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Reviewers' comments:

Reviewer #1 (Remarks to the Author):

The work of Rajamani et al. presents a stafisfical tour-de-force of the latest iterafion of Lead-DBS 

analyses to the study of subthalamic deep brain sfimulafion (DBS) for the treatment of Parkinson’s 

disease (PD). The study has several strengths in both concept and pracfice. These include an evaluafion 

of the hypothesis that acfivafion of specific pathways can be related to the modulafion of specific 

symptoms, and the analysis of a large cohort of subjects from mulfiple insfitufions. However, the study 

also suffers from several fundamental flaws that make the results highly quesfionable, and those 

reservafions are only reinforced by the especially weak correlafions. In addifion, the retrospecfive nature 

of the analyses is a major limitafion. Overall, it is unclear how this paper, with the countless other papers 

from this group, using these ~same datasets and ~same methods, are confinuing to provide any new 

knowledge or insight to the field.

Specific Comments:

1) Pafient data. A primary strength of the study is the relafively large N. However, that number is 

somewhat misleading, as only a single DBS parameter sefting and corresponding outcome measure is 

available for each subject. As such, the actual density of data is quite weak. A far more valuable situafion 

would be if many different seftings, at many different electrode contacts, were tested and evaluated for 

each subject. In turn, a basic flaw of this study is the highly unrealisfic assumpfion that all subjects have 

a “common” response to sfimulafion in the same anatomical locafion of the brain atlas. This is almost 

certainly false, but there is no way to account/represent this variability with this clinical dataset.

2) Atlas brain model. The Horn group has successfully popularized the concept of using a “normafive” 

connectome to study DBS and there are many scienfific and stafisfical advantages to this approach. 

However, while the “v2 tract atlas” used in this study appears to be an interesfing update, it is not 

something that has been reviewed/legifimized/validated in the literature, by either anatomists or 

imaging people. In fact, it appears to be a “Frankenstein” of many different models/methods. As such, its 

value/ufility/appropriateness is unknown. Such things should be vefted in the literature first and then 

used for correlafion analyses second.

3) DBS model. Any issues related to “pafient-specific” vs. “atlas” analyses aside, the methods for 

represenfing “DBS” in this study are terribly flawed. While the Lead-DBS literature insists that they have 

“validated” their methods, the simple reality is that they have not. To my knowledge there has never 

been a published study dedicated to explicitly comparing the biophysical models used in Lead-DBS to any 

established standards or electrophysiological measurements (for either the E-field model or the neural 

response predictor funcfion). The only comparisons that are available in the literature suggest that the 

simulafions performed in Lead-DBS are grossly inaccurate. In addifion, the analyses performed in this 

study make the ridiculous assumpfion that the DBS lead locafion is precisely known for each subject, and 

that there is zero variability associated with that component of the model. Given the clinical datasets 

used in this study, the reality is that ~2mm of anatomical uncertainty is associated with each data point 

in Figure 1. That anatomical uncertainty translates into far greater variability and uncertainty in the 

pathway acfivafion predicfions than accounted for in this study.



4) Given the weak data and methodology used in this study, poor correlafion coefficients are too be 

expected. Nonetheless, R^2 values this bad are not real results, but instead the correlafions are more 

likely to be just noise. Either way, their relevance to clinical DBS programming algorithm development or 

mechanisfic understanding is minimal.

5) A single example, tesfing a single predicfion of a model, is not a “prospecfive” study. The provided 

example is also far from compelling, as clinical experience has long known that you can sfimulate a 

subject with many different parameter seftings (or different contacts) and get good/similar clinical 

results. The “Cleartune” algorithm sounds promising, but similar to the “v2 tract atlas”, this tool needs to 

be properly vefted in a dedicated publicafion. In addifion, the “innovafion” of this tool, and the study in 

general, is greatly overstated. Prospecfive clinical tesfing of model-based DBS parameter selecfion has 

been going on for more than a decade, and there are already commercial products with demonstrated 

success. Similarly, there is nothing new/novel about the concepts of “connectomic” DBS programming 

for PD.

Reviewer #2 (Remarks to the Author):

The aim of this study was to invesfigate deep brain sfimulafion on PD pafients

The paper is well wriften and clear.

I have only some minor comments.

- The authors did not give any details about diffusion tensor imaging in the three centres. Did the 

authors conduct sequence harmonizafion?

- In the same line, did the authors invesfigate center effect?

- The algorithm “Cleartune” is an interesfing perspecfive and could have a clinical value. However, 

Cleartune appears as a prognosfic black box. It is not clear which data were used to set up the algorithm, 

and what kind of methods is used to predict. Did the authors use the same retrospecfive data for 

learning? How the predicfion is calculated? The readers needs more details about this tool and a 

validafion prospecfive study.

This work showed a symptom network library and proposed a tool to suggest monopolar sfimulafion 

seftings. The first part is very interesfing and perfectly documented. Unfortunately, even if Cleartune 

appears promising, validafion needs a prospecfive clinical study (more than one pafient). May be the 

authors could more focus only on the first part.



Reviewer #3 (Remarks to the Author):

The ability to predict exact locafions of opfimal STN deep brain sfimulafion to improve the unique 

symptoms of individual pafients is an important challenge in the field. This manuscript seeks to 

personalize deep-brain sfimulafion programming by examining the associafion of specific symptom 

improvement (tremor, bradykinesia, axial improvement) with sfimulafion of specific network targets that 

connect to various brain regions. The goal is to create a three-dimensional symptom-circuit model in 

standard stereotacfic space and to predict opfimal therapy by sfimulafing mulfiple contacts on a single 

electrode. The study builds on previously published work. At the same fime, the claimed benefits lack 

validafion and therefore appear somewhat overstated. Inclusion of a single pafient with improved results 

when tested for a 24 hour period with algorithmic recommendafions is unconvincing.

Major Comments:

1. Acfive contacts are visualized after atlas-based co-registrafion with Lead-DBS software. Figure 1 shows 

the striking heterogeneity of contact locafions in the STN region with some contacts located far from 

tradifional sites of sfimulafion. This distribufion seems highly unlikely, parficularly given that 2 mm shifts 

in sfimulafion result in dramafic changes in therapeufic efficacy. It suggests that the apparent variability 

of acfive contact locafion may reflect differences introduced through the atlas-fifting process. Validafion 

is needed. Where postoperafive MRI data is available, the matching of atlas-based localizafion to the MR 

visualized STN (or co-registrafion of post-operafive CT and pre-operafive MRI) needs to be 

demonstrated.

2. It is not clear how the symptom-network library was generated. An exisfing “DBS tractography atlas”, 

appears to be manually adjusted with a “more exhausfive” set of connecfions. The placement of 

expected or anficipated tracts is confusing, since the claimed streamline resolufion far exceeds that of 

standard DTI imaging. In the discussion, the authors point this out, but do not address how the issue was 

resolved, allowing fight differenfiafion despite blurring associated with atlas-based fifting. Please clarify 

how the locafions of these highly defined tracts were determined and validated.

3. Further, it further appears that the data were used to define the tracts and then the proposed tracts 

were used to interpret the same data, creafing a potenfial circularity of logic (despite leave-one-out 

analysis). While using populafions to refine tracts seems reasonable. At the same fime, each of these 

should produce an average (or median) and a distribufion. No such spread is shown. Spafial variability 

introduced by fifting to the atlas is not well quanfified and its impact on the library generafion is not 

explored.

3. Rather strong conclusions are drawn from relafively weak localizafion correlafions, and the raw data 

for these correlafions are not shown. For example, correlafion coefficients of 0.23 and 0.18 would 

correspond to explaining only a finy fracfion of the variance in outcomes. This manuscript, and cited 

work, would be greatly strengthened with a model that explains clinical outcomes to a significant degree 

and then determines the porfion aftributable to acfive contact locafion.

4. The Cleartune algorithm seeks to opfimize contact posifion by maximizing sfimulafion over symptom-



specific tracts. If successful, such an algorithm would be helpful to adapt programming as the disease 

progresses. The authors argue that where programming agreed with Cleartune, outcomes were befter 

than those where programming differed. However, there are two striking issues that arise:

(1) Based on the model, the authors claim that an average of 21% improvement would be expected by 

using Cleartune. The amalgamafion of matching and adjacent contact into a single group is quesfionable. 

If the algorithm is in fact correct, then one would expect matching > adjacent > different. These 

categories should be separated and should show a clear trend, if this approach is valid.

(2) In addifion, there should be some explanafion why, even with monopolar sfimulafion, that the expert 

neurologists in these centers were unable to idenfify the opfimal sites of sfimulafion, and fell short by an 

astounding 21% on average. Again, this seems very unlikely, and likely overesfimates the potenfial 

benefit of the algorithmic approach. A notable shortcoming of the study is that undesired side effects of 

sfimulafion are ignored. Hence, the failure to sfimulate the modeled opfimal site may simply be that 

sfimulafion at the site was accompanied by undesirable side effects.

5. The prospecfive applicafion of Cleartune in a single pafient is anecdotal and contributes liftle. At a 

minimum, these three centers could examine 10-20 pafients prospecfively to help validate the 

methodology. For each pafient, individualized imaging to show the locafion of the acfive contact with 

respect to the MR visualized STN also should be presented to confirm the accuracy of the atlas fifting. In 

addifion, the study should confirm the accuracy of the streamline predicfions with individual data (to the 

degree that DTI resolufion allows).

In summary, the manuscript asks important quesfions and pursues an interesfing quanfitafive modeling 

and atlas-based approach. At the same fime, the work lacks crifical and necessary validafion steps 

(confirmed accuracy of the atlas-based fit, confirmed locafion of symptom specific streamlines, an 

explanafion of why programming performance was so poor, and appropriately controlled prospecfive 

data) to jusfify the authors claims of potenfially strong benefits to pafients.



Rajamani et al - Response to Reviewers 

Nature communications, NCOMMS-23-08030    

Points made by reviewers 

Response by authors 

Additions/Changes to the manuscript 

 

Reviewer #1: 

The work of Rajamani et al. presents a statistical tour-de-force of the latest iteration of 

Lead-DBS analyses to the study of subthalamic deep brain stimulation (DBS) for the 

treatment of Parkinson’s disease (PD). The study has several strengths in both concept 

and practice. These include an evaluation of the hypothesis that activation of specific 

pathways can be related to the modulation of specific symptoms, and the analysis of a 

large cohort of subjects from multiple institutions. However, the study also suffers from 

several fundamental flaws that make the results highly questionable, and those 

reservations are only reinforced by the especially weak correlations. In addition, the 

retrospective nature of the analyses is a major limitation. Overall, it is unclear how this 

paper, with the countless other papers from this group, using these ~same datasets and 

~same methods, are continuing to provide any new knowledge or insight to the field. 

 

We would like to thank the reviewer for the thoughtful and critical comments that helped us 

drastically revise the manuscript. We added a large number of novel analyses and novel 

datasets to further strengthen the impact and rigor of our study. We hope that these additions 

may convince the reviewer that our manuscript may be a valuable contribution to the field.  

 

Patient data. A primary strength of the study is the relatively large N. However, that 

number is somewhat misleading, as only a single DBS parameter setting, and 

corresponding outcome measure is available for each subject. As such, the actual density 

of data is quite weak. A far more valuable situation would be if many different settings, at 

many different electrode contacts, were tested and evaluated for each subject. In turn, a 

basic flaw of this study is the highly unrealistic assumption that all subjects have a 

“common” response to stimulation in the same anatomical location of the brain atlas. 

This is almost certainly false, but there is no way to account/represent this variability 

with this clinical dataset. 

https://mts-ncomms.nature.com/cgi-bin/main.plex?form_type=view_ms&j_id=18&ms_id=415535&ms_rev_no=0&ms_id_key=ftdLTazvijQAIhIxxQUHqkJRw


We have validated results based on the following additional datasets: 

1. In a first step, we used the original model to estimate variance in outcomes within an 

entirely independent dataset of 93 patients from two centers for which a single setting per 

patient and long-term clinical outcomes were available. The dataset has the same 

limitations raised by the reviewer but may still demonstrate i) estimates made by the 

original model generalize to unseen data and ii) a comparable multi-tract model can be 

seen when re-calculating it on this entirely independent dataset. 

