. Another concern is that even though the reference standard of CAP was the same for the model performance and the initial diagnosis of the ED physicians, the expert panel may have had better opportunities to diagnose CAP in suspected CAP patients due to the availability of results from imaging and microbiological tests, and better register of patient's symptoms. This could lead to differential verification bias overestimating the ED physician's accuracy in diagnosing CAP [57]. This assumption was supported by the higher specificity of CAP diagnoses from ED physicians.

Another limitation is the selected population of patients allocated to the internal medicine speciality that may have masked atypical predictors from patients assigned to other specialities. Furthermore, some patients with atypical clinical presentation may have an infection that the ED physician had not suspected upon admission and, therefore, was not included in our study. Patients with severe conditions or acute

cognitive impairment who could not consent were excluded. Furthermore, the inclusion of patients took place during work hours and weekdays, which may have reduced the number of severe cases as admission during out-of-hours and weekends are associated with increased mortality and ICU admissions [58]. Therefore, our results can only be generalised to patients suspected of CAP and admitted on weekdays during the daytime.

A broader patient inclusion may contribute to a model that identifies other predictors to diagnose CAP as the clinical presentation may differ from those admitted with suspected CAP and capable of consent. Another limitation was the pragmatic choice of cut-offs for blood tests routinely used in our institutions, which reflected our clinical practice. However, it does raise questions about the applicability in other settings that apply different cut-offs.

This population cohort could be applicable as a test validation cohort for future models as the data collection of these well-known predictors of CAP is reproducible across EDs. The development of automatic extraction for a prediction model from electronic medical records using artificial intelligence could be of great value in a busy ED. In conclusion, typical respiratory symptoms combined with abnormal vital signs and elevated infection biomarkers are predictors for CAP upon admission to an ED. A diagnostic prediction model based on these predictors is of limited value. Future prediction models should include novel diagnostic tools, imaging, PCR analysis, and/or serological markers not routinely used in clinical practice to improve model performance and diagnose CAP more accurately in the ED.

Acknowledgements: The authors appreciate text editing from the research consultant Caroline Moos, statistician support from Andreas Kristian Pedersen and Sofie Ronja Petersen at the University Hospital of Southern Denmark, and from OPEN (Open Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark).

Authors' contributions: MBC, FSR, CBM, TS, HSA, MHL, AH, and MAH were involved in the study's design. MBC performed the literature search and drafted the original work. MBC, MHL, AH, MAH, JJS, and FK

BMJ Open

recruited patients and collected data. CBM and MAH participated in the expert panel. HSA was the study investigator-, and coordinated and supervised the project. MBC performed the statistical analyses. CBM was the chief research officer responsible for supervising the overall study. All authors, MBC, FSR, CBM, TS, HSA, MHL, AH, MAH, FK, and JJS critically revised and approved the final manuscript.

Funding: University of Southern Denmark (17/10636), University Hospital of Southern Denmark (20/20505), The funders of this study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Competing interests: The authors declare that they have no competing interests.

Patient and public involvement: Patients and/or the public were not involved in the design, conduct,

reporting or dissemination plans of this research.

Patient consent for publication: Not required.

Ethics approval and consent to participate: Ethics approval and consent to participate: Approval was obtained from the Regional Committee for Health Research Ethics in Southern Denmark (S-20200188). In addition, informed verbal and written consent was obtained from each participant before enrolment in the study. This study was conducted in agreement with the Declaration of Helsinki-Ethical principle for medical research involving human subjects.

Availability of data and materials: Due to Danish laws on personal data, data cannot be shared publicly. To request data, please contact the corresponding author for more information. The person responsible for the research was the principal investigator and corresponding author (MBC) in collaboration with the University Hospital of Southern Denmark. This organization owns the data and can provide access to the final data set.

REFERENCES

13

14

15

16

17

18

19

20

1. Søgaard M, Nielsen RB, Schønheyder HC, Nørgaard M, Thomsen RW. Nationwide trends in pneumonia hospitalization rates and mortality, Denmark 1997-2011. Respir Med. 2014;108(8):1214-

22.doi:10.1016/j.rmed.2014.05.004

2. McLaughlin JM, Khan FL, Thoburn EA, Isturiz RE, Swerdlow DL. Rates of hospitalization for communityacquired pneumonia among US adults: A systematic review. Vaccine. 2020;38(4):741-

51.doi:10.1016/j.vaccine.2019.10.101

3. Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax. 2012;67(1):71-9

- 4. Laporte L, Hermetet C, Jouan Y, Gaborit C, Rouve E, Shea KM, et al. Ten-year trends in intensive care admissions for respiratory infections in the elderly. Ann Intensive Care. 2018;8(1):84.doi:10.1186/s13613-018-0430-6
- 5. GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national
 morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a
 systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191210.doi:10.1016/s1473-3099(18)30310-4
- Meehan TP, Fine MJ, Krumholz HM, Scinto JD, Galusha DH, Mockalis JT, et al. Quality of care, process,
 and outcomes in elderly patients with pneumonia. JAMA. 1997;278(23):2080-
- 31 4.doi:10.1001/jama.1997.03550230056037
- 32
 7. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 b
 a
 a
 b
 a
 a
 b
 a
 b
 a
 b
 a
 b
 a
 a
 b
 a
 a
 b
 a
 b
 a
 b
 a
 b
 a
 b
 a
 b
 a
 b
 b
 a
 a
 a
 b
 a
 b
 a
 b
 a
 a
 a
 b
 a
 b
 a
 a
 b
 a
 b
 b
 a
 b
 a
 b
 a
 b
 b
 c
 a
 a
 a
 b
 a
 b
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a</li
- Antipication 2014 13
 Antipication 2014 14
 Antipication 2014 14
- 40 9. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med. 2014;371(17):1619 41 28.doi:10.1056/NEJMra1312885
- 42
 43
 43
 44
 45
 46
 47
 48
 49
 49
 40
 41
 42
 43
 44
 44
 44
 44
 45
 46
 47
 48
 49
 49
 40
 41
 41
 42
 43
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 4
- 11. Claessens YE, Debray MP, Tubach F, Brun AL, Rammaert B, Hausfater P, et al. Early chest computed
 tomography scan to assist diagnosis and guide treatment decision for suspected community-acquired
 pneumonia. Am J Respir Crit Care Med. 2015;192(8):974-82.doi:10.1164/rccm.201501-0017OC
- 48 12. Ye X, Xiao H, Chen B, Zhang S. Accuracy of Lung Ultrasonography versus Chest Radiography for the
 49 Diagnosis of Adult Community-Acquired Pneumonia: Review of the Literature and Meta-Analysis. PLoS One.
 50 2015;10(6):e0130066.doi:10.1371/journal.pone.0130066
- Kamat IS, Ramachandran V, Eswaran H, Guffey D, Musher DM. Procalcitonin to distinguish viral from
 bacterial pneumonia: a systematic review and meta-analysis. Clin Infect Dis. 2020;70(3):538 42.doi:10.1093/cid/ciz545
- 14. Gentilotti E, De Nardo P, Cremonini E, Górska A, Mazzaferri F, Canziani LM, et al. Diagnostic accuracy of
 point-of-care tests in acute community-acquired lower respiratory tract infections. A systematic review and
 meta-analysis. Clin Microbiol Infect. 2022;28(1):13-22.doi:10.1016/j.cmi.2021.09.025
- 15. Welker JA, Huston M, McCue JD. Antibiotic timing and errors in diagnosing pneumonia. Arch Intern
 Med. 2008;168(4):351-6.doi:10.1001/archinternmed.2007.84
| 1 | | | | | | | |
|----------|--|--|--|--|--|--|--|
| 2 | | | | | | | |
| 3 | | | | | | | |
| 4 | 16. World Health Organization. Aging and Health [Internet]. 2022 October 1 [cited 2022 October 28]. | | | | | | |
| 5 | Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. | | | | | | |
| 6 | 17. Weir DL. Majumdar SR. McAlister FA. Marrie TJ. Eurich DT. The impact of multimorbidity on short-term | | | | | | |
| / | events in natients with community-acquired pneumonia: prospective cohort study. Clin Microbiol Infect | | | | | | |
| 8 | 2015-21/3)-264 e7- e13 doi-10 1016/i cmi 2014 11 002 | | | | | | |
| 9
10 | 18 Sakakibara T. Shinda V. Kobayashi D. Sano M. Okumura I. Murakami V. et al. A prediction rule for severe | | | | | | |
| 10 | 10. Sakakibara 1, Shinuu 1, Kubayashi D, Sahu W, Okumura J, Murakani 1, et al. A prediction rule for severe | | | | | | |
| 17 | adverse events in all inpatients with community-acquired pneumonia: a multicenter observational study. | | | | | | |
| 12 | BMC Pulm Med. 2022;22(1):34.doi: <u>https://dx.doi.org/10.1186/s12890-022-01819-0</u> | | | | | | |
| 14 | 19. Gong L, He D, Huang D, Wu Z, Shi Y, Liang Z. Clinical profile analysis and nomogram for predicting in- | | | | | | |
| 15 | hospital mortality among elderly severe community-acquired pneumonia patients with comorbid | | | | | | |
| 16 | cardiovascular disease: a retrospective cohort study. BMC Pulm Med. 2022;22(1):312.doi:10.1186/s12890- | | | | | | |
| 17 | 022-02113-9 | | | | | | |
| 18 | 20. Ding F, Han L, Yin D, Zhou Y, Ji Y, Zhang P, et al. Development and validation of a simple tool composed | | | | | | |
| 19 | of items on dyspnea, respiration rates, and C-reactive protein for pneumonia prediction among acute | | | | | | |
| 20 | febrile respiratory illness patients in primary care settings. BMC Med. 2022;20(1):360.doi:10.1186/s12916- | | | | | | |
| 21 | 022-02552-5 | | | | | | |
| 22 | 21. Hammond A, Halliday A, Thornton HV, Hay AD. Predisposing factors to acquisition of acute respiratory | | | | | | |
| 23 | tract infections in the community: a systematic review and meta-analysis. BMC Infect Dis. | | | | | | |
| 24 | 2021·21(1)·1254 doi·10 1186/s12879-021-06954-3 | | | | | | |
| 25 | 22 Fhell MH Chunn H Cai X Bentivegna M Kearney M Accuracy of signs and symptoms for the diagnosis | | | | | | |
| 26 | of community-acquired pneumonia: a meta-analysis Acad Emerg Med 2020:27(7):541- | | | | | | |
| 27 | E2 doi:10 1111/2com 12065 | | | | | | |
| 28 | 22 Kitazawa T. Vashihara II. Saa K. Vashina V. Ota V. Characteristics of nonumenia with nogative short | | | | | | |
| 29 | 23. Kitazawa T, Yoshinara H, Seo K, Yoshino Y, Ota Y. Characteristics of pheumonia with negative chest | | | | | | |
| 30
31 | radiography in cases confirmed by computed tomography. J Community Hosp Intern Med Perspect. | | | | | | |
| 37 | 2020;10(1):19-24.doi:10.1080/20009666.2020.1/11639 | | | | | | |
| 33 | 24. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent | | | | | | |
| 34 | reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation | | | | | | |
| 35 | and elaboration. Ann Intern Med. 2015;162(1):W1-W73.doi:10.7326/m14-0698 | | | | | | |
| 36 | 25. Skjøt-Arkil H, Heltborg A, Lorentzen MH, Cartuliares MB, Hertz MA, Graumann O, et al. Improved | | | | | | |
| 37 | diagnostics of infectious diseases in emergency departments: a protocol of a multifaceted multicentre | | | | | | |
| 38 | diagnostic study. BMJ Open. 2021;11(9):e049606.doi:10.1136/bmjopen-2021-049606 | | | | | | |
| 39 | 26. Nørgaard B, Mogensen CB, Teglbjærg LS, Brabrand M, Lassen AT. Diagnostic packages can be assigned | | | | | | |
| 40 | accurately in emergency departments. A multi-centre cohort study. Dan Med J. 2016;63(6) | | | | | | |
| 41 | 27. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: building | | | | | | |
| 42 | an international community of software platform partners. I Biomed Inform | | | | | | |
| 43 | 2019:95:103208 doi:10.1016/i ibi 2019.103208 | | | | | | |
| 44 | 28 Mutene ND Cockeran R Steel HC Theron AL Mitchell TL Feldman C et al. Effects of cigarette smoke | | | | | | |
| 45 | condensate on pneumococcal biofilm formation and pneumolysin. Fur Resnir I. 2013:41(2):302- | | | | | | |
| 46 | E doi:10.1182/00021026.00212211 | | | | | | |
| 4/ | 5.001.10.1183/09031930.00213211 | | | | | | |
| 48 | 29. Samokrivalov AV, Irving Hivi, Kenm J. Alconol consumption as a risk factor for pneumonia: a systematic | | | | | | |
| 49
50 | review and meta-analysis. Epidemiol Infect. 2010;138(12):1789-95.doi:10.1017/s0950268810000774 | | | | | | |
| 50 | 30. Torres A, Peetermans WE, Viegi G, Blasi F. Risk factors for community-acquired pneumonia in adults in | | | | | | |
| 52 | Europe: a literature review. Thorax. 2013;68(11):1057-65.doi:10.1136/thoraxjnl-2013-204282 | | | | | | |
| 53 | 31. Barbagelata E, Cillóniz C, Dominedò C, Torres A, Nicolini A, Solidoro P. Gender differences in | | | | | | |
| 54 | community-acquired pneumonia. Minerva Med. 2020;111(2):153-65.doi:10.23736/s0026-4806.20.06448-4 | | | | | | |
| 55 | 32. Baik I, Curhan GC, Rimm EB, Bendich A, Willett WC, Fawzi WW. A prospective study of age and lifestyle | | | | | | |
| 56 | factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med. | | | | | | |
| 57 | 2000;160(20):3082-8.doi:10.1001/archinte.160.20.3082 | | | | | | |
| 58 | | | | | | | |
| 59 | | | | | | | |
| 60 | | | | | | | |
| | | | | | | | |

