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At every time step, let T+
n and T−

n denote the probabilities that node n changes its allelic type towards17

or away from the mutant type. Let xn denote the frequency of the mutant at this node n (xn = 1 means a18

mutant occupies node n and xn = 0 means the node is occupied by the wild-type allele), N (n) denote the19

set of nodes connected to n and degree dn denote the size of N (n). We can write20

T+
n =

1− xn

N
(1 + s)

∑
m∈N (n) xm

dn + s
∑

m∈N (n) xm

T−
n =

xn

N

∑
m∈N (n)(1− xm)

dn + s
∑

m∈N (n) xm
.

(1)

The (1 − xn)/N term in T+
n corresponds to the probability that node n is both a wild-type and is also21

selected to die. The rest of the terms in T+
n correspond to the probability that a neighboring mutant node22

is selected to replace node n and can be written as the fraction of the mutant neighbor fitness over the total23

fitness of neighbors of node n. This makes T+
n and T−

n difficult to work with. Using a power series expansion24

we can write25

1

dn + s
∑

m∈N (n) xm
=

1

dn
− s

d2n

∑
m∈N (n)

xm + s2O(x2). (2)

This will later make the calculations easier.26

The approach we take here is to use the node degree distribution, and only keep track of the mutant27

frequencies xi at all Ni nodes of the same degree di. Let D = {d1, d2, ..., di, ...} represent the set of all28

possible node degrees. We denote the frequency of nodes of degree di in the population by pi. To model29

node degree mixing, we use pij to denote the probability that a node of degree di is connected to a node of30

degree dj . The probability that the mutant frequency increases by 1/Ni in nodes of degree di, T+
i , is given31
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by32

T+
i = (1 + s)

∑
n∈G

[
δ(di, dn)

1− xi

N

( ∑
m∈N (n)

xm

)(
1

di
− s

d2i

∑
m∈N (n)

xm + s2O(x2)

)]

= (1 + s)
1− xi

N

∑
n∈G

[
δ(di, dn)

(∑
j∈D

enjxj

)(
1

di
− s

d2i

∑
j∈D

enjxj + s2O(x2)

)]

= (1 + s)

[
1− xi

N

1

di

∑
n∈G

δ(di, dn)
∑
j∈D

enjxj +
1

N

s

d2i

∑
n∈G

δ(di, dn)

(∑
j∈D

enjxj

)2]
+ s2O(x3)

= (1 + s)
1− xi

N

1

di

∑
j∈D

eijxj + sO(x2) + s2O(x3)

= (1 + s)
1− xi

N

1

di

∑
j∈D

Npipijdixj + sO(x2) + s2O(x3)

= (1 + s)(1− xi)
∑
j∈D

pipijxj + sO(x2) + s2O(x3), (3)

while the probability that the mutant frequency decreases by 1/Ni, T−
i , is given by33

T−
i = xi

∑
j∈D

pipij(1− xj) + sO(x2) + s2O(x3). (4)

Here, δ(di, dn) is the Kronecker delta function, the set G represents all the nodes in the graph, enj denotes34

the number of edges that connect node n to nodes of degree dj and eij denotes the number of edges that35

connect nodes of degree di to nodes of degree dj .36

The probability of fixation of allele a can then be approximated using the diffusion approximation. We37

will first need to calculate the first and second moment of the change in frequency of the mutant allele at all38

nodes of degree di, at every time step:39

E[∆xi] = (T+
i − T−

i )∆xi =
1

Npi
(T+

i − T−
i ) = O(x), (5)

E[(∆xi)
2] = (T+

i + T−
i )(∆xi)

2 =
1

N2p2i
(T+

i + T−
i ) = O(x), (6)

E[∆xi∆xj ] = 0, (7)

E[∆xi]E[∆xj ] = (T+
i − T−

i )(T+
j − T−

j )(∆xi)
2 =

1

N2pipj
(T+

i − T−
i )(T+

j − T−
j ) = O(x2). (8)
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This allows us to write the mean change in mutant frequency at every time step as40

µi =
E[∆xi]

∆t
=

1

pi
(T+

i − T−
i ). (9)

It is worth noting that in many diffusion models the variance can be approximated as the second moment41

and the covariance is omitted since the product of the first moments is often on the order of s2. This is not42

the case in our model, since here the first moment is on the order of s0 therefore the product of the first43

moments does not go away by assuming sufficiently small s.44

The variance in mutant frequency change can be written as45

σii =
E[(∆xi)

2]− (E[∆xi])
2

∆t
=

1

Np2i
[T+

i − T−
i − (T+

i − T−
i )2], (10)

while the covariance can be written as46

σij =
−E[∆xi]E[∆xj ]

∆t
= − 1

Npipj
(T+

i − T−
i )(T+

j − T−
j ). (11)

We write the Kolmogorov backward equation47

∂P

∂t
=

1

2

∑
i,j∈D

σij
∂2P

∂xi∂xj
+
∑
i∈D

µi
∂P

∂xi

= − 1

2N

∑
i̸=j

O(x2)
∂2P

∂xi∂xj
+
∑
i∈D

O(x)

(
1

2N

∂2P

∂x2
i

+
∂P

∂xi

)
, (12)

and solve for zero48

− 1

2N

∑
i̸=j

O(x2)
∂2P

∂xi∂xj
+
∑
i∈D

O(x)

(
1

2N

∂2P

∂x2
i

+
∂P

∂xi

)
= 0. (13)

