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Supplementary Appendix S1 : Derivation of the
analytical approximation to the equilibrium regime of

the Red Queen

A Introduction

In this document, we give the detailed derivation of the analytical approximation for the sta-
tionary regime of the Red Queen process. The derivation proceeds along similar lines as in
Latrille et al. [1]. It relies on a self-consistent mean field argument. In brief, the derivation
assumes the following hypotheses :

• Wright-Fisher model (i.e. non-overlapping generations) with mutation and selection

• Panmictic population (random mating)

• Constant population size N

• Highly polymorphic model

• Weak erosion

• Strong selection implying that genetic drift can be ignored

The first four hypotheses are entailed by the simulator. The last three are additional assump-
tions that are made in order to make the analytical derivation feasible. The analytical results
will therefore be valid only in regimes in which these three assumptions are met.

Based on these hypotheses, we first express the frequency f(t) and the proportion of active
site , θ(t) through time of a typical PRDM9 allele. We will then obtain expressions for the
erosion level of an allele as a function of its age, and the mean erosion level of the population.
Relying on the argument that the population itself is composed of such typical PRDM9 alleles
successively invading, with a mean time interval between successive invasions noted τ , itself
depending on the mean fitness of the population, we can obtain a self-consistent expression for
the mean erosion level, from where we can then express all summary statistics of interest.
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In terms of notations, since we consider that all alleles follow the same trajectory over their
existence, differing only in their arrival time in the population, all quantities will be expressed
as a function of t (e.g. f(t) for the frequency, or θ(t) for the proportion of active sites for
the allele), t being understood as the time since the birth of the allele. This thus differs from
the notations in the main text, where time is absolute and measured relative to a single origin
(defined as the time when the simulation run has reached equilibrium, at which point the
summary statistics start to be monitored), and quantities are explicitly indexed by the specific
allele or allelic combination for which they are being computed (e.g. fi,t for the frequency of
allele i at time t, or whet

i,j,t for the fitness of an individual with alleles i and j at time t).
In addition, below, we will consider a change of variable, expressing the same quantities as

a function, not of time t, but as a function of the allele intrinsic age z (which is defined below
and which is an increasing function of t). With a slight abuse of notations, the same symbol
will be used as a function of t or z (e.g. f(t) or f(z), or even simply f), given that the meaning
will be clear depending on the context.

B Analytical developments

B.1 Studied model

First, assuming negligible random drift, the evolution of the frequency through time f(t) of a
typical allele is deterministic and is given by:

df

dt
=

w∗(t)− w̄

w̄
f, (1)

where w∗(t) is the mean fertility of the allele at time t and w̄ is the mean fertility of all
PRDM9 alleles in the population (weighted by their frequency). Of note, under the mean-field
approximation considered here, w̄ is, by definition, assumed independent of time. Furthermore,
it is considered as an independent variable, which will be determined in a second step, based
on a self-consistent argument.

Equation 1 means that selection will depend on differential erosion. In turn, erosion depends
on the frequency trajectory of the allele. To decouple these effects, we start by observing that
the fraction of active target sites for the allele varies approximately as :

dθ

dt
≈ −ρfθ (2)

In this equation, ρ is the erosion rate per generation. It can be expressed as :

ρ = (2Nv)(2g) (3)

where g = d
8h

is the mean gene conversion rate (i.e. the probability that a site undergoes a
DSB and a repair). Thus, ρ is equal to :

ρ =
Nvd

2h
(4)

Equation (2) expresses the fact that the rate of extinction of target sites is equal to the mu-
tation rate at the level of the population (2Nv) multiplicated by the probability of fixation of
the inactive mutant. Assuming strong gene conversion (4Ng >> 1), this probability is well
approximated by twice the conversion rate, i.e. 2fg. Note that the rate of erosion given by (3)
is only approximate. A more accurate expression accounting for the affinity distribution of the
sites will be given below.
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B.2 The intrinsic age of an allele (z)

Therefore,

z(t) = ρ

∫ t

0

f(u) du (5)

can be seen as a measure of the cumulative erosion level of an allele. As such, it can be used
as a measure of the intrinsic age of the allele. We can then express the equation describing the
evolution of f and θ directly as a function of z, instead of t. This change of variable will entail
the following factor :

dz

dt
= ρf. (6)

As mentioned above, our derivation assumes weak erosion. Mathematically, this translates into
the assumption that z << 1.