BMJ Open

2	
3	
4	33. Cillóniz C, Dominedò C, Pericàs JM, Rodriguez-Hurtado D, Torres A. Community-acquired pneumonia in
5	critically ill very old patients: a growing problem. Eur Respir Rev.
0	2020;29(155):190126.doi:10.1183/16000617.0126-2019
8	34. Reisinger EC, Fritzsche C, Krause R, Krejs GJ. Diarrhea caused by primarily non-gastrointestinal
9	infections. Nat Clin Pract Gastroenterol Hepatol. 2005;2(5):216-22
10	35. Riquelme OR. Riquelme OM. Rioseco ZML. Gómez MV. Cárdenas G. Torres C. Neumonía adquirida en la
11	comunidad en el anciano hospitalizado: Aspectos clínicos y nutricionales. [Community-acquired pneumonia
12	in the elderly: clinical and nutritional aspects]. Rev Med Chil. 2008:136(5):587-93 doi:10.4067/S0034-
13	98872008000500006
14	36. Moore M. Stuart B. Little P. Smith S. Thompson MI. Knox K. et al. Predictors of pneumonia in lower
15	respiratory tract infections: 3C prospective cough complication cohort study. Fur Respir I
16	2017:50(5) doi:10.1183/13993003.00/3/-2017
1/	27 van Vugt SE Brockhuizen BD Lammens C. Zuithoff ND de long DA Coenen S et al. Lise of serum C
18	reactive protein and procedulation concentrations in addition to symptoms and signs to prodict pnoumonia
20	in patients presenting to primary care with acute cough: diagnostic study. PMI
20	2012;246;f24E0 doi:10.1126/bmi f24E0
22	2015,540.12450.001.10.1150/DHIJ.12450
23	38. Alam N, Vegung IL, Houben E, Van Berker B, Vaugnan L, Kramer Min, et al. Exploring the performance of
24	the National Early warning Score (NEWS) in a European emergency department. Resuscitation.
25	2015;90:111-5.doi:10.1016/J.resuscitation.2015.02.011
26	39. Plesher LL, iversen AKS, Langkjær S, Nielsen TL, Østervig R, warming PE, et al. The formation and design
27	of the TRIAGE study-baseline data on 6005 consecutive patients admitted to nospital from the emergency
28	department. Scand J Trauma Resusc Emerg Med. 2015;23:106.doi:10.1186/s13049-015-0184-1
29	40. Ravioli S, Germann C, Gygli R, Exadaktylos AK, Lindner G. Age- and sex-related differences in
30 21	community-acquired pneumonia at presentation to the emergency department: a retrospective cohort
21 22	study. Eur J Emerg Med. 2022;29(5):366-72.doi:10.1097/mej.000000000000933
33	41. Akhtar A, Hassali MAA, Zainal H, Ali I, Iqbal MS, Khan AH. Respiratory-tract infections among geriatrics:
34	prevalence and factors associated with the treatment outcomes. Ther Adv Respir Dis.
35	2021;15:1753466620971141.doi:10.1177/1753466620971141
36	42. Metlay JP, Schulz R, Li YH, Singer DE, Marrie TJ, Coley CM, et al. Influence of age on symptoms at
37	presentation in patients with community-acquired pneumonia. Arch Intern Med. 1997;157(13):1453-
38	9.doi:doi:10.1001/archinte.1997.00440340089009
39	43. Dale AP, Marchello C, Ebell MH. Clinical gestalt to diagnose pneumonia, sinusitis, and pharyngitis: a
40	meta-analysis. Br J Gen Pract. 2019;69(684):e444-e53.doi:10.3399/bjgp19X704297
41	44. Ray P, Birolleau S, Lefort Y, Becquemin MH, Beigelman C, Isnard R, et al. Acute respiratory failure in the
42	elderly: etiology, emergency diagnosis and prognosis. Crit Care. 2006;10(3):R82.doi:10.1186/cc4926
45 47	45. Heckerling PS, Gerber BS, Tape TG, Wigton RS. Prediction of community-acquired pneumonia using
45	artificial neural networks. Med Decis Making. 2003;23(2):112-21.doi:10.1177/0272989x03251247
46	46. Htun TP, Sun Y, Chua HL, Pang J. Clinical features for diagnosis of pneumonia among adults in primary
47	care setting: A systematic and meta-review. Sci Rep. 2019;9(1):7600.doi:10.1038/s41598-019-44145-y
48	47. Spoorenberg SM, Vestjens SM, Rijkers GT, Meek B, van Moorsel CH, Grutters JC, et al. YKL-40, CCL18
49	and SP-D predict mortality in patients hospitalized with community-acquired pneumonia. Respirology.
50	2017;22(3):542-50.doi:10.1111/resp.12924
51	48. Gastli N, Loubinoux J, Daragon M, Lavigne JP, Saint-Sardos P, Pailhoriès H, et al. Multicentric evaluation
52	of BioFire FilmArray Pneumonia Panel for rapid bacteriological documentation of pneumonia. Clin Microbiol
53	Infect. 2021:27(9):1308-14.doi:10.1016/i.cmi.2020.11.014
54 55	49. Metlay JP. Fine MJ. Testing strategies in the initial management of natients with community-acquired
55 56	pneumonia Ann Intern Med. 2003:138(2):109-18 doi:10.7326/0003-4819-138-2-200301210-00012
57	50. Kanwar M. Brar N. Khatib R. Fakib MG. Misdiagnosis of community-acquired pneumonia and
58	inappropriate utilization of antibiotics: side effects of the 4-h antibiotic administration rule. Chest
59	2007·131/6)·1865-9 doi·10.1378/chest 07-0164
60	

1	
2	
3	
4	51 Loke YK Kwok CS Niruban A Myint PK Value of severity scales in predicting mortality from
5	sommunity acquired phoumania; systematic review and meta analysis. Theray, 2010;6E(10);894
6	community-acquired pheumonia. systematic review and meta-analysis. morax. 2010,05(10).864-
7	90.001:10.1136/thx.2009.134072
8	52. Okimoto N, Yamato K, Kurihara T, Honda Y, Osaki K, Asaoka N, et al. Clinical predictors for the detection
9 10	of community-acquired pneumonia in adults as a guide to ordering chest radiographs. Respirology. 2006:11(3):322-4 doi:10.1111/j.1440-1843.2006.00846 x
11	53 Zong W. Huang X. Luo W. Chen M. Association of admission blood glucose level and clinical outcomes in
12	olderly community acquired another is notion to admission blood glucose level and clinical outcomes in
13	eldeny community-acquired pheumonia patients with or without diabetes. Clin Respir J. 2022;16(8):562-
14	/1.doi:10.1111/crj.13526
15	54. Barmanray RD, Cheuk N, Fourlanos S, Greenberg PB, Colman PG, Worth LJ. In-hospital hyperglycemia
16	but not diabetes mellitus alone is associated with increased in-hospital mortality in community-acquired
17	pneumonia (CAP): a systematic review and meta-analysis of observational studies prior to COVID-19. BMJ Open Diabetes Res Care, 2022:10(4) doi:10.1136/bmidrc-2022-002880
10	EE Voo HI Buun KS Han I Kim IH Loo SE Voon SH ot al Drognostic significance of malnutrition for long
19	55. Teo HJ, Byun KS, Han J, Kim JH, Lee SE, Toon SH, et al. Prognostic significance of mainduntion for long-
20	term mortanty in community-acquired pheumonia: a propensity score matched analysis. Korean J intern
21	Med. 2019;34(4):841-9.doi:10.3904/kjim.2018.037
22	56. Sedgwick P. Multiple significance tests: the Bonferroni correction. BMJ. 2012;344
23	57. Rutjes AW, Reitsma JB, Di Nisio M, Smidt N, van Rijn JC, Bossuyt PM. Evidence of bias and variation in
24	diagnostic accuracy studies. CMAJ. 2006;174(4):469-76.doi:10.1503/cmaj.050090
25	58. Vest-Hansen B, Riis AH, Sørensen HT, Christiansen CF. Out-of-hours and weekend admissions to Danish
20	medical departments: admission rates and 30-day mortality for 20 common medical conditions. BMJ Open.
27	2015:5(3):e006731 doi:10 1136/bmionen-2014-006731
20	2013,5(5).6000731.00.1136/0.1136/0.1136/0.1136/0.131
20	
31	
32	Figure Legend:
32	
34	Figure 1. Trial nonulation, green haves showing the numbers of nationts with CAD
35	Figure 1 - That population, green boxes showing the numbers of patients with CAP.
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	

BMJ Open

Supplemental material

Community-acquired pneumonia – Use of clinical characteristics of acutely admitted patients for the development of a diagnostic model: A cross-sectional multicentre study

Mariana Bichuette Cartuliares MSC* 1, 2, Christian Backer Mogensen 1, 2, Flemming Schønning Rosenvinge 3, 4, Thor Aage Skovsted 5, Morten Hjarnø Lorentzen ^{1,2}, Anne Heltborg Kristensen^{1,2}, Mathias Amdi Hertz ^{6,7}, Frida Kaldan¹, Jens Juel Specht¹, Helene Skjøt-Arkil 1,2

Affiliations

¹Emergency Department, University Hospital of Southern Denmark, Aabenraa, Denmark ²Department of Regional Health Research, University of Southern Denmark, Odense, Denmark ³Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark ⁴Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark ⁵Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Aabenraa, Denmark ⁶Department of Clinical Research, University of Southern Denmark, Odense, Denmark 7 Infectious Diseases Department, Odense University Hospital, Odense, Denmark

Table of Contents

* Corresponding author: mbc@rsyd.dk
Table of Contents
Supplementary tables
Table S1: Description of the 70 pre-specified predictors for CAP2
Table S2: Characteristics of CAP8
Table S3: Characteristics of the training set and the validation set11
Supplementary figures
Figure S1: Performance of the prediction model14
Figure S2: Calibration of the model15
Supplementary formulas
Formula S1: LASSO calculation with characteristics predictive of CAP15
Formula S2: CAP score16
Model specification16
References17

Table S1: Description of the 70 pre-specified predictors for CAP

		Source: The patient inter	view
Group	Variable name	Measurement	Consideration/assumption
			Considerations to collect data from these predictors were based on the described literature and expert consensus together with the project group
Demographic information	Age	Continuous, years	Age is a risk factor for CAP [1]. Several studies stratify age groups when investigating pneumonia due to several atypical symptoms and signs and the absence of respiratory symptoms among the elderly. Stratified age groups differ in cut-offs between the ages of ≥65 to ≥80 years old [2-7].
	Gender	Binary 1=Male 0=Female	The risk of CAP is higher for males [8].CAP is more severe [7] leading to higher mortality in males [9]. Males' lifestyle factors differ from women resulting in a higher risk of CAP [10].
	Civil status (Living alone)	Binary (Yes/no)	Living alone has a two-fold association with having one or more respiratory tract infections [11].
	Nursing home residence	Binary (Yes/no)	Nursing home residents were found to have several comorbidities [12] and lower physical functioning levels, which might result in a higher risk of CAP [13].
	Employment	Categorical: 1=Working 2=Retired 0=Others (e.g. students, flex job)	Low income and unemployment are associated with readmissions after CAP [14].
Symptoms	Feeling unwell/ Malaise	Binary (Yes/No) Symptoms within 14 days prior to ED admission.	Malaise has been identified as one of the most frequent symptoms for patients infected with <i>Mycoplasma pneumoniae</i> [15].
	Fatigue		Fatigue is associated with pneumonia especially in elderly patients [4].
	Headache	2	Headache is one of the clinical findings of symptoms of CAP [7, 15]. However, headaches were less common in the older population [7].
	Dizziness		The rationale of the presence of dizziness as a symptom relied on the assumption that several factors such as polypharmacy[16], combined with comorbidities such as cardiovascular diseases [17], symptoms such as confusion, conditions of frailty and malnutrition [18], and lower oxygen saturation [10] could contribute to displace
	Confusion		Confusion e.g. altered mental status or delirium was significantly more frequent in CAP patients [2, 4].
	Dyspnea		Dyspnea was identified as a strong prediction of CAP among febrile patients [20] and one of the main symptoms of pneumonia [2, 21].
	Cough		Cough is a common symptom and one of the most frequent increasing the likelihood of detecting a viral pathogen among CAP patients [15, 22]. Algorithms included cough as a diagnostic predictor [23], and dry cough was a strong predictor in a prediction model for <i>Legionella pneumoniae</i> [24]. Cough was less common in older population [7].
	Secretions		Purulent secretions were a significant symptom and predictor for CAP patients [20, 21].
	Sore throat		Some studies identified sore throat as a symptom of CAP [15], and one included the symptom in the prediction rules of pneumonia [5].