Given the initial mutant frequencies x⃗, P (x⃗) gives an approximation for the fixation probability of the mutant49

allele a. It is difficult to find a closed form solution for P (x⃗), since coefficients in the PDE in equation (13) are50

polynomials of x. Due to the similarity between the Kolmogorov backward equation here and the Kolmogorov51

backward equation for the finite island model (Tachida and Iizuka, 1991), we can use singular perturbation52

methods to approximate the solution (Gavrilets and Gibson, 2002). This method tries to find the solution53

to the PDE of interest near singular points, where the function changes value rapidly. This usually occurs54

in the region of space where the PDE coefficients vanish and therefore where the first derivatives are large55

in magnitude.56
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For our PDE, the singular points occur at x⃗ = 0⃗ and x⃗ = 1⃗. For s > 0, we solve the PDE at x⃗ = 0⃗, while57

for s ≤ 0, we solve for x⃗ = 1⃗. Intuitively, the fixation probability for any mutant with selective advantage s58

should be unity in the deterministic infinite population case.59

In finite populations however, fixation is controlled by both the force of selection and the force of drift.60

The force of drift is proportional to 1/N and can cause even beneficial mutants to become extinct. As mutant61

frequency increases in the population, past establishment, the force of selection starts to dominate the force62

of drift and the fixation probability starts approaching one rapidly. For deleterious mutations, the fixation63

probability should be small unless the number of mutants is close to population size N ; therefore, for s ≤ 0,64

P decreases to 0 when x⃗ moves away from 1⃗.65

For s > 0, we introduce new variables yi, such that ϵyi = xi, where ϵ = 1
N . We can write66

∂P

∂xi
=

∂P

∂yi

dyi
dxi

=
1

ϵ

∂P

∂yi
(14)

and67

∂2P

∂xi∂xj
=

∂

∂xi

(
∂P

∂yj

dyj
dxj

)
=

∂2P

∂yi∂yj

dyi
dxi

dyj
dxj

+
∂P

∂yj

∂2yi
∂xi∂xj

=
1

ϵ2
∂2P

∂yi∂yj
. (15)

We can substitute (14) and (15) into (13) and write68

−1

2

∑
i ̸=j

ϵ−1O(ϵ2y2)
∂2P

∂yi∂yj
+
∑
i∈D

O(ϵy)

(
1

2
ϵ−1 ∂

2P

∂y2i
+ ϵ−1 ∂P

∂yi

)
= 0. (16)

For large population sizes, ϵ = 1/N becomes vanishingly small, therefore in the equation above, we can69

ignore higher order terms of ϵ. Therefore we can approximate (16) by70

∑
i∈D

O(y)

(
1

2

∂2P

∂y2i
+

∂P

∂yi

)
= 0. (17)

We exand equation (17) and write71

∑
i,j∈D

pipij

(
1

2p2i
((1 + s)yj + yi)

∂2

∂y2i
+

1

pi
((1 + s)yj − yi)

∂

∂yi

)
P = 0 (18)

It is important to note that the Kolmogorov backward equations for the death-Birth model we consider72

here and the Death-birth voter model (the update process where a node is first picked for death with73

probability inversely proportional to fitness, and a random neighbor is then selected to replace it) are identical74

after singular perturbation. The Kolmogorov backward equations for the Birth-death model considered here75
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and the birth-Death model also share the same equations. This implies that the dB and Db should have76

identical fixation probabilities for the same network. Indeed, the two processes lead to similar evolutionary77

dynamics (Chen et al., 2013).78

The solution to the differential equation in (18) has the form79

P = c0 + c1 exp
{
−
∑
j

pjAjyj

}
. (19)

We can substitute this solution back into the Kolmogorov backward equation (18) and solve for the unknown80

exponents:81

∑
i,j∈D

(
1

2
(1 + s)A2

i pipijyj +
1

2
A2

i pipijyi − (1 + s)Aipipijyj +Aipipijyi

)

=
∑
i,j∈D

(
1

2
(1 + s)A2

jpjpjiyi +
1

2
A2

i pipijyi − (1 + s)Ajpjpjiyi +Aipipijyi

)
= 0. (20)

We end up with the following system of quadratic equations to solve:82

∑
j∈D

(
(1 + s)A2

jpjpji +A2
i pipij − 2(1 + s)Ajpjpji + 2Aipipij

)
= 0 ∀i. (21)

This is a system of |D| (the number of unique degrees in the graph) elliptic equations in |D|-dimensional83

space and the solution to this system corresponds to the set of points in space where all these surfaces84

intersect. There is a trivial intersection point at the origin. This solution, however, causes P to be undefined85

so it is not the solution we are interested in. Assuming there is a non-trivial real solution to this system, we86

can use geometric intuition to estimate where the solution is. We do this by summing all the equations in87

the system to get the following equation88

∑
i,j∈D

(
(1 + s)A2

jpjpji +A2
i pipij − 2(1 + s)Ajpjpji + 2Aipipij

)
=
∑
i,j∈D

(
(1 + s)A2

i pipij +A2
i pipij − 2(1 + s)Aipipij + 2Aipipij

)
=
∑
i∈D

(
(1 + s)A2

i pi +A2
i pi − 2(1 + s)Aipi + 2Aipi

)
=
∑
i∈D

[
(2 + s)A2

i pi − 2sAipi

]
= 0. (22)
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In elliptic form,89 ∑
i∈D

pi

(
Ai −

s

2 + s

)2

=

(
s

2 + s

)2

. (23)

This equation provides valuable information on the dynamics of the system. This ellipsoid contains all90

solutions to the system since it is constructed from a linear combination of these ellipsoids. It is centered at91

s/(2+s)⃗1, with axial lengths proportional to s/(2+s). In the neutral case where s = 0, this ellipsoid collapses92

into a point at the origin. Since all solutions of the elliptic system coincide with this point, the system has93

exactly one real solution at the origin. When s increases from 0, the distance between the solution at the94

origin and all other real solutions grows proportional to the axial lengths, which themselves are proportional95

to s/(2 + s). We will use these intuitions later to derive simpler forms of the solutions of the entire system.96