2. In a second step, we used the original model to estimate variance in outcomes in a dataset 

that is structured following the suggestions by the reviewer. This dataset is particularly 

interesting since it tested improvements in the same ten patients (20 electrodes) using 

many settings along a segmented electrode. Within a prospective double-blind trial, the 

same segmented level had been tested in ring-mode (omnidirectional setting) and each 

segment alone, each using multiple amplitudes. First, predictions made for each setting 

positively correlated with empirical improvements for 19 of the 20 electrodes. Second, we 

could demonstrate that these estimates were symptom-specific: When tuning our model to 

estimate improvements for bradykinesia, it estimated bradykinesia improvements 

significantly better than rigidity improvements, and vice versa. Third, we used Cleartune 

to suggest the optimal contact settings for each of the 20 electrodes (solely informed by 

the N = 129 discovery cohort), which matched empirical choices quite well. 

The following sections were added / changed: 

 

"Symptom Associated Multi-Tract Model (Validation Cohorts) 

To test generalizability of our model, next, we recalculated the same multi-tract model on an 

independent set of 93 patients from the University of Würzburg and Beijing (Validation cohort 

I). The result anatomically matched the original model. Namely, connections between M1 and 

the STN as well as cerebellar tracts associated with tremor improvements. Axial symptom 

improvements correlated with streamlines adjacently anteriorly followed by the ones that 

associated with rigidity improvements (SMA and prefrontal regions). Using network blending, 

we were able to predict UP-DRS-III improvements in this validation cohort purely based on the 

original model calculated from the discovery cohort. These predictions significantly correlated 

with empirical improvements in the test dataset (R = 0.37, p < 0.001, figure 5 C).– results, pg. 

14 



 

Figure 5. Retrospective validation on long term clinical outcome data. A) The fiber distribution of the 

original model as shown in previous figures, B) fiber distribution when recalculating the multi-tract model on 

the independent test dataset (N = 93). C) Prediction of UPDRS-III improvements in the test set based on the 

original symptom specific model. 

 

"Cleartune – an algorithm to suggest stimulation parameters 

 

In the next step, we created an algorithm capable of suggesting optimal stimulation settings 

by maximizing stimulation of a specific set of symptom tracts in novel patients. Termed 

Cleartune, this algorithm tests stimulation fields based on the entire parameter space of 

stimulation parameters and suggests the one that receives the highest predicted 

improvements. Video S1 visualizes the process of the algorithm testing parameters to 

maximize outcomes in the four symptom domains for a specific directional electrode. To test 

utility of the algorithm, it was first applied to all patients within the retrospective cohort. This 

led to an alternate set of stimulation volumes which could be compared to the ones applied in 

clinical practice using spatial correlations. Here, higher spatial correlations meant greater 

similarity between the clinically applied E-fields and the ones suggested by the algorithm. 

Higher similarities correlated with better UPDRS-III improvements (R = 0.22, p = 0.001). 

The same was true when repeating the analysis on the validation cohort I which the model 

had not seen (R = 0.23, p = 0.03). Intuitively, this finding may be understood as follows: In 

cases in which parameters suggested by Cleartune agreed with the clinical ones, 

improvement was higher than in the ones for which the two settings disagreed. 

In a second step, we aimed at testing symptom-specificity of suggestions derived by 

Cleartune. To do so, we leveraged a unique dataset of 10 patients (20 electrodes; Validation 

cohort II), for which multiple settings had been tested in a prospective double-blinded clinical 

trial (N = 186) 30. These patients had been implanted with directional electrodes (Boston 



Scientific Vercise Cartesia) and for the directional levels with best clinical response, each 

segment had been tested in increasing 1 mA steps until a side effect occurred or until 

reaching 5 mA. In addition, the omnidirectional setting (switching on all three segments) was 

tested in the same way. As above, we calculated predictions for each setting using the 

original model (from the N = 129 discovery cohort). In 17 of the 20 electrodes, predictions 

positively correlated with clinical improvements (all correlation plots with over six data 

points are shown in figure S32). Naturally, a one-sample t-test across these R-values was 

significant (T = 4.155, p < 0.001; figure. 6). 

For each stimulation setting, bradykinesia and rigidity improvements were available 

separately. Only three of the ten cases had substantial tremor at baseline, so tremor could 

unfortunately not be analyzed. To test for symptom-specificity, we repeated the analysis two 

more times, each time maximally weighting either bradykinesia or rigidity in the multi-tract 

model. The model weighted for the correct symptom led to significantly higher correlations 

between predictions and empirical improvements across settings in each electrode for the 

correct vs. respective other symptom (p < 0.05 for both analyses; figure 6B and C)". – results 

14 - 16 



 

  



Fig 6. Retrospective validation on TWEED dataset. A) Left panel illustrates a raincloud plot where each data 

point represents the Spearman’s correlation coefficient between predicted and empirical UPDRS-III improvements 

for settings in one of the 20 electrodes. All correlation plots are shown in figure S32. The right panel gives four 

representative examples. Here, a red eclipse is used to represent the stimulation contact that renders the highest 

improvement in a given patient, while the contact chosen by the model is marked with a blue eclipse, 

corresponding stimulation fields are shown for the example electrodes. 

B and C) To assess symptom-specificity of the model, the analysis was repeated, this time maximally weighting 

either bradykinesia or rigidity symptoms, respectively. Correlations across settings in the 20 electrodes were 

almost all positive when the model was used to predict improvements in the correct symptom, but significantly 

dropped when used to predict improvements in the respective other symptom. In each panel, two representative 

examples of each correct vs. incorrect symptom pairings are given. 

 

"We validate results on multiple additional datasets of various nature from different centers. 

Third, based on the generated model, we introduced an algorithm capable of suggesting 

personalized and symptom-specific DBS stimulation parameters, which could similarly be 

validated in out of sample datasets and prospectively tested in five patients. Using monopolar 

review data acquired in patients with segmented electrodes, we were able to demonstrate 

symptom-specificity of the algorithm. Namely, a model tuned to predict bradykinesia outcome 

performed better to predict bradykinesia compared to rigidity outcomes, and vice versa." – 

discussion, pg.20 

 

Atlas brain model. The Horn group has successfully popularized the concept of using a 

“normative” connectome to study DBS and there are many scientific and statistical 

advantages to this approach. However, while the “v2 tract atlas” used in this study 

appears to be an interesting update, it is not something that has been 

reviewed/legitimized/validated in the literature, by either anatomists or imaging people. 

In fact, it appears to be a “Frankenstein” of many different models/methods. As such, its 

value/utility/appropriateness is unknown. Such things should be vetted in the literature 

first and then used for correlation analyses second. 

 

We took this concern very seriously. We had put a lot of effort into documenting the 

anatomical thoughts and data that went into the creation of the original atlas and had originally 

planned to publish this separately. In this process, we consulted with multiple anatomists & 

neuroimaging experts. We now attach the extensive material that documents the comparison 

between streamlines in the atlas and anatomical ground-truth data to the supplement of the 



present work. This led to the addition of co-authors that had helped us create the atlas. Since 

this documentation is bulky & extensive, we refrain from pasting it into the present document 

but refer to the supplementary material of the revised manuscript. We hope that the reviewer 

may appreciate the effort we undertook to create an anatomically plausible atlas model. 

 

Beyond the supplementary material not pasted here (since extensive), the following sections 

were added: 

 

" Symptom-Associated Multi-Tract Model (Discovery Cohort) 

An extended version of the DBS tractography atlas17 was used to define anatomical 

connections from and to as well as passing the STN (see methods and supplementary section 

S2)". – results, pg.8 

 

"Anatomical Tract Atlas 

To carry out DBS fiber filtering based on electric fields estimated and symptom improvements 

across the cohort of patients, we first established a streamline atlas using various sources of 

information. This work is based on two published streamline atlases 17,44 that were extended to 

include a more exhaustive set of tracts in and around the subthalamic region. The process 

involved diffusion MRI based tractography on a group average template, using manually 

defined regions of interest, inclusion of published resources, comparisons of results with the 

anatomical literature, cadaveric dissection studies, histology and ex-vivo imaging. 

Supplementary section S2 details methods and results that led to the resulting ‘DBS 

tractography atlas version 2’". – methods, pg.25 

 

Supplementary methods, Section S2 – bulky material, not pasted here. 

 

DBS model. Any issues related to “patient-specific” vs. “atlas” analyses aside, the 

methods for representing “DBS” in this study are terribly flawed. While the Lead-DBS 

literature insists that they have “validated” their methods, the simple reality is that they 

have not. To my knowledge there has never been a published study dedicated to explicitly 

comparing the biophysical models used in Lead-DBS to any established standards or 

electrophysiological measurements (for either the E-field model or the neural response 

predictor function). The only comparisons that are available in the literature suggest that 

the simulations performed in Lead-DBS are grossly inaccurate.  



We appreciate this concern raised by the reviewer but also note that it is not straight-forward to 

address: The reviewer expresses vague criticism against the entire software-suite that was used. 

We must respectfully disagree with the notion that none of the Lead-DBS tools and methods 

have been validated. Instead, Lead-DBS is the only open-source tool in the field that is actively 

developed by multiple institutions, and with over 1,000 empowered studies represents by far 

the most often applied scientific software in the field of DBS imaging. Alternative software 

packages are either limited to use by collaborators of their authors (such as pyDBS and 

StimVision) or have with few exceptions mainly used by the authors themselves (such as 

DBSproc). Based on this, no other tool has undergone a similar scrutiny that comes with a true 

open-source package (which benefits from the “many eyes / many developers” principle). A 

large list of scientific colleagues in the field use and apply the software on a daily basis 

(https://www.lead-dbs.org/about/publications/) and bugs / issues are reported and fixed in a 

very active community of developers (https://github.com/netstim/leaddbs). The electrical 

model behind the software builds upon the SimBio / FieldTrip architecture which is one of the 

key standards in the field of EEG and builds upon an even larger open-source community. 

When it comes to validations, we are unaware of reports that show that these simulations are 

“grossly inaccurate” and would be very open for the reviewer pointing us to this specific 

literature, if possible. 

Instead, we are aware of a long list of publications that have directly, or indirectly validated 

models derived by Lead-DBS. We attach a novel supplementary table to the manuscript which 

we also paste below. Since extensive, we refrain from going into details of each study, but are 

happy to elaborate more in case the reviewer feels appropriate. Critically, some of these 

validations are of indirect nature (such as predictions of clinical outcomes in unseen datasets). 

However, others are directly targeted to validate specific components of the pipeline (such as 

interrater and inter-modality comparisons of electrode placements or direct comparisons 

between LFP and imaging derived definitions of subcortical nuclei) or include prospective 

clinical trials that clinically applied Lead-DBS, successfully. In their sum, we feel that these 

studies may demonstrate accuracy and utility of the Lead-DBS toolbox, a table describing these 

studies is included in supplementary materials, table S2. 

  

https://www.lead-dbs.org/about/publications/
https://github.com/netstim/leaddbs


Table S2: Published reports in support of Lead-DBS methodology. 

The table outlines studies which demonstrated the utility of the Lead-DBS toolbox, each validating specific 

aspects (or multiple aspects) of its processing pipeline. Critically, some of these validations are of indirect measure 

(such as predictions of clinical outcomes in unseen datasets). However, others are directly targeted to validate 

specific components of the pipeline (such as interrater and inter-modality comparisons of electrode placements or 

direct comparisons of LFP and imaging derived definitions of subcortical nuclei). In their sum, these studies may 

demonstrate accuracy and utility of the Lead-DBS toolbox. Abbreviations: CT: Computed Tomography, STN: 

subthalamic nucleus, GPi: internal pallidum, MER: Microelectrode recordings, MUA: Multiunit activity, VTA: 

volumes of tissue activated, PD: Parkinson’s disease, DYT: dystonia. 

 

 

Validated 

Concept 

Validated 

using… 

Study Notes 

Electrode 

Localization

s 

Phantom 

Validations 

3 

 

This study validated the automatic electrode detection algorithm 

applied in Lead-DBS using phantom data scanned in the CT. 

Test-Retest / 

Inter-rater 

agreement 

4 

 

The study compared electrode localizations carried out by six raters 

after minimal training, showing an average difference in 

localizations between 0.52–0.75 mm. 

LFP-

Recordings 

5–7 These studies showed that peak beta-power magnitudes (and other 

LFP markers) localized to a common site within the STN across PD 

patients, which requires millimeter precision of electrode 

localizations. 

8 This study showed that theta-power magnitudes localized to a 

specific site within the GPi across DYT patients, which requires 

millimeter precision of electrode localizations. 

9 

 

These studies showed that gamma-power magnitudes localized to a 

common site within the STN across PD patients that executed a 

movement task, which requires millimeter precision of electrode 

localizations. 

  10 

 

This study showed that high-spatial-resolution STN microelectrode 

electrophysiology recordings of PD patients (933 electrode 

trajectories) matched DBS electrode localizations obtained with 

Lead-DBS using imaging data.  