1
2
- 3
Δ
5
5
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
29 40
4U 41
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
50
5/
20
59
60

	Cold		Among respiratory diseases, the common cold is one of
		-	the most frequent, with symptoms similar to CAP [25].
	Fever feeling		Quantified from reported chills or night sweat or fever
		-	measured at home. Included as a rationale of fever.
	Chest pain		Chest pain has been used as a single predictor of CAP
			and may present as a secondary symptom of coughing
			or pleuritic involvement [26]. However, chest pain was
			less common in the older population [7].
	Peripheral edema		The rationale for including peripheral edema as
			possible predictor is that it is included in the clinical
			assessment at admission. In case of peripheral edema
			and respiratory symptoms of dyspnea, chest pain and a
			history of cardiovascular disease, CAP could be ruled
			out as a tentative diagnosis replaced with suspicion of
	Nausaa	-	Castrointectinal symptoms such as nausea, vomiting
	Nausea		and diarrhea manifests in 20% of the CAP population
			[26].
	Vomiting		Gastrointestinal symptoms such as nausea, vomiting
			and diarrhea manifests in 20% of the CAP population
			[26].
	Loss of appetite	R C	Loss of appetite could be present in the case of
			gastrointestinal symptoms [26] and could result from
	Abdominal nain		Mainutrition [18].
	Abdominal pain	\sim	astrointestinal symptoms described above and
			therefore, is included in the model [26].
	Diarrhea		Gastrointestinal symptoms such as nausea, vomiting
			and diarrhea manifests in 20% of the CAP population
			[26].
	Pain in muscles and		Muscle and joint pain are associated with viral
	joints including back		pneumonia as influenza, especially among younger
	pain		patients and therefore is included in our model [27].
Previous event of	Previous event of CAP	Categorical:	A previous diagnosis of CAP was reported as having
CAP		1= Once	Furthermore, any hospitalization in the previous five
		2= More than once	vears was reported as a predisposing factor for CAP [8].
Lifestyle factors	Smoke	2= More than once Categorical:	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of
Lifestyle factors and aids	Smoke	2= More than once Categorical: 0=Never been a smoker	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong
Lifestyle factors and aids	Smoke	2= More than once Categorical: 0=Never been a smoker 1=Current smoker	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly
Lifestyle factors and aids	Smoke	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28].
Lifestyle factors and aids	Smoke	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP
Lifestyle factors and aids	Smoke Alcohol	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Dapich	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with bights concumption (>41 e(day))
Lifestyle factors and aids	Smoke Alcohol	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17]
Lifestyle factors and aids	Smoke Alcohol	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29].	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28].
Lifestyle factors and aids	Smoke Alcohol	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28].
Lifestyle factors and aids	Smoke Alcohol	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28].
Lifestyle factors and aids	Smoke	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28].
Lifestyle factors and aids	Smoke	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28].
Lifestyle factors and aids	Smoke	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28].
Lifestyle factors and aids	Smoke Alcohol	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3= >14 doses	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3= >14 doses We categorized physical activity levels based on recommendations	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects
Lifestyle factors and aids	Smoke Alcohol Physical activity levels	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3= >14 doses We categorized physical activity levels based on recommendations from the world health organization	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces
Lifestyle factors and aids	Smoke Alcohol Physical activity levels	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3= >14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3=>14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30].	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3=>14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30]. 1= Not physically active	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3=>14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30]. 1= Not physically active 2= Less than 2.5hrs/week	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3=>14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30]. 1= Not physically active 2= Less than 2.5hrs/week 3= More than 2.5hrs/week	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels Activities of daily living	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3=>14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30]. 1= Not physically active 2= Less than 2.5hrs/week Binary (yes/no) Yors= If the nationt had one or merce	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels Activities of daily living	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3= >14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30]. 1= Not physically active 2= Less than 2.5hrs/week Binary (yes/no) Yes= If the patient had one or more denendencies regarding.	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels Activities of daily living	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3= >14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30]. 1= Not physically active 2= Less than 2.5hrs/week 3= More than 2.5hrs/week Binary (yes/no) Yes= If the patient had one or more dependencies regarding: bathing, dressing, toileting.	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13]. Difficulty in maintaining toilet hygiene, preparing meals, and being unable to transfer were associated with an increased risk of respiratory infections [31].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels Activities of daily living	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3= >14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30]. 1= Not physically active 2= Less than 2.5hrs/week 3= More than 2.5hrs/week Binary (yes/no) Yes= If the patient had one or more dependencies regarding: bathing, dressing, toileting, transfer, continence and feeding.	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13]. Difficulty in maintaining toilet hygiene, preparing meals, and being unable to transfer were associated with an increased risk of respiratory infections [31].
Lifestyle factors and aids	Smoke Alcohol Physical activity levels Activities of daily living	2= More than once Categorical: 0=Never been a smoker 1=Current smoker 2=Previous smoker Doses per week (a dose=12 grams (1, 5 cl) alcohol). Categories based on the Danish Board of Health recommendations [29]. 0=No alcohol 1=1-7 doses/week maximum doses recommended for women 2=8-14 doses/week maximum dose recommended for men 3= >14 doses We categorized physical activity levels based on recommendations from the world health organization for adults with a minimum 150 min/week [30]. 1= Not physically active 2= Less than 2.5hrs/week 3= More than 2.5hrs/week Binary (yes/no) Yes= If the patient had one or more dependencies regarding: bathing, dressing, toileting, transfer, continence and feeding.	years was reported as a predisposing factor for CAP [8]. Smoking has been associated with an increased risk of CAP in several studies [1, 8, 10, 17], and has a strong association with the treatment outcomes of elderly individuals with respiratory tract infections [28]. Alcohol has also been associated with increased CAP risk and with treatment outcomes. The risk increases in individuals with higher consumption (>41 g/day) compared to those who consume no alcohol [10, 17, 28]. The risk of CAP decreased in physically active women [10]. In addition, a high level of activity protects against upper respiratory tract infections and reduces the severity and symptoms of the infection [13]. Difficulty in maintaining toilet hygiene, preparing meals, and being unable to transfer were associated with an increased risk of respiratory infections [31].

Comorbidities	Neurological	Binary (Yes/no)	Cerebrovascular disease/stroke and Parkinson's
(diseases)		If the patient was diagnosed with	disease approximately doubled the risk of CAP [17].
	Pulmonary	one of these diagnoses.	A history of pneumonia increased the risk of a
			subsequent episode and patients with chronic
			respiratory diseases, including chronic obstructive
			pulmonary disease, bronchitis or asthma, had up to a
			fourfold increase in the risk of CAP [1, 4, 17].
	Endocrinological		Chronic liver conditions were reported as a risk factor
			of CAP [8]. Recently, diabetes mellitus has been
			described as an independent risk factor for sepsis
			secondary to CAP in very old patients [4] and data from
			several studies showed an association between
			diabetes mellitus and moderate risk of CAP [17].
	Renal		Chronic renal disease was reported as an independent
			risk factor for sepsis secondary to CAP in very old
			patients [4, 8] and chronic renal disease increased the
			risk of CAP twofold [17].
	Cardiovascular		Chronic cardiovascular disease increased the risk of
	Cardiovascular		CAP up to threefold [4, 17].
	Gastrointestinal	2	I ne rationale for including gastrointestinal diseases in
			the model was that CAP patients have gastrointestinal
			symptoms that could be related to a differential
			diagnosis besides CAP.
	Dementia		Dementia approximately doubles the risk of CAP [17].
	Cancer		Cancer was associated with a moderate increase in CAF
			risk, and a single study reported a fivefold increased
			risk of CAP for patients with lung cancer [17].
	Rheumatological		A moderate risk of CAP was found in patients with
	-		rheumatological diseases [17].
Pharmacological	Polypharmacy	Binary (yes/no)	The increased number of comorbidities of older
treatments		Regular consumption of at least	patients increases the risk of polypharmacy [4, 32]. The
a cathents		five medications	prevalence of polypharmacy reached almost 40%
			among individuals with respiratory tract infections
			above age 65 years and had a twofold association with
			treatment outcomes of respiratory tract infections
			[28] Furthermore, the prevalence of polypharmacy
			increased from 45% to 74% irrespective of antibiotic
			use if patients were beenitalized with CAP [16]
	Avalassias	Dinem (Mas(as)	use il patients were nospitalized with CAP [16].
	Anaigesics	Binary (Yes/no)	A systematic review reported an association between
	Manipatian		prescribed opiolos and CAP [33].
		Binary (Yes/no)	SAKS-COV-2 vaccination was reported during the
	SARS-COV-2	Recent vaccination for SARS-CoV-2	clinical assessment but was taken out of the model, as
			the model would be used after the pandemic when
			vaccination for SARS-CoV-2 rates might decrease.
			However, the inclusion of this variable did not change
			the final predictive model.
	Vaccination	Binary (Yes/no)	Streptococcus pneumoniae is one of the most causative
	pneumococcus	Pneumococcus vaccine (not	pathogens of CAP and the vaccine could be a possible
		specified) within 5 years	protective predictor for CAP as the risk of CAP
			increases among those unvaccinated [1, 34, 35].
	Vaccination	Binary (Yes/no)	Influenza vaccine can reduce hospitalization but is
	influenza	Season influenza vaccine	questionable if it could have a protective effect in
		2020/2021	admitted patients [1, 36], therefore, we included this
			possible predictor to investigate if it could have a
			protective role in our population.
Severity	CURB-65	Binary \geq 3 points (Yes/no)	CURB65 is an assessment tool for the severity of CAP
assessment			[37] recommended by the guidelines in Europe [38]
		Definition: Confusion urea >7	including in Denmark [39]
		mmol/L respiratory rate > 20 hpm	
		blood process $(<00 \text{ for systellic})$	
		blood pressure or S60 for diastolic	
		blood pressure, age > 65 years)	
		Score: one point for each present	
	1	Variable CLIPRES 2- covere	