B.3 Frequency of an allele (f) depending on its age (z) : f(z)

Then, we want to express the evolution of the frequency of an allele in the population as a
function on its intrinsic age z:

df

dz
=

df

dt

dt

dz
=

[
w∗(z)− w̄

w̄

]
.

[
1

ρ

]
=

1

ρ

(
w∗(z)

w̄
− 1

)
(7)

However, w∗

w̄
is extremely close to 1, so w∗

w̄
− 1 is close to 0. In addition, we know that, in the

vicinity of 0, x ≈ ln(1 + x). As a result, we can write

1

ρ

(
w∗(z)

w̄
− 1

)
≈ 1

ρ
ln

(
1 +

(
w∗(z)

w̄
− 1

))
=

1

ρ
ln

(
w∗(z)

w̄

)
(8)

Working in the weak erosion limit (z << 1) allows us to linearize ln(w) in the vicinity of 0 :

ln

(
w∗(z)

w̄

)
= ln(w∗(z))− ln(w̄) ≈ ln(w(0, 0))− α

2
(z+ z̄)− ln(w(0, 0))+

α

2
(z̄+ z̄) = −α

2
(z− z̄)

(9)
where:

α =

∣∣∣∣∂ln(w)∂z

∣∣∣∣
(z=0)

(10)

is the slope at the origin of ln(w). It depends on the mechanistic parameters, in a way that
will be determined further below.
Then, by replacement in equation (7) :

df

dz
≈ − α

2ρ
(z − z̄) (11)

Integrating equation (11), with the constraint that f(0) = 0, gives :

f(z) = − α

4ρ
z[z − 2z̄]. (12)

The function f has the shape of a concave parabola and f(z) = 0 when z = 0 and z = 2z̄.
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B.4 Mean age of an allele in the population (z̄) : a self-consistent
derivation

Equations (11) and (12) depend on z̄, and thus we now need to express z̄ as a function of the
model parameters.
The mean allele age of the population z̄ is equal to :

z̄ =
∑
i

(fizi). (13)

where, for simplicity, we have momentarily used explicit indexing of multiple alleles simultane-
ously segregating in the population at a given time.

Relying on a tiling argument (Latrille et al., 2017 [1]) this can also be expressed as :

z̄ =
1

τ

∫ +∞

0

f(t)z(t) dt. (14)

Equation (14) expresses the idea that, at stationarity, the allele frequency distribution at a given
time point (eq. (13)) is equivalent to the distribution of frequencies at which a typical allele
has segregated over its entire life normalized by the mean waiting time τ between successive
invasions (see Latrille et al., 2017 figure 6 [1]).
We then do a change of variable from t to z in the integrand:

z̄ =
1

τ

∫ z(∞)

0

zf
dt

dz
dz =

1

τ

∫ z(∞)

0

zf

(
dz

dt

)−1

dz, (15)

then, we replace dz
dt

by its expression in equation (2) :

z̄ =
1

τ

∫ z(∞)

0

zf
1

fρ
dz =

1

τρ

∫ z(∞)

0

z dz =
1

τρ

z(∞)2

2
. (16)

Yet, we know that the representative curve of z(t) is a concave parabola with z(0) = 0 and
therefore z(∞) = 2z̄. Thus, if we repalace it in 16,we obtain :

z̄ =
1

τρ

(2z̄)2

2
=

2z̄2

τρ
(17)

which gives, by isolation of z̄:

z̄ =
ρτ

2
. (18)

We now need to express τ , which is the inverse of the invasion rate of a new allele in the
population. The rate of invasion is equal to the rate of mutation at the population level (2Nu)
multiplicated by the invasion probability. Assuming strong selection, this probability is well
approximated by 2s0.