Validated 

Concept 

Validated 

using… 

Study Notes 

  11 This study evidenced a strong accuracy in the position of electrode 

localized with Lead DBS (postoperative image reconstruction) and 

anatomical locations of intraoperative individual MERs (231 

MERs, 144 in 34 STNs, 7 in 4 thalami, 5 in 4 ZIs, 34 in 10 SNs, 41 

others) with an average difference in depth of the dorsal STN entry 

of 0.1 mm (standard deviation: 0.8 mm).  

  12 This study showed the concordance between probabilistic electrode 

locations using Lead-DBS and intraoperative local field potential 

recordings in PD patients implanted in the STN with Vercise 

Cartesia directional electrodes (Boston Scientific). 

 CT/MRI 

comparisons 

4,13,14 These studies showed highly comparable results when localizing 

electrodes based on postoperative CTs vs. MRIs. 

 Comparison 

to other 

software 

14 This study compared DBS electrode reconstruction performed with 

Lead-DBS and Surgiplan and showed no significant difference in 

the relative distance of the electrode and the STN between the two 

methods (around 1mm coordinate difference).  

Directionalit

y Detection 

Phantom 

validations 

15,16 These studies extensively validated the DiODe algorithm used for 

directionality detection using phantom and clinical datasets. 

 Temporal 

Stability / 

Test-Retest 

Estimates 

17 This study analyzed the temporal stability of directional DBS lead 

orientation using the DiODe algorithm implemented in Lead-DBS 

for 29 leads at 48 timepoints (up to 811 days). The mean difference 

of the orientation angles compared to the initial measurement was –

1.1 ± 3.9° (no significant difference), showing the constancy of the 

model over time and indirectly showing test-retest comparability of 

DiODe. 

 Resolving 

marker 

ambiguity 

(Dem

bek et 

al. 

2021) 

This study addressed the marker ambiguity of Boston Scientific 

directional leads. Provided sufficient CT quality and polar angles, 

ambiguity was resolved correctly in 100% of cases. Results were 

validated against stereotactic x-ray. 



Validated 

Concept 

Validated 

using… 

Study Notes 

 Interuser 

reliability 

DiODe  

(Henr

y et 

al. 

2023) 

This study investigated DiODe in data from two centers for both 

Abbott (DiODe not validated) and Boston Scientific directional 

leads. Intraclass correlation coefficients were >0.95 for both types 

of leads when using the automatic workflow but reduced to 0.88 for 

Abbott leads when using the manual workflow. Deviations between 

at least two users >30° were seen in 6.1 % of leads for Boston 

Scientific and 16 % of the Abbott leads. Images. Of note, none of 

the imaging matched the quality criteria regarding slice thickness 

for which DiODe has been validated. 

Bioelectric 

Modeling 

LFP-

Recordings 

18 The study showed a significant inverse correlation between % of 

the subthalamic nucleus stimulated (as modeled by Lead-DBS) and 

the %-change in beta burst durations. 

 Comparison 

to alternate 

software 

19 This study compares bioelectrical models calculated with the Lead-

DBS pipeline to a more elaborate software (OSS-DBS, also used to 

validate findings in the present article). 

 Clinical and 

side-effect 

thresholds 

20 This study created models based on overlaps of stimulation 

volumes calculated with Lead-DBS and two fiber bundles. Models 

indicated an activation of 50% of the hyperdirect pathway at effect 

threshold, and 4% of the corticospinal tract at capsular side effect 

threshold. Median suggestion errors for the effect threshold and side 

effect threshold were 1 and 1.5 mA, respectively.  

Segmentatio

n of deep 

nuclei 

Comparison 

to manual 

expert 

segmentatio

ns 

21 This study led to the current default settings of Lead-DBS which 

were capable of segmenting STN and GPi nuclei almost as 

accurately as expert segmentations (comparison to interrater DICE 

scores and surface distances. 

  22 External validation of the 21 study (above). 

 MER/MUA 11,23 This study demonstrated high agreement between definitions of the 

subthalamic nucleus by microelectrode recordings and anatomical 

segmentations carried out by Lead-DBS. 

Brain Shift 

Correction 

Algorithm 

MER/MUA 23 This study compared the fit between microelectrode recordings 

before and after applying the brain shift correction implemented in 

Lead-DBS and showed significant increase in fit. 



Validated 

Concept 

Validated 

using… 

Study Notes 

Sweetspot 

mapping 

Synthetic 

Ground truth 

Datasets 

24 This study compared various published concepts to carry out 

sweetspot mapping using a synthetic ground truth dataset. All 

concepts were implemented into Lead-DBS and the winning 

concept was chosen as the default parameter. 

 Clinical 

Datasets 

25 This study compared various proposed concepts of sweetspot 

mapping as implemented in Lead-DBS and their utility to predict 

out-of-sample data in an STN-DBS cohort of patients with PD 

(N=95).  

Behavioural 

Outcome 

Predictions 

Behavioral 

tasks 

26 This study used Lead-DBS derived models to explain variance in 

changes of reaction time and movement velocity in a behavioral 

task setting as a function of STN-DBS in 20 patients with PD. ~56-

76% of variance in behavioral changes explained (out of sample 

data). 

  27 This study used Lead-DBS derived models to explain variance in 

motor learning in a behavioral task setting as a function of STN-

DBS in 20 patients with PD. 33% of variance in behavioral changes 

explained (out of sample data). 

Clinical 

Outcome 

Predictions 

Clinical 

scores 

28 This study showed a significant correlation between clinical 

improvements (%-UPDRS-III) in PD-patients undergoing STN-

DBS with i) electrode placement (distance to an optimal target 

coordinate), ii) VTA coverage of the STN as modeled by Lead-

DBS and iii) structural connectivity to the supplementary motor 

area seeding from the modeled VTA 

  29 This study estimated clinical improvements (% UPDRS-III in STN-

DBS for PD) based on structural and functional connectivity 

seeding from the modeled VTA. An optimal connectivity profile 

was calculated on a first cohort and used to estimate outcomes in an 

unseen second cohort operated by a second surgeon at a different 

center. 

  (Dem

bek et 

al., 

2019) 

This study generated sweetspots for PD motor symptoms from 

monopolar review data and used these to predict outcomes in an 

external cohort of monopolar review data. 



Validated 

Concept 

Validated 

using… 

Study Notes 

  25 This study demonstrated validity of predictive models on local, 

tract- and network-levels using Lead-DBS to estimate motor 

response in Parkinson’s Disease (%-UPDRS-III). 

  30 This study estimated clinical improvements (% TRS in VIM-DBS 

for ET) based on structural and functional connectivity seeding 

from the modeled VTA. The optimal connectivity profiles were 

used to estimate outcomes in unseen patients using a leave-one-out 

design. ~13-16% of variance in clinical improvements explained 

(out of sample data). 

  31 This study estimated clinical side-effects (% BDI in STN-DBS for 

PD) based on structural connectivity seeding from the modeled 

VTA. A connectivity profile was associated with postoperative 

depression based on a first cohort and used to estimate outcomes in 

an unseen second cohort operated by a second surgeon at a different 

center (and vice-versa). A third test-cohort was used to further 

validate the model. ~10-33% of variance in clinical improvements 

explained (out of sample data). 

  32,33 These studies established a tract that, when stimulated, would lead 

to improvements of OCD symptoms following DBS to either the 

ALIC or STN target. Results were cross-validated across targets, 

cohorts and centers. 

~25-56% of variance in clinical improvements explained (out of 

sample data). 

  34 External validation of the 33 study (above). 

  35 External validation of the 33 study (above). 

  36 External validation of the 33 study (above). 

  37 External validation of the 33 study (above). 

  38 Blinded validation of the 33 study (above). 

  39 

 

This study used functional connectivity as input for a machine 

learning model and evidenced that connectome-based model is able 

to predict STN-DBS outcome in 50 patients with Parkinson’s 

Disease. 



Validated 

Concept 

Validated 

using… 

Study Notes 

  40 This study showed that 6 neuroanatomical parameters computed by 

Lead-DBS (distance of each contact to the STN and the motor part 

of the STN, volume of the overlapping areas of the VTA and STN/ 

and motor part of the STN, and the number and ratio of fiber tracts 

through both the VTA and motor areas) were individually relevant 

to determine group differences between clinical optimal and 

nonoptimal outcomes. Additionally, the combined use of all 6 

parameters suggested optimal contact selections with an accuracy of 

73%. 

  41 This study showed the relationship between the position of bilateral 

STN-DBS location of active contacts and clinical efficacy of the 

therapy on motor symptoms in 57 Parkinson’s disease patients. 

  42 This multicenter international study demonstrated the correlation 

between non-motor outcomes and DBS electrode location in 91 

Parkinson’s Disease patients. 

Automatic 

programmin

g 

Clinical 

scores 

43 This study evidenced that automated data-driven algorithms 

(StimFit) predict stimulation parameters that lead to motor 

symptom control comparable to standard of care treatment in PD 

patients implanted in the STN.  

  Norde

nströ

m et 

al., 

2022) 

This study suggested stimulation parameters in silico based on a 

sweetspot for STN-DBS in PD. Retrospective comparison showed 

the method suggested the correct level in 56% of cases (25% 

chance level) and the best contact in 42% of cases (12.5%) chance 

level. 

 

 

 

In addition to this, we recalculated our main result (the multi-tract model) using an additional 

software package that was developed by a different team (at University of Rostock) which is 

also openly available and was hence available to us. The software, OSS-DBS, is capable of 

estimating pathway activations building upon the concept introduced by Gunalan et al. 2017 

(from the reviewer’s lab). 

 



The resulting symptom-specific tract model shows the same general topography as our results 

calculated with the FieldTrip / SimBio pipeline. The following sections were added to 

document this effort: 

 

“Third, we aimed to rule out that our results would be specific to the processing pipeline used 

for biophysical modelling (FieldTrip / SimBio pipeline 26 as adapted for Lead-DBS). Thus, we 

recom-puted results using the pathway activation modelling concept using a more elaborate 

pipeline that was independently created by a different team, OSS-DBS 27. The resulting model 

shared a similar topography with the one created by our default pipeline and performing a k-10 

cross validation yielded significant correlation coefficients (Rmultitract = 0.40, p = 0.001; 

Rsingletract = 0.34, p = 0.03; figure S29).” 

– results, pg.12 

 

Multi-tract implementation of OSS-DBS 

OSS-DBS is an open-source toolbox for deep brain stimulation modeling based on a highly de-

tailed volume conductor coupled with axon-cable models 65, allowing to compute pathway 

activation as described in58. In this study, we used ICBM 2009b Nonlinear Asymmetric space 

(“MNI”) for the brain segmentation to be consistent with the methodology employed in the 

main analysis. This brain segmentation was used to describe the electric conductivity 

distribution in the vicinity of the electrode. For specific frequency and tissue dependent values 

see66. Furthermore, normative diffusion data67 were used to incorporate brain tissue anisotropy 

which is largely present along large white matter tracts. The electric field problem was then 

solved for the given stimulation protocols following the Fourier Finite Element Method68 using 

the quasistatic formulation of Laplace’s equation. The resulting distribution of the electric 

potential in time and space (along fibers of DBS Tractography Atlas, V2) described the 

extracellular membrane potential that was used to solve the cable equation for the widely 

employed mammalian axon model described in69. Lengths of the axon models were adjusted to 

the lengths of the corresponding fibers, and the diameters were set to 3.0 µm, which is a 

compromise among the values reported in70–72. If the model responded with an action potential, 

it was considered “activated”. After computing such states for all fibers across all stimulation 

protocols, we conducted a two-sample T-test considering fibers activated in at least 5% of 

stimulations. The two sample T-test compared clinical improvements for the cases where the 

fiber was “activated” against improvements where it was not, analogous to the method 



employed in64, but based on the biophysical axon model instead of the stimulation volume." – 

methods, pg.28 

 

In addition, the analyses performed in this study make the ridiculous assumption that the 

DBS lead location is precisely known for each subject, and that there is zero variability 

associated with that component of the model.  

Given the clinical datasets used in this study, the reality is that ~2mm of anatomical 

uncertainty is associated with each data point in Figure 1. That anatomical uncertainty 

translates into far greater variability and uncertainty in the pathway activation 

predictions than accounted for in this study. 

