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This Supplementary Material contains Supplementary Figures 1 to 7 and Supplementary Ta-

bles 1 to 14. Additionally, it contains the “Supplementary Materials” section, which has subsection

“Multiplicative update rules.” It continues with “Supplementary Results” section, which has sub-

sections “Orthonormality and positive constraints improve the functional organization of the gene

embedding space,” “Exploring the impact of the network embedding space’s dimensionality on

the biological information captured by the axes,” “Our axes-based method outperforms the classic

gene-centric approach in capturing the cell’s functional organization,” “Our axes-based method is

in agreement with the FMM-based methodology,” “The axes of the embedding space uncover new

functional interactions between GO BP terms in different model organisms,” “The Axes of the

1



embedding space synthesize the core functions of different species’ cells,” “Non-Annotated Axes

also capture the functional mechanisms of the cell,” and “The Axes of the embedding space give

insights into the evolutionary history of species.”
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1 Supplementary Methods

1.1 Fixed point method with multiplicative update rules

As presented in section 2.2 of the main manuscript, the ONMTF and NMTF can be formulated as

the minimization problem shown in Equations 2 and 3, respectively. These optimization problems

are NP-hard [16], thus to solve them we use a fixed point method that starts from an initial

solution and iteratively uses the following multiplicative update rules by [16], derived from the

Karush-Kuhn-Tucker (KKT) conditions, to converge towards a locally optimal solution:

S ← S

√
P T × PPMI ×B

P TP × S ×BTB
, (1)

P ← P

√
PPMI ×B × ST

P × S ×BT ×B × ST
, (2)

B ← B

√
PPMIT × P × S

B ×BT ×XT × P × S
(3)

We start from initial solutions, Sinit, Pinit, Binit, and iteratively use Equations 1, 2 and 3 to compute

new matrix factors S, P and B until convergence. To generate initial Sinit, Pinit and Binit, we use

the Singular Value Decomposition based strategy [49]. However, SVD matrix factors can contain

negative entries; thus, we use only their positive entries and replace the negative entries with 0, to

account for the non-negativity constraint of the NMTF and the ONMTF. This strategy makes the

solver deterministic and reduces the number of iterations needed to achieve convergence [49].

2 Supplementary Results

2.1 Two-sided permutation test for DeepWalk embedding spaces

Recall that in the main document (for details see Section 2.3), we assign functions to the axes of

the embedding space if the projection of their embedding vector to the axes are significantly large

using one-sided permutation test (right tail of the distribution).
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However, unlike the other tested embedded methods, DeepWalk embedding spaces allow for

negative entries. To assess if the biological functions that are projected to the axes with significant

negative values (left tail of the distribution) also carries higher-order biological functions, we adapt

our permutation test to consider both tails of the distribution. In particular, if the observed value

is positive, we assess if it belongs to the right side of the distribution and if it is negative, we assess

if it belongs to the left side of the distribution. The results are presented in Supplementary Table

5.

2.2 Orthonormality and positive constraints improve the functional organiza-

tion of the gene embedding space

In section 3.1 of the main manuscript, we demonstrated that the axes of the ONMTF embedding

spaces capture more and better-stratified functional information than the other methods. Here,

we analyze if the ability of ONMTF to produce embedding spaces whose axes capture more, and

better stratified functional information can be attributed to the properties of the embedding spaces

produced by the ONMTF. ONMTF embedding spaces have two properties, orthonormality, and

non-negativity. We assess the effect of these properties in disentangling functional knowledge from

the biological networks. Since the embedding space is orthonormal, its axes should represent non-

ambiguous and non-dependant directions of the space. We confirm this first property by computing

the average pairwise cosine similarity in-between the axes of the ONMTF, NMTF, and DeepWalk

embedding spaces. It is important to note that DeepWalk embedding spaces are not constrained to

be positive, which means that the cosine similarity is bounded from -1 to 1 instead of from 0 to 1.

Thus, to make it comparable to the NMTF and ONMTF spaces, we report the absolute pairwise

cosine similarity in-between their axes. A cosine similarity of 1 indicates that two axes are identical

(i.e., redundant), and a value of 0 indicates that the axes are orthogonal (i.e., perpendicular).

We observe that the axes of the NMTF embedding spaces have, on average, the largest number

of similar axes (average pairwise cosine similarity of 0.986), followed by DeepWalk (average pairwise

cosine similarity of 0.90), and ONMTF (average pairwise cosine similarity of 0.24). These results

suggest that the majority of the axes in the NMTF embedding space are redundant, i.e., some
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dimensions do not contribute to disentangling functional knowledge from the biological networks.

This high redundancy, in turn, explains the low percentage of GO BP terms associated with the

axes of NMTF spaces (11.95%) in comparison to ONMTF (37.12%). Also, we see that, although

the axes of the DeepWalk spaces are not constrained to be orthonormal, their axes have a lower

average pairwise cosine similarity (average of 0.10) than the ones of the NMTF. We explain this

observation by the degrees of freedom of DeepWalk spaces. In other words, since DeepWalk spaces

are not constrained to be positive, the chance that two random vectors are identical is lower

than in NMTF spaces. Finally, we observe the absence of non-negativity constraints in DeepWalk

embedding spaces decreases its ability to capture the cell’s functional organization (GO BP terms

less coherently stratified than ONMTF and NMTF, results presented in the previous section). We

hypothesize that this observation is connected with the fact that biological processes are often

non-negative and additive [39], i.e., positive embedding spaces are more suitable to capture these

complex biological mechanisms.

In conclusion, the embedding in positive and orthonormal spaces, which only NMTF-based

frameworks allow for, leads to the embedding spaces that best capture the cell’s functional organi-

zation from the biological networks.

2.3 Exploring the impact of the network embedding space’s dimensionality on

the biological information captured by the axes

In section 3.1 of the main manuscript, we demonstrated that the embedding axes capture functional

knowledge from network embeddings (represented by GO BP terms). In this section, we investigate

how the space’s dimensionality affects the specificity of the GO BP terms captured by the axes,

the amount of GO BP terms captured by the axes, the number of axes with at least one associated

GO BP term and the coherence of the stratification of the GO BP terms across the axes. In

particular, to analyze the impact of the dimensionality on the specificity of the GO BP terms

captured by the axes, we divide them into three groups: “specific,” “generic,” and “background”

(detailed in section 2.4 of the main manuscript). We measure how well these “specific,” “generic,”

and “background” GO BP terms are captured by the axes as a function of the dimensionality of the
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embedding space (fold increase with respect to the lowest dimensional space with 50 dimensions).

We find that most of the “generic” functions (average of 90%) are associated with the axes of

human lowest dimensional embedding space (50 dimensions). Importantly, we find that increasing

the dimensionality of the embedding space allows us to capture more “generic” functions (fold

increase remains close to 1, see Supplementary Figure 2). In contrast, increasing this dimensionality

allows for capturing more “background” and “specific” functions, with the specific ones benefiting

the most from the increase in the number of dimensions (see Supplementary Figure 2). Moreover,

increasing the dimensionality enhances the stratification of biological information captured by the

axes, with more semantic similar GO BP terms associated with the same axis (see Supplementary

Figure 3). These results suggest that the embedding space needs more dimensions to disentangle

“specific” biological functions encoded in the species PPI networks.

Nevertheless, this disentanglement has a limit since after 500 dimensions there is no significant

benefit in increasing the space’s dimensionality. First, the number of axes capturing at least one

GO BP term reduces to less than 50% and the total amount of GO BP terms captured flattens

after 500 dimensions (see Supplementary Figure 1). Second, the fold increase of “specific” functions

is significantly reduced after 500 dimensions (see Supplementary Figure 2). Third, the semantic

similarity of GO BP terms associated with the same axis flatters after 400-500 dimensions. Thus,

adding more dimensions does not improve the capture of either more biological information or more

specific information from the embedding space. Interestingly, these observations are in line with

the results reported in other artificial intelligence fields, such as NLP, where a low dimensionality

of the word embedding fails to capture all possible word relations (“specific” relations), and after

a certain number of dimensions, the embeddings can not disentangle more word relations [73]. We

find similar results for the rest of the studied species ONMTF embedding spaces (see Supplementary

Figures 4 and 5).

Based on these results, we consider the optimal dimensionality of a given specie-specific PPI

network embedding space as the one that finds a balance between the three observations introduced

above (i.e., amount of information captured, specificity of this information, and the coherence

in the stratification of the information captured across the axes). Based on these criteria, we
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choose 500 dimensions as the optimal dimensionality for the human ONMTF embedding space

(the optimal number of dimensions for the rest of species ONMTF embedding spaces can be found

in Supplementary Table 8). This optimal dimensionality is coherent with the number of dimensions

usually applied in NLP [48, 14].

2.4 Assessing the robustness of our method to the incompleteness and noise in

the PPI network

In this section, we assess the robustness of our method to the incompleteness (missing edges) of

the PPI network and to a potential bias of the initilization step of our NMTF solver. To do so, we

simulate missing edges in the PPI network and measure how the number of functions associated

to the axes varies with the percentage of missing network edges. Then, we test if annotations

are coherently grouped on the same axes despite the missing network edges. More precisely, we

randomly remove a given percentage of edges (either 10% or 20%) from the human PPI network and

we repeat our annotation procedure to assign GO BP terms to the axes of the space. To account

for randomness, we repeat this procedure 20 times and report the average number of captured GO

BP terms over the 20 runs. As shown in Supplementary Table 18, when using all the edges of

the PPI network, the axes capture 3,222 GO BP terms. When we remove 10% of the edges, the

axes capture on average 3,144 GO BP terms, i.e., 78 fewer GO BP terms (2% less) than when we

use all the edges. Finally, when we remove 20 % of the edges from the network, the axes capture

on average 3,022 GO BP terms, i.e., 200 fewer GO BP terms (5% less) than when we use all the

edges in the PPI network. To assess if the annotations are coherently grouped on the same axes

despite the missing network edges, we compute the Rand Index between the set of GO BP terms

captured by the axes of the embedding space with and without edge removal. As illustrated in

Supplementary Table 19, these Rand Indeces are consistently high, with a minimum value of 0.98,

indicating almost identical grouping of the GO terms to the axes. These results indicate that even

when using 80% of the original edges, the axes will still be annotated with almost the same GO-BP

terms and the grouping of these GO BP terms to the axes is almost identical. Hence, this verifies

the robustness of our method to the incompleteness (missing edges) of the PPI network.
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Note that in our NMTF solver, we initialize the matrix factors (i.e., the embeddings and their

spanning axes) using the SVD initialization [49], which make our solver deterministic and hence

each run yields the same embedding spaces. However, to assess the robustness of our method

to the used initialization, we uniformly randomly initialize the matrix factors of our ONMTF-

based embedding spaces twenty times. For each randomly initialized embedding space, we repeat

our annotation procedure to assign GO BP terms to the axes of the space. As illustrated in

Supplementary Table 18, on average over the 20 initializations, the axes capture 3,222 GO BP

terms, with the standard deviation of 22, which is almost identical with the number of GO BP

terms captured when using the SVD initialization. In addition, the Rand Index between the

grouping of the GO BP terms to the axes of space is 0.92, indicating very similar grouping of the

GO terms to the axes. This result demonstrates the robustness of our method to the initialization

step of our methodology.

2.5 Our axes-based method outperforms the classic gene-centric approach in

capturing the cell’s functional organization

In this section, we compare the ability of our axes-based method to uncover the cell’s functional

organization from PPI network embedding spaces to that of the standard gene-centric approach.

To this end, we consider the six species PPI networks described in section2.1 of the main text,

which we embed by applying ONMTF, NMTF, and DeepWalk embedding algorithms (as detailed

in section2.2 of the main manuscript). We generate these embedding spaces with increasing dimen-

sionalities (from 50 to 1000 dimensions with a step of 50).

In a first step, we apply the standard gene-centric approach to uncover the cell’s functional

organization from the species PPI network embedding spaces described above. To this end, we

perform the following gene clustering and enrichment analysis. For each embedding space, we

cluster together genes that are embedded close in space by applying the k-medoid algorithm [47] on

the pairwise cosine distances of the genes’ embedding vectors. For the number of clusters, we use

the heuristic rule of thumb (k =
√

n
2 , where n is the number of nodes in the species network) [34].