τ−1 = (2Nu).(2s0) (19)

where u is the mutation rate at the PRDM9 locus and s0 is the selection coefficient of a new
allele in the population. Based on equation (9), s0 can be expressed as s0 =

α
2
z̄. Thus :

τ−1 = 4Nu
α

2
z̄ = µ

α

2
z̄, (20)

Where µ = 4Nu. We can also express tau in function of N , u, v, g and α (eq 6 in the main
text) as :

τ =
1

2N
√
uαvg

. (21)
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If we replace this in equation (18) we finally obtain :

z̄ =
ρ

2τ−1
=

ρ

2

2

µαz̄
=

ρ

µαz̄
⇐⇒ z̄2 =

ρ

µα
⇐⇒ z̄ =

√
ρ

µα
(22)

which can also be expressed in function of v, g, u and α (eq 4 in the main text) as :

z̄ =

√
vg

uα
(23)

We thus recover the main result of the derivation given in Latrille et al. [1], although now, the
compound parameters ρ and α depend on the mecanistic details of our model. We have already
seen that ρ = Nvd

2h
. On the other hand, we still need to express α.

B.5 Slope at the origin of the fertility rate : α

As mentioned above, α is the slope of ln(w) at the origin (i.e. for two new alleles of age
z1 = z2 = 0):

α =

∣∣∣∣∂ ln(w(z1, z2))∂z1

∣∣∣∣
(z1=0,z2=0)

=

∣∣∣∣ 1w ∂w(z1, z2)

∂z1

∣∣∣∣
(z1=0,z2=0)

=

∣∣∣∣∂w(z1, z2)∂z1

∣∣∣∣
(z1=0,z2=0)

, (24)

since w ≈ 1.
Thus, in order to find an explicit expression for α, we need to express w according to the
parameters.
Assuming that gametes are not limiting, the fitness of an individual is equal to the rate of success
of meiosis, which is itself equal to the probability of having at least one DSB in a symmetrical
bound site. So, we can write w as 1 - the probability of having no DSB in symmetrical bound
site (1 - probability of failure of the meiosis). The number of DSBs in symmetrical bound
sites is approximately Poisson of mean dq(z1, z2), where d is the mean number of DSBs and
q(z1, z2) is the probability that a DSB occurs in a symmetrically bound site in an individual
heterozygous for two PRDM9 alleles of age z1 and z2. Thus, the probability of 0 DSB in a
symmetrically bound site is e−dq(z1,z2). So, w(z1, z2) can be expressed as :

w(z1, z2) = 1− e−dq(z1,z2) (25)

Substituting in equation (24), we obtain :

α =

∣∣∣∣∂w(z1, z2)∂z1

∣∣∣∣
(z1=0,z2=0)

=

∣∣∣∣∣d ∂q(z1, z2)

∂z1

∣∣∣∣
(z1=0,z2=0)

e−dq(z1=0,z2=0)

∣∣∣∣∣ (26)

We see here that, in order to obtain an explicit formula for α, it is necessary to express q(z1, z2)
as a function of the model parameters and then compute its derivative as a function of z.