	Triage	Based on the 5-level triage system "Danish emergency department triage" (DEPT) [40, 41], we categorized the following:	DEPT is a Danish adaption and modification of th "Adaptive Process Triage" (ADAPT) developed in Sweden [42]. DEPT was chosen as it is routinely u the three included sites. Furthermore, in Denma most EDs have implemented formalized triage ca
		Red/Orange and Green/Blue were pooled due to few patients in the blue and red groups: 1= Red/Orange 2= Yellow	"Danish Emergency Process Triage". DEPT shares similarities with widespread standardized 5-level systems [43].
		3= Green/Blue	
Vital parameters	Oxygen saturation	Binary < 96 % (Yes/no)	A similar cut-off of oxygen saturation has been un investigating predictors for CAP [19].
regardless of diastolic blood pressure were based on The National Early		National Early Warning Score (NEWS) [44]. However, we did not differentiate between patients with chronic obstructive pulmonary disease.	
Warning Score (NEWS) [44].	Heart rate	Binary < 51 or >90 bpm (Yes/no)	Some studies have investigated and pointed out higher heart rate with similar cut-offs as a predic CAP [19, 45, 46].
This score was chosen as it is routinely used in the three EDs included in this	Blood pressure systolic	Binary <111 or >219 mmHg (Yes/no)	Other cut-offs based on the CURB65-score or low level of triage (<90mmHg) have been used to pre high risk of adverse events among inpatients witl [47]. This cut-off was also explored in our model without resulting in any difference.
study and cut-offs values in predicting CAP are similar from the literature.	Blood pressure diastolic	Binary ≤60 mmHg (Yes/no) Based on severity assessment CURB65-score [37]. The NEWS does not include diastolic blood pressure and therefore the value from CURB-65 was chosen.	CURB-65 is routinely used in Denmark as a sever score and is included in the guidelines for antibio treatment [39]. As systolic blood pressure has be investigated in prediction rules, we added diasto blood pressure to our model to explore this varia a predictor for CAP.
	Respiratory rate (RR)	Binary >20 breaths/min (Yes/no)	There are different cut-offs of RR in the literature 47]. RR> 20/min was defined as a strong predicti CAP among febrile patients [20].
	Temperature	Binary >38 °C (Yes/no) Measured with ear thermometer [48].	Different cut-offs have been investigated, includi cut-off of >38°C used in this study [49]. Independ cut-offs, several studies have identified fever as a predictor of CAP [19-21, 23, 45]. However, fever common and generally absent in the older popul
	Glascow coma score	Binary >15 (Yes/no)	Cognitive impairment [32] has been reported as strong risk factor for delirium and confusion as a predictor of the severity of CAP [47]. Altered men status is associated with CAP, especially in the ele [18].
Blood tests The literature does not describe a clear cut-off for the diagnosis of CAP. We chose a	Hematocrit	Hematocrit (%), median (IQR) Binary (Yes/no) Cut-off: 40-50 for males and 35-46 for females Yes= outside of the cut-off No= within the cut-off	A hematocrit value of less than 35% was an independent predictor for severity and 2 years of mortality (p = 0.035) [50].
pragmatic approach and applied the cut- offs of serum biomarkers used in the EDs from our institution to reflect reality.	Hemoglobin	Hemoglobin mmol/L, median (IQR) Binary (Yes/no) Cut-off: 8.3-10.5 for males and 7.3- 9.5 for females Yes= outside of the cut-off No= within the cut-off	Hemoglobin correlates with frailty in the elderly indirectly could be a predictor that should be investigated [51].
Most of the serological biomarkers have been studied for prognostic	Leukocytes	Leukocytes 10E9/L, median (IQR) Binary (Yes/no) Cut-off: 3.5-8.8 Yes= outside of the cut-off No= within the cut-off	Elevated leukocytes have been reported as a pre for CAP, especially in pneumonia with negative c ray [52].

4				
4	purposes. We have	Platelets	Platelets 10E9/L, median (IQR)	Platelet count < 171 × 109/L was included in a
5	included these as		Binary (Yes/no)	prediction model for legionella pneumoniae showing a
6	potential predictors			high diagnostic accuracy [AUC 0.89 (95% CI 0.86–0.93)]
7	for CAP to		Cut-off: 145-350 for males and	[24].
/	investigate their		165-400 for females	
8	diagnostic		Yes= outside of the cut-off	
9	nrediction		No- within the cut-off	
10	prediction	Nautuanhila	No- within the cut-on	The neutrophilite human entry water had a high
10	performance	Neutrophils	Neutrophils 10E9/L, median (IQR)	i ne neutrophil to lymphocyte ratio nad a nigh
11	combined with signs		Binary (Yes/no)	diagnostic value for CAP patients [53]. Furthermore,
12	and symptoms.			higher mortality risk was found for CAP patients and if
12			Cut-off: > 7.5	measured in the early stage of CAP could contribute to
15	Binary (Yes/no)		Yes= >7.5	the diagnostic and disease severity [54].
14	measures.		No= ≤ 7.5	
15	Yes= abnormal/	Lymphocytes	Lymphocytes 10E9/L, median (IQR)	The neutrophil to lymphocyte ratio has been studied in
16	outside of the cut-		Binary (Yes/no)	prognostic studies and is associated with higher
10	off			mortality risk in CAP patients and if measured in the
17	No= normal/ within		Cut-of: 1.00-4.00	early stage of CAP could contribute to the diagnostic
18	the cut-off		Yes= outside of the cut-off	and disease severity [54]
10			No- within the cut off	and disease sevency [34].
19				The order of black down and allowed a back to be
20		Albumin	Albumin g/L, median (IQR)	I ne ratio of blood urea and albumin has been
21			Binary (Yes/no)	investigated as a predictive factor for CAP, but poor
22				model performance advocated for further investigation
~~			Cut-off: 34-45	[55]. Furthermore, albumin correlates with frailty in
23			Yes= outside of the cut-off	the elderly and indirectly could be a predictor that
24			No= within the cut-off	should be investigated as frailty has been associated
25				with an increased risk of CAP [51]. In addition, serum
25				albumin (<3.4 g/dl) was associated with higher
26				mortality for elderly patients with CAP [18] and was
27				included in a prediction rule for severe adverse events
28				in patients bospitalized with CAP ($< 2 \sigma/dl = 2$ points: 2-
20				a / dl = 1 points [47]
29		Creatining	Creatizing was all median (IOD)	S g/uL, I point) [47].
30		Creatinine	Creatinine µmol/L, median (IQR)	Elevated creatinine levels have been reported with
31			Binary (Yes/no)	almost a sixfold association of poor CAP outcome
51				(OR=5.67; 95%CI: 1.72-18.65) [56]. This result is
32			Cut-off: 60-105 for males and 45-90	supported by another study that showed that serum
33			for females	creatinine levels of \geq 2.8 were a strong predictor of in-
34			Yes= outside of the cut-off	hospital mortality in adults with CAP when compared
25			No= within the cut-off	with five serum biomarkers [57].
35		Blood urea	Blood urea nitrogen mmol/L	The ratio of blood urea and albumin has been
36			median (IOR)	investigated as a predictive factor for CAP, but noor
37			Binary (Ves/no)	model performance advocated for further investigation
20			binary (res/no/	
38				[22].
39			Cut-off: 3-5-8.1 for males and 3.1-	
40			7.9 for females	
40			Yes= outside of the cut-off	
41			No= within the cut-off	
42		Natrium	Natrium mmol/L, median (IQR)	Hyponatremia < 133 mmol/L was one of the strong
43			Binary (Yes/no)	predictors in the prediction of CAP caused by legionella
				pneumoniae [24].
44			Cut-off: 137-145	
45			Yes= outside of the cut-off	
46			No= within the cut-off	
		Prothromhin time	Prothrombin (IOP)	Prothrombin time-international normalized ratio was
4/		international normalized		investigated to distinguish influence A (11111) from
48			Dilidi y (TeS/110)	nivesugated to distinguish influenza A (HINI) from
49		ratio		other pneumonia. Prothrombin times were lower in
50			Cut-OTT: <1.2	HINI compared with non-H1N1 pneumonia patients
20			Yes= ≥ 1.2	(p=0.04) [58]. Furthermore, it has been investigated
51			No= <1.2	as a factor that could be associated with decreased
52				sensitivity in negative urinary antigen (UAT) tests in
 52				CAP caused by pneumococcal. Prothrombin was 50%
SC				higher in the UAT-negative patients than in the UAT-
54				positive patients [59]. We chose to include
55				prothrombin in the diagnostic model to explore its
56				significance in or rule out CAP, furthermore, the
20				marker is routinely measured in acutely admitted
57				nationts
58		Dilimitia	Dilizuhia umal (Lasadias (LOD)	Dilimbia lougle ware lougrie actients with influence A
50		DIIIIUUIII	Binnubin µmol/L, median (IQK)	bill upin levels were lower in patients with influenza A
			bindry (Yes/NO)	(HINI) compared to non-HINI pneumonia (p= 0.02)
60				

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

		Cut-off: <5 or >25 Yes= outside of the cut-off No= within the cut-off	[58]. This marker could add value to a prediction model.
	Glucose	Glucose mmol/L, median (IQR) Binary (Yes/no)	Patients with CAP frequently present with admission hyperglycemia and have poorer outcomes [60, 61]. Therefore, glucose is included as a potential predictor.
		Cut-off: > 11.00 Yes= >11.00 No= ≤ 11.00	
	C- reactive protein (CRP)	C-Reactive Protein, median (IQR) Binary (Yes/no) The cut-off of CRP in our institution is < 5 mg/L at the ED. However, the	The diagnostic accuracy of CRP in differentiating between bacterial and viral infections of the lower respiratory tract is questionable [62]. However, CRP at different cut-offs increased the performance of prediction models for CAP. It included a cut-off of >20
	KO'	literature suggests optional cut- offs. Based on the literature and the range of the results from the CRP as continuous variable, we defined the following categories: 1= <20mg/L 2= 20-100 mg/L 3= >100 mg/L	[20], >30 [63], 50 [23] ≥ 98 [46], and a meta-analysis investigated all three cut-offs of 20, 50, and 100 [64]. CRP levels were found higher when CAP was detected both by a chest x-ray and a chest tomography [52].
Clinical assessment	Stethoscope findings	Binary (Yes/no) Yes for any abnormal stethoscope findings such as crackles and rhonchi.	Several studies investigated associations between abnormal stethoscope findings and the probability of the presence of CAP. They increased the likelihood of CAP [21, 65] and crackles on auscultation had a twofold increase in the prediction of pneumonia [19].
	Abdominal pain on palpation	Binary (Yes/no)	The rationale for including abdominal pain in the clinical assessment was that the literature reported that 20% of symptoms reported by patients with CAP were gastrointestinal symptoms [26].
	Body mass index (BMI).	The BMI was calculated including the high and weight of the patients. The BMI classification was based on "The Centers for diseases control and prevention" [66] and defined with the following categories: 1= Underweight, BMI < 18.5 2= Healthy weight, BMI from 18.5 to <25 3= Overweight, BMI from 25.0 to	The literature reported the association of several nutritional factors related to CAP and including malnutrition [1, 18], being underweight [8, 17], and BMI was directly associated with an increased risk of CAP among women [10].
		4= Obesity, BMI from ≥ 30.0	0

Table S2: Characteristics of CAP in the population of patients admitted with an infection (n=954). The values presented of data as continuous, dichotomous or categorical were tested in the model during explorative analysis to identify the best model performance.