We end up with 95, 54, 40, 67, 63 and 38 clusters for human, budding yeast, fission yeast, fruit
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fly, mouse and rat, respectively. Then, we measure the enrichment of the resulting gene clusters

in GO BP terms by using the sampling without replacement strategy (hypergeometric test), and

we consider a GO BP term to be significantly enriched in a gene cluster if the corresponding

enrichment p-value, after Benjamini and Hochberg correction for multiple hypothesis testing [4],

is smaller than, or equal to 5%. As standardly done in literature, we quantify the ability of the

gene-centric approach to uncover the cell’s functional organization by analyzing the number of

different GO BP terms that are enriched in the gene clusters, the number of clusters with at least

one enriched GO BP term and the average pairwise Lin’s semantic similarity of GO BP terms

enriched in the same gene cluster (detailed in section 2.5 of the main manuscript).

In a second step, we apply our axes-based methodology to uncover the cell’s functional orga-

nization from the species PPI network embedding spaces described above. To this end, for each

embedding space, we embed GO BP terms into the space and associate them to the axes of the

embedding space (detailed in section 2.3 of the main manuscript). Similar to the gene-centric

approach, we quantify the ability of our axes-based method to capture the cell’s functional organi-

zation by analyzing the number of different GO BP terms that are associated with the embedding

axes, the number of embedding axes with at least one associated GO BP term and the average pair-

wise Lin’s semantic similarity of GO BP terms associated with the same axis (detailed in section 2.5

of the main manuscript).

To contrast the ability of our axes-based method to uncover the cell’s functional organization

from species PPI network embedding spaces to that of the standard gene-centric approach, we

compare (1) the number of different GO BP terms that are enriched across the gene clusters to the

amount of different GO BP terms that are associated to the embedding axes, (2) the number of

gene clusters that have at least one GO BP term enriched to the number of embedding axes with

at least one associated GO BP term and (3) the average pairwise Lin’s semantic similarity of GO

BP terms enriched in the same gene cluster to the average pairwise Lin’s semantic similarity of GO

BP terms associated in the same embedding axis.

As shown in Supplementary Table 16, over all species PPI networks, we find that, on average,

1.79, 1.10, and 1.90 times more GO BP terms associated with the embedding axes than enriched

9



across the gene clusters for ONMTF, NMTF, and DeepWalk embedding spaces, respectively (their

percentages of GO BP terms captured by each methodology are presented in Supplementary Ta-

bles 4 and 14). Thus, our axes-based methodology disentangles more biological information from

the embedding space than the standard gene-centric approach. On the other hand, we do not find

differences in the number between the number of axes with at least one associated GO BP term

and the number of gene clusters with at least one enriched GO BP term. However, we find that

our axes-based methodology not only captures more GO BP terms, but also that the functions

that are associated with the same axis are functionally more coherent than the functions that are

enriched in the same gene cluster (1.42, 1.10 and 1.16 times higher average semantic similarity for

ONMTF, NMTF, and DeepWalk embedding spaces, respectively, see Supplementary Table 16).

Hence, our axes-based methodology better captures the cell’s functional organization from PPI

network embedding spaces than the standard gene-centric approach.

Also, we evaluate the agreement in the biological information captured by our axes-based

methodology to that by the standard gene-centric approach. To this end, we take the GO BP

terms captured by both methods, i.e., the intersection between GO BP terms associated with the

embedding axes and the GO BP terms enriched across the gene clusters. Then, we compare the

clustering of these GO BP terms based on our axes-based methodology with that based on the

standard gene-centric approach. In particular, for our axes-based method, we consider GO BP

terms to cluster if they are associated with the same axis. Similarly, for the standard gene-centric

approach, we consider GO BP terms to cluster if they are enriched in the same gene cluster. We

measure the agreement between these two clusterings by computing the adjusted Rand Index [50].

We report the adjusted Rand Index score (see this score in Supplementary Table 17). This score

is bounded between 0 and 1, where 0 corresponds to totally different clusterings and 1 to exactly

similar clustering.

We find that GO BP terms associated with the same axis are not likely to be enriched in the

same gene cluster (average adjusted Rand Index score of 0.14, 0.08, and 0.04 for ONMTF, NMTF,

and DeepWalk embedding spaces, respectively). Thus, the axes of the embedding space capture

different functional information than the gene clusters. Having observed that each method produces
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different clusterings of the GO BP terms, we investigate which of these clusterings provides a more

coherent organization of the terms. To accomplish this, we compare the Lin’s semantic similarity

of GO BP terms associated with the same axis with that of those terms enriched in the same gene

cluster. We find that GO BP terms associated with the same axis in the ONMTF, NMTF, and

DeepWalk embedding spaces exhibit higher functional similarity (1.7, 1.13, and 1.25 times larger

semantic similarity) than those enriched in the same gene cluster. Hence, our axes-based method

stratifies the biological information more coherently than the standard gene-centric approach.

In conclusion, we demonstrate that our axes-based method captures more and different bio-

logical information than the standard gene-centric approach from network embeddings. Moreover,

this information is more functionally coherent than the information captured by the standard

gene-centric approach. Thus, our methodology outperforms the standard gene-centric approach in

capturing the cell’s functional organization from network embedding spaces.

2.6 Our axes-based method is in agreement with the FMM-based methodology

In this section, we assess if the functional interactions between the GO BP terms that are uncovered

by our new axes-based methodology are supported by our previous FMM-based methodology. To

this end, we consider the six species PPI networks described in section 2.1 of the main text, which we

embed by applying ONMTF, NMTF, and DeepWalk embedding algorithms (detailed in section 2.2

of the main text). We generate these embedding spaces with increasing dimensionalities (from 50

to 1000 dimensions with a step of 50).

For a given species PPI network embedding space, our previous FMM directly quantifies all

the functional interactions between any two GO BP terms that annotate genes in the PPI network

by measuring the cosine distance between the GO BP terms’ embedding vectors [17]. In contrast,

our new axes-based only captures the significant functional interactions between GO BP terms

by associating GO BP terms to the axes of the embedding space (detailed in section 2.3 of the

main text). Pairs of GO BP terms that are associated with the same axis are considered to

functionally interact. For the GO BP terms that are associated with at least one embedding axis,

we measure the agreement between the functional interactions uncovered by the FMM and the
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functional interactions that are captured by our axes-based methodology by using the following

ROC curve analysis. For each GO BP pair, we consider the result of our axes-centric approach

as the ground truth, i.e., a pair of GO BP terms is considered as “true” if the two terms are

associated with the same axis, or as “false” otherwise. Also, for each GO BP pair, we consider as

the prediction score their cosine similarity in the embedding space (1 minus their associated value

in the FMM). Then, we compute the area under the ROC curve (AUROC) [6] between the ground

truth and the prediction score over all the considered GO BP pairs. Note that an AUROC score

of 0.5 corresponds to a random classification and a score of 1 to a perfect one. Hence, the closer to

one the AUROC score, the higher the agreement between our axes-centric method and our previous

FMM-based approach.

Over all species PPI networks, we find that the functional interactions uncovered by our previous

FMM methodology and our new axes-based approach are in significant agreement, with an average

AUROC of 0.90, 0.90 and 0.91 and all p-values ≤ 1× 10−323 for ONMTF, NMTF, and DeepWalk

embedding spaces, respectively (see Supplementary Table 21). These results confirm that the GO

BP terms that are associated with the same axis tend to be located close in the embedding space

and thus, tend to have small association values in the FMM.

In conclusion, our axes-based method surpasses our previous FMM-based approach by enabling

the identification of significant functional interactions between GO BP terms, rather than simply

capturing all interactions. Hence, our axes-based methodology offers a more refined approach to

exploring the cell’s functional organization from a functional perspective.

2.7 Assessing the impact of the p-value threshold

Because the p-value threshold is an important parameter of our method and there is no a gold-

standard procedure to define a threshold, we assess the impact of more stringent and more lenient

p-values thresholds on the percentage of GO BP terms captured by the axes of the human PPI

embedding space. As shown in Supplementary Figure 7, using a stringent p-value threshold of

0.001 results in the axes capturing only 3% of the GO-BP annotations, while with a relaxed p-value

threshold of 0.1, the axes capture approximately 57% of the total GO-BP annotations. Hence, when
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we employ a more lenient threshold of 0.1, we annotate 7% more of the axes of the embedding space

with GO BP terms compared to the standard p-value threshold of 0.05. We hypothesize that the

observed plateau on the percentage of enriched annotations is related with the incompleteness,

noisiness and overlapping of biological annotations [74, 42]. In particular, there is a tendency in

biology for well-studied genes to receive further attention, while genes with unknown functions may

remain unexplored.

2.8 The axes of the embedding space uncover new functional interactions be-

tween GO BP terms in different model organisms

In section 3.2 of the main text, we demonstrate that our axes-based methodology captures new

functional interactions between GO BP terms and demonstrate that these interactions are biologi-

cally coherent by performing literature curation. To this end, we compute Lin’s semantic similarity

between any two GO BP terms (detailed in section 2.4 of the main text). Then, for each axis,

we take the average semantic similarity among its pairs of associated GO BP terms (“intra-axis

SeSi”). By taking all the “intra-axis SeSi” over all the embedding axes, we define the distribution

of “intra-axis SeSi” (see the distribution in Supplementary Figure 6). We consider an axis to have

a significantly low “intra-axis SeSi” if its “intra-axis SeSi” is smaller than, or equal to the 5th per-

centile of “intra-axis SeSi” distribution (see the distribution in Supplementary Figure 6). Based on

this criterion, we find 13 (average “intra-axis SeSi” of 0.11), 8 (average “intra-axis SeSi” of 0.18),

6 (average “intra-axis SeSi” of 0.11), 7 (average “intra-axis SeSi” of 0.13), 12 (average “intra-axis

SeSi” of 0.07), and 5 (average “intra-axis SeSi” of 0.17) axes in human, budding yeast, fission yeast,

fly, mouse, and rat PPI network embedding spaces, respectively. For each of these axes, we evaluate

if the interaction between its associated GO BP terms is biologically coherent. In section 3.2 of

the main text, we focus on the human PPI network embedding spaces and discuss the functional

interactions between GO BP terms captured by three axes with significantly low “intra-axis SeSi”

(axes 37, 59, and 119). In this section, we first continue this discussion for the rest of the axes with

a significantly low “intra-axis SeSi” in human. Then, we extend this analysis to the embedding

axes of the budding yeast PPI network embedding space. We choose human and budding yeast
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since their PPI networks are the most complete among the six studied species and also have the

highest number of GO BP annotations (see Supplementary Tables 1 and 2).

Analysis of the functional interactions captured by the axes of the human PPI

network embedding space:

Recall that among the 13 axes with a significantly low “intra-axis SeSi” in the human PPI

network embedding space, we find 7 axes (53.8%) with functional interactions that are known to

occur in humans, 3 axes (23.1%) that capture functional interactions that are described in model

organisms, but not yet in humans, and 3 axes (23.1%) that capture functional interactions that are

not described in the literature, but are biologically coherent.

Axes that capture functional interactions that are known to occur in humans include axes 37,

143, 11, 253, 351, 368, and 492. Globally, although these functional interactions captured by

these axes are not connected based on the Gene Ontology (low semantical similarity), they are

functionally coherent and describe higher-order processes that are known to occur in humans. Axis

143 has two associated GO BP terms: GO:0051482 (positive regulation of cytosolic calcium ion

concentration involved in phospholipase C (PLC)-activating G protein-coupled signaling pathway)

and GO:0052746 (the process of introducing one, or more phosphate groups into inositol). These

GO BP terms are not connected based on the Gene Ontology (semantic similarity of 0.08), however,

their functional interaction is biologically coherent since PLC and inositol are known to collaborate

in the signal transduction of human cells [56].