B.6 Probability of symmetrical binding : q

For a given site of affinity y, the probability that PRDM9 is bound is given by x = cy
1+cy

where

c = 1 or c = 2. The conditional probability of symmetrical binding at that site (conditional on
at least one of the four chromatids being bound) is then equal to :

q =
2x2 − x3

x
(27)
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This expression is valid for a single site. To compute the mean probability of symmetrical
binding over the genome, we need to average the numerator and the denominator separately
over the affinity distribution across sites. Of note this distribution itself depends on the age
z of the allele, and the mean over the distribution of a given function B(y) is noted < B >z.
Also, the mean q over the genome depends on the PRDM9 genotype of this individual. In the
case of a homozygote, thus possessing twice the same PRDM9 allele of age z, q is equal to:

qhom(z) =
2 < x2 >z − < x3 >z

< x >z

(28)

If the individual is heterozygous for PRDM9 with two alleles of age z1 and z2, q is equal to:

qhet(z1, z2) =
2 < x2 >z1 − < x3 >z1 +2 < x2 >z2 − < x3 >z2

< x >z1 + < x >z2

(29)

The mean over the affinity distribution can be more precisely expressed as :

< B >z=

∫
B(y)θy(z)φ(y) dy. (30)

In this equation φ(y) is the affinity distribution of an allele at birth and θy(z) is the fraction
of active sites with a given affinity y recognised by an allele of age z. Thus, θy(z)φ(y)dy is the
total number of target sites still active with an affinity y+

−dy.
The integrals of the form (30) can be obtained numerically. However, they depend on θy(z),
which we therefore need to determine.

B.7 Fraction of active sites with a given affinity y recognised by an
allele of an age z : θy(z)

Here our aim is to compute more precisely the proportion of target sites of a given affinity y
that are still active, for an allele of age z. We note this quantity θy(z)

By an argument similar to that used for equation (3):

dθy
dt

= −(2Nv).(2fghety )θy (31)

where ghety = ghety (z1, z2) is the gene conversion rate at sites of affinity y in a genotype (z1, z2).
Of note, we consider only heterozygotes for PRDM9 since we work under the assumption of a
highly polymorphic regime. In turn :

ghety = d.

cy
1+cy

4h

[〈
cy

1+cy

〉
z1
+
〈

cy
1+cy

〉
z2

] (32)

The fraction on the right-hand side of equation (32) is the proportion of sites of affinity y
among all sites that are bound by either one of the two PRDM9 alleles.

So, if we replace it in equation (31), we obtain :

dθy
dt

= −2Nv.d

cy
1+cy

4h

[〈
cy

1+cy

〉
z1
+
〈

cy
1+cy

〉
z2

] .2f(t)θy(z) = −Nv
d

h
.

cy
1+cy[〈

cy
1+cy

〉
z1
+
〈

cy
1+cy

〉
z2

] .f(t)θy(z).
(33)
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If we suppose that < cy
1+cy

>z1 and < cy
1+cy

>z2 don’t vary too much as a function of z (≈<
cy

1+cy
>0), then we have:

dθy
dt

= −Nv
d

h

cy
1+cy

2
〈

cy
1+cy

〉
0

.f(t)θy(z) (34)

Then, by setting ρ = Nvd
2h

we can re-express the equation (37) as

dθy
dt

= −ρ

cy
1+cy〈
cy

1+cy

〉
0

.f(t)θy(z) (35)

And at this stage we can pose γ(y) =
cy

1+cy

⟨ cy
1+cy ⟩0

, which gives the following equation:

dθy
dt

= −ρf(t)γ(y)θy. (36)

Now, we can replace ρf(t) by dz
dt
:

dθy
dt

= −dz

dt
γ(y)θy ⇔

dθy(z)

dz
= −γ(y)θy (37)

Finally if we integrate this equation, we obtain the fraction of active sites with an affinity y
recognized by an allele of age z :

θy(z) = θy(0)e
−γ(y)z (38)

By definition, θy(0) is the fraction of active sites with an affinity y recognized by an allele of
age 0. Thus θy(0) = 1, and as a result, equation (34) becomes

θy(z) = e−γ(y)z (39)

Under the condition of weak erosion, we can simplify equation (39) which gives

θy(z) ≈ 1− γ(y)z (40)

and by averaging over the affinity, we get

< θy(z) >≈ 1− z (41)

B.8 Expression of α

Thanks to this equation, we are now able to express the successive moments < xm >z for
m = 1, 2 and 3.