Characteristics	Total, n	CAP, n	Not CAP, n	Missings n (%)	OR (95% CI)	p-value
Total of patients	954 (100)	265 (27.8)	689 (72.2)	0 (0.0)		
DEMOGRAPHIC DATA						
Age, median (IQR)	73.0 (59.0; 81.0)	75.0 (63.5; 82.0)	73.0 (57.0; 80.0)	0 (0.0)	1.01 (1.005-1.02)	<0.001
Age ≥75 years	440 (46.1)	133 (50.2)	307 (44.6)	0 (0.0)	1.25 (0.94-1.66)	0.118
Gender male	513 (53.8)	137 (51.7)	376 (54.6)	0 (0.0)	0.89 (0.67-1.18)	0.425
Marital status, Living alone	618 (66.0)	166 (63.8)	452 (66.9)	18 (1.9)	0.87 (0.64-1.18)	0.382
Nursing home resident	66 (7.0)	26 (9.9)	40 (5.9)	13 (1.4)	1.75 (1.05-2.94)	0.317
Occupation				21 (2.2)		
Others	67 (7.2)	17 (6.5)	50 (7.4)		1 (reference)	
Working	202 (21.7)	44 (16.9)	158 (23.5)		0.81 (0.43-1.55)	0.543
Retired	664 (71.2)	200 (76.6)	464 (69.0)		1.26 (0.71-2.25)	0.418
LIFESTYLE FACTORS						
Smoking status				33 (3.5)		
No	323 (35.1)	66 (26.0)	257 (38.5)		1 (reference)	
Current smoker	179 (19.4)	54 (21.3)	125 (18.7)		1.68 (1.10-2.55)	0.015
Previous smoker	419 (45.5)	134 (52.8)	285 (42.7)		1.83 (1.30-2.57)	<0.00
Alcohol status	- (/			35 (3.7)		
No alcohol	356 (38.7)	99 (39.1)	257 (38.6)	(-)	1 (reference)	
1-7 doses	385 (41.9)	105 (41.5)	280 (42.0)		0.97 (0.70-1.34)	0.870
8-14 doses	105 (11.4)	31 (12.3)	74 (11.1)		1.08 (0.67-1.75)	0.732
> 14 doses	73 (7.9)	18 (7.1)	55 (8.3)		0.84 (0.47-1.51)	0.582
Physically activity		20 (712)		52 (5.4)		0.001
Not physical active	263 (29.2)	74 (29.8)	189 (28.9)	02 (01.1)	1 (reference)	
Physical activity < 2,5 hr/week	231 (25.6)	64 (25.8)	167 (25 5)		0.97 (0.66-1.45)	0 91
Physical activity ≥ 2,5 hr/week	408 (45.2)	110 (44.4)	298 (45.6)		0.94 (0.66-1.33)	0.735
Body Mass Index, median (IQR)	26.5 (23.2: 30.8)	26.2 (22.9: 29.5)	26.7 (23.3: 31.2)	249 (26.1)	0.97 (0.94-0.99)	0.031
Body Mass Index ⁺				249 (26.1)		0.001
Healthy weight	246 (34 9)	74 (36 1)	172 (34 4)	2.0 (20.2)	1 (reference)	
Obese	193 (27 4)	45 (22 0)	148 (29.6)		0.70 (0.45-1.08)	0 114
Overweight	239 (33 9)	74 (36 1)	165 (33.0)		1.04 (0.70-1.53)	0.833
Underweight	235 (33.5)	12 (5 9)	15 (3.0)		1.85 (0.83-4.16)	0.000
ADL dependence*	260 (28.0)	91 (21 2)	179 (26.8)	25 (2.6)	1.05 (0.85-4.10)	0.132
SYMPTOMS	200 (28.0)	81 (51.2)	179 (20.8)	23 (2.0)	1.23 (0.90-1.09)	0.100
Feeling unwell	FEO (61 2)	172 (67.9)	296 (59.7)	41 (4 2)	1 48 (1 00 2 01)	0.010
Feeling tired	559 (61.2)	1/3 (67.8)	386 (58.7)	41 (4.3)	1.48 (1.09-2.01)	0.010
Headache	057 (72.b)	190 (75.4)	407 (71.5)	49 (5.1)	1.22 (0.87-1.70)	0.241
Dizziness	351 (38.3)	99 (38.8)	252 (38.1)	37 (3.9)	1.03 (0.76-1.38)	0.832
Confusion	346 (37.7)	96 (37.6)	250 (37.8)	37 (3.98)	0.99 (0.73-1.34)	0.973
	207 (22.6)	58 (22.7)	149 (22.5)	37 (3.89)	1.01 (0.71-1.43)	0.938
	379 (41.4)	171 (67.3)	208 (31.5)	39 (4.1)	4.48 (3.29-6.11)	<0.00
Cough	358 (39.1)	173 (68.1)	185 (28.0)	39 (4.1)	5.49 (4.01-7.52)	<0.00

2 3							
4	Expectoration	279 (20 5)	140 (55 1)	139 (21 0)	39 (4 1)	4 61 (3 38-6 28)	<0.001
5	Sore throat	104 (11 4)	39 (15.4)	65 (9.8)	39 (4.1)	1 66 (1 08-2 54)	0.019
7	Cold (common cold)	95 (10.4)	45 (17 7)	50 (7.6)	39 (4.1)	2 63 (1 70-4 05)	<0.013
8	Fever feling at home	612 (64 2)	169 (63.8)	143 (64 3	0 (0 0)	0.97 (0.72-1.31)	0.880
9	Chest pain	168 (18 4)	71 (28 1)	97 (14 7)	40 (4 2)	2.26 (1.60-2.21)	<0.001
10	Oedema	79 (8 6)	10 (4 0)	69 (10.4)	20 (4.1)	0.25 (1.17-0.69)	0.001
12	Nausea	204 (22.2)	76 (20.0)	228 (24.4)	28 (2.0)	0.81 (0.59-1.112)	0.002
13	Vomiting	190 (20 7)	/0 (30.0)	150 (22.6)	28 (2.0)	0.64 (0.42.0.94)	0.211
14	Loss of appetite	524 (57.2)	140 (58 0)	275 (56 6)	28 (2.0)	1 00 (0 82-1 47)	0.023
15 16	Gastrointestinal pain	193 (21 1)	40 (15 8)	153 (23.1)	38 (3.9)	0.62 (0.42-0.91)	0.016
17	 Diarrhoea	134 (14 6)	29 (11 5)	105 (15.8)	38 (3.9)	0.68 (0.44-1.06)	0.095
18	Muscular pain	344 (37.8)	79 (31 3)	265 (40.3)	44 (4 6)	0.67 (0.49-0.92)	0.055
19	Back pain	132 (14 5)	33 (13 1)	99 (15 0)	44 (4.6)	0.85 (0.55-1.29)	0.015
20	CLINICAL ASSESSMENT	152 (14.5)	55 (13.1)	55 (15.0)	++ (+.0)	0.03 (0.55 1.25)	0.435
21	Positive stethoscope findings	329 (36 5)	168 (65.4)	161 (25.0)	52 (5.4)	5 67 (4 15-7 75)	<0.001
23	Abdominal pain by palpation	192 (22 1)	37 (15.0)	155 (25.0)	86 (9.0)	0.52 (0.35-0.78)	0.002
24	COMORBIDITIES	152 (22.1)	37 (13.0)	155 (25.0)	00 (5.0)	0.52 (0.55 0.76)	0.002
25 26	Dementia	32 (3 4)	9 (3 4)	23 (3 3)	0 (0 0)	1 01 (0 46-2 22)	0 964
20	Neurological diseases	172 (18 0)	53 (20 0)	119 (17 3)	0 (0.0)	1 19 (0 83-1 71)	0.326
28	Respiratory diseases	269 (28.2)	105 (39.6)	164 (23.8)	0 (0 0)	2 10 (1 55-2 84)	<0.001
29	Endocrinological diseases	296 (31.0)	80 (30 2)	216 (31 3)	0 (0.0)	0.94 (0.69-1.28)	0.728
30 21	Nephrological diseases	252 (26.4)	60 (22 6)	192 (27.9)	0 (0 0)	0.75 (0.54-1.05)	0.101
32	Cardiovascular diseases	390 (40.9)	116 (43.8)	274 (39.8)	0 (0.0)	1.17 (0.88-1.57)	0.259
33	Gastrointestinal diseases	100 (10.5)	23 (8.7)	77 (11.2)	0 (0.0)	0.75 (0.46-1.23)	0.260
34	Rheumatological diseases	118 (12.4)	27 (10.2)	91 (13.2)	0 (0.0)	0.74 (0.47-1.17)	0.205
35	Cancer diseases	85 (8.9)	26 (9.8)	59 (8.6)	0 (0.0)	1.16 (0.71-1.88)	0.544
37	Prior pneumonia				100 (10.5)		
38	No	410 (48.0)	79 (33,3)	331 (53.6)		1 (reference)	
39	Yes, one time	180 (21 1)	50 (21 1)	130 (21 1)		1 61 (1 07-2 42)	0.022
40 41	Yes, more than one time	264 (30.9)	108 (45.6)	156 (25.3)		2.90 (2.05-4.10)	<0.001
42	SEVERITY ASSESSMENT	201 (0010)	200 (1010)	100 (10.0)		2.50 (2.0020)	
43	CURB65 ≥3 **	122 (13.0)	29 (11.3)	93 (13.7)	16 (1.7)	0.80 (0.51-1.25)	0.336
44	Triage***	()			59 (6.2)		
45 46	Green/Blue	183 (20.4)	37 (14.8)	146 (22.6)		1 (reference)	
47	Yellow	479 (53.5)	126 (50.4)	353 (54.7)		1.40 (0.93-2.13)	0.105
48	Red/Orange	233 (26.0)	87 (34.8)	146 (22.6)		2.35 (1.50-3.67)	< 0.001
49 50	VITAL PARAMETERS						
50 51	Respiratory rate, median(IQR)	18.0 (16.0: 22.0)	20.0 (18.0: 24.0)	18.0 (16.0: 20.0)	5 (0.5)	1.10 (1.07-1.13)	<0.001
52	Respiratory rate >20/min	285 (30.0)	124 (47.0)	161 (23.5)	5 (0.5)	2.88 (2.13-3.88)	<0.001
53	Oxygen saturation % n/min, median						
54	(IQR)	96.0 (94.0; 98.0)	95.0 (93.0; 97.0)	97.0 (95.0; 98.0)	4 (0.4)	0.84 (0.80-0.88)	<0.001
55 56	Heart rate/min mean (cd)	393 (41.4)	162 (61.1)	231 (33.7)	4 (0.4)	3.09 (2.30-4.14)	<0.001
57	Heart rate <51 or $>00/min$	90.1 (18.3)	93.2 (18.9)	88.9 (18.0)	1 (0.1)	1.01 (1.005-1.02)	0.001
58	Systolic blood pressure mmHg. mean	460 (48.3)	148 (55.8)	312 (45.3)	1 (0.1)	1.52 (1.14-2.02)	0.003
59 60	(sd)	132.8 (22.5)	134.2 (21.0)	132.2 (23.1)	3 (0.3)	1.003 (0.99-1.01	0.215

1
2
3
4
5
6
7
, 8
0
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
37
22
עכ גכ
24 25
22
30
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
55