Regarding, axis 11 has three GO BP terms associated: GO:1901837 (regulation of transcription

of nucleolar large rRNA by RNA polymerase I), GO:0000027 (the ribosomal large subunit assem-

bly), and GO:1902570 (protein localization to the nucleus) with an average semantic similarity of

0.085. RNA polymerase I is composed of multiple protein sub-units that are transcribed in the

cytoplasm [53]. These proteins are imported into the nucleus, where they assemble into the RNA

polymerase I complex. Once in the nucleus, the complex RNA polymerase I transcribe rRNA

genes, which include the large ribosomal sub-unit [53]. Large ribosomal sub-units are known to be

essential for the production of ribosomes. Thus, these three functions interact in the regulation of
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the transcriptional activity of RNA polymerase I by limiting its localization to the nucleus. This

control is known to be key for ribosome production and assembly [35].

Axis 253, which has two associated GO BP terms: GO:0033566 (gamma-tubulin complex local-

ization) and GO:0007020 (microtubule nucleation) with a semantic similarity of 0.09. We find that

the interaction between these terms is biologically coherent since the gamma-tubulin complex is

known to participate in the microtubule nucleation [46, 18]. With respect to axis 351 also has two

associated GO BP terms: GO:0042136 (neurotransmitter biosynthetic process) and GO:0017004

(cytochrome complex assembly). While these functions are not connected based on the Gene On-

tology (semantic similarity of 0.1), several studies state that cytochrome P450 is involved in the

synthesis of neurotransmitters, such as dopamine and serotonin in the brain [25, 26].

Another axis 368 that capture functional interactions that are known to occur in humans, which

has two associated GO BP terms: GO:0070914 (UV-damage excision repair) and GO:0042254

(ribosome biogenesis), with a semantic similarity of 0.1. The functional interaction between these

functions is coherent since the repair of DNA lesions on ribosomal DNAs after UV irradiation is of

fundamental importance for the cell to maintain ribosome biogenesis [12].

Finally, axis 492 has two GO BP terms associated: GO:0045292 (mRNA cis splicing, via spliceo-

some) and GO:0036245 (cellular response to menadione), with a semantic similarity of 0.09. Despite

their low semantical similarity, we find the connection between these two terms to be functionally

coherent since the mRNA splicing is known to be regulated by micronutrients, including mena-

dione [51].

Axes that capture functional interactions that are described in model organisms, but not yet in

humans include axes 59, 90, and 463. Axis 90 has eight GO BP terms associated that can be grouped

into four clusters based on their Lin’s semantical similarity. The first group (semantic similarity of

0.91) includes GO:0048660 (regulation of smooth muscle cell proliferation) and GO:1904707 (posi-

tive regulation of vascular-associated smooth muscle cell proliferation). The second group (semantic

similarity of 0.85) includes GO:0030198 (extracellular matrix organization) and GO:0030199 (col-

lagen fibril organization). The third group (average pairwise semantic similarity of 0.44) includes

GO:00602702 (GINS complex), GO:0030154 (cell differentiation), and GO:0035987 (endodermal
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cell differentiation), i.e., is connected with the cell differentiation process. Finally, the last cluster

only includes GO:001785 (peptidyl-lysine hydroxylation) which has an average pairwise semantic

similarity of 0.09 with the rest of the terms associated with the axis. While these four groups of

GO BP terms are not interconnected based on the Gene Ontology, we find that their interaction is

functionally coherent. Vascular smooth muscle cells (SMCs) provide contractile function and struc-

tural support to blood vessels. Unlike other tissues, vascular SMCs are not terminally differentiated

and display remarkable phenotypic plasticity [57]. It has been observed that the differentiation of

vascular SMCs is highly influenced by the composition of extracellular matrix (ECM) [52]. How-

ever, the molecular mechanisms underlying the interaction between vascular SMCs and ECM are

not yet understood in humans. Lysyl oxidase (LOX) is a key ECM-remodeling enzyme required

for the hydroxylation of specific lysine residues (peptidyl-lysine hydroxylation) in collagen type I

fibers [28]. Recent studies in mice showed that LOX is responsible for the proliferation and migra-

tion of the aortic vascular SMCs [67]. Hence, our results suggest that similar molecular mechanisms

may regulate vascular SMC proliferation in humans.

Finally, axis 463 has three associated GO BP terms: GO:0045494 (photoreceptor cell mainte-

nance), GO:1904970 (brush border assembly), and GO:1904106 (protein localization to the microvil-

lus membrane). Although these three functions are not connected in the current Gene Ontology

(average pairwise semantic similarity of 0.04), we find their interaction to be biologically coherent.

In particular, the retinal pigment epithelium (RPE) performs highly specialized functions essential

for the homeostasis of the neural retina, including photoreceptor maintenance, in different model

organisms [5, 37]. All these homeostasis functions involve the RPE apical microvilli. The last axis,

axis 59 is discussed in the main manuscript.

To conclude, axes that capture functional interactions that are not described in the literature,

but are biologically coherent include axis 116, 441, and 222. Axis 441 has two associated GO BP

terms: GO:0008589 (regulation of smoothened signaling pathway) and GO:0044375 (regulation of

peroxisome size). These two GO BP terms are not connected based on the current Gene Ontology

(semantic similarity of 0.13), however, we find their interaction to be functionally coherent. In

particular, smoothened is a protein that participates in the hedgehog signaling pathway [55]. Studies

16



in human mesenchymal stem cells revealed that hedgehog interferes with adipocyte differentiation

by targeting the peroxisome proliferator-activated receptor (PPAR) [19]. Moreover, studies in the

liver also hallmarked the importance of the hedgehog in controlling the peroxisomal fatty acid

β-oxidation rate [62]. Thus, we hypothesize that the hedgehog signaling pathway could have an

important role in lipid metabolism by regulating peroxisomes.

Regarding, axis 222 has thirteen GO BP terms associated that can be grouped into seven clusters

based on their Lin’s semantical similarity. The first group (semantic similarity of 0.96) includes

GO:0097252 (oligodendrocyte apoptotic process) and GO:0034349 (glial cell apoptotic process).

Since oligodendrocyte is part of the glial cells, this group describe the apoptosis in such cells.

The second group (average pairwise semantic similarity of 0.45) includes GO:0043456 (pentose-

phosphate shunt), GO:1905856 (negative regulation of pentose-phosphate shunt), GO:1990248 (reg-

ulation of transcription from RNA polymerase II promoter in response to DNA damage), and

GO:0045899 (positive regulation of RNA polymerase II transcription preinitiation complex assem-

bly). The pentose-phosphate pathway is required for the synthesis of nucleotides that are needed

for transcription [2], i.e., these GO BP terms are connected to the molecular mechanisms that

regulate gene expression in response to DNA damage. The third group (semantic similarity of

0.96) clusters GO:0071480 (cellular response to gamma radiation) and GO:0010332 (response to

gamma radiation). The fourth group (semantic similarity of 0.97) includes GO:0072717 (response

to actinomycin D) and GO:007271 (response to actinomycin D). Actinomycin D is a well-known

drug that induces apoptosis and inhibits the growth of cancer cells [1]. The fifth group (seman-

tic similarity of 0.97) includes GO:0090403 (oxidative stress-induced premature senescence) and

GO:0090400 (stress-induced premature senescence). So far, the five groups of GO BP terms can

be easily connected since their functional interaction could represent the induction of apoptosis

in response to DNA damage in glial cells. However, apart from these five groups, we also find

other associated GO BP terms that can not be easily connected with non of them. In particular,

GO:0048539 describes bone marrow development. We hypothesize the connection of these GO BP

terms could be attributed to the bone marrow trans-differentiation to neural cells [11]. After the

apoptosis of glial cells, the differentiation of bone marrow cells into glial cells could assist in the
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repair of the tissue.

Analysis of the functional interactions captured by the axes of the budding yeast

PPI network embedding space:

We find 8 axes with a significantly low “intra-axis SeSi” in the budding yeast PPI network

embedding space. Among them, 6 axes (75%) have functional interactions that are known to occur

in budding yeast and 2 (axes (25%) capture functional interactions that are not described in the

literature, but are biologically coherent.

Axes that capture functional interactions that are known to occur in budding yeast include

axes 31, 66, 107, 125, 155 and 174. Axis 31 has three associated GO BO terms: GO:0010499

(proteasomal ubiquitin-independent protein catabolic process), GO:0051131 (chaperone-mediated

protein complex assembly), and GO:0080129 (proteasome core complex assembly). Although these

three terms have an average semantic similarity of 0.22, their interaction is functionally coherent

since they describe the proteasome core complex assembly by chaperones and the functions of this

complex.

Regarding, axis 107 has two associated GO BP terms: GO:0006998 (nuclear envelope organi-

zation) and GO:0055088 ( lipid homeostasis). These terms are semantically dissimilar (semantic

similarity of 0.06). However, the link between nuclear lipid homeostasis and the nuclear envelope

organization has been widely investigated in different organisms. For instance, a study in human’s

liver demonstrated that specific subdomains of the nuclear envelope are involved in nuclear lipid

homeostasis [63]. This observation has been also reported in different organisms, including budding

yeast [43, 21].

With respect to axis 125, it has seven associated GO BP terms. By analyzing these GO

BP terms, we find that the axis represents different cellular defense responses to methylmercury.

In particular, GO:0051597 (response to methylmercury) and GO:0071406 (cellular response to

methylmercury) are connected with the cellular response to methylmercury (semantic similarity

of 0.97). Methylmercury is an extremely toxic organometallic cation that interferes with cell cy-

cle progression by disrupting the organization of microtubules. This organization is represented
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by GO:0051382 (kinetochore assembly) and GO:0051383 (kinetochore organization). Recent stud-

ies have reported that the ubiquitin-proteasome system is involved in defense against this toxic

element. This ubiquitin-proteasome response is represented by GO:0031146 (SCF-dependent pro-

teasomal ubiquitin-dependent protein catabolic process), GO:0045116 (protein neddylation), and

GO:0000338 (protein deneddylation) [40].

Regarding axis 155, it has two associated GO BP terms: GO:0006457 (protein folding) and

GO:0007021 (tubulin complex assembly). Despite their low semantic similarity (0.09), their inter-

action is functionally coherent since it represents the folding and assembly of the tubulin complex.

As for axis 174, it has five associated GO BP terms: GO:0055072 (iron ion homeostasis),

GO:0006879 (intracellular iron ion homeostasis), GO:0006121 (mitochondrial electron transport,

succinate to ubiquinone), GO:0034553 (mitochondrial respiratory chain complex II assembly), and

GO:0034552 (respiratory chain complex II assembly). The description of these terms suggests that

the axis hallmarks the importance of iron ion homeostasis in mitochondrial respiration. Indeed,

GO:0006121, GO:0034553, and GO:0034552 (average semantic similarity of 0.37) are connected with

the mitochondrial respiratory chain. On the other hand, GO:0055072 and GO:0006879 (semantic

similarity of 1) describe iron ion homeostasis To perform proper electron transfer in the mitochon-

drial respiratory chain, this organelle contains transition metals, and here iron is by far the most

abundant [64]. Thus, proper homeostasis of iron ions is fundamental for cellular respiration.

Regarding axis 66, it has fifteen associated GO BP terms. These fifteen terms indicate that the

axis is connected with the regulation of the cell’s metabolism and growth via the TOR pathway ac-

tivation. In particular, with an average semantic similarity of 0.91, GO:0006094 (gluconeogenesis),

GO:0019319 (hexose biosynthetic process), and GO:0046364 (monosaccharide biosynthetic process)

are related to sugar metabolism. On the other hand, with an average semantic similarity of 0.97,

GO:0018209 (peptidyl-serine modification) and GO:0018105 (peptidyl-serine phosphorylation) are

connected to the peptidyl-serine phosphorylation of proteins, which has been reported to be con-

nected with the budding yeast central metabolism [65]. GO:0006808 describes also another process

related to metabolism, such as the regulation of nitrogen utilization. Thus, up to now, all these GO

BP terms are connected with functions related to the cell’s metabolism. On the other hand, with a
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semantic similarity of 0.92, GO:0040008 (regulation of growth) and GO:0001558 (regulation of cell

growth) are all related to cell growth. With an average semantic similarity of 0.57, GO:0030029

(actin filament-based process), GO:0030036 (actin cytoskeleton organization), GO:0030950 (es-

tablishment, or maintenance of actin cytoskeleton polarity), and GO:0030952 (establishment, or

maintenance of cytoskeleton polarity) are connected to the actin cytoskeleton organization, which

in turn is linked with the cell growth [45]. Regarding, GO:1905356 describes the regulation of

snRNA pseudouridine synthesis, which is known to be modulated by the TOR signaling pathway

being part of the growth program in budding yeast [69, 3]. Finally, GO:0031929 (TOR signaling)

and GO:0031930 (mitochondria-nucleus signaling pathway) are connected with different signaling

pathways. These pathways connect all the GO BP terms associated with the axes since it is known

to affect the cell and its metabolism [70, 23].