Next, we use regular perturbation to study the system. We can write the solutions of the system as97

Ai = Ai,0 + sAi,1 +O(s2) (24)

Substitute this and the following98

A2
i = A2

i,0 + sAi,0Ai,1 +O(s2) (25)

into the elliptic system and we have99

∑
j∈D

[
(1 + s)(A2

j,0+sAj,0Aj,1 − 2Aj,0 − 2sAj,1)pjpji

+ (A2
i,0 + sAi,0Ai,1 + 2Ai,0 + 2sAi,1)pipij

]
= O(s2). (26)

In the order of s0, we can derive Ai,0 using100

∑
j∈D

[
(A2

j,0 − 2Aj,0)pjpji + (A2
i,0 + 2Ai,0)pipij

]
= 0. (27)

This is exactly the elliptic system corresponding to the neutral case where s = 0. We know from the argument101

above that this system only has one real solution at the origin.102

For the order of s1, we can derive Ai,1 using103

∑
j∈D

(
− 2Aj,1pjpji + 2Ai,1pipij

)
= 0. (28)
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Using the fact that the number of edges going from nodes of degree di to nodes of degree dj is equal to104

the number of edges going from nodes of degree dj to nodes of degree di (the handshaking lemma), we can105

write106

pipijdi = pjpjidj . (29)

We rewrite the above as107 ∑
j∈D

pjpji

(
−Aj,1 +Ai,1

dj
di

)
= 0. (30)

It follows that points on the line Ai,1 = Adi satisfy this equation. Substituting in (24), we now have an108

approximation of the solution of the elliptic system109

Ai = sAdi +O(s2). (31)

This agrees with the fact that the real solutions of the elliptic system grow proportional to s/(2 + s) (from110

(23)).111

We still have to find A. Since we know the solution to the system must also satisfy equation (23), the112

value of A that approximates the solution of the system is113

∑
i∈D

[
(2 + s)piA

2d2i − 2spiAdi

]
= 0

=⇒ (2 + s)A2
∑
i∈D

pid
2
i − 2sA

∑
i∈D

pidi = 0

=⇒ (2 + s)A2⟨d2⟩ − 2sA⟨d⟩ = 0

=⇒ (2 + s)A⟨d2⟩ = 2s⟨d⟩

=⇒ A =
2s

2 + s

⟨d⟩
⟨d2⟩

.
(32)

Here ⟨dk⟩ represents the k-th moment of the degree distribution. We substitute this back into (19) and can114

thus find the constants that satisfy the boundary conditions that P (x⃗ = 0⃗) = 0 and P (x⃗ = 1⃗) = 1.115
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We can therefore write the approximation for the fixation probability as116

P (x⃗) =

[
1− exp

{
−N

2s

2 + s

⟨d⟩
⟨d2⟩

∑
i∈D

pidixi

}][
1− exp

{
−N

2s

2 + s

⟨d⟩
⟨d2⟩

∑
i∈D

pidi

}]−1

=

[
1− exp

{
−N

2s

2 + s

⟨d⟩
⟨d2⟩

∑
i∈D

pidixi

}][
1− exp

{
−N

2s

2 + s

⟨d⟩2

⟨d2⟩

}]−1

. (33)

Assuming the probability that the mutant was introduced uniformly into the network, the fixation probability117

is118

P

(
x⃗ =

1⃗

N

)
=

[
1− exp

{
− 2s

2 + s

⟨d⟩2

⟨d2⟩

}][
1− exp

{
−N

2s

2 + s

⟨d⟩2

⟨d2⟩

}]−1

. (34)

To summarize, the fixation probability for the death-Birth process on a network is given by119

PdB =
1− e−αdBs/(1+s/2)

1− e−αdBNs/(1+s/2)
where αdB =

⟨d⟩2

⟨d2⟩
(35)

For the special case of uncorrelated networks, our approximation coincides with the fixation probability of120

the Death-birth voter model (Antal et al., 2006). As mentioned before, this is expected, as the Kolmogorov121

backward equations after singular perturbation are identical for the Death-birth and the death-Birth update122

rules. Our result however apply across network families, not just for the special case of uncorrelated networks.123

In Supplementary Figure S4 we show how well (35) approximates the fixation probability obtained124

from solving (21) numerically. In our derivation of the approximation, we ignored the O(s2) portion of the125

roots of (21). The error that accumulates is on the order of Ns2, therefore as long as s << N−1/2 the126

approximation should hold. The approximate solution to the KBE remains accurate with few exceptions.127

In evolving populations, we are often interested in cases where there exists an interplay between drift and128

selection. This requires both forces to have similar magnitudes. This implies s ≈ 1
N , which implies Ns2 ≈129

1
N << 1 in large populations.130
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2 The analytic approximation for the Birth-death process131

We now discuss the probability of fixation of a new mutant under the Birth-death process. Following similar132

steps as the previous section, we start by writing down the probabilities T+
n and T−

n that a node n switches133

allelic type towards or away from the mutant state. We can write134

T+
n = (1 + s)

∑
m∈N (n) xmd−1

m (1− xn)

N + s
∑

m∈N (n) xm

T−
n =

∑
m∈N (n)(1− xm)d−1

m xn

N + s
∑

m∈N (n) xm
.