Systelic blood prossure <111 or >210						
mmHg	156 (16.4)	38 (14.4)	118 (17.2)	3 (0.3)	0.81 (0.54-1.21)	0.314
(sd)	74.8 (15.3)	74.2 (13.6)	75.0 (15.8)	3 (0.3)	0.99 (0.98-1.006)	0.483
Diastolic blood pressure ≤60 mmHg	163 (17.1)	40 (15.2)	123 (17.9)	3 (0.3)	0.82 (0.55-1.21)	0.329
Temperature, mean (SD)	37.5 (1.0)	37.6 (1.0)	37.4 (0.9)	5 (0.5)	1.22 (1.05-1.40)	0.006
Fever > 38°C	233 (24.6)	77 (29.3)	156 (22.7)	5 (0.5)	1.40 (1.02-1.93)	0.036
Glascow coma scale <15	31 (3.3)	12 (4.6)	19 (2.8)	5 (0.5)	0.59 (0.28-1.24)	0.168
BLOOD TESTS						
Haematocrit, median (IQR)	38.0 (35.0; 42.0)	38.0 (35.0; 42.0)	39.0 (35.0; 42.0)	260 (27.2)	0.98 (0.95-1.01)	0.465
Haematocrit	268 (38.6)	85 (38.6)	183 (38.6)	260 (27.2)	1.001 (0.72-1.39)	0.994
Haemoglobin mmol/L, median (IQR)	8.0 (7.2; 8.7)	7.9 (7.2; 8.6)	8.0 (7.3; 8.8)	0 (0.0)	0.90 (0.80-1.02)	0.127
Haemoglobin mmol/L	402 (42.1)	118 (44.5)	284 (41.2)	0 (0.0)	1.14 (0.86-1.52)	0.354
Leukocytes 10E9/L, median (IQR)	11.1 (8.3; 14.8)	12.2 (9.5; 15.8)	10.7 (8.0; 14.2)	0 (0.0)	1.05 (1.02-1.07)	<0.001
Leukocytes 10E9/L	670 (70.2)	214 (80.8)	456 (66.2)	0 (0.0)	2.14 (1.52-3.02)	<0.001
Platelets 10E9/L, median (IQR)	240.0 (190.0: 207.9)	260.5 (211.0;	232.0 (182.3;	10 (1 0)	1.002 (1.001-	-0.001
Platelets 10F9/I	240.0 (189.0; 307.8)	330.8)	296.0)	10 (1.0)	1.004)	<0.001
Neutrophils 10E9/L median (IOB)	201 (21.3)	63 (23.9)	138 (20.3)	10 (1.0)	1.23 (0.87-1.72)	0.229
Neutrophils 10E9/I	8.4 (6.0; 12.2)	9.7 (7.2; 13.0)	8.0 (5.6; 11.6)	10 (1.0)	1.06 (1.03-1.09)	<0.001
Lymphocytest 10E9/L median (IOR)	549 (58.2)		362 (53.2)	10 (1.0)	2.16 (1.59-2.94)	<0.001
Lymphocytest 10E9/L	1.1 (0.7; 1.6)	0.9 (0.6; 1.5)	1.2 (0.8; 1.8)	633 (66.3)	0.98 (0.85-1.12)	0.797
Albumin g/L median (LOR)		53 (55.2)	92 (40.9)	633 (66.3)	1.78 (1.10-2.88)	0.018
	39.0 (36.0; 42.0)	39.0 (35.0; 41.0)	39.0 (36.0; 42.0)	7 (0.7)	0.96 (0.93-0.99)	0.029
	160 (16.9)	39 (14.9)	121 (17.6)	7 (0.7)	0.82 (0.55-1.21) 0.996 (0.993-	0.323
Creatinine µmol/L, median (IQR)	84.0 (67.0; 113.0)	81.0 (64.0; 108.0)	86.0 (67.5; 114.0)	0 (0.0)	0.998)	0.003
Creatinine µmol/L	374 (39.2)	106 (40.0)	268 (38.9)	0 (0.0)	1.04 (0.78-1.39)	0.754
Blood urea nitrogen mmol/L, median (IQR)	6.2 (4.4; 8.9)	6.2 (4.5; 8.6)	6.2 (4.4; 9.1)	9 (0.9)	0.99 (0.96-1.02)	0.657
Blood urea nitrogen mmol/L	377 (39.9)	99 (38.1)	278 (40.6)	9 (0.9)	0.90 (0.67-1.20)	0.482
Natrium mmol/L, median (IQR)	137.0 (134.0; 139.0)	137.0 (134.0; 139.0)	137.0 (134.0; 139.0)	0 (0.0)	0.98 (0.95-1.01)	0.394
Natrium mmol/L	432 (45.3)	128 (48.3)	304 (44.1)	0 (0.0)	1.18 (0.89-1.57)	0.245
Prothrombin, median (IQR)	1.1 (1.0; 1.2)	1.1 (1.0; 1.2)	1.1 (1.0; 1.2)	3 (0.3)	1.18 (0.89-1.58)	0.231
Prothrombin	234 (24.6)	65 (24.5)	169 (24.6)	3 (0.3)	0.99 (0.71-1.38)	0.972
Bilirubin μmol/L, median (IQR)	9.0 (6.0; 13.0)	9.0 (6.0; 12.0)	9.0 (6.0; 14.0)	11 (1.1)	0.97 (0.95-0.99)	0.254
Bilirubin μmol/L	152 (16.1)	38 (14.4)	114 (16.8) 🥣	11 (1.1)	0.83 (0.55-1.24)	0.369
Glucose mmol/L, median (IQR)	6.7 (5.9; 7.9)	6.9 (6.2; 8.1)	6.6 (5.8; 7.8)	9 (0.9)	1.04 (0.99-1.10)	0.052
Glucose mmol/L	51 (5.4)	19 (7.3)	32 (4.7)	9 (0.9)	1.59 (0.88-2.85)	0.120
C-Reactive Protein mg/L, median (IQR)	95.5 (30.0; 179.3)	125.0 (57.0; 203.5)	82.0 (19.0; 172.0)	0 (0.0)	1.003 (1.001- 1.004)	<0.001
C-Reactive Protein mg/L				0 (0.0)		
Low <20mg/L	196 (20.5)	21 (7.9)	175 (25.4)		1 (reference)	
Moderate 21-99 mg/L	291 (30.5)	86 (32.5)	205 (29.8)		3.49 (2.08-5.86)	<0.001
High >=100	467 (49.0)	158 (59.6)	309 (44.8)		4.26 (2.60-6.96)	<0.002
VACCINE AND MEDICAMENTATIONS						
SARS-CoV-2 †	756 (79.2)	222 (83.8)	534 (77.5)	0 (0.0)	1.49 (1.03-2.17)	0.033
Pneumococcal	530 (55.6)	160 (60.4)	370 (53.7)	0 (0.0)	, , , , , , , , , , , , , , , , , , , ,	0.063
Influenza	635 (66.6)	191 (72,1)	444 (64.4)	0 (0.0)	1.42 (1.04-1.94)	0.025

2
3
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
10
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
31
24
35
36
37
38
39
40
41
<u>4</u> 2
ד∠ ער
43 44
44
45
46
47
48
49
50
51
51
5Z
53
54
55
56
57
58
59
55

60

Analgesics	404 (42.3)	115 (43.4)	289 (41.9)	0 (0.0)	1.06 (0.79-1.41)	0.684
Polypharmacy****	544 (57.0)	163 (61.5)	381 (55.3)	0 (0.0)	1.29 (0.96-1.72)	0.082

Values are numbers (percentages) unless otherwise specified. *ADL dependence: If the patient had one or more dependencies regarding bathing, dressing, toileting, transfer, continence, and feeding. ** CURB65: confusion, uraemia, respiratory rate, blood pressure, age > 65 years. ***Triage: Danish emergency process triage [40] ****Polypharmacy: regular consumption of at least five medications ⁺ variables not included in the multivariate model

Table S3: Characteristics of the 954 patients with suspected infection enrolled in the study. It presents the 70 predictors included in the multivariate analysis and randomization of the training set and validation set.

		_		Missings	
Characteristics	Total, n	Training set, n	Validation set, n	n (%)	p-value
Total of patients	954 (100)	766 (80.3)	188 (19.7)	0 (0.0)	
DEMOGRAPHIC DATA					
Age, median (IQR)	73.0 (59.0; 81.0)	75.0 (63.5; 82.0)	74.0 (60.0; 82.0)	0 (0.0)	0.54
Age ≥75 years	440 (46.1)	348 (45.4)	92 (48.9)	0 (0.0)	0.39
Gender male	513 (53.8)	408 (53.3)	105 (55.9)	0 (0.0)	0.52
Marital status, Living alone	618 (66.0)	488 (65.0)	130 (70.3)	18 (1.9)	0.17
Nursing home resident	66 (7.0)	55 (7.3)	11 (5.9)	13 (1.4)	0.53
Occupation				21 (2.2)	0.62
Others	67 (7.2)	57 (7.6)	10 (5.5)		
Working	202 (21.7)	162 (21.6)	40 (22.0)		
Retired	664 (71.2)	532 (70.8)	132 (72.5)		
LIFESTYLE FACTORS					
Smoking status				33 (3.5)	0.76
No	323 (35.1)	256 (34.5)	67 (37.4)		
Current smoker	179 (19.4)	145 (19.5)	34 (19.0)		
Previous smoker	419 (45.5)	341 (46.0)	78 (43.6)		
Alcohol status				35 (3.7)	0.60
No alcohol	356 (38.7)	283 (38.2)	73 (40.8)		
1-7 doses	385 (41.9)	315 (42.6)	70 (39.1)		
8-14 doses	105 (11.4)	81 (10.9)	24 (13.4)		
> 14 doses	73 (7.9)	61 (8.2)	12 (6.7)		
Physically activity				52 (5.4)	0.76
Not physical active	263 (29.2)	214 (29.4)	49 (28.2)		
Physical activity < 2,5 hr/week	231 (25.6)	189 (26.0)	42 (24.1)		
Physical activity ≥ 2,5 hr/week	408 (45.2)	325 (44.6)	83 (47.7)		
Body Mass Index†				249 (26.1)	0.74

· · · · · · · · · · · · · · · · · · ·		- ()	(- /
COMORBIDITIES			
Dementia	23 (3.0)	9 (4.8)	23 (3.3)
Neurological diseases	137 (17.9)	35 (18.6)	119 (17.3)
Pulmonary diseases	212 (27.7)	57 (30.3)	164 (23.8)
Endocrinological diseases	239 (31.2)	57 (30.3)	216 (31.3)
Nephrological diseases	200 (26.1)	52 (27.7)	192 (27.9)

Healthy weight	246 (34.9)	202 (35.8)	44 (31.2)		
Obese	193 (27.4)	154 (27.3)	39 (27.7)		
Overweight	239 (33.9)	187 (33.2)	52 (36.9)		
Underweight	27 (3.8)	21 (3.7)	6 (4.3)		
ADL dependence*	260 (28.0)	203 (27.1)	57 (31.7)	25 (2.6)	0.22
SYMPTOMS					
Malaise	559 (61.2)	458 (62.0)	101 (58.0)	41 (4.3)	0.34
Feeling tired	657 (72.6)	540 (74.0)	117 (66.9)	49 (5.1)	0.06
Headache	351 (38.3)	287 (38.8)	64 (36.0)	37 (3.9)	0.48
Dizziness	346 (37.7)	287 (38.8)	59 (33.1)	37 (3.98)	0.16
Confusion	207 (22.6)	164 (22.2)	43 (24.2)	37 (3.89)	0.57
Dyspnea	379 (41.4)	309 (42.0)	70 (39.1)	39 (4.1)	0.48
Cough	358 (39.1)	294 (39.9)	64 (35.8)	39 (4.1)	0.30
Fever feeling at home	612 (64.2)	464 (64.5)	118 (62.8)	0 (0.0)	0.66
Expectoration	279 (30.5)	224 (30.4)	55 (30.7)	39 (4.1)	0.94
Sore throat	104 (11.4)	86 (11.7)	18 (10.1)	39 (4.1)	0.54
Cold (common cold)	95 (10.4)	81 (11.0)	14 (7.8)	39 (4.1)	0.21
Chest pain	168 (18.4)	134 (18.2)	34 (19.0)	40 (4.2)	0.81
Oedema	79 (8.6)	61 (8.3)	18 (10.1)	39 (4.1)	0.45
Nausea	304 (33.2)	247 (33.4)	57 (32.2)	38 (3.9)	0.76
Vomiting	190 (20.7)	154 (20.8)	36 (20.3)	38 (3.9)	0.88
Loss of appetite	524 (57.2)	424 (57.4)	100 (56.5)	38 (3.9)	0.83
Gastrointestinal pain	193 (21.1)	145 (19.6)	48 (27.1)	38 (3.9)	0.03
Diarrhoea	134 (14.6)	107 (14.5)	27 (15.3)	38 (3.9)	0.79
Muscular pain	344 (37.8)	289 (39.5)	55 (30.9)	44 (4.6)	0.03
Back pain	132 (14.5)	110 (15.0)	22 (12.4)	44 (4.6)	0.36
CLINICAL ASSESSMENT					
Positive stethoscope findings	329 (36.5)	263 (36.5)	66 (36.5)	52 (5.4)	1.00
Abdominal pain by palpation	192 (22.1)	151 (21.7)	41 (23.7)	86 (9.0)	0.58
COMORBIDITIES					
Dementia	23 (3.0)	9 (4.8)	23 (3.3)	0 (0.0)	0.22
Neurological diseases	137 (17.9)	35 (18.6)	119 (17.3)	0 (0.0)	0.82
Pulmonary diseases	212 (27.7)	57 (30.3)	164 (23.8)	0 (0.0)	0.47
Endocrinological diseases	239 (31.2)	57 (30.3)	216 (31.3)	0 (0.0)	0.81
Nephrological diseases	200 (26.1)	52 (27.7)	192 (27.9)	0 (0.0)	0.67