With respect to axes that capture functional interactions that are not described in the literature,

but are biologically coherent, we find axes 4 and 158.

Axis 158 has five associated GO BP terms. These five terms suggest that the axis is related

to the cellular responses to changes in copper ion concentration. In particular, with a semantical

similarity of 0.99, GO:0055070 (copper ion homeostasis) and GO:0006878 (intracellular copper

ion homeostasis) describe copper ion homeostasis. The homeostasis of the copper ion involves

several responses including epigenetic regulation, activation of DNA repair, or the production of

proteins [32, 33]. Among these three responses, our results point out for the first time the role

of the histone H3K79 methylation (GO:0034729), the global genome nucleotide-excision repair

(GO:0070911), and the nucleolar large rRNA transcription (GO:0042790) in the homeostasis of the

copper ion.

To conclude, axis 4 has ten associated GO BP terms. By analyzing these ten terms, we find

that this axis describes different aspects of cell metabolism revealing a new connection between

the mitochondrial group I introns and the regulation of energy production by alternative metabolic

pathways in budding yeast. In particular, GO:0046942 and GO:0015718 (semantic similarity of

0.88) describe alternative metabolic pathways that use carbon sources such as carboxylic acids [8].

With a semantical similarity of 0.60, GO:0042407 (cristae formation) and GO:0045041 (protein
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import into mitochondrial intermembrane space), describe the architecture of the mitochondria.

With an average pairwise semantic similarity of 0.66, GO:00196704 (NAD metabolic process),

GO:0006116 (NADH oxidation), and GO:0006734 (NADH metabolic process) are linked to the

REduction/OXidation (REDOX) reactions needed for the production of energy at the mitochon-

dria. On the other hand, with an average semantic similarity of 0.55, GO:0090615 (mitochondrial

mRNA processing), GO:0006316 (movement of group I intron), and GO:0006314 (intron homing),

are connected with the mitochondrial group I introns. Mitochondrial introns are mobile genetic

elements that form self-splicing RNA molecules [30]. These elements are divided into Group I

and Group II introns depending on their secondary structure and splicing mechanism [38]. Group

I introns encode other protein-coding genes in one of their loop regions including mitochondrial

genes involved in the oxidative phosphorylation pathway [30]. Since the oxidative phosphorylation

pathway has been related to the production of energy [30], we hypothesize that the group I introns

may be key for the regulation of the cell’s metabolism.

In conclusion, we demonstrate that our axes-based methodology captures new interactions be-

tween GO BP terms that are not described in the Gene Ontology. Moreover, we show that these

interactions do not represent the functional similarity between GO BP terms as represented in the

original Gene Ontology, but their functional interaction in higher-order cellular processes.

2.9 The Axes of the embedding space synthesize the core functions of different

species’ cells

In section 3.3 of the main text, we analyze the biological meaning of the ASFAs obtained from

the axes of the human ONMTF embedding space. In particular, we show that ASFAs correctly

summarize the biological information captured by the axes and describe coherent human cellular

functions. Here, we further validate these observations by discussing more examples of human

ASFAs. Then, we extend this analysis to the other five species: Saccharomyces cerevisiae (budding

yeast), Schizosaccharomyces pombe (fission yeast), Rattus norvegicus (rat), Drosophila melanogaster

(fruit fly) and Mus musculus (mouse).

Examples of human ASFAs include axis 12, which captures seven GO BP terms related to the
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regulation of cell adhesion (GO:0060354), leukocyte adhesion (GO:1904995), stem cell proliferation

(GO:2000647), hematopoietic stem cell proliferation (GO:190233 and GO:1902034), and TRAIL-

dependant apoptotic pathways (GO:1903121 and GO:1903122). The resulting ASFA combines and

summarizes the keywords of these terms (endothelial, negative, regulation, apoptotic, molecule,

signaling, cell, stem, activated, leukocyte, vascular, TRAIL, proliferation, adhesion, hematopoietic

and production), representing a coherent function associated with the induction of apoptosis of tu-

mor and infected cells via TNF-related apoptosis-inducing ligand (TRAIL) [15] (see Supplementary

Table 9). TRAIL also coordinates the immune response to tumor and infected cells by activating

the leukocyte production by hematopoiesis and regulating inflammation [44].

Another example is the ASFA of axis 495 in human captures five GO BP terms that describe

the response to endoplasmic unfolded protein (GO:1900101, GO:1903891 and GO:1903893) and

the regulation of gene expression in response to cellular stress (GO:1990440 and GO:0036003). As

can be seen in Supplementary Table 9, its corresponding ASFA (polymerase II, mediated, RNA,

unfolded, response, regulation, protein, stress, reticulum, ATF6, promoter, positive, transcription,

endoplasmic) correctly summarizes these terms and displays a coherent biological function related

to the cellular response against the accumulation of misfolded proteins in the Endoplasmic Retic-

ulum [71].

Also, we extend this analysis to the other five species. To this aim, we generate the corresponding

embedding spaces by applying ONMTF on the corresponding species PPI network (detailed in

sections 2.1 and 2.2 of the main manuscript). We generate these embedding spaces with increasing

dimensionalities (from 50 to 1000 dimensions with a step of 50). To select the optimal dimensionality

of these embedding spaces, we follow the same criteria we did for the human PPI network embedding

space (detailed in Supplementary section 2.3). This dimensionality corresponds to 200, 200, 300,

250, and 400 for budding yeast, fission yeast, fruit fly, rat and mouse embedding spaces, respectively.

Then, we use the GO BP terms captured by each axis to generate the ASFAs of each species

(detailed in section 2.6 of the main manuscript), and we analyze their biological coherence by

literature curation.

We find that all the species ASFAs describe coherent functions of their corresponding species.
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For instance, the ASFA of axis 79 in budding yeast represents the trafficking of endosomes (see

Supplementary Table 9). Importantly, this yeast is one of the most used models to study this

transport process [36], reflecting a broader tendency in biological research where pathways heavily

studied in model organisms are often related with human health. Consequently, the observed

overlap between human and model organism pathways, particularly in well-annotated pathways

with abundant experimental protein-protein interactions (PPIs), may not necessarily apply to less-

explored pathways in model organisms. Another example in budding yeast is the ASFA of axis

82, which is connected to regulating gene expression via mRNA degradation (see Supplementary

Table 9). Precisely with a process that involves the capping of the 7-methylguanosine residue that

occurs after the deadenylation of the 3’ poly(A) tracts of eukaryotic mRNAs and that serves as a

backup mechanism to trigger mRNA decay if initial deadenylation is compromised [10]. Moreover,

the ASFA of axis 20 in fission yeast is connected to the generation of large the ribosomal subunit

necessary to synthesize proteins [58] (see Supplementary Table 9). Another example in this yeast is

the ASFA of axis 32, which is also related to the synthesis of proteins (see Supplementary Table 9).

However, in this case, the ASFA describes the regulation of protein synthesis via the rapamycin

kinase complex I (TORC1) and II (TORC2). In the presence of ample nutrients, TORC1 and

TORC2 activate and drive protein, lipid, and nucleotide synthesis by phosphorylating a wide range

of proteins [59].

Regarding the fruit fly, we find ASFAs that represent functions that are more complex than

the ones observed for the previous yeasts, such as the development of specific tissues. For instance,

the ASFA of axis 1 describes the development of the visual nervous system (see Supplementary

Table 9). Briefly, this tissue appears after the differentiation of the neuroectoderm by activating

different epidermal growth factor receptors, such as ERBB2 [7]. Another example in the fruit fly

is the ASFAs of axis 28, which is related to the wing imaginal disc of this fly (see Supplementary

Table 9). This disc is a tissue of undifferentiated cells that are precursors of the wing and serves

as a commonly used model system to study the regulation of growth [61].

Finally, we find that the ASFAs of mouse and rat are also connected to complex cellular func-

tions, such as the immune system, or the nervous system. For instance, the ASFA of axis 41 of
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mouse describes the production of interferon-alpha, interleukins, and cytokines, during the cellular

response to a virus infection [22] (see Supplementary Table 9). On the other hand, the ASFAs of

axes 69 and 84 in rat, are connected to the synapsis of neurons and the production of steroids,

respectively (see Supplementary Table 9).

In conclusion, these results demonstrate that the ASFAs describe coherent biological functions.

The complete Tables with all the sets of species ASFAs can be found in the Supplementary online

data.

2.10 Coherence between the different type of annotations captured by the axes

of the human PPI network embedding space

In section 3.3 of the main text, we demonstrate that if we annotate the axes of the human PPI

network embedding space with multiple annotations: GO BP, GO CC, GO MF and Reactome

Pathways (RP) terms, the annotations captured by the axes are coherent. To do so, we test if

the genes annotated by functions captured by a given axis are closer in the human PPI network

than genes annotated by functions captured from different axes. Here, we assess if these differ-

ent types of annotations captured by a given axis provide a complementary view on the same

higher-order biological function. As an example, we select axis 138, in which the genes anno-

tated with the functions captured by this axis have the smallest shortest path distance, on average

1.6, on the human PPI network (as shown in is shown in Supplementary Table 11). This axis

captures two GO BP terms related with the “positive regulation of ubiquitin-protein transferase

activity” (GO:0051443) and “SCF-dependent proteasomal ubiquitin-dependent protein catabolic

process” (GO:0031146). In addition, it captures one GO CC term that describes the “SCF ubiqui-

tin ligase complex” (GO:0019005) and one GO MF term related with the “F-box domain binding”

(GO:1990444). Finally, it captures also two Reactome Pathways related with “FBXW7 Mutants

and NOTCH1 in Cancer” (R-HSA-2644605) and “Loss of Function of FBXW7 in Cancer and

NOTCH1 Signaling” (R-HSA-2644607). Note that FBXW7 is a component of the SCF (SKP1,

CUL1, and F-box protein) ubiquitin ligase complex SCF-FBW7 which is involved in the degrada-

tion of NOTCH1 [72]. Even from the description of the GO terms and the Reactome pathways it is
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clear that these annotations provide a complementary view on the function of the “SCF ubiquitin

ligase complex”.

2.11 Non-Annotated Axes also capture the functional mechanisms of the cell

In this section, we investigate the biological meaning of those axes without any associated GO BP

term (a.k.a. empty axes). To this end, we recall that genes that form densely connected regions

of a PPI network tend to share biological functions [9]. Hence, we investigate if the genes that are

associated with the empty axes tend to form such densely connected neighborhoods in the human

PPI network. We do this by associating genes to the 206 (41.2%) empty axes of the ONMTF

human embedding space. We associate each gene to the axis for which the projection of the gene’s

embedding vector has the largest value (detailed in section 2.6 of the main manuscript). Then, we

evaluate the connectivity in the original human PPI network of the genes associated with the same

axis by computing their clustering coefficient.

We see that the average clustering coefficient of those genes associated with the same non-

empty axis (axes with associated GO BP terms) is statistically significantly higher than those genes

associated with the same empty axis (Mann-Whitney U test p-value of 1.76× 10−63). However, we

find that the average clustering coefficient of those genes associated with the same empty axis is

statistically significantly higher than expected by random (Mann-Whitney U test p-value of 6.46×

10−28), i.e., they form more densely connected subnetworks than randomly chosen genes, which

suggests that they are indeed functionally related. Hence, we explain the absence of associated GO

terms on these empty axes by the lack of biological functional information (only 48.6% of the human

genes in the PPI network are annotated with GO BP terms). Indeed, we find that only 40.0% of

the genes that are associated with empty axes in human are annotated with at least one GO BP

term. In contrast, more than half of the genes associated with non-empty axes are annotated with

GO BP terms (53.8%). In other words, the empty axes capture parts of the human PPI network

that have not been yet annotated. We find similar results for the rest of the studied species (see

Supplementary Table 12).