(36)

The denominator in T+
n is the total fitness of the population. Since it is shared across all T s we will represent135

it as Nw, where w is the mean fitness of the population. The xm term in T+
n divided by the denominator136

corresponds to the probability that the focal node n has a mutant neighbor node selected to reproduce for137

the Birth step. The rest of the terms in T+
n constitute the probability that node n is the node selected at138

the death step. This probability of death is one over the degree of node m, an arbitrary neighbor of n. It139

might seem that this is as complicated as the transition probabilities for the dB update rule, and we should140

simplify using the power series. However, we do not need to do that here since the denominator can be141

multiplied out.142

Similarly to the case of the death-Birth process, we use the degree mean field approximation. The143

probability that the mutant frequency increases by 1/Ni for nodes of degree di, T+
i , is given by144

T+
i =

(1 + s)

Nw

∑
n∈G

[
δ(di, dn)

( ∑
m∈N (n)

xmd−1
m (1− xi)

)]

=
(1 + s)

Nw

∑
n∈G

[
δ(di, dn)

(∑
j∈D

ejnxjd
−1
j (1− xi)

)]

=
(1 + s)

Nw

∑
j∈D

ejixjd
−1
j (1− xi)

=
(1 + s)

Nw

∑
j∈D

Npjpjidjxjd
−1
j (1− xi)

=
(1 + s)

w

∑
j∈D

pjpjixj(1− xi), (37)
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and the probability that the mutant frequency decreases by 1/Ni for nodes of degree di , T−
i is145

T−
i =

(1 + s)

w

∑
j∈D

pjpji(1− xj)xi. (38)

Here, ejn denotes the number of edges that connect nodes of degree dj to n and eji denotes the number of146

edges that connect nodes of degree dj to nodes of degree di.147

To write out the diffusion equation, we first need to compute the first and second moment of the change148

in frequency of the mutant allele at all nodes of degree di, at every time step:149

E[∆xi] = (T+
i − T−

i )∆xi =
1

Npi
(T+

i − T−
i ) = w−1O(x) (39)

E[(∆xi)
2] = (T+

i + T−
i )(∆xi)

2 =
1

N2p2i
(T+

i + T−
i ) = w−1O(x) (40)

E[∆xi∆xj ] = 0 (41)

E[∆xi]E[∆xj ] = (T+
i − T−

i )(T+
j − T−

j )(∆xi)
2 =

1

N2pipj
(T+

i − T−
i )(T+

j − T−
j ) = w−1O(x2). (42)

The mean change in mutant frequency at every time step can then be written as150

µi =
E[∆xi]

∆t
=

1

pi
(T+

i − T−
i ). (43)

The variance can be written as151

σii =
E[(∆xi)

2]− (E[∆xi])
2

∆t
=

1

Np2i
[T+

i − T−
i − (T+

i − T−
i )2]. (44)

The covariance can be written as152

σij =
−E[∆xi]E[∆xj ]

∆t
= − 1

Npipj
(T+

i − T−
i )(T+

j − T−
j ). (45)

We can now write the Kolmogorov backward equation. Instead of substituting and writing all the153

coefficients in the equation, we are going to denote the the terms by their lowest degree of x154

∂P

∂t
=

1

2

∑
i,j∈D

σij
∂2P

∂xi∂xj
+
∑
i∈D

µi
∂P

∂xi

= − 1

2N

∑
i ̸=j

w−1O(x2)
∂2P

∂xi∂xj
+
∑
i∈D

w−1O(x)

(
1

2N

∂2P

∂x2
i

+
∂P

∂xi

)
. (46)
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We are interested in the stationary solution where155

− 1

2N

∑
i̸=j

O(x2)
∂2P

∂xi∂xj
+
∑
i∈D

O(x)

(
1

2N

∂2P

∂x2
i

+
∂P

∂xi

)
= 0. (47)

Note that we multiplied by the mean fitness w on both sides to remove it from the PDE. By solving for156

P (x⃗), we have an approximation for the fixation probability given the initial mutant frequencies x⃗. Similarly157

as above, we apply singular perturbation to solve this system.158

For s > 0, we introduce new variables yi, such that ϵyi = xi, where ϵ = 1
N . Substitute (14) and (15) into159

(47) and write160

−1

2

∑
i̸=j

ϵ−1O(ϵ2y2)
∂2P

∂yi∂yj
+
∑
i∈D

O(ϵy)

(
1

2
ϵ−1 ∂

2P

∂x2
i

+ ϵ−1 ∂P

∂xi

)
= 0. (48)

Ignoring vanishingly small higher-order terms of ϵ, we write out terms of order ϵ0161

∑
i∈D

O(y)

(
1

2

∂2P

∂y2i
+

∂P

∂yi

)
= 0. (49)

Equation (49) can be expanded and written as162

∑
i,j∈D

pjpji

(
1

2p2i
((1 + s)yj + yi)

∂2

∂y2i
+

1

pi
((1 + s)yj − yi)

∂

∂yi

)
P = 0. (50)

The solution to this differential equation has the form163

P = c0 + c1 exp
{
−
∑
j

pjAjyj

}
. (51)

We can substitute this solution into the Kolmogorov backward equation (50) and solve for the unknown164

exponents:165

∑
i,j∈D

(
1

2
(1 + s)A2

i pjpjiyj +
1

2
A2

i pjpjiyi − (1 + s)Aipjpjiyj +Aipjpjiyi

)

=
∑
i,j∈D

(
1

2
(1 + s)A2

jpipijyi +
1

2
A2

i pjpjiyi − (1 + s)Ajpipijyi +Aipjpjiyi

)
= 0. (52)
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We end up with the following system of quadratic equations to solve166

∑
j∈D

(
(1 + s)A2

jpipij +A2
i pjpji − 2(1 + s)Ajpipij + 2Aipjpji

)
= 0 ∀i. (53)

Assuming there is a non-trivial real solution to this system, similarly as above, for the death-birth process,167

we can use geometric intuition to estimate where the solution is. We do so by summing all the equations in168

system to get the following equation169

∑
i,j∈D

(
(1 + s)A2

jpipij +A2
i pjpji − 2(1 + s)Ajpipij + 2Aipjpji

)
=
∑
i,j∈D

(
(1 + s)A2

i pjpji +A2
i pjpji − 2(1 + s)Aipjpji + 2Aipjpji

)

=
∑
i∈D

[
((1 + s)A2

i +A2
i − 2(1 + s)Ai + 2Ai)

∑
j∈D

pjpji

]

=
∑
i∈D

(
[(2 + s)A2

i − 2sAi]
∑
j∈D

pjpji

)
.