BMJ Open

Cardiovascular diseases	303 (39.6)	87 (46.3)	274 (39.8)	0 (0.0)	0.09
Gastrointestinal diseases	81 (10.6)	19 (10.1)	77 (11.2)	0 (0.0)	0.85
Rheumatological diseases	93 (12.1)	25 (13.3)	91 (13.2)	0 (0.0)	0.67
Cancer diseases	66 (8.6)	19 (10.1)	59 (8.6)	0 (0.0)	0.52
Prior pneumonia			()	100 (10.5)	0.05
No	343 (50.1)	67 (39.6)	331 (53.6)		
Yes one time	139 (20.3)	41 (24.3)	130 (21 1)		
Vos. moro than ono timo	203 (29.6)	61 (36 1)	156 (25.2)		
	203 (23.0)	01 (30.1)	150 (25.5)		
	102 (12 6)	10 (10 4)	02 (42 7)	4.5 (4.7)	0.25
	105 (15.0)	19 (10.4)	93 (13.7)	16 (1.7)	0.25
Triage***	6			59 (6.2)	0.53
Green/Blue	185 (25.6)	48 (27.9)	146 (22.6)		
Yellow	385 (53.3)	94 (54.7)	353 (54.7)		
Red/Orange	153 (21.2)	30 (17.4)	146 (22.6)		
VITAL PARAMETERS					
Respiratory rate >20/min	285 (30.0)	235 (30.8)	50 (26.7)	5 (0.5)	0.2
Oxygen saturation < 96 %	393 (41.4)	324 (42.5)	69 (36.7)	4 (0.4)	0.1
Heart rate <51 or >90/min	460 (48.3)	377 (49.3)	83 (44.1)	1 (0.1)	0.22
Systolic blood pressure <111 or >219 mmHg	156 (16.4)	125 (16.4)	31 (16.6)	3 (0.3)	0.94
Diastolic blood pressure ≤60 mmHg	163 (17.1)	131 (17.1)	32 (17.1)	3 (0.3)	0.9
Fever > 38°C	233 (24.6)	190 (24.9)	43 (23.1)	5 (0.5)	0.6
Glascow coma scale <15	31 (3.3)	23 (3.0)	8 (4.3)	5 (0.5)	0.3
BLOOD TESTS					
Haematocrit	268 (38.6)	218 (39.2)	50 (36.2)	260 (27.2)	0.52
Haemoglobin mmol/L	402 (42.1)	329 (43.0)	73 (38.8)	0 (0.0)	0.3
Leukocytes 10E9/L	670 (70.2)	548 (71.5)	122 (64.9)	0 (0.0)	0.0
Platelets 10E9/L	201 (21.3)	168 (22.2)	33 (17.6)	10 (1.0)	0.1
Neutrophils 10E9/L	549 (58.2)	454 (59.9)	95 (51.1)	10 (1.0)	0.03
Albumin g/L	160 (16.9)	130 (17.1)	30 (16.1)	7 (0.7)	0.7
Creatinine µmol/L	374 (39.2)	303 (39.6)	71 (37.8)	0 (0.0)	0.6
Blood urea nitrogen mmol/L	377 (39.9)	308 (40.5)	69 (37.5)	9 (0.9)	0.4
Natrium mmol/L	432 (45.3)	362 (47.3)	70 (37.2)	0 (0.0)	0.03
Prothrombin	234 (24.6)	186 (24.3)	48 (25.7)	3 (0.3)	0.7

Glucose mmol/L	51 (5.4)	42 (5.5)	9 (4.8)	9 (0.9)	0.71
C-Reactive Protein mg/L				0 (0.0)	0.07
<20 mg/L	196 (20.5)	151 (19.7)	45 (23.9)		
21-99 mg/L	291 (30.5)	226 (29.5)	65 (34.6)		
≥ 100 mg/L	467 (49.0)	389 (50.8)	78 (41.5)		
VACCINE AND MEDICAMENTATIONS					
Pneumococcal	530 (55.6)	414 (54.0)	116 (61.7)	0 (0.0)	0.06
Influenza	635 (66.6)	512 (66.8)	123 (65.4)	0 (0.0)	0.71
Analgesics	404 (42.3)	336 (43.9)	68 (36.2)	0 (0.0)	0.06
Polypharmacy****	544 (57.0)	443 (57.8)	101 (53.7)	0 (0.0)	0.31

Values are numbers (percentages) unless otherwise specified. *ADL dependence: If the patient had one or more dependencies regarding bathing, dressing, toileting, transfer, continence, and feeding. ** CURB65: confusion, uraemia, respiratory rate, blood pressure, age > 65 years. ***Triage: Danish emergency process triage [40] ****Polypharmacy: regular consumption of at least five medications

Figure S1: Performance of the prediction model presented with the area receiver operating

characteristic curve

Formula S1: Based on a lambda result of λ =0.0402856 and a probability threshold of 0.35, the LASSO calculation with characteristics predictive of CAP as follows:

$$\begin{split} CAP-score &= 0.07 \cdot 1_{Unwell=yes} + 0.35 \cdot 1_{Dyspnea=yes} + 0.36 \cdot 1_{Expectoration=yes} + 0.39 \cdot 1_{Cough=yes} \\ &+ 0.34 \cdot 1_{Cold=yes} + 0.14 \cdot 1_{Respiratory\ rate > 20/min=yes} + 0.24 \end{split}$$

$$\cdot 1_{Oxygen \ saturation < 96\% = yes} + 0.20 \cdot 1_{Chest \ pain = yes} + 0.56 \cdot 1_{Stethoscope = yes} - 0.12$$

$$\cdot 1_{Previous CAP=no} + 0.003 \cdot 1_{Leucocytes < 3.5 or > 8.8 \ 10E9 \ /L=yes} + 0.08$$

$$1_{Neutrophilocytes>7.5\ 10E9\ /L=yes} - 0.64 \cdot 1_{CRP<20mg\ /L=yes} + 0.53 \cdot 1_{Cough=yes} \cdot 1_{age\geq75} - 0.05.1_{Edema=yes} \cdot 1_{age>75} + 0.88 \cdot 1_{Clucose>11\ mmol\ /L=yes} \cdot 1_{age>75} + 0.0402856$$

$$- 0.05.1_{Edema=yes} \cdot 1_{age \ge 75} + 0.88 \cdot 1_{Glucose > 11 mmol / L = yes} \cdot 1_{age \ge 75} + 0.04026 \cdot (0.07 + 0.35 + 0.36 + 0.39 + 0.015 + 0.34 + 0.14 + 0.24 + 0.20 + 0.56 + 0.12)$$

$$+ 0.003 + 0.08 + 0.64 + 0.53 + 0.05 + 0.88) - 1.66192 - \log\left(\frac{0.35}{0.65}\right)$$

For best calibration, 0.07 must be subtracted from the score if the score is between 0.08 and 0.47.

Formula S2: A cutoff value greater than 0 indicates the diagnosis CAP according to our model and can be calculated using the following formula:

$$\begin{split} \textit{CAP-score} &= 0.07 \cdot 1_{\textit{Unwell=yes}} + 0.35 \cdot 1_{\textit{Dyspnea=yes}} + 0.36 \cdot 1_{\textit{Expectoration=yes}} + 0.39 \cdot 1_{\textit{Cough=yes}} \\ &+ 0.34 \cdot 1_{\textit{Cold=yes}} + 0.14 \cdot 1_{\textit{Respiratory rate} > 20/\textit{min=yes}} + 0.24 \end{split}$$

 $\cdot 1_{Oxygen saturation < 96\% = yes} + 0.20 \cdot 1_{Chest pain = yes} + 0.56 \cdot 1_{Stethoscope = yes} - 0.12$

 $\cdot 1_{Previous \ CAP=no} + 0.003 \cdot 1_{Leucocytes < 3.5 \ or \ > 8.8 \ 10E9 \ /L=yes} + 0.08$

 $\cdot 1_{Neutrophilocytes>7.5\ 10E9\ /L=yes} - 0.64 \cdot 1_{CRP<20mg\ /L=yes} + 0.53 \cdot 1_{Cough=yes} \cdot 1_{age\geq75}$

 $-0.05.1_{Edema=yes} \cdot 1_{age \ge 75} + 0.88 \cdot 1_{Glucose > 11 mmol / L=yes} \cdot 1_{age \ge 75} - 0.842742$

For best calibration, 0.07 must be subtracted from the score if the score is between 0.08 and 0.47.

Model specification

Besides the high percentage of missings from lymphocytes (66.3%), lymphocytes contributed to a significantly decreased model performance below 80% and a narrower calibration belt (p<0.001), furthermore lymphocytes were missing for 66.3% of the patients. SARS-CoV-2 vaccine was not included in the final model as the vaccine was related to a specific pandemic and did not change any final predictors or values. The inclusion of the BMI had better prediction performance AUC: 0.86 (CI: 0.79-0.93) and yielded more predictors especially related to lifestyle. The predictors that differed from the final model were: Alcohol (8-14 doses/week) 0.01792, level of physical activity under 2,5 hours/week yielded 0.01067, and obesity appeared with a coefficient of -0.93861. In addition, a symptom of diarrhea (-0.17572), muscular pain (-0.00225), gastrointestinal symptoms (-0.807885), sore throat (0.074709 for patients ≥ 75 years old) and the presence of nephrological diseases (-0.18776 for patients ≥ 75 years old) were predictors of CAP in the model constructed including BMI. From a clinical perspective, we chose to exclude the BMI as the final model would be more useful in an acute setting where reliable information about BMI is not always available. From a statistical perspective, BMI had almost 27% of missings, which would be classified as MAR and possibly selected from the population.

References

- 1. Almirall, J., et al., *Risk Factors for Community-Acquired Pneumonia in Adults: A Systematic Review of Observational Studies.* Respiration, 2017. **94**(3): p. 299-311.
- 2. Riquelme, R., et al., *Community-acquired pneumonia in the elderly. Clinical and nutritional aspects.* Am J Respir Crit Care Med, 1997. **156**(6): p. 1908-14.
- 3. Janssens, J.P., *Pneumonia in the elderly (geriatric) population.* Curr Opin Pulm Med, 2005. **11**(3): p. 226-30.
 - 4. Cillóniz, C., et al., *Community-acquired pneumonia in critically ill very old patients: a growing problem.* Eur Respir Rev, 2020. **29**(155).
 - 5. Metlay, J.P., et al., *Influence of age on symptoms at presentation in patients with community-acquired pneumonia*. Arch Intern Med, 1997. **157**(13): p. 1453-9.
- 6. Laporte, L., et al., *Ten-year trends in intensive care admissions for respiratory infections in the elderly.* Ann Intensive Care, 2018. **8**(1): p. 84.
- Ravioli, S., et al., Age- and sex-related differences in community-acquired pneumonia at presentation to the emergency department: a retrospective cohort study. Eur J Emerg Med, 2022.
 29(5): p. 366-372.
- 8. Hammond, A., et al., *Predisposing factors to acquisition of acute respiratory tract infections in the community: a systematic review and meta-analysis.* BMC Infect Dis, 2021. **21**(1): p. 1254.
- Barbagelata, E., et al., Gender differences in community-acquired pneumonia. Minerva Med, 2020.
 111(2): p. 153-165.
- 10. Baik, I., et al., A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med, 2000. **160**(20): p. 3082-8.
- 11. Heath, G.W., et al., *Exercise and the incidence of upper respiratory tract infections.* Medicine and science in sports and exercise, 1991. **23**(2): p. 152-157.
- 12. Kim, N.E., et al., *Clinical characteristics and outcomes among older nursing home residents hospitalized with pneumonia.* Arch Gerontol Geriatr, 2021. **95**: p. 104394.
- 13. Nieman, D.C., et al., *Upper respiratory tract infection is reduced in physically fit and active adults.* British journal of sports medicine, 2011. **45**(12): p. 987-992.
- 14. Calvillo–King, L., et al., *Impact of social factors on risk of readmission or mortality in pneumonia and heart failure: systematic review.* Journal of general internal medicine, 2013. **28**(2): p. 269-282.
 - 15. Clyde, W.A., Jr., *Clinical overview of typical Mycoplasma pneumoniae infections.* Clin Infect Dis, 1993. **17 Suppl 1**: p. S32-6.
 - 16. Gamble, J.M., et al., *Medication transitions and polypharmacy in older adults following acute care.* Ther Clin Risk Manag, 2014. **10**: p. 189-96.
- 17. Torres, A., et al., *Risk factors for community-acquired pneumonia in adults in Europe: a literature review.* Thorax, 2013. **68**(11): p. 1057-65.
- 18. Riquelme, R., et al., *Community-acquired pneumonia in the elderly: clinical and nutritional aspects.* Revista médica de Chile, 2008. **136**(5): p. 587-593.
 - 19. Moore, M., et al., *Predictors of pneumonia in lower respiratory tract infections: 3C prospective cough complication cohort study.* Eur Respir J, 2017. **50**(5).
- 20. Ding, F., et al., Development and validation of a simple tool composed of items on dyspnea, respiration rates, and C-reactive protein for pneumonia prediction among acute febrile respiratory illness patients in primary care settings. BMC Med, 2022. **20**(1): p. 360.
- 21. Nakanishi, M., et al., *Significance of the progression of respiratory symptoms for predicting community-acquired pneumonia in general practice*. Respirology, 2010. **15**(6): p. 969-74.