To find the biological meaning of empty axes, we propose to generate their ASFAs from the
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text description of their associated genes rather than from the text description of their associated

GO BP terms (detailed in section 2.6 of the main manuscript). Using this approach, we obtain

the ASFAs for 97.8% of the axes. We find that the interpretation of these ASFAs is less intuitive

(average of 55.47 words) than the ones built using GO BP terms (average of 17.27 words), but are

equally coherent. For instance, the ASFA of the empty-axis 9 is connected with the regulation of

neural activity (see Table 13). Indeed, among the words that define this ASFA, we find glycine

(an inhibitory neurotransmitter [41]), choline (regulator of neurological development [13]), and

adenylate cyclases (regulator of the energy balance in different parts of the brain [41]). Another

example is the ASFA of the empty-axis 76, which is connected to the functions of the thymus

(see Table 13). This ASFA supports the observation that lipid metabolism (“chylomicron”) affects

lymphocyte differentiation and survival in the thymus [29].

Finally, we investigate if the ASFAs generated using genes’ descriptions (a.k.a, genes’ perspec-

tive) agree with those generated using functional annotations (GO terms’ perspective). Interest-

ingly, we find that the gene perspective ASFAs are not only in agreement with the GO terms

perspective ones, but also complement them. For instance, from the GO terms perspective, the

ASFA of axis 68 is connected to cranial development (see Table 1 of the main manuscript). In

this case, the genes’ perspective not only agrees with it, but also indicates that the ASFA is linked

to neural tube development (see Table 13). Similarly, the genes’ perspective ASFA of axis 370

complements its GO terms’ perspective ASFA. From the GO terms’ perspective, this ASFA is con-

nected to the activation of natural killer lymphocytes (see Tables 1 of the main manuscript). The

gene’ perspective hallmarks the importance of the “glutaminyl-tRNAGln” and amidotransferase

for the correct functioning of their mitochondria, which is connected to the activation of these

lymphocytes [20] (see Table 13).

In conclusion, we demonstrate that all the axes of the embedding space have a coherent biological

meaning. For those axes that do not have any GO BP term associated, we propose an approach

method that finds the meaning of empty axes. We demonstrate that the ASFAs generated by using

it agree with and complement the ones obtained by using the GO BP terms.
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2.12 The Axes of the embedding space give insights into the evolutionary his-

tory of species

In section 3.4 of the main text, we show that the human ASFAs give insights into the evolutionary

history of humans. In particular, we show that “prokaryotes” ASFAs reveal connections between

complex human cellular functions to ancient prokaryote ones, “eukaryotes” ASFAs reveal evolution-

ary connections between humans and other eukaryotes and “vertebrate” ASFAs describe specific

human traits that are unique to vertebrates. Here, we further validate these observations by dis-

cussing more examples of human ASFAs. Then, we extend this analysis to the ASFAs of the other

five species: Saccharomyces cerevisiae (budding yeast), Schizosaccharomyces pombe (fission yeast),

Rattus norvegicus (rat), Drosophila melanogaster (fruit fly) and Mus musculus (mouse).

Among the “prokaryotes” ASFAs in human, another example of ASFA that reveals connec-

tions between complex human cellular functions to ancient prokaryote ones is axis 61’s ASFA (see

Supplementary Table 9). This ASFA is extremely conserved (conservation degree of 20) and is

connected with the RNA preprocessing by the spliceosome. Interestingly, although the origins of

the spliceosome are debated, it is widely believed to have evolved from the ancestor of group II

introns that emerged within bacteria during eukaryogenesis [24, 66].

On the other hand, “eukaryotes” ASFAs in human reveal evolutionary connections between

humans and other eukaryotes. For instance, axis 120’s ASFA describes a function related to the

visual sense (see Supplementary Table 9). Among the taxons that are connected to this ASFA, we

find mammals, such as mice (taxon id: 10090) and rats (taxon id: 10116), but also insects, such as

the fruit fly (taxon id: 7227). Despite the divergence in the light receptors between these species,

this axis further confirms that these receptors evolved from a common photoreceptor eukaryotic

ancestor [68]. Also, the highest conservation degree among “eukaryotes” ASFAs is observed in

axis 79. It describes the molecular mechanisms involved in the development of the heart and

thyroid gland (see Supplementary Table 9). Species connected to this ASFA include animals that

possess these organs, such as rats (taxon id: 10116), chickens (taxon id: 9031), and mice (taxon

id: 10090), but also eukaryotes that lack these structures, including the budding yeast (taxon id:

559292), fission yeast (taxon id: 4896), and rice (taxon id: 39947). This suggests that the molecular

27



mechanisms underlying the development of these organs originated early in eukaryotic evolution.

Indeed, it is hypothesized that molecular pathways involved in human organogenesis appeared

early in the evolution of multicellular organisms through the redeployment of components found in

unicellular organisms [31, 27].

Finally, we explore the remaining “vertebrate” ASFAs that we do not discuss in the main

manuscript and confirm that all of them describe specific traits that are unique to vertebrates.

For instance, we find ten ASFAs that describe cellular functions related to the adaptive immune

system, which is a system restricted to vertebrates [54, 60], for instance, lymphocyte proliferation

and the activation of natural killer lymphocytes (see axes 473 and 370 in Supplementary Table 9).

Furthermore, we see ASFAs connected to different regulatory processes of the cell and to metabolic

processes (see axes 58, 28, 452, 99, 91, 257, 166, 75, and 91 in Supplementary online data).

Also, we extend this analysis to the other five species. To this end, we generate the correspond-

ing embedding spaces by applying ONMTF on the corresponding species PPI network (detailed

sections 2.1 and 2.2 of the main text). We generate these embedding spaces with increasing dimen-

sionalities (from 50 to 1000 dimensions with a step of 50). To select the optimal dimensionality

of these embedding spaces, we follow the same criteria we did for the human PPI network em-

bedding space (detailed in Supplementary section 2.3). This dimensionality corresponds to 200,

200, 300, 250, and 400 for budding yeast, fission yeast, fruit fly, rat and mouse embedding spaces,

respectively. Then, we use the GO BP terms captured by each axis to generate the ASFAs of each

species (detailed in section 2.6 of the main manuscript). To investigate the link between these

ASFAs and evolution, we divide the ASFAs of each species into three classes according to their

conservation degree: “prokaryotes,” “eukaryotes,” and “vertebrates” (detailed in section 2.7 of the

main manuscript). Then, We analyze in detail the meaning of these groups of ASFAs in the context

of evolution.

We find that 78%, 69%, 59%, 63%, and 40% of all ASFAs in budding yeast, fission yeast,

fruit fly, rat, and mouse, respectively are classified as “prokaryotes.” These ASFAs present the

lowest conservation degree in all the studied species, i.e., they are conserved in evolution (see

Supplementary Figure 9). We observe that they represent the most basic molecular mechanisms of
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the cell, such as the translational process in budding yeast, the homeostasis of proteins in fission

yeast, the homeostasis of ions in the fruit fly, or the lipid metabolism in mice (see axes 77, 57, 4,

and 5, respectively in Supplementary Table 9).

On the other hand, we find that 22%, 31%, 41%, 33%, and 41% of all ASFAs in budding yeast,

fission yeast, fruit fly, rat, and mouse, respectively are classified as “eukaryotes.” These ASFAs

have on average a lower conservation degree than the “prokaryotes” ones, i.e., they are newer in

the evolutionary history. We find that they describe cellular functions that are connected to basic

eukaryotic functions, e.g., with Golgi apparatus in budding yeast, signalling transduction in fission

yeast, or cytoskeleton (see axes 79, 32, and 51, respectively in Supplementary Table 9).

Finally, as expected, the only organism that has “vertebrates” ASFAs are rat and mouse.

Precisely, we find that 11% and 10% of all ASFAs are classified as “vertebrates” in rats and mice,

respectively. These ASFAs have on average the lowest conservation degree, i.e., are the newest in

evolution and they describe complex biological functions, such as estrous cycle, or odontogenesis

in rats, and eyes’ lens development, or blastocyst development in mice (see axes 81, 19, 86, and 80,

respectively in Supplementary Table 9).

In conclusion, these results demonstrate that the ASFAs of different species can be used to give

insights into their evolutionary history.
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3 Supplementary Figures

Supplementary Figure 1: The conservation degree of the GO BP terms influences the positions of
their embedding vector in the species PPI network embedding space. We embed GO BP terms
into the embedding spaces generated by applying ONMTF, NMTF, and DeepWalk algorithms on
the species PPI network of Homo sapiens sapiens (denoted by human), Saccharomyces cerevisiae
(denoted by budding yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegi-
cus (denoted by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus (denoted
by mouse) (detailed sections 2.1 and 2.2 of the main manuscript). We study the correlation be-
tween the mutual positions of their embedding vectors in the space (measured by their pairwise
Euclidean distances) and their conservation degree (detailed section 2.4 of the main manuscript).
In each panel, the horizontal axis displays the conservation degree of the GO BP terms and the
vertical axis shows the pairwise Euclidean distance distribution of their embedding vectors.
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Supplementary Figure 2: Specific biological functions are captured by the axes of the human
ONMTF embedding spaces with the increment of dimensions. We take as reference the lowest
dimensional embedding space (50 dimensions) and compare the fold increase between the number
of “specific,” “generic,” and “background” GO BP terms associated with its axes and with those
captured by the axes of the subsequent species PPI network embedding spaces. The horizontal axis
displays the number of dimensions of the embedding space.

Supplementary Figure 3: Increasing the dimensionality enhances the stratification of the biological
information captured by the axes of the human ONMTF embedding spaces. We compute Lin’s
semantic pairwise semantic similarity between any two GO BP terms. The blue line shows the
average semantic similarity of the pairs of GO BP terms that are associated with the same axis
(intra-SeSi). The orange line shows the average semantic similarity of the pairs of GO BP terms
that are associated with different axis (inter-SeSi). The horizontal axis displays the number of
dimensions of the embedding space.
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Supplementary Figure 4: Specific biological functions are captured by the axes of the species
ONMTF embedding spaces with the increment of dimensions. We generate the species PPI network
embedding spaces by applying ONMTF on the species PPI network of Homo sapiens sapiens
(denoted by human), Saccharomyces cerevisiae (denoted by budding yeast), Schizosaccharomyces
pombe (denoted by fission yeast), Rattus norvegicus (denoted by rat), Drosophila melanogaster
(denoted by fruit fly), and Mus musculus (denoted by mouse) (detailed in sections 2.1 and 2.2
of the main manuscript). We generate these embedding spaces with increasing dimensionalities
(from 50 to 1000 dimensions with a step of 50). For each species embedding space, we take as
a reference the 50-dimensional embedding space and we compute the fold between the number of
“specific,” “generic,” and “background” functional annotations associated with its axes and that of
the subsequent species PPI network embedding spaces (detailed section 2.4 of the main manuscript
and Supplementary section 2.3). The horizontal axis displays the number of dimensions of the
embedding space. The horizontal axis displays the number of dimensions of the embedding space.
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Supplementary Figure 5: Specific biological functions are disentangled by the axes of the species
ONMTF embedding spaces with the increment of dimensions. We generate the species PPI network
embedding spaces by applying ONMTF on the species PPI network of Homo sapiens sapiens
(denoted by human), Saccharomyces cerevisiae (denoted by budding yeast), Schizosaccharomyces
pombe (denoted by fission yeast), Rattus norvegicus (denoted by rat), Drosophila melanogaster
(denoted by fruit fly), and Mus musculus (denoted by mouse) (detailed in sections 2.1 and 2.2 of
the main manuscript). We generate these embedding spaces with increasing dimensionalities (from
50 to 1000 dimensions with a step of 50). For each species embedding space, we compute Lin’s
semantic pairwise semantic similarity between any two GO BP terms (detailed section 2.4 of the
main manuscript). The blue line shows the average semantic similarity of the pairs of GO BP terms
that are associated with the same axis (intra-SeSi). The orange line shows the average semantic
similarity of the pairs of GO BP terms that are associated with different axis (inter-SeSi). The
horizontal axis displays the number of dimensions of the embedding space.
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Supplementary Figure 6: Distribution of “intra-axis SeSi.” We generate the species PPI network
embedding spaces by applying ONMTF on the species PPI network of Homo sapiens sapiens
(denoted by human), Saccharomyces cerevisiae (denoted by budding yeast), Schizosaccharomyces
pombe (denoted by fission yeast), Rattus norvegicus (denoted by rat), Drosophila melanogaster
(denoted by fruit fly), and Mus musculus (denoted by mouse) (detailed in sections 2.1 and 2.2 of
the main manuscript). We generate these embedding spaces with 500, 200, 200, 250, 300, and 400
dimensions, respectively, since these dimensionalities correspond to the optimal dimensionality of
such spaces (as detailed in section 2.3 of the main text). For each species embedding space, we
compute Lin’s semantic pairwise semantic similarity between any two GO BP terms (detailed in
section 2.4 of the main manuscript). Then, for each axis, we report the average Lin’s semantic
pairwise semantic similarity of the pairs of GO BP terms that are associated with it (that we
term “intra-axis SeSi”). For each panel, the horizontal axis (“SeSi”) show the “intra-axis SeSis”
and the vertical axis (“Axes”) the number of embedding axes with a certain “intra-axis semantic
similarities.” The red line represents the 5th percentile of the distributions. We use this threshold
to define the set of axes that captures the largest number of new functional interactions between
the GO BP terms (detailed section 3.2 of the main text).
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Supplementary Figure 7: The percentages of GO BP terms (y-axis) captured by the axes of the
human PPI embedding space, with different p-value thresholds (x-axis). For the ONMTF-based
embedding space of the human PPI network and for different p-value thresholds (horizontal axis),
the blue bars correspond to the percentage of the axes that capture at least one embedded GO BP
annotation and the orange bars show the percentages of the total embedded GO BP annotations
that are captured by the axes of the space.