 

We agree that modeling the effect of uncertainty in electrode placement is an exciting idea to 

empirically test how robust the multi-tract model would be as a function of electrode placement 

(and subsequently, stimulation volumes). The following sections were added to address this: 

 

"Second, we tested how robust our results were regarding spatial inaccuracies of each 

stimulation site. To test this, we iteratively recalculated the symptom specific tract model 1,000 

times, each time after spatially jittering each electrical field based on a 3D Gaussian 

distribution with 2 mm full width half maximum. The resulting models were highly similar to 

one another (and to the unjittered version) with an average mean spatial correlation of R > 0.8. 

Details and example visualizations of jittered models are shown in figure S28. Third, we aimed 

to rule out that our results would be specific to the processing pipeline used for biophysical 

modelling (FieldTrip / SimBio pipeline 26 as adapted for Lead-DBS)". – results, pg.12 

 

 



 

 

Figure S28: To test robustness of model results as a function of spatial uncertainty in stimulation sites, we 

recalculated the model 1,000 times, each time after spatially jittering electric fields based on a 3D Gaussian 

distribution with 2 mm full width half maximum. Resulting models were highly similar (correlations of fiber 

weightings across fibers are shown in the figure, four example models are shown). 

 

  



Correlation results. Given the weak data and methodology used in this study, poor 

correlation coefficients are too be expected. Nonetheless, R^2 values this bad are not real 

results, but instead the correlations are more likely to be just noise. Either way, their 

relevance to clinical DBS programming algorithm development or mechanistic 

understanding is minimal. 

 

We agree with the reviewer, that at first sight, a low R2 value may seem not clinically relevant. 

We outline our reasoning about the validity and significance of these findings in the newly 

added “Modelling Considerations” supplementary section: 

 

S.5 Modelling Considerations 

A natural question that may arise in the context of the present results is the validity of a model 

given the relatively low correlation coefficients (R), and consequentially, R2 values. To discuss 

this question, we would like to raise the following points (Fig S35).  

1.  First, we need to ask how much variance DBS modeling should at best explain in the first 

place. Clinical improvements are not just based on electrode placement and stimulation 

volumes, but governed by many factors, such as disease subtype, age, sex, levodopa response, 

duration of disease, comorbid other conditions, etc. We estimate that these factors alone will 

explain ~50% of DBS response34. 

2. Noise in clinical scores (inter- and intra-rater test-retest reliability of the UPDRS-III) will 

account for another 15%. 

3.  Imaging resolution and electrode placement & modeling inaccuracy may explain another 

15-20% of variance as mentioned by the reviewer above. 

4. The use of multi-site datasets such as in the present study may add residuals that may 

explain another 5-10% of the variance. 

Based on this assessment, we believe that ~10% explained variance (R values of ~0.3) may 

realistically be expected in a multi-site dataset such as the present one. However, we believe 

that such models are still useful because electrode placement / stimulation settings are the only 

factor that can be influenced, whereas other components such as patient age, disease type and 

disease onset are immutable. Therefore, identification of a robust, and highly optimal target 

that can only explain ~10% of variance would still remain an important finding in our field. 

– Supplementary Material, Section S5 



 

Figure S35. Modelling considerations. The pie chart shows the various factors that may influence the clinical 

outcomes of PD patients undergoing STN-DBS. Based on these competing factors, we concluded that the maximal 

amount of variance we should expect to be explainable by DBS models would be around ~10%.  

 

 

In addition, we would like to note that all the nuisance variables that the reviewer mentions (in 

this point and above) will bias our results against significance – it is not the other way around. 

In other words, the assumption that “R^2 values this bad are not real results, but instead the 

correlations are more likely to be just noise” does not match our knowledge about statistics. 

 

As outlined above, we now confirm the results in two additional datasets that are completely 

independent from the discovery dataset. We hope that the reviewer may be more convinced by 

these results.  

 



Cleartune. A single example, testing a single prediction of a model, is not a “prospective” 

study. The provided example is also far from compelling, as clinical experience has long 

known that you can stimulate a subject with many different parameter settings (or 

different contacts) and get good/similar clinical results. The “Cleartune” algorithm 

sounds promising, but similar to the “v2 tract atlas”, this tool needs to be properly vetted 

in a dedicated publication. In addition, the “innovation” of this tool, and the study in 

general, is greatly overstated. Prospective clinical testing of model-based DBS parameter 

selection has been going on for more than a decade, and there are already commercial 

products with demonstrated success. Similarly, there is nothing new/novel about the 

concepts of “connectomic” DBS programming for PD. 

 

We are unaware of commercial or scientific publications that used symptom-specific 

connections in an algorithm that would suggest stimulation parameters and see the innovation 

in this point. We still toned down the language regarding novelty. 

We agree that the single case should not be overinterpreted but may demonstrate our first 

efforts to show a feasibility of applying Cleartune in clinical practice. 

We have now added an additional set of clinical cases (N = 5) that were reprogrammed using 

Cleartune but still moved results to supplementary material to give them less weight. We 

further changed the language to state that this was done to show feasibility, not to prospectively 

validate the algorithm. As mentioned above, we additionally tested utility of Cleartune on an 

unseen retrospective dataset that applied multiple stimulation settings per patient using 

omnidirectional and directional settings. 

The following sections were added / changed: 

  



"Feasibility study to prospectively apply Cleartune in a clinical context 

Finally, we prospectively applied DBS stimulation parameters suggested by Cleartune in a 

small set of five patients (study design shown in fig. S33). UPDRS-III scores were taken by 

raters that were blinded to which protocol was active and then compared between standard of 

care stimulation settings and the ones suggested by Cleartune. Figure S34 shows electrode 

localizations and the two stimulation protocols (Cleartune vs. Standard of Care; SoC) together 

with their tract overlaps from the multi-tract model. Detailed results are given in the 

supplementary material (supplementary section S4). In brief, from a baseline of 49.8 ± 22.1 

UPDRS-III points, under Cleartune settings, scores improved by 34.4 ± 13.1 points (73 ± 

11.8%). Under standard of care settings, scores im-proved by 31.8 ± 15.1 points (65.4 ± 

12.1%). In four of the five patients, Cleartune settings led to a higher improvement than SoC 

settings. In the fifth patient, improvements were comparable (36 vs. 38 points improvement). 

While three of the five patients preferred Cleartune over SoC settings, in two patients, 

Cleartune settings led to side-effects (dyskinesia in patient 05 and dizziness in pa-tient 04). 

This emphasizes that the current model was purely driven by improvements (and not by side-

effects), which is a clear limitation for clinical applicability. Tracts of avoidance that code for 

side-effects should be added to the model in future attempts. Alternatively (and additionally), 

clini-cians may reduce the stimulation amplitude suggested by Cleartune in case of side-effects 

(while keeping the remaining parameter choices unchanged). This would still reduce the 

parameter space and could hence help clinicians to come to a beneficial solution faster. While 

generally promising, given the low N, these results should not be overinterpreted. Rather, this 

trial was carried out to test feasibility of applying Cleartune in a clinical setting and to gather 

first experience in preparation for a proper prospective trial. As such, the trial was not powered 

to compare Cleartune vs. SoC set-tings (non-inferiority or superiority)". – results, pg.20 

  

"Section S4. Feasibility study to prospectively apply Cleartune in a clinical context  

To test feasibility of applying Cleartune in a clinical setting, a feasibility trial was carried out in 

a small sample of n=5 prospective patients. This trial was designed to include a randomization 

step, where the patient was blinded to the administration of cleartune vs. clinical settings. 

Clinical data, which included the pre-operative T1w, T2w, and post operative CT images was 

used to localize DBS electrodes in each patient. Baseline scores were taken in the stimulation 

and medication off states. The Cleartune algorithm was executed for each electrode separately, 

for 500 iterations each. This led to Cleartune settings, which were stored in the pulse generator 

as an additional program to the existing standard of care (SoC) setting. In the second week, 



Cleartune settings or clinical settings were applied in randomized order, each for 24 hours. 

Resulting UPDRS-III scores were taken after 24 hours and the respective other program was 

switched on to be evaluated after another 24 hours. Figure S33 summarizes the trial design. 

Results are documented in table S3. In multiple cases, Cleartune suggested higher amplitudes 

than tolerable, and were hence reduced by the clinical team (without altering contact choices). 

Table S3 reports both suggested and programmed amplitudes. From a baseline of 49.8 ± 22.1 

UPDRS-III points, under Cleartune settings, scores improved by 34.4 ± 13.1 points (73 ± 

11.8%). Under standard of care settings, scores improved by 31.8 ± 15.1 points (65.4 ± 12.1%). 

In four of the five patients, Cleartune settings led to a higher improvement than SoC settings. In 

the fourth patient, improvements were comparable (36 vs. 38 points improvement). While three 

of the five patients preferred Cleartune over SoC settings, in two patients, Cleartune settings 

led to side-effects (dyskinesia in patient 05 and dizziness in patient 04). While generally 

promising, given the low N, these results should not be overinterpreted. Rather, this trial was 

carried out to test feasibility of applying Cleartune in a clinical setting and to gather first 

experience in preparation for a proper prospective trial. As such, the trial was not powered to 

compare Cleartune vs. SoC settings (non-inferiority or superiority). 
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Figure S34. Feasibility study of Cleartune. The stimulation volume programmed by standard of care settings 

compared with the stimulation volume programmed by Cleartune. Fiber tractography in each patient is weighted 

by the strength of connection to the stimulation volume. 

 

  



"Second, we showed that this symptom-network library is robust to cross-validations and 

outperforms a single tract model calculated on global UPDRS-III improvements. We validate 

results on multiple additional datasets of various nature from different centers. Third, based 

on the generated model, we introduce an algorithm capable of suggesting personalized and 

symptom-specific DBS stimulation parameters, which could similarly be validated in out of 

sample datasets and prospectively tested in five patients." – discussion, pg.20 

 

Reviewer #2: 

The aim of this study was to investigate deep brain stimulation on PD patients 

The paper is well written and clear. 

I have only some minor comments. 

 

We would like to thank the reviewer for their positive evaluation of our manuscript. 

 

The authors did not give any details about diffusion tensor imaging in the three centers. 

Did the authors conduct sequence harmonization? 

 

This may be a critical point and we extended the clarification about our use of normative data 

in the following paragraph that was added to the discussion of the manuscript: 

 

First, our main model applies normative tractograms instead of patient-specific tractography 

data to isolate symptom-specific networks. The reasons to focus on normative datasets are 

manifold: It is hard, if not impossible, to reconstruct thin bundles such as the ansa lenticularis, 

the comb fibers or the striatopallidofugal bundle based on clinical imaging since these are thin 

structures that traverse through gray matter and/or orthogonal to the internal capsule 42–44 (also 

see section S2). Practical reasons preclude us from generating large cohorts with indi-

vidualized dMRI data given the cost and logistics involved. Typical reports of patient studies 

that have been based on individualized dMRI data range in the order of N<30 12,18,45,46, while 

studies that use normative tractograms were often able to pool across larger numbers of patients 

28,47–50 (for a review see 51). Finally, studies that carried out direct head-to-head comparisons 

found similar results when using patient-specific vs. normative data 18,46. – discussion, pg.22  

 

In the same line, did the authors investigate center effect? 

 



The reviewer raises an important question of how to account for DBS centers in statistical 

models. Indeed, we are uncertain of exactly how to deal with this: If surgeon A always 

implants more anteriorly than surgeon B, but outcomes from surgeon A are systematically 

better than the ones from surgeon B, then simply regressing out the difference in placement of 

electrodes across surgeons does not seem sensible. The fraction of noise we would indeed like 

to regress out would be the one possibly introduced by differences in imaging or clinical 

scoring. It is not straight-forward to disentangle the two. 

 

We carried out the following analyses to maximize our understanding of the data and results 

further (changes to the text below): 

 

Symptom Associated Multi-Tract Model (Validation Cohorts) 

To test generalizability of our model, next, we recalculated the same multi-tract model on an 

independent set of 93 patients from the University of Würzburg and Beijing (Validation cohort 

I). The result anatomically matched the original model. Namely, connections between M1 and 

the STN as well as cerebellar tracts associated with tremor improvements. Axial symptom 

improvements correlated with streamlines adjacently anteriorly followed by the ones that 

associated with rigidity improvements (SMA and prefrontal regions). Using network blending, 

we were able to predict UP-DRS-III improvements in this validation cohort purely based on the 

original model calculated from the discovery cohort. These predictions significantly correlated 

with empirical improvements in the test dataset (R = 0.37, p < 0.001, figure 5 C).” – results, 

pg. 14  

 

 

 



Figure 5. Retrospective validation on long term clinical outcome data. A) The fiber distribution 

of the original model as shown in previous figures, B) fiber distribution when recalculating the 

same model on the independent test dataset (N = 93). C) Prediction of UPDRS-III 

improvements in the test set based on the original symptom specific model. 

