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Tables S4 and S5 represent compilations of available literature data for HSE abundances 

and Os isotopes, and S isotopes, respectively. 

Modelling in Figure 1 

Shown are two crystallization models. For modelling, it was assumed fractionation was 

driven by crystallization of olivine. Two sets of bulk partition coefficients were applied to the 

models: solely olivine crystallization (pyroxene partition coefficients are similar to or lower than 

olivine) and mixtures of olivine, Cr-spinel and sulfide crystallization. Even at an extreme of 10% 

olivine fractionation, HSE compositions cannot be explained by crystallization of this phase alone. 

Better fits come from mineral assemblages where a maximum of 10% olivine (±clinopyroxene) is 

fractionally crystallized with proportions of 0.98 olivine, 0.019 Cr-spinel and 0.001 sulfide. The 

HSE support crystallization of an olivine (±clinopyroxene)-dominated assemblage, but with minor 

spinel and sulfide co-crystallization.  

Model 1 assumes melting from a depleted martian mantle (lithosphere) source, followed 

by fractional crystallization, and shows the results for 0-10% olivine crystallization with co-

crystallization of Cr-spinel and sulfide, in the proportions 0.98-0.94 olivine, 0.02-0.06 Cr-spinel, 

with <0.001 sulfide, using the partition coefficients compiled in Table 4 of (26). Model 2 shows 

continued fractional crystallization after removal of a dunite cumulate component in the same 

mineral proportions. Model 1 reproduces chassignite compositions reasonably well. Model 2 does 

not reproduce the Pd in nakhlites as well, but model fits are strongly affected by the partition 

coefficients, which are empirical estimates from terrestrial, not martian magmas. Consequently, 

fO2 and other intensive parameters for the magmas are likely to be important (38). Martian mantle 

normalization is from (32). 



Fig. S1 
Total alkali versus silica diagram for martian meteorites. Data for nakhlites, chassignites and ALH 
84001 are presented in Table S2, or can be found in (16). NWA 7034 data from (19) and Mars 
Exploration Rover (MER) field from (4). 



Fig. S2 
Plots of MgO versus Cr for (a) chassignites, nakhlites and ALH 84001 and (b) only for nakhlites. 
Chassignites have MgO and Cr compositions consistent with accumulation of olivine and spinel. 
ALH 84001 is less MgO-rich, consistent with being an orthopyroxenite. Nakhlites are cumulative 
rocks containing augite and are broadly basaltic (Fig. S1), but their Mg-Cr systematics can be 
modelled by removal of olivine/clinopyroxene and spinel. Partition coefficients for modelling are 
from (49). 



Fig. S3 
Incompatible trace element (ITE) diagrams normalized to (a) CI chondrite and (b) double 
normalized to CI chondrite and then Sm. The similarity of ITE patterns for nakhlites and 
chassignites are clear in (b), whereas ALH 84001 is more similar in composition to shergottites. 
Data for nakhlites, chassignites and ALH 84001 are presented in Table S2, or can be found in (16). 



Table S1: Highly siderophile element abundances (in ng/g) and 187Re-187Os for nakhlites, 
chassignites and ALHA 84001. 

Table S2: Bulk rock major- and trace-element abundance data for nakhlites, chassignites and ALH 
84001. 

Table S3: Blank contributions to samples analyzed in this study. 

Table S4: Highly siderophile element abundances (in ng/g) and 187Re-187Os for nakhlites, 
chassignites and ALHA 84001, including published data, shown in italics. 

Table S5: Osmium isotopes and S isotopes for nakhlites, chassignites and ALHA 84001. 
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