Supplementary Figure 8: The percentages of enriched annotations and axes for GO BP, GO MF,
GO CC and RP terms. For the ONMTF-based embedding space of the human PPI network and
for each annotation (horizontal axis), the blue bars correspond to the percentages of the axes that
capture at least one embedded annotation and the orange bars show the percentages of the total
embedded annotations that are captured by the axes of the space.
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Supplementary Figure 9: The ASFAs give insights into the evolutionary history of Saccharomyces
cerevisiae (denoted by budding yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rat-
tus norvegicus (denoted by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus
(denoted by mouse). For each species, we use the conservation degree of its ASFAs to divide them
into three groups: “prokaryotes,” “eukaryotes,” and “vertebrates” (detailed in section 2.7 of the
main text). Then, we order the ASFAs according to their conservation degree. In each panel,
the horizontal axis displays the conservation degree of the ASFAs and the vertical axis shows the
number of ASFAs with a certain conservation degree. Each ASFA is represented in the panels by
the number of the axis from which it was obtained.
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4 Supplementary Tables

Network #Nodes #Edges #Density

Human 18,290 368,180 0.0022
Budding yeast 5,887 111,307 0.0064
Fission yeast 3,269 10,958 0.0020
Fruit fly 8,917 49,756 0.0012
Mouse 8,043 26,661 0.0008
Rat 2,847 5,252 0.0013

Supplementary Table 1: The statistics of the species PPI networks. For the six species: Homo
sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (denoted by “Budding yeast”),
Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila melanogaster (denoted by
“Fruit fly”), Mus musculus (denoted by “Mouse”) and Rattus norvegicus (denoted by “Rat”). The
first column, “Network,” lists the species. The second column “# Nodes,” show the number of
nodes in the species PPI network. The third column, “# Edges,” contains the number of edges
between the nodes. The fourth column, “# Density,” specifies the edge density of the corresponding
species PPI network.

Species # GO BP terms

Human 6,864
Budding yeast 3,042
Fission yeast 1,864
Fruit fly 3,712
Rat 2,828
Mouse 6,343

Supplementary Table 2: Number of GO BP annotations for each species PPI network. For
the six species: Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (de-
noted by “Budding yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila
melanogaster (denoted by “Fruit fly”), Rattus norvegicus (denoted by “Rat”) and Mus musculus
(denoted by “Mouse”). The first column, “Species,” lists the species. The second column, “# GO
BP terms,” presents the number of GO BP terms that annotates at least one gene in the corre-
sponding species PPI network.
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Species # GO BP terms # GO MF terms # GO CC terms # RP terms

Human 6,864 1,831 955 2,041

Supplementary Table 3: Number of GO and Reactome annotations for the Human PPI network.
The first column, “Species,” lists the species. The second column, “# GO BP terms,” presents
the number of GO BP terms that annotates at least one gene in the human PPI network. The
third column “# GO MF terms,” and the fourth column “# GO CC terms,” show the number of
GO Molecular Function (GO MF) and GO Cellular Component (GO CC) terms, respectively, that
annotate at least one gene in the human PPI network. Finally, the fifth column “# RP terms,”
show the number of Reactome Pathways (RP) terms that annotate at least one gene in the human
PPI network.

Embedding algorithm % Axes % GO

ONMTF 53.72 57.40
NMTF 61.80 48.12
DeepWalk 68.00 35.50

Supplementary Table 4: On average, the axes of the species PPI network embedding spaces gen-
erated by the ONMTF embedding algorithm are the best for capturing the cell’s functional orga-
nization from PPI networks. We generate the species PPI network embedding spaces by applying
ONMTF, NMTF, and DeepWalk algorithms on the species PPI network of Homo sapiens sapiens,
Saccharomyces cerevisiae, Schizosaccharomyces pombe, Rattus norvegicus, Drosophila melanogaster,
and Mus musculus (detailed in sections 2.1 and 2.2 of the main text). We generate these embedding
spaces with increasing dimensionalities (from 50 to 1000 dimensions with a step of 50). For each
species PPI network embedding space, we use our new axes-based method to capture the GO BP
terms that we embed in the space (detailed in section 2.3 of the main manuscript). The first col-
umn, “Embedding algorithm,” lists the embedding algorithms used for generating the embedding
spaces. The second column, “ % Axes,” presents the percentage of axes that captures at least one
embedded GO BP term averaged across dimensions and species. The third column, “ % GO,”
shows the percentage of the total embedded GO BP terms that are associated with the axes of the
space averaged across dimensions and species.
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Embedding algorithm % Axes % GO

DeepWalk 92.2 40.52

Supplementary Table 5: Marginal improvement in the number of GO BP annotations captured
by the axes of the DeepWalk embedding space when applying a two-sided permutation test. For
the chosen optimal dimensionality of 500, we generate the human PPI network embedding space
using DeepWalk. Then, we adapt our novel axes-based method, which captures the GO BP terms
embedded in the space (as detailed in Section 2.3 of the main manuscript), to assign GO BP terms
to the axes using a two-sided permutation test. The second column, “ % Axes,” presents the
percentage of axes that capture at least one embedded GO BP term and the third column, “ %
GO,” shows the percentage of the total embedded GO BP terms that are associated with the axes
of the space.

Embedding algorithm Intra SeSi Inter SeSi Random SeSi Shortest Paths

ONMTF 0.50 0.16 0.16 3.71
NMTF 0.42 0.16 0.16 3.90
DeepWalk 0.35 0.16 0.16 4.31

Supplementary Table 6: On average, the GO BP terms captured by the axes of the human PPI
network embedding spaces generated by the ONMTF embedding algorithm are more coherent and
better organized than those of the NMTF and DeepWalk spaces. We generate the human PPI
network embedding spaces by applying ONMTF, NMTF, and DeepWalk algorithms on the PPI
network of Homo sapiens sapiens (detailed in sections 2.1 and 2.2 of the main text). We generate
these embedding spaces with increasing dimensionalities (from 50 to 1000 dimensions with a step of
50). For each human PPI network embedding space, we use our new axes-based method to capture
the GO BP terms that we embed in the space (detailed in section 2.3 of the main manuscript).
Then, we investigate how coherently the captured GO BP terms are distributed across the axes
according to the Gene Ontology (detailed in 2.5). The first column, “Embedding algorithm,” lists
the embedding algorithms used for generating the embedding spaces. The second column, “Intra
SeSi,” shows the average Lin’s semantic similarity between the GO BP terms that are associated
by the same axis averaged across dimensions and species. The third column, “Inter SeSi,” presents
the average Lin’s semantic similarity between the GO BP terms that are captured by different axes
averaged across dimensions and species. The fourth column, “Random SeSi,” shows the global
average Lin’s semantic similarity between any two GO BP terms. The fifth column, “Shortest
Paths,” displays the mean shortest paths in the GO ontology-directed acyclic graph between the
GO BP terms associated with the same axis averaged across dimensions and species.
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Embedding algorithm Intra SeSi Inter SeSi Random SeSi Shortest Paths

ONMTF 0.54 0.16 0.16 3.71
NMTF 0.48 0.18 0.16 3.90
DeepWalk 0.46 0.18 0.16 4.31

Supplementary Table 7: On average, the GO BP terms captured by the axes of the species PPI
network embedding spaces generated by the ONMTF embedding algorithm are more coherent and
better organized than those of the NMTF and DeepWalk spaces. We generate the species PPI
network embedding spaces by applying ONMTF, NMTF, and DeepWalk algorithms on the species
PPI network of Homo sapiens sapiens, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Rat-
tus norvegicus, Drosophila melanogaster, and Mus musculus (detailed in sections 2.1 and 2.2 of
the main text). We generate these embedding spaces with increasing dimensionalities (from 50
to 1000 dimensions with a step of 50). For each species PPI network embedding space, we use
our new axes-based method to capture the GO BP terms that we embed in the space (detailed in
section 2.3 of the main manuscript). Then, we investigate how coherently the captured GO BP
terms are distributed across the axes according to the Gene Ontology (detailed in section 2.5 of
the main manuscript). The first column, “Embedding algorithm,” lists the embedding algorithms
used for generating the embedding spaces. The second column, “Intra SeSi,” shows the average
Lin’s semantic similarity between the GO BP terms that are associated by the same axis averaged
across dimensions and species. The third column, “Inter SeSi,” presents the average Lin’s semantic
similarity between the GO BP terms that are captured by different axes averaged across dimensions
and species. The fourth column, “Random SeSi,” shows the global average Lin’s semantic similarity
between any two GO BP terms. The fifth column, “Shortest Paths,” displays the mean shortest
paths lengths in the GO ontology-directed acyclic graph between the GO BP terms associated with
the same axis averaged across dimensions and species.