 

“To control for subcohorts within the discovery cohort, we reran the original model and applied 

a mixed-effects model that controlled for dataset as a random effect. Results were similar and 

re-mained significant (R = 0.30, p < 0.001).” – results, pg.12 

 

The algorithm “Cleartune” is an interesting perspective and could have a clinical value. 

However, Cleartune appears as a prognostic black box. It is not clear which data were 

used to set up the algorithm, and what kind of methods is used to predict. Did the authors 

use the same retrospective data for learning? How is the prediction calculated? The 

readers need more details about this tool and a validation prospective study 

 

We apologize that we did not clarify the nature of Cleartune enough. Indeed, part of the 

confusion might have arisen from the fact that, in the original manuscript, Cleartune simply 

tested all monopolar solutions in a brute-force manner and made predictions for each one 

exactly in the same way as the original multi-tract model did (the methods of how this is done 

are outlined precisely). Cleartune then chose the contact with the best predictions. 

 

In the revised manuscript, however, we have extended Cleartune in such a way that it is also 

able to suggest multipolar settings. This leads to an explosion of the parameter space, and 

hence, brute-force testing the entire parameter space is not feasible anymore. We now added a 

surrogate optimization algorithm and dedicated an entire supplementary section to outline what 

Cleartune does: 

 

Supplementary methods, S6 

Cleartune is a computational tool to optimize stimulation protocols trained on the Multitract 

model. The optimization problem for our study is formulated as  

𝑱 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝜔𝑠î𝑠(𝐽) 

𝑆

𝑠=1

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
‖𝑱‖1 ≤  5 𝑚𝐴

−4 𝑚𝐴 ≤ 𝐽𝑐 ≤ 0 𝑓𝑜𝑟 𝑐 = 1 𝑡𝑜 𝑐 = 𝑁 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠
 

 



where S defines specific symptoms, ωs  is the symptom weight and îs is the predicted 

symptom improvement for stimulation J  is composed of currents across each contact Jc . For 

conventional DBS electrodes with 4-8 contacts, the parameters space to be investigated is 

relatively large for the FEM based volume conductor model (≈ 1 min per sample). Therefore, 

we employ a surrogate optimizer (see surrogateopt in MATLAB) based on interpolation of 

radial basis functions through sparsely and randomly sampled parameter space. In brief, the 

algorithm performs the following steps. 

 

Cleartune Algorithm 

1. Set optimizer parameters, e.g. the maximum number of samples, the minimum 

             number of random samples to create a surrogate model, the objective limit, etc. 

2. Define current bounds (see Eq. 1) 

3. Initiate Jinit 

4. Solve the FEM problem for Jinit. If necessary, solve the additional random samples within the 

current bounds to create a surrogate model. 

5. Investigate the parameter space using the surrogate model 

6. Randomly sample around the incumbent (the best yet observed) a merit function that balances 

exploration of the parameter space and minimization of the surrogate. The sample with the 

smallest value is the adaptive sample. 

7. Solve the FEM problem for the adaptive sample and refine the surrogate. 

8. Update incumbent if the new global minimum (maximum) observed. 

9. Update the sampling dispersion depending on the rate of success of adaptive samples against 

incumbents. 

10. If converged, but above the objective limit and below the maximum number of samples, reset 

by discarding all adaptive points. 

 

  

 

 



 

 

Figure S36 Example of an optimization run in Cleartune. Only samples computed with the FEM model are 

shown. The algorithm is initialized to calculate the stimulation volume around the 3rd contact of the electrode. 

For the first 100 random samples the surrogate model is constructed. Once the model is constructed, adaptive 

sampling is performed (black dots) where the model searches for a local minimum phase. At the 200th iteration, 

the surrogate model is reset which implies that a new surrogate model is constructed. The purple points 

represent the best values since the previous surrogate reset. This cycle of adaptive sampling and random 

sampling is continued until the number of iterations equal the maximum functional evaluation set externally by 

the user or if the objective function reaches the desired value. In this case, the objective function evaluation has 

not reached, instead it completed the 500 iterations it was set to perform. 

 

For the current application, we initialized the optimization protocol to calculate the 

stimulation volume at the 3rd  electrode contact. However, this is a user defined parameter 

and therefore, the user has the ability to simulate a monopolar review. Next, 120 random 

samples are taken to define the surrogate model for the further adaptive sampling (Fig. S36). 

The maximum number of FEM samples is limited to 500, based on observation that most 

FEM calculations converge at around ~450 iteration mark. The objective limit is set to 0.9, 

which corresponds to 90% improvement. If the local convergence did not fulfil the objective 

limit criterion, the model is reset. 

 

 

 

 



Reviewer #3: 

  

The ability to predict exact locations of optimal STN deep brain stimulation to improve 

the unique symptoms of individual patients is an important challenge in the field. This 

manuscript seeks to personalize deep-brain stimulation programming by examining the 

association of specific symptom improvement (tremor, bradykinesia, axial 

improvement) with stimulation of specific network targets that connect to various brain 

regions. The goal is to create a three-dimensional symptom-circuit model in standard 

stereotactic space and to predict optimal therapy by stimulating multiple contacts on a 

single electrode. The study builds on previously published work. At the same time, the 

claimed benefits lack validation and therefore appear somewhat overstated. Inclusion of 

a single patient with improved results when tested for a 24-hour period with algorithmic 

recommendations is unconvincing. 

 

We would like to thank the reviewer for their thoughtful comments that helped us in 

drastically revising the manuscript. What is key to the point raised here is that we now used 

the model to estimate improvements in two additional unseen cohorts (N = 103) and added 

additional prospective cases to further add credibility to the model (see below). 

 

Active contacts are visualized after atlas-based co-registration with Lead-DBS software. 

Figure 1 shows the striking heterogeneity of contact locations in the STN region with 

some contacts located far from traditional sites of stimulation. This distribution seems 

highly unlikely, particularly given that 2 mm shifts in stimulation result in dramatic 

changes in therapeutic efficacy. It suggests that the apparent variability of active contact 

location may reflect differences introduced through the atlas-fitting process. Validation is 

needed. Where postoperative MRI data is available, the matching of atlas-based 

localization to the MR visualized STN (or co-registration of post-operative CT and pre-

operative MRI) needs to be demonstrated.  

 

We agree that it is helpful to validate these cases. We added a supplementary figure showing 

select cases that are outside of the normal range. Our group has localized around 3,000 patients 

from centers world-wide (including notable centers such as Harvard, UCL, UF, Stanford, Penn, 

etc.) and, indeed, the range of variance shown here is not above the norm. 



Another effect we sometimes perceive ourselves is that 3D models psychologically amplify the 

magnitude of misplacements. Changing a planning trajectory in a surgical planning software by 

~1-2 mm may not look as drastic as moving the respective 3D electrode by the same amount in 

these computerized models. Maybe, this can also be seen in the examples we provide in the 

added figure (below). 

 

The following paragraph was added: 

 

“Figure S1 shows native space imaging of example patients in synopsis with reconstructed 

electrodes.” – results, pg. 6  

 

 

 

Figure S1: Comparison of imaging data with 3D DBS models of example cases with 

suboptimal electrode placements. Each row shows in order from left to right: A preoperative 

T2 (axial slice), the registered and brain shift corrected postoperative imaging (CT or MRI in 



the last case). White lines connect corresponding dots between pre- and postoperative images 

to demonstrate co-registration. Next is a fused image of pre- and postoperative scans in which 

the postoperative image is starkly thresholded and shown in false colors to mainly show the 

electrode lead. An enlarged cutout of the relevant region is provided. The last two panels 

show the 3D electrode with active contacts marked in red and the visualization of active 

contacts as spheres (as presented in figure 1). In the first case, the left tip is seen on the slice 

and this electrode is placed too dorsally as correctly reconstructed in the 3D visualizations. In 

the second case, both electrodes are placed too anteriorly and similar to the first case, the left 

electrode is placed too dorsal. The tip of the electrode can be seen on the axial slice. 

Reconstructions correctly show this misplacement. In the third patient, the right electrode is 

placed accurately, but the left electrode is placed too medially and posteriorly. Three active 

contacts have been chosen by the clinical team. In the fourth case, the left electrode is placed 

too dorsally and cannot be seen in the selected axial slice. A contact that resides in the 

thalamus was chosen. The 3D reconstruction correctly captures both electrode placements. In 

the fifth example, a postoperative MRI shows the placement of electrodes in the zona incerta, 

which is correctly captured by the electrode reconstructions. 

It is not clear how the symptom-network library was generated. An existing “DBS 

tractography atlas”, appears to be manually adjusted with a “more exhaustive” set of 

connections. The placement of expected or anticipated tracts is confusing since the 

claimed streamline resolution far exceeds that of standard DTI imaging. In the 

discussion, the authors point this out, but do not address how the issue was resolved, 

allowing tight differentiation despite blurring associated with atlas-based fitting. Please 

clarify how the locations of these highly defined tracts were determined and validated.  

 

We are sorry that this wasn’t clear enough, the method to create the atlas was based on the 

work of Erik Middlebrooks (Mayo Clinic) which used a diffusion dataset aggregated from 

>1,000 human connectome project subjects. We paste the relevant sections below and have 

refined them to add clarity as follows: 

 

"Anatomical Tract Atlas 

To carry out DBS fiber filtering based on electric fields estimated and symptom improvements 

across the cohort of patients, we first established a streamline atlas using various sources of 

information. This work is based on two published streamline atlases 17,44 that were extended 



to include a more exhaustive set of tracts in and around the subthalamic region. The process 

involved diffusion MRI based tractography on a group average template, using manually 

defined regions of interest, inclusion of published resources, comparisons of results with the 

anatomical literature, cadaveric dissection studies, histology and ex-vivo imaging. 

Supplementary section S2 details methods and results that led to the resulting ‘DBS 

tractography atlas version 2’". – methods, pg.24 

 

Also, we now include the extensive validation work that went into the creation of this atlas to 

the supplementary material (section S2). Since extensive, we refrain from pasting all figures 

and material here. 

 

From this set of tracts (shown in its entirety in section S2 and listed in table S1), for each 

symptom, we filtered out the streamlines that correlated with changes in the symptom. This 

process is called DBS fiber filtering and was introduced earlier by our group (Li et al. 2020 

Nature Communications). Namely, for each pair of electric field and streamline, we calculated 

the maximal magnitude of the electric field that the streamline passes through. We then rank-

correlated these peak values with clinical symptom changes. Rank correlations were used since 

the values follow a skewed distribution and the exact relationships between field strength and 

tract activations are unclear. The resulting Spearman’s correlation coefficient is used to 

weight/tag each streamline. Finally, these weighted streamlines form our model. We visualize 

streamlines that correlated significantly after FDR-correction for multiple comparisons. Taken 

together, this result embodies the “symptom-associated multi-tract model” or “symptom-

network library”. The following section describes this method with additional details in the 

manuscript: 

 

Multi-Tract implementation of DBS fiber filtering 

We build upon the DBS fiber filtering concept introduced in 18 and extended in 64 to isolate 

tracts associated with changes across multiple motor symptom domains (figure 8). In the first 

step, we used this method to build a symptom-associated multi-tract model (or “symptom 

network library”) which associates streamlines with improvements of clinical subscores 

(tremor, bradykinesia, rigidi-ty and axial symptoms). Activation of these four tract sets 

correlated with improvements in respective symptoms. To be included into the library, each 

tract had to pass through low number of E-fields (> 0.5 % of total number of E-fields) at a 

rather high peak intensity of >1.5 V/mm. This constraint was set up since we wanted to exclude 



tracts that were not strongly modulated by any stimulation field at all (which in theory could 

still obtain high correlation values if sub-threshold intensities correlated with clinical 

improvements). Changing the arbitrarily chosen values (> 0.5 % E-fields and >1.5 V/mm) e.g., 

to >2 and > 4 V/mm did not qualitatively alter results. For each tract, Spearman’s rank 

correlations were then calculated for each symptom group separately, by correlating the 

respective sub-score with the peak amplitude of each patient’s E-field a given streamline 

passed through. This mass-univariate approach leads to a high number of rank correlation 

coefficients, which were thresholded at a p-value < 0.05 after correction for multiple 

comparisons using the false-discovery rate (FDR). - methods, pg.26  

 

Further, it further appears that the data were used to define the tracts and then the 

proposed tracts were used to interpret the same data, creating a potential circularity of 

logic (despite leave-one-out analysis).  