< xm >z=

∫ (
cy

1 + cy

)m

θy(z)φ(y) dy =

∫ (
cy

1 + cy

)m

e−γ(y)zφ(y) dy (42)

To express α, we need q(0, 0) and ∂q(z1,z2)
∂z1

∣∣∣
z1=0,z2=0

.

For q(0, 0) we have the following expression

q(0, 0) =
2 < x2 >0 − < x3 >0 +2 < x2 >0 − < x3 >0

< x >0 + < x >0

=
2 < x2 >0 − < x3 >0

< x >0

(43)

with < B >0=
∫
B(y)φ(y).
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And for ∂q(z1,z2)
∂z1

∣∣∣
z1=0,z2=0

, we first need to determine the general expression of ∂<B>z

∂z
and

then express all the moments < xn > that we need.

∂ < B >z

∂z
=

∫
B(y)φ(y)(−γ(y))eγ(y)z dy = − < γ(y)B >z (44)

And with γ(y) =
cy

1+cy

⟨ cy
1+cy ⟩0

= x
<x>0

we obtain :

∂ < B >z

∂z
= −< xB >z

< x >0

(45)

So
∂ < B >z

∂z

∣∣∣∣
z=0

= −< xB >0

< x >0

(46)

In particular, with B = xn we have

∂ < xn >z

∂z

∣∣∣∣
z=0

= −< xn+1 >0

< x >0

(47)

If we come back to the expression of ∂q(z1,z2)
∂z1

∣∣∣
z1=0,z2=0

, we obtain

β =
∂q(z1, z2)

∂z1

∣∣∣∣
z1=0,z2=0

=

[
−2<x3>0

<x>0
+ <x4>0

<x>0

]
2 < x >0 +

<x2>0

<x>0
(4 < x2 >0 −2 < x3 >0)

4 < x >2
0

(48)

Replacing in the equation (26) and after some simplifications, we obtain the final expression
of α

α =

∣∣∣∣∣d
[
−2 < x3 >0 + < x4 >0 +

2<x2>2
0

<x>0
− <x3>0<x2>0

<x>0

2 < x >2
0

]
e
−d

2<x2>0−<x3>0
<x>0

∣∣∣∣∣ (49)

which can also be written as follows

α =
∣∣dβe−dq

∣∣ (50)

C Summary statistics

Based on these analytical developments, we can now obtain analytical expressions for the
summary statistics.

C.1 Diversity : D

The PRDM9 diversity, written D, is defined as

D =

(∑
i

f 2
i

)−1

(51)

We now need to calculate D−1 =
∑
i

f 2
i . For that, we can use again the tiling principle :

D−1 ≈ 1

τ

∫ ∞

0

f 2(t) dt =
1

τ

∫ z(∞)

0

f 2(z)
dt

dz
dz =

1

τ

∫ z(∞)

0

f 2(z)
1

ρf(z)
dz =

1

ρτ

∫ z(∞)

0

f(z) dz

(52)
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Replacing f(z) by its expression from equation (12) and integrating over z gives :

1

ρτ

∫ z(∞)

0

− α

4ρ
z(z−2z̄) dz = − α

4ρ2τ

[∫ z(∞)

0

z2 dz − 2z̄

∫ z(∞)

0

z dz

]
− α

4ρ2τ

z(∞)3

3
+

αz̄

2ρ2τ

z(∞)2

2

(53)
But we know that z̄ = ρτ

2
and z(∞) = ρτ . So if we replace it in the equation (53)

−α

[
ρ3τ 3

12ρ2τ
− ρ3τ 3

8ρ2τ

]
= −α

[
ρτ 2

12
− ρτ 2

8

]
= −α

[
2ρτ 2

24
− 3ρτ 2

24

]
(54)