Species # Dimensions

Human 500
Budding yeast 200
Fission yeast 200
Fruit fly 300
Rat 250
Mouse 400

Supplementary Table 8: The optimal number of dimensions for the six species ONMTF embedding
spaces. For the species PPI network embedding spaces generated by applying the ONMTF algo-
rithm on the species PPI network of Homo sapiens sapiens (denoted by human), Saccharomyces
cerevisiae (denoted by budding yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rat-
tus norvegicus (denoted by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus
(denoted by mouse), we use our axes-based method to find their optimal dimensionality (detailed
in Supplementary section 2.3). The first column, “Species,” lists the species. The second column,
“# Dimensions,” shows the optimal dimensionality of the species PPI network embedding space
according to our axes-based method.
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Species Axis Terms #GO Taxons

Human 12 endothelial, negative, regulation, apoptotic,
molecule, signaling, cell, stem, activated, leukocyte,
vascular, TRAIL, proliferation, adhesion, hematopoi-
etic, production

7 7227, 7955, 9606, 10090, 10116

Human 61 subunit, spliceosome, processing, nucleobase, RNA,
aromatic, heterocycle, snRNP, complex, compound,
process, capping, nucleophile, assembly, contain-
ing, reactions, spliceosomal, cellular, 3’, mRNA,
adenosine, ribonucleoprotein, organization, organic,
cyclic, bulged, transesterification, splicing, nucleic,
metabolic

20 3702, 4896, 6239, 7227, 7955, 9031, 9606, 9615, 9823,
9913, 10090, 10116, 36329, 39947, 195103, 214684,
227321, 352472, 511145, 559292

Human 79 heart, thyroid gland, organ, anatomical development 5 10116, 9031, 10090, 9823, 7955, 7227, 6239, 9606,
4896, 214684, 352472, 559292, 227321, 39947, 3702,
352472

Human 473 negative, regulation, activation, cell, proliferation,
lymphocyte

3 9031, 9606, 9913, 10090, 10116

Human 370 mediated, natural, killer, leukocyte, activation, cyto-
toxicity, immunity, lymphocyte, cell, activation

6 7955, 9606, 9615, 9823, 10090, 10116

Human 120 system, light, visual, nervous, stimulus, process, sen-
sory, perception

4 6239, 7227, 7955, 9606, 10090, 10116

Budding yeast 79 endosome, Golgi, early, transport, 1 559292, 9606, 6239
Budding yeast 82 decapping, methylguanosine, RNA, cap, nuclear,

deadenylation, mRNA, dependent, transcribed
3 4896, 9606, 10090, 3702, 7227, 559292, 6239

Budding yeast 77 methylation, subunit, benzene, regulation, transla-
tion, nucleus, initiation, compound, fidelity, process,
gene, export, rRNA, assembly, amide, expression,
small, containing, tRNA, positive, transport, post-
transcriptional, ribosomal, cellular, translational,
metabolic

12 4896, 214684, 10116, 9606, 9031, 511145, 10090,
36329, 39947, 195103, 9615, 7955, 3702, 352472,
9913, 7227, 559292, 227321, 6239, 9823

Fission yeast 20 subunit, large, biogenesis, complex, ribosomal, ri-
bonucleoprotein

2 4896, 9606, 36329, 10090, 511145, 7955, 3702, 7227,
559292

Fission yeast 32 TORC2, regulation, TORC1, reproductive, signaling,
process, positive

6 4896, 10116, 9606, 9031, 10090, 9615, 7955, 3702,
352472, 9913, 7227, 559292, 227321, 6239, 9823

Fission yeast 57 catabolic, protein, removal, conjugation, organon-
itrogen, compound, process, deneddylation, small,
cellular, SCF, proteasomal, dependent, proteolysis,
ubiquitin, metabolic, modification

9 4896, 214684, 10116, 9606, 9031, 36329, 10090,
511145, 195103, 39947, 9823, 9615, 7955, 3702,
352472, 9913, 7227, 559292, 227321, 6239

Fruit fly 1 synaptic, olfactory, mediated, vesicle, follicular, fac-
tor, negative, tyrosine, peptidyl, regulation, photore-
ceptor, epithelium, clathrin, filament, neuron, dorsal-
ventral, transduction, eye, specification, signaling,
cell, compound, commitment, learning, epidermal,
growth, ERBB2, assembly, pathway, positive, trans-
port, cascade, communication, dependent, organi-
zation, phosphorylation, fate, signal, modification,
receptor

25 4896, 10116, 9606, 9031, 511145, 10090, 9823, 9615,
7955, 3702, 352472, 9913, 7227, 559292, 6239

Fruit fly 28 negative, vein, regulation, disc, derived, specification,
imaginal, wing

1 7227

Fruit fly 4 cation, biosynthetic, metal, divalent, regulation, reti-
nal, aldehyde, ion, compound, lipid, process, olefinic,
inorganic, transport, diterpenoid, cellular, retinoid,
homeostasis, metabolic

9 4896, 214684, 10116, 9606, 9031, 511145, 10090,
36329, 39947, 9823, 9615, 7955, 3702, 352472, 9913,
7227, 559292, 6239

Mouse 41 immune, type, lipopolysaccharide, negative, alpha,
interferon, response, regulation, innate, pattern, sig-
naling, involved, recognition, pathway, virus, dsRNA,
interleukin, inflammatory, cytokine, production, re-
ceptor

10 10116, 9606, 9031, 511145, 10090, 9823, 9615, 7955,
3702, 352472, 9913, 7227, 559292, 6239

Mouse 7 biosynthetic, estrogen, glycerophospholipid, glyc-
erolipid, lipid, process, phosphatidylcholine,
metabolic

5 4896, 214684, 10116, 9606, 9031, 36329, 10090,
511145, 39947, 195103, 9823, 9615, 7955, 3702,
352472, 9913, 7227, 559292, 6239

Mouse 86 type, induction, lens, eye, camera 1 10090
Mouse 80 blastocyst, development 1 10090, 9606
Rat 69 synaptic, signaling, trans, anterograde, transmission,

chemical
4 10116, 9606, 10090, 7955, 7227, 6239

Rat 84 mediated, intracellular, signaling, steroid, pathway,
hormone, androgen, receptor

3 10116, 9606, 10090, 3702, 7227

Rat 51 negative, regulation, polymerization, ion, micro-
tubule, polymerization, import, calcium

4 4896, 10116, 9606, 9031, 10090, 7955, 3702, 352472,
9913, 7227, 559292, 6239

Rat 81 estrous, cycle, ovulation 2 10090, 10116
Rat 19 odontogenesis 1 10090, 7955, 10116, 9606

Supplementary Table 9
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Supplementary Table 9: (Continued) The species ASFAs describe coherent functions of six species.
For the species PPI network embedding spaces generated by applying the ONMTF algorithm on
the species PPI network of Homo sapiens sapiens (denoted by human), Saccharomyces cerevisiae
(denoted by budding yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegi-
cus (denoted by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus (denoted
by mouse), we use our new axes-based method to capture the GO BP terms that we embed in the
space (detailed in sections 2.1, 2.2 and 2.3 of the main manuscript). Then, we use the GO BP terms
captured by the axes of the embedding spaces to generate the ASFAs (detailed in section 2.6 of the
main manuscript). The first column, “Species,” lists the species. The second column, “Axis,” lists
the name of the axes from which each ASFA was obtained. The third column, “Terms,” shows the
description of the ASFAs. The fourth column, “#GO,” displays the number of GO BP terms that
are associated with the axis. The fifth column, “Taxons,” shows the Taxonomy ID of the different
species for which the associated GO BP terms appear. The complete Tables for all the species
ASFAs can be found in the Supplementary online data.

Pairs of annotations # shared axes Inter distance Intra distance p-value

GO BP - GO MF 283 2.68 2.53 6.01× 10−15

GO BP - GO CC 235 2.61 2.45 4.38× 10−11

GO BP - Reactome 244 2.67 2.57 6.62× 10−9

GO CC - GO MF 338 2.64 2.43 6.39× 10−33

GO CC - Reactome 278 2.63 2.45 5.18× 10−20

GO MF - Reactome 361 2.7 2.52 2.04× 10−23

Supplementary Table 10: Consistency between the different annotations captured by the axes of the
human PPI network embedding space. We generate the human PPI embedding space by applying
the ONMTF algorithm and we associate GO BP, GO MF, GO CC and RP terms in the axes. Then,
we test if the genes annotated by functions captured by a given axis are closer in the human PPI
network than genes annotated by functions captured from different axes. Namely, for each pair
of annotations (column “Pairs of annotations,”), we report the number of axes annotated by both
type of annotations (column “# shared axes,”), the average shortest path distance of the genes
associated with functions captured by the same axis (column “Intra Distance,”) and the average
shortest path distance of the genes associated with functions captured from different axes (column
“Inter Distance,”). Finally, in the fifth column we report the p-value of the Mann-Whitney U
test comparing if the distance of the genes associated with functions captured by a given axis is
statistically smaller than the distance of genes associated with functions that are captured from
different axes.
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axis intra distance

139 1.60
160 2.00
413 2.10
430 2.11
373 2.11

Supplementary Table 11: Top 5 ranked axes that are annotated with GO BP, GO CC, GO MF and
RP terms. The top 5 ranked axes that are annotated with all four type of annotations (column 1)
based on the average shortest path distance of the genes associated with functions captured by the
axes in the human PPI network (column 2).

Species Empty vs Non-Empty Empty vs Random Annotated Genes (empty axes) Annotated Genes (non-empty axes)

Human 1.76× 10−63 6.46× 10−28 40.0% 53.8%
Budding yeast 1.67× 10−8 6.94× 10−43 66.7% 87.2%
Fission yeast 7.42× 10−17 1.81× 10−62 23.7% 61.4%
Fruit fly 8.85× 10−15 1.05× 10−42 32.1% 51.9%
Rat 0.11 7.89× 10−6 51.7% 76.1%
Mouse 0.01 9.18× 10−30 52.5% 74.5%

Supplementary Table 12: Genes that are associated with the empty axes tend to form densely
connected neighborhoods in the species PPI networks. We generate the species embedding spaces
by applying the ONMTF algorithm on the species PPI network of Homo sapiens sapiens (denoted
by human), Saccharomyces cerevisiae (denoted by budding yeast), Schizosaccharomyces pombe
(denoted by fission yeast), Rattus norvegicus (denoted by rat), Drosophila melanogaster (denoted
by fruit fly), and Mus musculus (denoted by mouse). For each species PPI network embedding
space, we associate genes with their embedding axes. Then, we evaluate the connectivity in the
original species PPI network by computing the clustering coefficient between genes associated with
the same axis (detailed in section 2.6 of the main manuscript). The first column, “Species,” lists the
species. The second column, “Empty vs Non-Empty,” shows the p-value from a one-sided Mann-
Whitney U test comparing if the clustering coefficient of the genes associated with non-empty axes
(axes with at least one associated GO BP term) is statistically higher than the clustering coefficient
of genes associated with empty axes (axes with non-associated GO BP terms). The third column,
“Empty vs Random,” displays the p-value from a one-sided Mann-Whitney U test comparing if the
clustering coefficient of the genes associated with empty axes is statistically higher than expected
by random. The fourth column, “Annotated Genes (empty axes),” displays the percentage of genes
associated with empty axes that are annotated with at least one GO BP term. The fifth column,
“Annotated Genes (non-empty axes),” shows the percentage of genes associated with non-empty
axes that are annotated with at least one GO BP term.
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Axis Terms #Genes Empty

9 neurotransmission, glycinergic, gonadotropin, unsaturated,
choline, activating, glycosylation, glycine, adenylate, cy-
clase

19 Yes

76 chylomicron, brood, thymocyte, folding, transcription, mi-
crotubule, polymerase, leukocyte, helper, thymus

27 Yes

68 transcription, somitogenesis, polymerase, developmental,
skeletal, commitment, midbrain, development, binding,
dopaminergic

78 No

370 natural, killer, immunoglobulin, zinc, biosynthesis,
transamidation, glutaminyl-tRNAGln, cytotoxicity, eye,
adhesion

20 No

Supplementary Table 13: The empty axes of the human ONMTF embedding space capture human
cellular functions. For the human ONMTF embedding space, we use the genes associated with its
empty axes (axes without associated GO BP terms) and non-empty axes to generate the ASFAs
(detailed in section 2.6 of the main manuscript). The first column, “Axis,” lists the name of the
axes from which each ASFA was obtained. The second column, “Terms,” shows the description
of the ASFAs (due to the length of these ASFAs, we show the top 10 words with the highest
TF-IDF, i.e., the most relevant, see the complete ASFA in Supplementary online data). The third
column, “#Genes,” displays the number of genes that are associated with the axis. The fourth
column, “Empty,” indicates if the axis is empty (“Yes”), or not (“No”). The complete Table with
all the human ASFAs generated by using the genes associated with its axes can be found in the
Supplementary online data.
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Embedding algorithm % Genes % GO % Clusters

ONMTF 47.59 21.47 50.93
NMTF 35.98 20.58 49.18
DeepWalk 58.30 15.29 34.37

Supplementary Table 14: The species PPI network embedding spaces generated by the ONMTF
are the best at capturing the cell’s functional organization. We generate the species PPI network
embedding spaces by applying ONMTF, NMTF, and DeepWalk algorithms on the species PPI
network of Homo sapiens sapiens, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Rattus
norvegicus, Drosophila melanogaster, and Mus musculus (detailed in sections 2.1 and 2.2 of the
main manuscript). We generate these embedding spaces with increasing dimensionalities (from 50
to 1000 dimensions with a step of 50). For each embedding space, we cluster genes whose embedding
vectors are close in the space, and then we measure the enrichment of those clusters in GO BP
annotations (detailed in the Supplementary section 2.5). The first column, “Embedding algorithm,”
lists the embedding algorithms used for generating the embedding spaces. The second column, “%
Genes,” presents the percentage of enriched genes in the clusters (out of the total number of genes in
the corresponding species PPI network) averaged across dimensions and species. The third column,
“% GO,” shows the percentage of GO BP terms enriched in the clusters (out of the total number of
GO BP terms) averaged across dimensions and species. The fourth column, “% Clusters,” displays
the percentage of clusters with at least one gene enriched (out of the total number of clusters)
averaged across dimensions and species.