 

While the cross-validation design we originally applied in the N = 129 discovery cohort 

ensured avoidance of circularity, in addition, we now use the model to successfully estimate 

clinical outcomes in two out-of-sample datasets that were not seen by the model (N = 103). The 

following sections were added detailing results: 

 

 

"Symptom Associated Multi-Tract Model (Validation Cohorts) 

 

To test generalizability of our model, next, we recalculated the same multi-tract model on an 

independent set of 93 patients from the University of Würzburg and Beijing (Validation cohort 

I). The result anatomically matched the original model. Namely, connections between M1 and 

the STN as well as cerebellar tracts associated with tremor improvements. Axial symptom 

improvements correlated with streamlines adjacently anteriorly followed by the ones that 

associated with rigidity im-provements (SMA and prefrontal regions). Using network blending, 

we were able to predict UP-DRS-III improvements in this validation cohort purely based on the 

original model calculated from the discovery cohort. These predictions significantly correlated 

with empirical improvements in the test dataset (R = 0.37, p < 0.001, figure 5 C)." - results, 

pg.14  



 

 

Figure 5. Retrospective validation on long term clinical outcome data. A) The fiber distribution of the 

original model as shown in previous figures, B) fiber distribution when recalculating the multi-tract model on 

the independent test dataset (N = 93). C) Prediction of UPDRS-III improvements in the test set based on the 

original symptom specific model. 

 

Cleartune – an algorithm to suggest stimulation parameters 

 

In the next step, we created an algorithm capable of suggesting optimal stimulation settings 

by maximizing stimulation of a specific set of symptom tracts in novel patients. Termed 

Cleartune, this algorithm tests stimulation fields based on the entire parameter space of 

stimulation parameters and suggests the one that receives the highest predicted 

improvements. Video S1 visualizes the process of the algorithm testing parameters to 

maximize outcomes in the four symptom domains for a specific directional electrode. To test 

utility of the algorithm, it was first applied to all patients within the retrospective cohort. This 

led to an alternate set of stimulation volumes which could be compared to the ones applied in 

clinical practice using spatial correlations. Here, higher spatial cor-relations meant greater 

similarity between the clinically applied E-fields and the ones suggested by the algorithm. 

Higher similarities correlated with better UPDRS-III improvements (R = 0.22, p = 0.001). 

The same was true when repeating the analysis on the validation cohort I which the model 

had not seen (R = 0.23, p = 0.03). Intuitively, this finding may be understood as follows: In 

cases in which parameters suggested by Cleartune agreed with the clinical ones, improvement 

was high-er than in the ones for which the two settings disagreed.  

In a second step, we aimed at testing symptom-specificity of suggestions derived by 

Cleartune. To do so, we leveraged a unique dataset of 10 patients (20 electrodes; Validation 

cohort II), for which multiple settings had been tested in a prospective double-blinded clinical 



trial (N = 186) 30. These patients had been implanted with directional electrodes (Boston 

Scientific Vercise Cartesia) and for the directional levels with best clinical response, each 

segment had been tested in increasing 1 mA steps until a side effect occurred or until 

reaching 5 mA. In addition, the omnidirectional setting (switching on all three segments) was 

tested in the same way. As above, we calculated predictions for each setting using the 

original model (from the N = 129 discovery cohort). In 17 of the 20 elec-trodes, predictions 

positively correlated with clinical improvements (all correlation plots with over six data 

points are shown in figure S32). Naturally, a one-sample t-test across these R-values was 

significant (T = 4.155, p < 0.001; figure. 6). 

For each stimulation setting, bradykinesia and rigidity improvements were available 

separately. On-ly three of the ten cases had substantial tremor at baseline, so tremor could 

unfortunately not be an-alyzed. To test for symptom-specificity, we repeated the analysis two 

more times, each time maxi-mally weighting either bradykinesia or rigidity in the multi-tract 

model. The model weighted for the correct symptom led to significantly higher correlations 

between predictions and empirical im-provements across settings in each electrode for the 

correct vs. respective other symptom (p < 0.05 for both analyses; figure 6B and C).". –  

results pg 14-16 

 



 

  



Fig 6. Retrospective validation on TWEED dataset. A) Left panel illustrates a raincloud plot where each data 

point represents the Spearman’s correlation coefficient between predicted and empirical UPDRS-III improvements 

for settings in one of the 20 electrodes. All correlation plots are shown in figure S32. The right panel gives four 

representative examples. Here, a red eclipse is used to represent the stimulation contact that renders the highest 

improvement in a given patient, while the contact chosen by the model is marked with a blue eclipse, 

corresponding stimulation fields are shown for the example electrodes. 

B and C) To assess symptom-specificity of the model, the analysis was repeated, this time maximally weighting 

either bradykinesia or rigidity symptoms, respectively. Correlations across settings in the 20 electrodes were 

almost all positive when the model was used to predict improvements in the correct symptom, but significantly 

dropped when used to predict improvements in the respective other symptom. In each panel, two representative 

examples of each correct vs. incorrect symptom pairings are given. 

 

"We replicated the same model based on a multi-center validation cohort (N = 93). Third, 

based on the generated model, we introduced an algorithm capable of suggesting personalized 

and symptom-specific DBS stimulation parameters, which could similarly be validated in out 

of sample datasets and prospectively tested in five patients. Using monopolar review data 

acquired in patients with segmented electrodes, we were able to demonstrate symptom-

specificity of the algorithm. Namely, a model tuned to predict bradykinesia outcome performed 

better to predict bradykinesia compared to rigidity outcomes, and vice versa". – discussion, 

pg.20 

 

While using populations to refine tracts seems reasonable. At the same time, each of these 

should produce an average (or median) and a distribution. No such spread is shown. 

 

Indeed, we do not track in individuals and aggregate results but instead create tracts manually 

using a population-averaged high-resolution dataset. Unfortunately, the method does not allow 

us to infer average / median and distribution of results. This same method has been used to 

create normative atlases by experts in the field, e.g., in the following papers: 

1.Middlebrooks EH, Domingo RA, Vivas-Buitrago T, Okromelidze L, Tsuboi T, Wong JK, 

Eisinger RS, Almeida L, Burns MR, Horn A, Uitti RJ, Wharen RE, Holanda VM, Grewal 

SS. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, 

and Brain Connectomics. AJNR Am J Neuroradiol. Published online August 13, 2020:1-11. 

doi:10.3174/ajnr.A6693 

2.Meola A, Comert A, Yeh FC, Sivakanthan S, Fernandez-Miranda JC. The nondecussating 

pathway of the dentatorubrothalamic tract in humans: human connectome-based 

https://doi.org/10.3174/ajnr.A6693


tractographic study and microdissection validation. J Neurosurg. Published online October 

9, 2015:1-7. doi:10.3171/2015.4.JNS142741 

3.Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, Vettel JM, 

Verstynen T. Population-averaged atlas of the macroscale human structural connectome 

and its network topology. NeuroImage. 2018;178:57-68. 

doi:10.1016/j.neuroimage.2018.05.027 

4.Meola A, Yeh FC, Fellows-Mayle W, Weed J, Fernandez-Miranda JC. Human Connectome-

Based Tractographic Atlas of the Brainstem Connections and Surgical Approaches. 

Neurosurgery. Published online February 2016:1-18. doi:10.1227/NEU.0000000000001224 

5.Yeh FC. Population-based tract-to-region connectome of the human brain and its hierarchical 

topology. Nat Commun. 2022;13(1):4933. doi:10.1038/s41467-022-32595-4 

 

We have added the following limitations section to discuss our rationale to use of normative 

tractograms: 

 

"Several limitations apply to this study. First, our main model applies normative tractograms 

instead of patient-specific tractography data to isolate symptom-specific networks. The reasons 

to focus on normative datasets are manifold: It is hard, if not impossible, to reconstruct thin 

bundles such as the ansa lenticularis, the comb fibers or the striatopallidofugal bundle based on 

clinical imaging since these are thin structures that traverse through gray matter and/or 

orthogonal to the internal capsule 42–44 (also see section S2). Practical reasons preclude us from 

generating large cohorts with individualized dMRI data given the cost and logistics involved. 

Typical reports of patient studies that have been based on individualized dMRI data range in 

the order of N<30 12,18,45,46, while studies that use normative tractograms were often able to 

pool across larger numbers of patients 28,47–50 (for a review see 51). Finally, studies that carried 

out direct head-to-head comparisons found similar results when using patient-specific vs. 

normative data 18,46.” – Limitations, pg.23  

 

Spatial variability introduced by fitting to the atlas is not well quantified and its impact 

on the library generation is not explored. 

 

We agree that the influence of the spatial variability on the symptom library is an important 

factor to test empirically. The following sections were added to do so: 

 

https://doi.org/10.3171/2015.4.JNS142741
https://doi.org/10.1016/j.neuroimage.2018.05.027
https://doi.org/10.1227/NEU.0000000000001224
https://doi.org/10.1038/s41467-022-32595-4


Symptom-Associated Multi-Tract Model (Discovery Cohort) 

Second, we tested how robust our results were regarding spatial inaccuracies of each 

stimulation site. To test this, we iteratively recalculated the symptom specific tract model 

1,000 times, each time after spatially jittering each electrical field based on a 3D Gaussian 

distribution with 2 mm full width half maximum. The resulting models were highly similar to 

one another (and to the unjittered version) with an average mean spatial correlation of R > 

0.8. Details and example visualizations of jittered models are shown in figure S28.– results, 

pg.12 

 

 

Figure S28: To test robustness of model results as a function of spatial uncertainty in 

stimulation sites, we recalculated the model 1,000 times, each time after spatially jittering 

electric fields based on a 3D Gaussian distribution with 2 mm full width half maximum. 

Resulting models were highly similar (correlations of fiber weightings across fibers are 

shown in the figure, four example models are shown). 



 

Rather strong conclusions are drawn from relatively weak localization correlations, and 

the raw data for these correlations are not shown. For example, correlation coefficients of 

0.23 and 0.18 would correspond to explaining only a tiny fraction of the variance in 

outcomes. This manuscript, and cited work, would be greatly strengthened with a model 

that explains clinical outcomes to a significant degree and then determines the portion 

attributable to active contact location. 

 

We agree that amount of explained variance is small. We have validated the results in 

additional datasets as mentioned above. Furthermore, we created a model with additional 

variables that we could think of which explained more variance (see below). However, as also 

discussed with reviewer one, we must emphasize that these additional variables are the ones we 

cannot change in clinical practice (while we can optimize electrode placements and stimulation 

settings). For instance, while the baseline UPDRS score explains a large amount of variance in 

outcomes, as medical care providers, we do not have any influence on this variable in our 

clinical practice. Instead, electrode placement and which networks to stimulate embody the key 

variables we can optimize. 

 

The following changes were added: 

 

Given the moderate strength of the correlation coefficients between the predicted improvement 

and empirical clinical improvements, we investigated whether a linear model considering other 

demo-graphic factors could explain additional variance. To do so, we fit a linear model that 

additionally included UPDRS-III baseline, patient age at surgery, sex, and levodopa equivalent 

dose (LEDD) reduction as covariates. This model explained 25.5% of the variance in clinical 

improvements (R2 = 0.26, p < 10-6). The predicted improvements of the multi-tract model 

remained a significant predictor (t = 3.2, p < 0.0017). UPDRS-III baseline scores (t = 3.3, p = 

0.001) and sex also explained significant amounts of variance (t = 3.0, p = 0.03), while the 

other variables did not (LEDD reduction: p = 0.43, age: p = 0.39). Of note, none of these 

variables may be changed due to medical practice, with the sole exception of the electrode 

placement and stimulation settings, which renders the multi-tract model predictions (which are 

based on these factors) the critical anchor point with an opportunity to potentially improve 

patient care.– results, pg.15 

 



Moreover, we now include the following section on modeling considerations, that argues that, 

while our results may not predict large amounts of variance, they may still be key and 

potentially important for clinical practice: 

 

Section S5. Modelling Considerations 
 

A natural question that may arise in the context of the present results is the validity of a 

model given the relatively low correlation coefficients (R), and consequentially, R2 values. 

To discuss this question, we would like to raise the following points (Fig S35).  

1. First, we need to ask how much variance DBS modeling should at best explain in the first 

place. Clinical improvements are not just based on electrode placement and stimulation 

volumes, but governed by many factors, such as disease subtype, age, sex, levodopa 

response, duration of disease, comorbid other conditions, etc. We estimate that these factors 

alone will explain ~50% of DBS response34. 

2. Noise in clinical scores (inter- and intra-rater test-retest reliability of the UPDRS-III) will 

account for another 15%35. 