(54)

In elliptic form, we can write170

∑
i∈D

[(
Ai −

s

2 + s

)2 ∑
j∈D

pjpji

]
=

(
s

2 + s

)2∑
i∈D

∑
j∈D

pjpji. (55)

Like in the case of the death-Birth process, this equation provides valuable information on the dynamics of171

the system of ellipsoids. This ellipsoid contains all solutions to the system, since it is constructed from linear172

combinations of these ellipsoids. It is centered at s/(2 + s)⃗1 with axial lengths proportional to s/(2 + s).173

In the neutral case where s = 0, this ellipsoid collapses into a single point at the origin. Since all solutions174

of the elliptic system satisfy the equations, the system has exactly one real solution at the origin. As the175

strength of selection s increases, the distance between the solution at the origin and all other real solutions176

grows proportional to the axial lengths, which themselves are proportional to s/(2 + s).177

Next, we use regular perturbation to study the elliptic system. We can write the solution of the system178

as179

Ai = Ai,0 + sAi,1 +O(s2). (56)
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Substitute (56) and the following180

A2
i = A2

i,0 + sAi,0Ai,1 +O(s2) (57)

into the system and we can write181

∑
j∈D

[
(1 + s)(A2

j,0+sAj,0Aj,1 − 2Aj,0 − 2sAj,1)pjpji

+ (A2
i,0 + sAi,0Ai,1 + 2Ai,0 + 2sAi,1)pipij

]
= O(s2). (58)

In the order of s0, we can derive Ai,0 using182

∑
j∈D

[
(A2

j,0 − 2Aj,0)pipij + (A2
i,0 + 2Ai,0)pjpji

]
= 0. (59)

This is exactly the elliptic system corresponding to the neutral case where s = 0. We know that this system183

only has one real solution at the origin.184

For the order of s1, we can derive Ai,1 using185

∑
j∈D

(
− 2Aj,1pipij + 2Ai,1pjpji

)
= 0. (60)

Using the handshaking lemma, (see (29)), we can rewrite the above as186

∑
j∈D

pjpji

(
−Aj,1

dj
di

+Ai,1

)
= 0. (61)

It follows that points on the line Ai = Adi satisfy this equation. We now have an approximation of the187

solution of the system188

Ai = sAd−1
i +O(s2). (62)

This agrees with the fact that real solutions grow proportional to s/(2 + s). Since we know the solution to189

the system must satisfy (55), we can find the intersection of (62) with (55) and the error from this point to190

the real intersection is of O(s2).191
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The value A that approximates the solution of the system is192

∑
i∈D

(
[(2 + s)A2d−2

i − 2sAd−1
i ]

∑
j∈D

pjpji

)
= 0

=⇒ (2 + s)A2
∑
i,j∈D

pjpjid
−2
i − 2sA

∑
i,j∈D

pjpjid
−1
i = 0

=⇒ (2 + s)A
∑
i,j∈D

pjpjid
−2
i = 2s

∑
i,j∈D

pjpjid
−1
i

=⇒ A =
2s

2 + s

( ∑
i,j∈D

pjpjid
−1
i

)( ∑
i,j∈D

pjpjid
−2
i

)−1

. (63)

Substituting this back into (51) to find the constants that satisfy the boundary condition p(x⃗ = 0⃗) = 0193

and p(x⃗ = 1⃗) = 1, we get the approximation for the fixation probability as194

P (x⃗) =
1− exp

{
−NA

∑
i∈D pid

−1
i xi

}
1− exp

{
−NA

∑
i∈D pid

−1
i

}
=

1− exp
{
−NA

∑
i∈D pid

−1
i xi

}
1− exp

{
−NA⟨d−1⟩

} . (64)

Assuming that the mutant was introduced in a random node of the network, the fixation probability can be195

written as196

P

(
x⃗ =

1⃗

N

)
=

1− exp
{
−A⟨d−1⟩

}
1− exp

{
−NA⟨d−1⟩

} . (65)

To summarize, the fixation probability for the Birth-death process on a network is given by197

PBd =
1− e−αBds/(1+s/2)

1− e−αBdNs/(1+s/2)
, where αBd =

(
⟨d−1⟩

∑
i,j∈D

pjpjid
−1
i

)( ∑
i,j∈D

pjpjid
−2
i

)−1

. (66)

Here, αBd is the network quantity that governs the evolutionary dynamics on graphs under the Birth-death198

update rule.199

In Supplementary Figure S5 we show how well (66) approximates the fixation probability obtained200

from solving (53) numerically. In our derivation of the approximation, we ignored the O(s2) portion of the201

roots of (53). The error that accumulates is on the order of Ns2, therefore, as long as s << N−1/2 the202

approximation should hold. The numerical solution starts to deviate from the approximate solution as s203

increases for αBd < 1.204
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3 The change in amplification due to rewiring205

Here we expand on the derivation of equation (10) in the main text. We write the numerator and denominator206

in (66):207

µ1 =
∑
i,j∈D

pjpjid
−1
i ,

µ2 =
∑
i,j∈D

pjpjid
−2
i (67)

and we consider the change in the numerator and denominator under one rewiring step:208