So we obtain

D−1 =
αρτ 2

24
(55)

But, we also know that τ = 2
µαz̄

and z̄ =
√

ρ
µα
. So then τ = 2

µα

√
µα
ρ

and τ 2 = 4
µαρ

. Which

leads to the equation

D−1 =
4αρ

24µαρ
=

1

6µ
(56)

Where µ = 4Nu, so finally we have

D−1 =
1

24Nu
(57)

And thus
D = 24Nu (58)

C.2 Mean age : z̄

Using equation (50), z̄ can be more directly expressed as :

z̄ =

√
ρ

µα
=

√
Nvd

2h

1

4Nu

edq

dβ
=

√
vedq

8huβ
(59)

with q given by the equation (43)

C.3 Mean activity : < θ̄ >

If we start from the equation (39) replacing z by z̄ we have :

θy(z) = θy(z̄) = e−γ(y)z̄ ≈ 1 + (−γ(y)z̄) ≈ 1− γ(y)z̄ (60)

Averaging over the affinity distribution :

< θy(z̄) >≈ 1− z̄ (61)

C.4 Mean probability of symmetrical binding : q̄

If we start from the equation (29) replacing z by z̄ we have :

q̄ = qhet(z̄, z̄) =
2 < x2 >z̄ − < x3 >z̄ +2 < x2 >z̄ − < x3 >z̄

< x >z̄ + < x >z̄

=
2 < x2 >z̄ − < x3 >z̄

< x >z̄

(62)
The moments < xm >z̄ are given by equation (42) an can be evaluated by numerical integration.
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C.5 Mean fertility rate : w̄

If we start from the equation (25) replacing z by z̄ we have :

w̄ = w(z̄, z̄) = 1− e−dq(z̄,z̄) (63)

With q̄ = 2<x2>z̄−<x3>z̄

<x>z̄
.

D Perturbative development accounting for genetic dosage

The evolution of the frequency of an allele in the population as a function of its age has the
same general expression as without dosage :

df

dz
=

1

ρ

(
w∗(z)− w̄

w̄

)
(64)

However, for the fitness, we now account for the contribution of homozygotes:

w∗(z) = f(t)whom(z) + (1− f(t))whet(z, z̄) (65)

Linearizing in the vicinity of 0 for z:

w∗(z) = fwhom(z)+(1−f)whet(z, z̄) ≈ fwhom(0)(1−αhomz)+(1−f)whet(0, 0)(1− αhet

2
(z+ z̄))

(66)
Our development is perturbative in the sense that it assumes that gene dosage has a weak
impact, and this, because homozygotes are assumed to be rare, i.e. because f is small (f << 1).
Combined with the weak erosion assumption (z̄ << 1), this means that we can ignore terms of
the order of zf . Thus, equation (66) simplifies to :

w∗(z) ≈ fwhom(0) + (1− f)whet(0, 0)− whet(0, 0)
αhet

2
(z + z̄) (67)

Averaging over the population gives the mean fitness:

w̄ ≈ f̄whom(0) + (1− f̄)whet(0, 0)− whet(0, 0)
αhet

2
(z̄ + z̄) (68)

Finally :

df

dz
=

1

ρ

(
w∗(z)− w̄

w̄

)
≈ 1

ρ

[
whom(0)− whet(0, 0)

whet(0, 0)
(f − f̄)− αhet

2
(z − z̄)

]
(69)

If we express

σ(0) =
whom(0)− whet(0, 0)

whet(0, 0)
(70)

we obtain :
df

dz
≈ 1

ρ

[
σ(0)(f − f̄)− αhet

2
(z − z̄)

]
(71)

Or, if we express this in terms of dln(f)
dt

, it gives :

d ln f

dt
≃ −α

2
(z − z̄) + σ0(f − f̄) (72)

as it is expressed in eq 3 of the main text.
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