3. Imaging resolution and electrode placement & modeling inaccuracy may explain another 

15-20% of variance36–38. 

4. The use of multi-site datasets such as in the present study may add residuals that may 

explain another 5-10% of the variance. 

Based on this assessment, we believe that ~10% explained variance (R values of ~0.3) may 

realistically be expected in a multi-site dataset such as the present one. However, we believe 

that such models are still useful because electrode placement / stimulation settings are the 

only factor that can be influenced, whereas other components such as patient age, disease 

type and disease onset are immutable. Therefore, identification of a robust, and highly 

optimal target that can only explain ~10% of variance would still remain an important finding 

in our field. 



 

Figure S35. Modeling considerations. The pie chart is illustrative of the various factors that influence the 

outcome of the patient undergoing DBS. With this, we could conclude that the maximum impact electrode 

positioning can have on the patient outcome is ~10%.  

 

The Cleartune algorithm seeks to optimize contact position by maximizing stimulation 

over symptom-specific tracts. If successful, such an algorithm would be helpful to adapt 

programming as the disease progresses. The authors argue that where programming 

agreed with Cleartune, outcomes were better than those where programming differed. 

However, there are two striking issues that arise: 

(1) Based on the model, the authors claim that an average of 21% improvement would be 

expected by using Cleartune. The amalgamation of matching and adjacent contact into 

a single group is questionable. If the algorithm is in fact correct, then one would 

expect matching > adjacent > different. These categories should be separated and 

should show a clear trend if this approach is valid. 



(2) In addition, there should be some explanation why, even with monopolar stimulation, 

that the expert neurologists in these centers were unable to identify the optimal sites of 

stimulation and fell short by an astounding 21% on average. Again, this seems very 

unlikely, and likely overestimates the potential benefit of the algorithmic approach. A 

notable shortcoming of the study is that undesired side effects of stimulation are 

ignored. Hence, the failure to stimulate the modeled optimal site may simply be that 

stimulation at the site was accompanied by undesirable side effects. 

 

We apologize for this confusion. In fact, we had discussed this analysis with multiple 

colleagues and tried our best to word this as carefully as possible (e.g. “We must reiterate, 

however, that this analysis was entirely carried out in silico with the sole aim to quantify a 

potential room for improvement.”). It seems that we failed to communicate this analysis well 

and it was still interpreted as a claim of superiority of Cleartune. We have now removed this 

analysis to avoid similar confusion for readers. 

 

In the revised version of the manuscript, we extended the capability of Cleartune to stimulate 

combinations of contacts by using a more efficient way to explore the parameter space (namely 

a surrogate-optimization algorithm). As such, the distinction between same vs. adjacent 

contacts is not straight-forward anymore. Rather, we correlate clinical vs. model-based electric 

fields and show that the more similar they are, the better clinical improvements were: 

 

Cleartune – an algorithm to suggest stimulation parameters 

 

In the next step, we created an algorithm capable of suggesting optimal stimulation settings by 

maximizing stimulation of a specific set of symptom tracts in novel patients. Termed 

Cleartune, this algorithm tests stimulation fields based on the entire parameter space of 

stimulation parameters and suggests the one that receives the highest predicted improvements. 

Video S1 visualizes the process of the algorithm testing parameters to maximize outcomes in 

the four symptom domains for a specific directional electrode. To test utility of the algorithm, it 

was first applied to all patients within the retrospective cohort. This led to an alternate set of 

stimulation volumes which could be compared to the ones applied in clinical practice using 

spatial correlations. Here, higher spatial correlations meant greater similarity between the 

clinically applied E-fields and the ones suggested by the algorithm. Higher similarities 

correlated with better UPDRS-III improvements (R = 0.22, p = 0.001). The same was true 



when repeating the analysis on the validation cohort I which the model had not seen (R = 0.23, 

p = 0.03). Intuitively, this finding may be understood as follows: In cases in which parameters 

suggested by Cleartune agreed with the clinical ones, improvement was high-er than in the 

ones for which the two settings disagreed.  

In a second step, we aimed at testing symptom-specificity of suggestions derived by Cleartune. 

To do so, we leveraged a unique dataset of 10 patients (20 electrodes; Validation cohort II), for 

which multiple settings had been tested in a prospective double-blinded clinical trial (N = 186) 

30. These patients had been implanted with directional electrodes (Boston Scientific Vercise 

Cartesia) and for the directional levels with best clinical response, each segment had been 

tested in increasing 1 mA steps until a side effect occurred or until reaching 5 mA. In addition, 

the omnidirectional setting (switching on all three segments) was tested in the same way. As 

above, we calculated predictions for each setting using the original model (from the N = 129 

discovery cohort). In 17 of the 20 elec-trodes, predictions positively correlated with clinical 

improvements (all correlation plots with over six data points are shown in figure S32). 

Naturally, a one-sample t-test across these R-values was significant (T = 4.155, p < 0.001; 

figure. 6). 

For each stimulation setting, bradykinesia and rigidity improvements were available separately. 

On-ly three of the ten cases had substantial tremor at baseline, so tremor could unfortunately 

not be an-alyzed. To test for symptom-specificity, we repeated the analysis two more times, 

each time maxi-mally weighting either bradykinesia or rigidity in the multi-tract model. The 

model weighted for the correct symptom led to significantly higher correlations between 

predictions and empirical im-provements across settings in each electrode for the correct vs. 

respective other symptom (p < 0.05 for both analyses; figure 6B and C)". – results, pg.15-16 

 

"Third, based on the generated model, we introduce an algorithm capable of suggesting 

personalized and symptom-specific DBS stimulation parameters, which could similarly be 

validated in out of sample datasets and prospectively tested in five patients. – discussion, pg.22 

 

  



  



Fig 6. Retrospective validation on TWEED dataset. A) Left panel illustrates a raincloud plot where each data 

point represents the Spearman’s correlation coefficient between predicted and empirical UPDRS-III improvements 

for settings in one of the 20 electrodes. All correlation plots are shown in figure S32. The right panel gives four 

representative examples. Here, a red eclipse is used to represent the stimulation contact that renders the highest 

improvement in a given patient, while the contact chosen by the model is marked with a blue eclipse, 

corresponding stimulation fields are shown for the example electrodes. 

B and C) To assess symptom-specificity of the model, the analysis was repeated, this time maximally weighting 

either bradykinesia or rigidity symptoms, respectively. Correlations across settings in the 20 electrodes were 

almost all positive when the model was used to predict improvements in the correct symptom, but significantly 

dropped when used to predict improvements in the respective other symptom. In each panel, two representative 

examples of each correct vs. incorrect symptom pairings are given. 

 

The prospective application of Cleartune in a single patient is anecdotal and contributes 

little. At a minimum, these three centers could examine 10-20 patients prospectively to 

help validate the methodology. For each patient, individualized imaging to show the 

location of the active contact with respect to the MR visualized STN also should be 

presented to confirm the accuracy of the atlas fitting.  

 

We agree that the single case should not be overinterpreted but may demonstrate our first 

efforts to show a feasibility of applying Cleartune in clinical practice. 

 

Of note, prospective testing of DBS algorithms in larger cohorts constitutes a prospective trial 

that usually requires a different structure of the investigational team and underlying funding. 

 

We were still able to add an additional set of clinical cases (N = 5) that were reprogrammed 

using Cleartune (the original patient had to be discarded since we updated the algorithm to 

allow more complex stimulation settings). We still mainly moved these results to 

supplementary material to give them less weight. We further changed the language to state that 

this was done to show feasibility, not to prospectively validate the algorithm. As mentioned 

above, we additionally tested utility of Cleartune on an unseen retrospective dataset that 

applied multiple stimulation settings per patient using omnidirectional and directional settings. 

 

  



The following sections were added/changed: 

 

Prospective application of Cleartune 

 

Finally, we prospectively applied DBS stimulation parameters suggested by Cleartune in a 

small set of five patients (study design shown in fig. S33). UPDRS-III scores were taken by 

raters that were blinded to which protocol was active and then compared between standard of 

care stimulation settings and the ones suggested by Cleartune. Figure S34 shows electrode 

localizations and the two stimulation protocols (Cleartune vs. Standard of Care; SoC) together 

with their tract overlaps from the multi-tract model. Detailed results are given in the 

supplementary material (supplementary section S4). In brief, from a baseline of 49.8 ± 22.1 

UPDRS-III points, under Cleartune settings, scores improved by 34.4 ± 13.1 points (73 ± 

11.8%). Under standard of care settings, scores im-proved by 31.8 ± 15.1 points (65.4 ± 

12.1%). In four of the five patients, Cleartune settings led to a higher improvement than SoC 

settings. In the fifth patient, improvements were comparable (36 vs. 38 points improvement). 

While three of the five patients preferred Cleartune over SoC settings, in two patients, 

Cleartune settings led to side-effects (dyskinesia in patient 05 and dizziness in pa-tient 04). 

This emphasizes that the current model was purely driven by improvements (and not by side-

effects), which is a clear limitation for clinical applicability. Tracts of avoidance that code for 

side-effects should be added to the model in future attempts. Alternatively (and additionally), 

clini-cians may reduce the stimulation amplitude suggested by Cleartune in case of side-effects 

(while keeping the remaining parameter choices unchanged). This would still reduce the 

parameter space and could hence help clinicians to come to a beneficial solution faster. While 

generally promising, given the low N, these results should not be overinterpreted. Rather, this 

trial was carried out to test feasibility of applying Cleartune in a clinical setting and to gather 

first experience in preparation for a proper prospective trial. As such, the trial was not powered 

to compare Cleartune vs. SoC set-tings (non-inferiority or superiority).– results, pg.18. 

  

Section S4. Feasibility trial for prospective application of Cleartune in a clinical 

setting. 
 

To test feasibility of applying Cleartune in a clinical setting, a feasibility trial was carried out in 

a small sample of n=5 prospective patients. This trial was designed to include a randomization 

step, where the patient was blinded to the administration of cleartune vs. clinical settings. 



Clinical data, which included the pre-operative T1w, T2w, and post operative CT images was 

used to localize DBS electrodes in each patient. Baseline scores were taken in the stimulation 

and medication off states. The Cleartune algorithm was executed for each electrode separately, 

for 500 iterations each. This led to Cleartune settings, which were stored in the pulse generator 

as an additional program to the existing standard of care (SoC) setting. In the second week, 

Cleartune settings or clinical settings were applied in randomized order, each for 24 hours. 

Resulting UPDRS-III scores were taken after 24 hours and the respective other program was 

switched on to be evaluated after another 24 hours. Figure S33 summarizes the trial design. 

Results are documented in table S3. In multiple cases, Cleartune suggested higher amplitudes 

than tolerable, and were hence reduced by the clinical team (without altering contact choices). 

Table S3 reports both suggested and programmed amplitudes. From a baseline of 49.8 ± 22.1 

UPDRS-III points, under Cleartune settings, scores improved by 34.4 ± 13.1 points (73 ± 

11.8%). Under standard of care settings, scores improved by 31.8 ± 15.1 points (65.4 ± 12.1%). 

In four of the five patients, Cleartune settings led to a higher improvement than SoC settings. In 

the fourth patient, improvements were comparable (36 vs. 38 points improvement). While three 

of the five patients preferred Cleartune over SoC settings, in two patients, Cleartune settings 

led to side-effects (dyskinesia in patient 05 and dizziness in patient 04). While generally 

promising, given the low N, these results should not be overinterpreted. Rather, this trial was 

carried out to test feasibility of applying Cleartune in a clinical setting and to gather first 

experience in preparation for a proper prospective trial. As such, the trial was not powered to 

compare Cleartune vs. SoC settings (non-inferiority or superiority). 

 

Table S3. Results of feasibility study in n=5 patients. 

 Cleartune Standard of care 

Patient Settings RH [%] Settings 

LH [%] 

Bradykin

-esia  [%] 

 

Rigidit

-y [%] 

 

Axial 

[%] 

Tremor 

[%] 

Global 

Impr. 

[%] 

Settings 

RH [%] 

Settings 

LH [%] 

Brady-

kinesia 

Rigi

dity 

[%] 

Axi

al 

[%] 

Trem-

or [%] 

 

Global 

Impr. 