∆µ1 = −pi
1

Npidi

1

di
− pj

1

Npjdj

1

dj
+ pi

1

Npidi

1

dj
+ pj

1

Npjdj

1

di

= − 1

Nd2i
− 1

Nd2j
+

2

Ndidj

=
1

N

2didj − d2i − d2j
d2i d

2
j

= − 1

N

(di − dj)
2

d2i d
2
j

< 0

and209

∆µ2 = −pi
1

Npidi

1

d2i
− pj

1

Npjdj

1

d2j
+ pi

1

Npidi

1

d2j
+ pj

1

Npjdj

1

d2i

= − 1

Nd3i
− 1

Nd3j
+

1

Nd2i dj
+

1

Ndid2j

=
1

N

d2i dj + did
2
j − d3i − d3j

d3i d
3
j

=
1

N

d2i (dj − di) + d2j (di − dj)

d3i d
3
j

= − 1

N

(d2i − d2j )(di − dj)

d3i d
3
j

= − 1

N

(di + dj)(di − dj)
2

d3i d
3
j

< 0.
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Since the change is on the order of 1
N , we can approximate the change by210

∆
µ1

µ2
=

µ1 +∆µ1

µ2 +∆µ2
− µ1

µ2

= (µ1 +∆µ1)

(
1

µ2
− ∆µ2

µ2
2

)
− µ1

µ2

=
∆µ1

µ2
− µ1∆µ2

µ2
2

=
µ1

µ2
2

(
µ2

µ1
∆µ1 −∆µ2

)

=
µ1

Nµ2
2

(
µ2

µ1

−(di − dj)
2

d2i d
2
j

− (di + dj)(di − dj)
2

d3i d
3
j

)

=
µ1

Nµ2
2

(di − dj)
2

d2i d
2
j

(
− µ2

µ1
+

di + dj
didj

)

=
µ1

Nµ2
2

(di − dj)
2

d2i d
2
j

(
1

di
+

1

dj
− µ2

µ1

)
.

4 The approximation for detour graphs under weak selection211

Here we present the derivation of equation (12) in the main text. We obtain an alternate approximate212

solution to the Kolmogorov backward equation by using regular perturbation. This is because the previous213

derivation underestimates probabilities of fixation on detour graphs, since they have very few edges that214

connect nodes of different degrees.215

We expand the solution to (47) in terms of s216

P = P0 + sP1 + s2P2 + .... (68)

Substitute into equation (47) and obtain the following217

∑
i∈D,j∈D

pjpji

(
1

2Np2i
[(1+s)xj+xi−(2+s)xixj ]

∂2

∂x2
i

(P0+sP1+...)+
1

pi
[(1+s)xj−xi−sxixj ]

∂

∂xi
(P0+sP1+...)

)
= 0.

(69)

Under weak selection, the terms in the equation above independent of s can be written as218
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∑
i∈D,j∈D

pjpji

(
1

2Np2i
(xj + xi − 2xixj)

∂2P0

∂x2
i

+
1

pi
(xj − xi)

∂P0

∂xi

)
= 0. (70)

This equation is identical to the Kolmogorov backward equation under neutrality. The solution is known219

and is given by220

P0 =
1

⟨d−1⟩
∑
i∈D

pixi

di
. (71)

Next, we collect the terms of the first order term of s and write221

∑
i∈D,j∈D

pjpji

(
1

2Np2i
(xj − xixj)

∂2P0

∂x2
i

+
1

pi
(xj − xixj)

∂P0

∂xi
+

1

2Np2i
(xj + xi − 2xixj)

∂2P1

∂x2
i

+
1

pi
(xj − xi)

∂P1

∂xi

)
= 0

=
∑

i∈D,j∈D

pjpji

(
1

⟨d−1⟩di
(xj − xixj)+

1

2Np2i
(xj + xi − 2xixj)

∂2P1

∂x2
i

+
1

pi
(xj − xi)

∂P1

∂xi

)
= 0. (72)

The solution has the form222

P1 =
∑
ij

pipjAijxi(1− xj)

=
∑
i

piAixi −
∑
ij

pipjAijxixj , where Ai =
∑
j

pjAij . (73)

and we need to solve for the unknowns Ai and Aij . We know the solution to (72) has to have this form223

because the neutrality solution P0 already satisfies the boundary conditions P (0) = 0 and P (1) = 1, so224

P1(0) = 0 and P1(1) = 0 are required. The partial derivatives are given by225

∂P1

∂xi
= piAi − 2pi

∑
j

pjAij and
∂2P1

∂xixj
= −2pipjAij . (74)

Substitute in (72) and we have226

∑
i∈D,j∈D

pjpji

[
1

⟨d−1⟩di
(xj − xixj)−

Aii

N
(xj + xi − 2xixj)

+ (xj − xi)

(
Ai −

∑
k

pkAikxk − piAiixi

)]
= 0. (75)
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In order for the equation to be satisfied all the coefficients must sum to zero. Therefore, the conditions for227

the linear terms, x′
is, are228

∑
j∈D

[
− pjpji

(
Aii

N
+Ai

)
+ pipij

(
1

⟨d−1⟩dj
− Ajj

N
+Aj

)]
= 0. (76)

For the quadratic terms, xix
′
js, we re-index to collect the like quadratic terms229

∑
i∈D,j∈D

pjpji

(
− xixj

⟨d−1⟩di
+ 2

Aii

N
xixj − 2(xj − xi)

∑
k

pkAikxk

)
= 0

=⇒
∑

i∈D,j∈D

pjpji

(
− xixj

⟨d−1⟩di
+ 2

Aii

N
xixj − 2

∑
k

pkAikxjxk + 2
∑
k

pkAikxixk

)
= 0

=⇒
∑

i∈D,j∈D

[
pjpji

(
− xixj

⟨d−1⟩di
+ 2

Aii

N
xixj

)