Embedding algorithm Fold SeSi Axes SeSi Clusters

ONMTF 1.32 0.50 0.35
NMTF 1.23 0.42 0.38
DeepWalk 3.28 0.35 0.30

Supplementary Table 15: Our axes-based methodology outperforms the standard state-of-the-art
gene-centric method in capturing biological from human PPI network embedding spaces. We gen-
erate the human PPI network embedding spaces by applying ONMTF, NMTF, and DeepWalk
algorithms on the PPI network of Homo sapiens sapiens (detailed in sections 2.1 and 2.2 of the
main manuscript). We generate these embedding spaces with increasing dimensionalities (from 50
to 1000 dimensions with a step of 50). For each embedding space, we apply our axes-based method
and the standard gene-centric approach (detailed in section 2.5 of the main manuscript and Sup-
plementary section 2.5, respectively) and compare the GO BP terms captured by each method.
The first column, “Embedding algorithm,” lists the embedding algorithms used for generating the
embedding spaces. The second column, “Fold,” shows the fold between the different GO BP terms
captured by our method and that for the gene-centric approach averaged across dimensions. The
third column, “SS Axes,” displays Lin’s semantic similarity between GO BP terms associated with
the same axis averaged across dimensions. The fourth column, “SS Clusters,” shows Lin’s semantic
similarity between GO BP terms enriched in the same gene cluster averages across dimensions.
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Embedding algorithm Fold SeSi Axes SeSi Clusters

ONMTF 1.79 0.54 0.40
NMTF 1.10 0.48 0.40
DeepWalk 1.90 0.46 0.45

Supplementary Table 16: Our axes-based methodology outperforms the standard state-of-the-art
gene-centric method in capturing biological from different species PPI network embedding spaces.
We generate the species PPI network embedding spaces by applying ONMTF, NMTF, and Deep-
Walk algorithms on the species PPI network of Homo sapiens sapiens, Saccharomyces cerevisiae,
Schizosaccharomyces pombe, Rattus norvegicus, Drosophila melanogaster, and Mus musculus (de-
tailed in sections 2.1 and 2.2 of the main manuscript). We generate these embedding spaces with
increasing dimensionalities (from 50 to 1000 dimensions with a step of 50). For each species em-
bedding space, we apply our axes-based method and the standard gene-centric approach (detailed
in (detailed in section 2.5 of the main manuscript and Supplementary section 2.5, respectively) and
compare the GO BP terms captured by each method. The first column, “Embedding algorithm,”
lists the embedding algorithms used for generating the embedding spaces. The second column,
“Fold,” shows the fold between the different GO BP terms captured by our method and that for
the gene-centric approach averaged across dimensions and species. The third column, “SS Axes,”
displays Lin’s semantic similarity between GO BP terms associated with the same axis averaged
across dimensions and species. The fourth column, “SS Clusters,” shows Lin’s semantic similarity
between GO BP terms enriched in the same gene cluster averaged across dimensions and species.

Embedding algorithm Rand SeSi Axes SeSi Clusters

ONMTF 0.14 0.45 0.31
NMTF 0.08 0.33 0.31
DeepWalk 0.04 0.45 0.35

Supplementary Table 17: Our axes-based methodology captures biological information from differ-
ent species PPI network embedding spaces that differs from that captured by the state-of-the-art
gene-centric method. We generate the species PPI network embedding spaces by applying ONMTF,
NMTF, and DeepWalk algorithms on the species PPI network of Homo sapiens sapiens, Saccha-
romyces cerevisiae, Schizosaccharomyces pombe, Rattus norvegicus, Drosophila melanogaster, and
Mus musculus (detailed in sections 2.1 and 2.2 of the main manuscript). We generate these em-
bedding spaces with increasing dimensionalities (from 50 to 1000 dimensions with a step of 50).
For each species embedding space, we apply our axes-based method and the classic gene-centric
approach (detailed in section 2.5 of the main manuscript and Supplementary section 2.5, respec-
tively) and take the intersection between the GO BP terms captured by each method. We use these
common GO BP terms to evaluate the agreement between the two approaches. The first column,
“Embedding algorithm,” lists the embedding algorithms used for generating the embedding spaces.
The second column, “Rand,” shows the adjusted Rand Index score between the clustering of these
common GO BP terms averaged across dimensions and species. The third column, “SS Axes,”
displays Lin’s semantic similarity between GO BP terms associated with the same axis averaged
across dimensions and species. The fourth column, “SS Clusters,” shows Lin’s semantic similarity
between GO BP terms enriched in the same gene cluster averaged across dimensions and species.
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# of GO terms standard deviation

all edges - random initialization 3222.45 22.17
10% of edges removed 3144.2 76.67
20% of edges removed 3022.95 86.48

Supplementary Table 18: Robustness of our method for annotating the axes of the embedding
space to noise and incompleteness of the human PPI network. To demonstrate the robustness
of our method to missing edges, we remove 10% and 20% of the edges from the human PPI
network twenty times each. In addition, to assess our method’s robustness to the initialization step
of our NMTF solver, we randomly initialize the ONMTF-based embedding spaces twenty times.
Subsequently, we use the ONMTF-based embeddings to generate the embeddings of the modified
human PPI networks. For each embedding space, we assign our novel method to associate GO BP
terms to the axes of the space. In each row of the table (representing the percentage of removed
edges), the second column shows the average number of captured GO BP terms, and the third
column displays the standard deviation of the captured GO BP terms.

all edges 10% of edges removed 20% of edges removed

all edges 1.0 0.985 0.982
10% of edges removed 0.985 1.0 0.981
20% of edges removed 0.982 0.981 1.0

Supplementary Table 19: The functions captured by the axes of the human PPI embedding space
remain consistent despite missing edges in the humn PPI network. To demonstrate the robustness
of our method, we randomly remove 10% and 20% of the edges from the human PPI network twenty
times each. Subsequently, we use the ONMTF-based framework to generate the embeddings of the
modified human PPI networks and we annotate the axes of the space with GO BP terms. For
every combination of removed edges, the table shows the Rand Index between the associated GO
BP terms.

Rand Index standard deviation

random initialization 0.92 0.022

Supplementary Table 20: Robustness of our method for annotating the axes of the embedding space
to the initialization step of our NMTF solver. To assess our method’s robustness to the initialization
step of our NMTF solver, we randomly initialize the ONMTF-based embedding spaces twenty times.
Subsequently, we use the ONMTF-based framework to generate the embeddings of the human PPI
networks and we annotate the axes of the space with GO BP terms. The table reports the Rand
Index (second column) between the associated GO BP terms, and the standard deviation of the
captured GO BP terms (third column).
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Embedding algorithm AUROC

ONMTF 0.90
NMTF 0.90
DeepWalk 0.91

Supplementary Table 21: Our axes-based method and the FMM-based approaches agree with the
biological information captured from different species PPI network embedding spaces. We generate
the species PPI network embedding spaces by applying ONMTF, NMTF, and DeepWalk algo-
rithms on the species PPI network of Homo sapiens sapiens, Saccharomyces cerevisiae, Schizosac-
charomyces pombe, Rattus norvegicus, Drosophila melanogaster, and Mus musculus (detailed in
sections 2.1 and 2.2 of the main manuscript). We generate these embedding spaces with increas-
ing dimensionalities (from 50 to 1000 dimensions with a step of 50). For each species embedding
space, we apply our axes-based method and our previous FMM-based approach [17] to uncover
biological information from the spaces. Finally, we evaluate the agreement between the methods
by investigating the functional interactions between the GO BP terms that they capture (detailed
in Supplementary section 2.6). The first column, “Embedding algorithm,” lists the embedding
algorithms used for generating the embedding spaces. The second column, “AUROC,” displays the
area under the receiver operating characteristic curve (AUROC) computed as detailed in Supple-
mentary Results, Our axes-based method is in agreement with the FMM-based methodology.

48



References

[1] A. A. Adeluola, N. Bosomtwe, T. E. Long, and A. R. Amin. Context-dependent activation of

p53 target genes and induction of apoptosis by actinomycin d in aerodigestive tract cancers.

Apoptosis, 27(5-6):342–353, 2022.

[2] K. O. Alfarouk, S. B. Ahmed, R. L. Elliott, A. Benoit, S. S. Alqahtani, M. E. Ibrahim, A. H.

Bashir, S. T. Alhoufie, G. O. Elhassan, C. C. Wales, et al. The pentose phosphate pathway

dynamics in cancer and its dependency on intracellular ph. Metabolites, 10(7):285, 2020.

[3] A. Basak and C. C. Query. A pseudouridine residue in the spliceosome core is part of the

filamentous growth program in yeast. Cell reports, 8(4):966–973, 2014.

[4] J. D. Benjamin, C. de la Torre, and J. Musumeci. Controlling the incentive problems in real

estate leasing. The Journal of Real Estate Finance and Economics, 10:177–191, 1995.

[5] V. L. Bonilha, M. E. Rayborn, S. K. Bhattacharya, X. Gu, J. S. Crabb, J. W. Crabb, and

J. G. Hollyfield. The retinal pigment epithelium apical microvilli and retinal function. Retinal

Degenerative Diseases, pages 519–524, 2006.

[6] A. P. Bradley. The use of the area under the roc curve in the evaluation of machine learning

algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[7] R. Cagan. Principles of drosophila eye differentiation. Current topics in developmental biology,

89:115–135, 2009.

[8] M. Casal, S. Paiva, O. Queirós, and I. Soares-Silva. Transport of carboxylic acids in yeasts.

FEMS microbiology reviews, 32(6):974–994, 2008.

[9] B. Chen, W. Fan, J. Liu, and F.-X. Wu. Identifying protein complexes and functional

modules—from static ppi networks to dynamic ppi networks. Briefings in bioinformatics,

15(2):177–194, 2014.

[10] C.-Y. A. Chen and A.-B. Shyu. Mechanisms of deadenylation-dependent decay. Wiley Inter-

disciplinary Reviews: RNA, 2(2):167–183, 2011.

49



[11] C. R. Cogle, A. T. Yachnis, E. D. Laywell, D. S. Zander, J. R. Wingard, D. A. Steindler, and

E. W. Scott. Bone marrow transdifferentiation in brain after transplantation: a retrospective

study. The lancet, 363(9419):1432–1437, 2004.

[12] L. Daniel, E. Cerutti, L.-M. Donnio, J. Nonnekens, C. Carrat, S. Zahova, P.-O. Mari, and

G. Giglia-Mari. Mechanistic insights in transcription-coupled nucleotide excision repair of

ribosomal dna. Proceedings of the National Academy of Sciences, 115(29):E6770–E6779, 2018.

[13] E. Derbyshire and R. Obeid. Choline, neurological development and brain function: a system-

atic review focusing on the first 1000 days. Nutrients, 12(6):1731, 2020.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[15] H. Dianat-Moghadam, M. Heidarifard, A. Mahari, M. Shahgolzari, M. Keshavarz, M. Nouri,

and Z. Amoozgar. Trail in oncology: From recombinant trail to nano-and self-targeted trail-

based therapies. Pharmacological research, 155:104716, 2020.

[16] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for

clustering. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 126–135, 2006.

[17] S. Doria-Belenguer, A. Xenos, G. Ceddia, N. Malod-Dognin, and N. Pržulj. A functional anal-
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