2		
4	22.	Huijskens, E.G.W., et al., The value of signs and symptoms in differentiating between bacterial, viral
5		and mixed aetiology in patients with community-acquired pneumonia. J Med Microbiol, 2014. 63(Pt
6 7		3): p. 441-452.
7 8	23.	Loubet, P., et al., Community-acquired pneumonia in the emergency department: an algorithm to
9		facilitate diagnosis and guide chest CT scan indication. Clin Microbiol Infect, 2020. 26(3): p. 382.e1-
10		382.e7.
11	24.	Beekman, R., et al., Validating a clinical prediction score for Legionella-related community acquired
12		<i>pneumonia</i> . BMC Infect Dis, 2022. 22 (1): p. 442.
13	25.	den Engelsen, C., et al., Infectious diseases and the use of antibiotics in outpatients at the
14 15		emergency department of the University Hospital of León, Nicaragua. Int J Infect Dis, 2009. 13(3): p.
16		349-54.
17	26.	Mandell, L.A., Community-acquired pneumonia: An overview. Postgrad Med, 2015. 127(6): p. 607-
18		15.
19	27.	Takase, R., et al., Clinical Manifestations of Patients with Influenza Differ by Age : A Prospective,
20		Multi-centered Study in the Setouchi Marine Area. Acta Med Okayama, 2021. 75 (5): p. 567-574.
21	28.	Akhtar, A., et al., Respiratory-tract infections among geriatrics: prevalence and factors associated
22		with the treatment outcomes. Therapeutic advances in respiratory disease, 2021. 15: p.
23		1753466620971141.
25	29.	Sundhedsstyrelsen. Sundhedsstyrelsens udmeldinger om alkohol. 2022 [cited 2022 December 06];
26		Available from:
27		https://www.sst.dk/da/Viden/Forebyggelse/Alkohol/Alkoholforebyggelse/Sundhedsstyrelsens-
28	20	udmeldinger-om-alkohol
29	30.	(WHO), W.H.O. [cited 2022 December 6]; Available from: chrome-
30		extension://eraidnbmnnnibpcajpcgicierindmkaj/ <u>https://apps.wno.int/iris/bitstream/handie/10665/</u>
32	21	<u>337001/9789240014886-eng.put</u>
33	51.	Accessment Information Set data, Pos Nurs Health, 2020, 12 (4): p. 272, 286
34	22	Assessment injointation set data. Res Nuis Health, 2020. 45 (4), p. 575-560.
35	52.	2019 9(1): p 114
36	33	Staffans C at al. The Association Between Prescribed Onioid Receipt and Community-Acquired
37	55.	Pneumonia in Adults: a Systematic Review and Meta-analysis Gen Intern Med. 2020. 35 (11): n
39		3315-3322
40	34	Walters IA et al Pneumococcal vaccines for preventing pneumonia in chronic obstructive
41	51.	nulmongry disease Cochrane Database Syst Rev. 2017. 1(1): n. Cd001390
42	35	Kraicer-Melamed, H., S. O'Donnell, and C. Quach. The effectiveness of pneumococcal polysaccharide
43		vaccine 23 (PPV23) in the general population of 50 years of gae and older: A systematic review and
44 45		<i>meta-analysis.</i> Vaccine, 2016. 34 (13): p. 1540-1550.
45 46	36.	Liang, C.Y., et al., Effectiveness of influenza vaccination in the elderly: a population-based case-
47		<i>crossover study</i> . BMJ Open, 2022. 12 (2): p. e050594.
48	37.	Chalmers, J.D., et al., Severity assessment tools for predicting mortality in hospitalised patients with
49		community-acquired pneumonia. Systematic review and meta-analysis. Thorax, 2010. 65 (10): p.
50		878-83.
51	38.	Lim, W.S., et al., BTS guidelines for the management of community acquired pneumonia in adults:
52		<i>update 2009.</i> Thorax, 2009. 64 Suppl 3 : p. iii1-55.
53 54	39.	Rosenvinge, F.S. Antibiotikavejledning for Region Syddanmark. 06.10.2021 [cited 2022 22
55		september]; Available from:
56		https://ekstern.infonet.regionsyddanmark.dk/Files/Dokument547684.htm.
57	40.	Plesner, L.L., et al., The formation and design of the TRIAGE study-baseline data on 6005
58		consecutive patients admitted to hospital from the emergency department. Scandinavian journal of
59		trauma, resuscitation and emergency medicine, 2015. 23(1): p. 1-9.
60		

1		
2		
3		
4	41.	User Manuel Danish Emeraency Process Triaae.
5	42	Nordherg M S Lethvall and M Castrén The validity of the trigge system ADAPT Scandinavian
6	12.	iournal of trauma resuscitation and emergency medicine 2010 18 n 1-1
7	10	Earrobhnia N. et al. Emergency department trigge scales and their components: a systematic
8	45.	Fallonkina, N., et al., Emergency deputitient thuge scales and their components. a systematic
9		review of the scientific evidence. Scand J frauma Resusc Emerg Med, 2011. 19: p. 42.
10	44.	Jones, M., NEWSDIG: The National Early Warning Score Development and Implementation Group.
11		Clin Med (Lond), 2012. 12 (6): p. 501-3.
12	45.	Htun, T.P., et al., Clinical features for diagnosis of pneumonia among adults in primary care setting:
13		A systematic and meta-review. Sci Rep, 2019. 9 (1): p. 7600.
14	46.	Gong, L., et al., Clinical profile analysis and nomogram for predicting in-hospital mortality among
15		elderly severe community-acquired pneumonia patients with comorbid cardiovascular disease: a
10		retrospective cohort study. BMC Pulm Med, 2022. 22 (1): p. 312.
17	47.	Sakakibara, T., et al., A prediction rule for severe adverse events in all inpatients with community-
10		acquired pneumonia: a multicenter observational study. BMC pulmonary medicine. 2022. 22(1): p.
20		34
21	18	Mogensen CB et al Ear measurement of temperature is only useful for screening for fever in an
22	40.	adult amargansu dangetment DMC Emorg Mod. 2019. 19 (1): n. E1
23	40	An alwaying D.A. F.A. Charge and A. Grünghaum. Defining Seven Open Forum Infact Die 2021
24	49.	Mackowiak, P.A., F.A. Chervenak, and A. Grunebaum, <i>Defining Fever</i> . Open Forum Infect Dis, 2021.
25		8 (6): p. ofab161.
26	50.	Waterer, G.W., L.A. Kessler, and R.G. Wunderink, Medium-term survival after hospitalization with
27		<i>community-acquired pneumonia</i> . Am J Respir Crit Care Med, 2004. 169 (8): p. 910-4.
28	51.	Zhao, L.H., J. Chen, and R.X. Zhu, The relationship between frailty and community-acquired
29		pneumonia in older patients. Aging Clin Exp Res, 2023. 35 (2): p. 349-355.
30	52.	Kitazawa, T., et al., Characteristics of pneumonia with negative chest radiography in cases
31		confirmed by computed tomography. J Community Hosp Intern Med Perspect, 2020. 10(1): p. 19-
32		24.
33	53.	Huang, Y., et al., Diggnostic value of blood parameters for community-acquired pneumonia. Int
34		Immunonharmacol 2018 64 n 10-15
35	54	Alzoubi O and A Khanfar, Association between neutronhil to lumnhocyte ratio and mortality
36	54.	among community acquired nneumonia nationts: a moto analysis. Monoldi Arch Chost Dis. 2021
3/		anong commanity acquired predmonia patients. a meta-analysis. Monaidi Arch chest Dis, 2021.
38		92(3).
39	55.	Millas, G.P., V. Issaris, and V. Papavasileiou, <i>Blood ured nitrogen to dibumin ratio as a predictive</i>
40		factor for pneumonia: A meta-analysis. Respir Med Res, 2022. 81 : p. 100886.
41	56.	Kassaw, G., et al., Outcomes and Predictors of Severe Community-acquired Pneumonia Among
4Z //3		Adults Admitted to the University of Gondar Comprehensive Specialized Hospital: A Prospective
45 44		Follow-up Study. Infect Drug Resist, 2023. 16: p. 619-635.
45	57.	Adnan, M., et al., Prognostic value of five serum markers predicting in-hospital mortality among
46		adults with community acquired pneumonia. J Infect Dev Ctries, 2022. 16 (1): p. 166-172.
47	58.	Rendón-Ramirez, E.J., et al., TGF-8 Blood Levels Distinguish Between Influenza A (H1N1)pdm09
48		Virus Sepsis and Sepsis due to Other Forms of Community-Acquired Pneumonia, Viral Immunol.
49		2015 28 (5): n 248-54
50	50	Watanaha H et al. Clinical factors associated with negative urinary antigen tests implemented for
51	55.	the diagnosis of community acquired pnoumocoscal pnoumonia in adult nations. Mod Princ Prost
52		2015 $2a/2$ ≈ 190.04
53	60	2013. 24(2). U. 107-74.
54	60.	Zeng, W., et al., Association of damission blood glucose level and clinical outcomes in elderly
55		community-acquired pneumonia patients with or without diabetes. Clin Respir J, 2022. 16 (8): p.
56		562-571.
57	61.	Barmanray, R.D., et al., In-hospital hyperglycemia but not diabetes mellitus alone is associated with
58		increased in-hospital mortality in community-acquired pneumonia (CAP): a systematic review and
59		meta-analysis of observational studies prior to COVID-19. BMJ Open Diabetes Res Care, 2022. 10(4).
60		

BMJ Open

- 62. van der Meer, V., et al., *Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review.* Bmj, 2005. **331**(7507): p. 26.
- 63. van Vugt, S.F., et al., *Use of serum C reactive protein and procalcitonin concentrations in addition to symptoms and signs to predict pneumonia in patients presenting to primary care with acute cough: diagnostic study.* Bmj, 2013. **346**: p. f2450.
- 64. Ebell, M.H., et al., *Accuracy of Biomarkers for the Diagnosis of Adult Community-acquired Pneumonia: A Meta-analysis.* Acad Emerg Med, 2020. **27**(3): p. 195-206.
- 65. Ebell, M.H., et al., *Accuracy of Signs and Symptoms for the Diagnosis of Community-acquired Pneumonia: A Meta-analysis*. Acad Emerg Med, 2020. **27**(7): p. 541-553.
- 66. Division of Nutrition, P.A., and Obesity, National Center for Chronic Disease Prevention and Health Promotion. 3 June 2022 [cited 2023 2 March]; Available from: https://www.cdc.gov/obesity/basics/adult-defining.html.

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic	Item		Checklist Item	Page		
	Ι.		Identify the study as developing and/or validating a multivariable prediction model, the			
Title	1	D;V	target population, and the outcome to be predicted.	1		
Abstract	2	D;V	outcome, statistical analysis, results, and conclusions.	2		
Introduction						
Background and	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	3		
objectives	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both	4		
Methods						
	40	D:V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data),	5		
Source of data	41	D,V	separately for the development and validation data sets, if applicable. Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end			
	40	D;v	of follow-up. Specify key elements of the study setting (e.g., primary care, secondary care, general	5		
Darticipanta	5a	D;V	population) including number and location of centres.	5		
Participants	5b	D;V	Describe eligibility criteria for participants.	5		
	5c	D;V	Give details of treatments received, if relevant.	n/a		
Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	6		
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	6		
Predictors	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	6+77 + additional file (table S1 and S2)		
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	7		
Sample size	8	D;V	Explain how the study size was arrived at.	8		
Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	8		
	10a	D	Describe how predictors were handled in the analyses.	8		
Statistical	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	8		
analysis methods	10c	V	For validation, describe how the predictions were calculated.	9		
unurysis methods	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	9		
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	8		
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	n/a		
Development vs.	12	v	For validation, identify any differences from the development data in setting, eligibility criteria outcome and predictors	n/a		
Results			enterne, outcome, and productors.			
	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	9		
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	10-12 (Table 1, Table 2) + additional file (table S2)		
	13c	v	For validation, show a comparison with the development data of the distribution of	additional file		
	140	D	Important variables (demographics, predictors and outcome).	(table S3)		
Model	14a		specify the number of participants and outcome events in each analysis.	10-14 10-14(Table 1) +		
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	table 2		
Model	15a	D	coefficients, and model intercept or baseline survival at a given time point).	14		
Model	15b	D	Explain how to the use the prediction model.	(formula S6 +S7)		
performance	16	D;V	Report performance measures (with CIs) for the prediction model.	13		
Model-updating	17	V	performance).	14		
Discussion	1	1				
Limitations	18	D;V	predictor, missing data).	17		
Interpretation	19a	v	For validation, discuss the results with reference to performance in the development data, and any other validation data.	n/a		
Interpretation	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	15+16+ 17		
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	15+16+17+18		
Other information Output Dravida information shout the qualitability of quantamentary much as study.						
Supplementary	21	D;V	provide information about the availability of supplementary resources, such as study	5		
Funding	22	D:V	Give the source of funding and the role of the funders for the present study.	19		
B		,·				

TRIPOD Checklist: Prediction Model Development and Validation

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

For peer terien only