− 2
∑
k

pkpjpjiAikxjxk + 2
∑
k

pkpjpjiAikxixk

]
= 0

=⇒
∑

i∈D,j∈D

[
pjpji

(
− xixj

⟨d−1⟩di
+ 2

Aii

N
xixj

)

− 2
∑
k

pipjpjkAkixixj + 2
∑
k

pjpkpkiAijxixj

]
= 0. (77)

For the coefficients of the quadratic terms to sum to zero, the following set of equations must be satisfied230

pjpji

(
− 1

⟨d−1⟩di
+ 2

Aii

N

)
− 2

∑
k

pipjpjkAki + 2
∑
k

pjpkpkiAij

+ pipij

(
− 1

⟨d−1⟩dj
+ 2

Ajj

N

)
− 2

∑
k

pjpipikAkj + 2
∑
k

pipkpkjAij = 0.

(78)

Equations (74), (76), and (78) form a system of linear equations in which we solve for all the A terms.231

Next, we show that equation (76) is actually redundant given (74) and (78). To do so, we sum (78) by j232
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and apply (74) and write233

∑
j

pjpji

(
1

⟨d−1⟩di
− 2

Aii

N

)
+
∑
j

pipij

(
1

⟨d−1⟩dj
− 2

Ajj

N

)

+ 2
∑
jk

pipjpjkAki + 2
∑
jk

pjpipikAkj = 2
∑
kj

pipkpkjAij + 2
∑
kj

pjpkpkiAij

=⇒
∑
j

pjpji

(
1

⟨d−1⟩di
− 2

Aii

N

)
+
∑
j

pipij

(
1

⟨d−1⟩dj
− 2

Ajj

N

)

+ 2
∑
jk

pipjpjkAki + 2
∑
k

pipikAk = 2
∑
kj

pipkpkjAij + 2
∑
k

pkpkiAi

=⇒
∑
j

pjpji

(
1

⟨d−1⟩di
− 2

Aii

N

)
+
∑
j

pipij

(
1

⟨d−1⟩dj
− 2

Ajj

N

)

+ 2
∑
jk

pipjpjkAki + 2
∑
k

pipikAk = 2
∑
kj

pipjpjkAik + 2
∑
k

pkpkiAi

=⇒
∑
j

pjpji

(
1

⟨d−1⟩di
− 2

Aii

N

)
+
∑
j

pipij

(
1

⟨d−1⟩dj
− 2

Ajj

N

)
+ 2

∑
k

pipikAk = 2
∑
k

pkpkiAi

(79)

Lastly, we set this equal to two times equations (76),234

∑
j

pjpji

(
1

⟨d−1⟩di
− 2

Aii

N

)
+
∑
j

pipij

(
1

⟨d−1⟩dj
− 2

Ajj

N

)
+ 2

∑
k

pipikAk − 2
∑
k

pkpkiAi

= 2
∑
j∈D

[
− pjpji

(
Aii

N
+Ai

)
+ pipij

(
1

⟨d−1⟩dj
− Ajj

N
+Aj

)]
= 0

=⇒
∑
j

pjpji

(
1

⟨d−1⟩di

)
+
∑
j

pipij

(
1

⟨d−1⟩dj

)
+ 2

∑
k

pipikAk − 2
∑
k

pkpkiAi

= 2
∑
j∈D

[
− pjpjiAi + pipij

(
1

⟨d−1⟩dj
+Aj

)]

=⇒
∑
j

pjpji

(
1

⟨d−1⟩di

)
+
∑
j

pipij

(
1

⟨d−1⟩dj

)
= 2

∑
j∈D

pipij

(
1

⟨d−1⟩dj

)

=⇒
∑
j

pjpji

(
1

⟨d−1⟩di

)
=
∑
j∈D

pipij

(
1

⟨d−1⟩dj

)
. (80)

This last equation is true by the handshaking lemma (see (29)). This proves that (76) is redundant given235

(74) and (78) and therefore we need only solve a much smaller set of equations.236
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To conclude, we can approximate the fixation probability using237

P (x) ≈ 1

⟨d−1⟩
∑
i∈D

pixi

di
+ s

∑
ij

pipjAijxi(1− xj), (81)

where Aij is found by solving (78).238
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5 Supplementary figures239
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Figure S1: Comparison with previous analytical methods. The dots represent represent ensemble av-
erages across 106 replicate Monte Carlo simulations, while the lines represent our analytical approximations.
Previous approximation made using analytical results for weak selection from McAvoy and Allen (2021).
Panel A corresponds to the death-Birth update rule, while Panel B shows results for thre Birth-death
process. We use preferential attachment PA graphs, graph size N = 100 and Ns = 5.
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Figure S2: Comparison with previous analytical methods. The dots represent represent ensemble av-
erages across 106 replicate Monte Carlo simulations, while the lines represent our analytical approximations.
Previous approximation made using analytical results for weak selection from McAvoy and Allen (2021).
Panel A: We show results for the death-Birth process on preferential attachment graphs with mean degree
equal to 5.88 and variance in degree is 4.75. Graph size N = 100. Ns ranges from 0.001 to 10. Panel B:
We show results for the Birth-death process on preferential attachment graphs with mean degree equal to
5.88 and variance in degree is 266.3. Graph size N = 100. Ns ranges from 0.001 to 10.
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Figure S3: Visualizing the space of network statistics explored. We use principle component analysis
on six graph characteristics (mean, variance, third moment, modularity, average clustering, and assortativ-
ity). Each graph family clusters together and we use novel network generation algorithms to explores the
spaces in between generation algorithms that are family-specific. The black line represents a trajectory in
PCA space of the rewiring from PA to RGG. The trajectory starts at PA and passes through PLC and
RGG(uniform) to RGG(normal).
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A B C

Figure S4: Analytical approximation of the solution to the diffusion equation for the death-Birth
process. The lines are the approximation of fixation probabilities using (35). The dots are approximations
using the numerical solutions of (21). Each dot represents a distinct graph. There are 5703 graphs presented.
Graph size N = 1000. The various colors represent different network families. Panel A s = 0.01, Ns = 10;
Panel B s = 0.05, Ns = 50; and Panel C s = 0.1, Ns = 100.
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A B C

Figure S5: Analytical approximation of the solution to the diffusion equation for the Birth-death
process. The lines are the approximation of fixation probabilities using (66). The dots are approximations
using the numerical solutions of (53). Each dot represents a distinct graph. There are 5703 graphs presented.
Graph size N = 1000. The various colors represent different network families. Panel A s = 0.01, Ns = 10;
Panel B s = 0.05, Ns = 50; and Panel C s = 0.1, Ns = 100.
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Figure S6: Robustness of cutoff distance for the bone marrow networks. Similar to Figure 6 in
main text. Here we build the stem cell geometric random graphs and the color dots use cut-off distances
of 10 and 20. Grey dots are results from other cut-off ratios for comparison. Here, s = 0.01 and Ns varies
with population size. Results from at least 1 million simulations. Panel A: Birth-death update with cut-off
distance 10. Panel B: death-Birth update with cut-off distance 10. Panel C: Birth-death update with
cut-off distance 20. Panel D: death-Birth update with cut-off distance 20.
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Figure S7: The effect of varying the selection coefficient in the bone marrow networks. Similar
to Figure 6 in main text. Here we build the stem cell geometric random graphs and the color dots use cut-off
distances of 15. Results from at least 1 million simulations. Panel A: Birth-death update with s = 0.05.
Panel B: death-Birth update with update with s = 0.05. Panel C: Birth-death update with update with
s = 0.1. Panel D: death-Birth update with update with s = 0.1.
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List of Figures251

Figure S1. Comparison with previous analytical methods. The dots represent represent ensemble252

averages across 106 replicate Monte Carlo simulations, while the lines represent our analytical253

approximations. Previous approximation made using analytical results for weak selection from254

McAvoy and Allen (2021). Panel A corresponds to the death-Birth update rule, while Panel255

B shows results for thre Birth-death process. We use preferential attachment PA graphs, graph256

size N = 100 and Ns = 5.257

Figure S2. Comparison with previous analytical methods. The dots represent represent ensemble258

averages across 106 replicate Monte Carlo simulations, while the lines represent our analytical259

approximations. Previous approximation made using analytical results for weak selection from260

McAvoy and Allen (2021). Panel A: We show results for the death-Birth process on preferential261

attachment graphs with mean degree equal to 5.88 and variance in degree is 4.75. Graph size262

N = 100. Ns ranges from 0.001 to 10. Panel B: We show results for the Birth-death process on263

preferential attachment graphs with mean degree equal to 5.88 and variance in degree is 266.3.264

Graph size N = 100. Ns ranges from 0.001 to 10.265

Figure S3. Visualizing the space of network statistics explored. We use principle component analysis266

on six graph characteristics (mean, variance, third moment, modularity, average clustering,267

and assortativity). Each graph family clusters together and we use novel network generation268

algorithms to explores the spaces in between generation algorithms that are family-specific. The269

black line represents a trajectory in PCA space of the rewiring from PA to RGG. The trajectory270

starts at PA and passes through PLC and RGG(uniform) to RGG(normal).271

Figure S4. Analytical approximation of the solution to the diffusion equation for the death-272

Birth process. The lines are the approximation of fixation probabilities using (35). The dots273

are approximations using the numerical solutions of (21). Each dot represents a distinct graph.274

There are 5703 graphs presented. Graph size N = 1000. The various colors represent different275

network families. Panel A s = 0.01, Ns = 10; Panel B s = 0.05, Ns = 50; and Panel C276

s = 0.1, Ns = 100.277

Figure S5. Analytical approximation of the solution to the diffusion equation for the Birth-278

death process. The lines are the approximation of fixation probabilities using (66). The dots279

are approximations using the numerical solutions of (53). Each dot represents a distinct graph.280

There are 5703 graphs presented. Graph size N = 1000. The various colors represent different281
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network families. Panel A s = 0.01, Ns = 10; Panel B s = 0.05, Ns = 50; and Panel C282

s = 0.1, Ns = 100.283

Figure S6. Robustness of cutoff distance for the bone marrow networks. Similar to Figure 6 in284

main text. Here we build the stem cell geometric random graphs and the color dots use cut-off285

distances of 10 and 20. Grey dots are results from other cut-off ratios for comparison. Here,286

s = 0.01 and Ns varies with population size. Results from at least 1 million simulations. Panel287

A: Birth-death update with cut-off distance 10. Panel B: death-Birth update with cut-off288

distance 10. Panel C: Birth-death update with cut-off distance 20. Panel D: death-Birth289

update with cut-off distance 20.290

Figure S7. The effect of varying the selection coefficient in the bone marrow networks. Similar291

to Figure 6 in main text. Here we build the stem cell geometric random graphs and the color292

dots use cut-off distances of 15. Results from at least 1 million simulations. Panel A: Birth-293

death update with s = 0.05. Panel B: death-Birth update with update with s = 0.05. Panel294

C: Birth-death update with update with s = 0.1. Panel D: death-Birth update with update295

with s = 0.1.296
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