[%] 

Patient  

- 01 

3: 44.1%; 

7: 30.6%;  

8: 25.3%,  

Amp: 3 mA   

[5 mA] 

3: 100%, 

Amp: 2.1 

mA [3 mA] 

86.67 100 50 N/A 81.25 3: 50%;  

4: 50%, 

Amp: 

2.4 mA 

3: 33.33%; 

4: 33.33%; 

5: 33.33%, 

Amp: 1.5 

mA 

 

 

53.33 87.5

0 

37.5 N/A 62.50 

Patient 

- 02 

1: 7.5%; 

4: 7.5%;  

 5: 10%; 7: 

37.5%; 

 8: 37.5%, 

Amp: 3.5 mA [5 

mA]  

1: 100%, 

Amp: 3.3 

mA 

69.50 30 63.63 N/A 63.63 3: 50%;  

4: 50%, 

Amp: 

3.1 mA 

3: 50%; 4: 

50%; 

Amp: 3.2 

mA 

43.50 70 45.5 N/A 56.81 



 

 

 

 

 

 

 

 

 

 

 

 

Patient 

- 03 

1: 31.2%; 

4: 6.63%;  

7: 44.3%;  

8: 17.9%,  

Amp: 3.5 mA [5 

mA] 

 

 

 

1: 60%; 
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 Amp: 3.0 
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78.94 42.85 44.44 N/A 60.60 2: 60%;  

5: 40%, 

Amp: 

3.0 mA 

2 to 

7:15%, 

Amp: 2.5 

mA 

78.94 14.2

8 

44.4 N/A 54.54 

Patient 

- 04 

4: 58%;  

8: 42%,  

Amp: 5 mA 

1: 22%; 

8: 78%;  

Amp: 3.06 

mA 

50 6.67 71.43 100 55.29 2 - 4: 

50%,  

5 - 7: 

50%, 

Amp: 

3.0 mA 

1: 20%; 

2,3,4: 

80%, 

Amp: 3.0 

mA 

59.40 20 60.7

1 

100 57.64 
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5: 47.5%,  
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Figure S34. Feasibility study of Cleartune. The stimulation volume programmed by standard of care settings 

compared with the stimulation volume programmed by Cleartune. Fibers tractography in each patient is 

weighted by the strength of connection to the stimulation volume. 

 

In addition, the study should confirm the accuracy of the streamline predictions with 

individual data (to the degree that DTI resolution allows). 

 

We agree that this is a key point. However, DBS fiber filtering by design requires the same 

streamlines to be tested across patients (since we correlate electrical field magnitudes with 

clinical improvements for the same streamline across patients). So, by design, the technique is 

not applicable to patient-specific tractography. A similar (but still quite different) approach is 

termed DBS network mapping (following the approach of Horn et al. 2017 Annals of 

Neurology), which may be potentially comparable by proxy. However, based on the imaging 

resolution and noise in the data, we would really be testing the limits of both the approach and 

the data. While we were able to compare results in qualitative sense in a sample of 20 patients 

from which individual tractography was available (a subset of the newly added validation 

cohort 1), we for now only paste the results for the reviewer below. We believe that already, 

our manuscript is quite complex and adding this analysis could go beyond the original goal of 

the study. If the reviewer feels strongly that this should be included, however, we are of course 

happy to do so. This being said, we were excited to see the same general pattern across 

normative and individualized tractography, bearing in mind that the two approaches differed. 

 

The following section and reviewer figure were not added to the manuscript, but could be, if 

the reviewer deems important: 

 

Comparison with individualized tractography data 

 

By design, DBS fiberfiltering can only be calculated on normative tract data, since the same 

exact streamline needs to be tested in each patient to calculate streamline-based statistics. 

Nonetheless, we wanted to test how results of the multi-tract model would compare on patient-

specific tractography data, at least in a qualitative fashion. To do so, electrodes were localized 

in a third independent retrospective validation cohort in which patient-specific diffusion MRI 

data had been acquired, and a similar technique, DBS network mapping 27 was applied for each 

symptom cluster separately. As in the normative results, tracts that associated with 



bradykinesia and rigidity improvements traversed to the STN from its lateral aspect (internal 

capsule), while tracts associated with tremor and axial improvements traversed from the medial 

aspect to the nucleus. As normative results, patient specific tractography results also suggested 

a stronger role for indirect connections from the pallidum to contribute to rigidity 

improvements. A visual head-to-head comparison between normative and patient-specific 

results is shown in reviewer figure 1. 

 

 

Reviewer figure 1. Comparison of DBS fiber filtering results as defined by the multi-tract model (fig. 2) and 

DBS network mapping carried out on an independent cohort of N = 20 patients in which patient-specific 

tractography data was available (Retrospective validation cohort 3, Table 1). Enlarged panel shows patient-

specific results in synopsis. In both results, we see tracts associated with bradykinesia and rigidity improvements 

to come from the lateral internal capsule, while tracts associated with tremor and axial improvements come from 

the medial aspect of the nucleus. Also note that both normative and patient specific tractography converged on a 

stronger role for indirect connections from the pallidum to contribute to rigidity improvements. 



REVIEWER COMMENTS

Reviewer #2 (Remarks to the Author):

Authors have adressed all my comments convincingly.

Reviewer #3 (Remarks to the Author):

Rajamani (Revised)

Thank you for the opportunity to review this revised manuscript. The authors have provided a lengthy 

rebuftal of the previous reviewer comments, adding addifional data and discussion. The manuscript is 

expanded and some aspects are clarified. At the same fime, while seeking to refute earlier commentary, 

the authors have not directly addressed the core methodological concerns and seem, in their 

enthusiasm for this approach, to overstate the robustness of their findings.

As noted, this is a stafisfical tour-de-force of Lead-DBS analyses. The overarching claim is that Lead-DBS 

can be used to personalize STN DBS sfimulafion parameters by mapping implanted leads to a 

standardized atlas that includes labelled DTI streamlines. The premises are (1) that there are symptom 

specific tracts which respond favorably to DBS sfimulafion; and (2) that STN DBS for PD may be tailored 

by direcfing sfimulafion based on these individual symptoms. The authors further claim that (3) an atlas 

of circuit pathways accurately represents the relafive locafions of individual symptom-associated circuits 

in standard stereotacfic space; and (4) that individual pafient data (pre-op MRI, post-op CT, symptom 

characterisfics) can be fed into an algorithm that outputs opfimal sfimulafion parameters based on these 

internal models. These claims are explored further below.

There are numerous assumpfions underlying these claims. First (A) that individual anatomy in the STN 

region can be reliably and accurately warped into standard stereotacfic space; and (B) that the result of 

such warping will not only be affine but will also accurately map to an atlas with sub-millimeter 

precision. Similarly, (C) that the relevant tracts connecfing corfical and subcorfical brain regions can be 

idenfified with submillimeter precision in a MR-tractography atlas; and that (D) these anatomical 

relafionships will be maintained after atlas-fifting at the individual pafient level. In this and previous 

work, this influenfial group has not included clear statements of these and other assumpfions, leading to 

broad claims that seem “too good to be true.” Wherever this manuscript is published, the assumpfions 

and an assessment of their weaknesses and strength should be clearly stated and the stafisfical 

shortcomings, parficularly significant confusion between accuracy and precision, must be addressed.

That said, the challenge of DBS targefing and programming is significant and important for the field, and 

the authors are to be commended for their efforts and for creafing an easily accessible set of tools that 

have been broadly adopted (1000 studies!). Soberingly, the history of science and medicine is filled with 



fundamentally flawed (or limited) approaches that are enthusiasfically supported, and transiently and 

widely adopted, before abandonment. Hence, it is crifical that influenfial authors of potenfially impacfful 

manuscripts like this group directly acknowledge and (where possible) address potenfial shortcomings, 

rather than dismiss crificisms with appeals to authority or cifing broad adopfion. Readers should not only 

understand the potenfial but also the limitafions of this work, or many pafients will suffer. In this 

manuscript, the limitafions are greatly obscured.

A basic flaw of this study is the highly unrealisfic assumpfion that all subjects have a “common” response 

to sfimulafion in the same anatomical locafion of the brain atlas.

The authors have responded with addifional analysis of 93 pafients and tesfing of 10 addifional pafients 

(20 electrodes) which showed posifive correlafion with empirical improvement. These results are 

unsurprising. They show that the pafient populafion has, on average, average anatomy. The authors 

gloss over the fact that even state-of-art atlases cannot capture the diversity of unique, individual brains 

within the accuracy required for DBS sfimulafion (2 mm). This is due to the fact, well recognized by 

anatomists (See work by PP Mitra or S Haber) that at the mesoscopic scale (0.1 to 10 mm) there is a 

transifion from a macroscopic level, where a stable, species-typical neural architecture is observed, to a 

finer scale where individual variafion is prominent. This is readily apparent, though consistently ignored 

and de-emphasized, throughout the manuscript (as but one example, in Reviewer figure 1, even though 

fiber tracts are projected onto the same anatomic MRI, the differences between the individual and 

populafion means are striking).

The atlas has not been reviewed/legifimized/validated in the literature, by either anatomists or imaging 

people, but is a “Frankenstein” amalgamafion.

The authors have responded with a favorable comparison of streamlines in the atlas and “anatomical 

ground-truth data”. But what are “ground-truth” data? In Table S1, the authors repeatedly cite “Expert 

Neuroanatomist’s Definifion” or popular atlases, and include mulfiple photos in the supplemental 

material. Fair enough. However, to validate this approach, the authors not only need to know the 

locafion of, for example, the pallidothalamic tracts not only on average (assuming the exemplar used to 

create an atlas is representafive of this) but also the variability in this locafion for the specific individual. 

This is a currently impossible task. An addifional problem here is that what is known about corfico-

subthalamic projecfions, which are proposed to be clinically relevant in this groups work (and very well 

may be) does not accord with the experience of clinical DBS. For example, it is known (see for example 

Parent and Hazrafi 1995) that corfico-subthalamic projects are not sharply differenfiated, and that Area 4 

projecfions are dorsolateral while premotor (Area 6,8,9) projecfions are ventromedial. In LeadDBS, the 

medio-lateral dimension is de-emphasized. If the authors wish to claim, as they do, that tremor control 

arises from sfimulafion to Area 4 projecfions and rigidity/bradykinesia from premotor/prefrontal 

projecfions, then there are several vexing quesfions to answer: 1) Why does the atlas (Figure 2) show 

sharply delineated tracts all along the lateral aspect of the STN?; 2) How does sfimulafion at single 

electrode contacts at the ZI/dorsal surface of STN, at amplitudes that produce a 2-3 mm VTA roufinely 

eliminate all cardinal motor symptoms of PD?; and 3) why does ventral STN sfimulafion (where they 

show these tracts to converge) roufinely fail to produce benefit?



There has never been a published study dedicated to explicitly comparing the biophysical models used in 

Lead-DBS to any established standards or electrophysiological measurements.

The authors surprisingly respond with a table of publicafions in which the Lead-DBS package has been 

used. Is the logic in this response that 1000 studies cannot be wrong? A more credible response would 

be to acknowledge the limitafions of the VTA modeling presented by the authors. In fact, the authors do 

not, and cannot, know the local anisotropic conductance of fissue around the DBS lead in any individual 

let alone on average. These models, at their best, rely upon atlases that are derived from classical 

studies of white and grey mafter, or more recently, esfimates based on low resolufion DTI. This is not to 

say that isotropic modeling that produces a spherical VTA has no value. However, the size of the VTA is 

unknown within a millimeter, does not have a sharp border, and is exceedingly unlikely to affect 

heterogenous fiber tracts in a uniform way. Again, without a candid approach to discussing limitafions 

clearly and explicitly in this and previous LeadDBS papers, and therefore a clearer understanding among 

non-specialist clinicians, overstated conclusions will confinue to permeate the DBS literature.

Ridiculous assumpfion that the DBS lead locafion is precisely known for each subject, and that there is 

zero variability associated with that component of the model.

The authors respond that “modeling the effect of uncertainty in electrode placement is an excifing idea” 

and recalculate the symptom specific tract model. This response does not address the concern. As 

illustrated in Figure 1, there are examples at each of the centers (though most pronounced in Wurzburg 

and Beijing) where sfimulafion, according to Lead DBS projecfions, is very far from any locafion expected 

to have therapeufic benefit, let alone to allow for the excellent results reported in Table 1. The authors, 

in this and previous publicafions, have not addressed this limitafion. In this reviewer’s experience, 

comparison of the Lead DBS mapping to actual pafient high-resolufion pre-operafive MRI and post-

operafive CT (after pneumocephalus has resolved) often distorts the locafion of the acfive contact 

mulfiple millimeters from its original locafion.

The authors seek to address this issue with examples of misplaced leads in Figure S1. The result would 

be more convincing if (1) Axial T2 and co-registered CT were shown at a higher magnificafion that shows 

the anatomy more clearly; (2) Axial images were selected at the level of the STN and not mid-red 

Nucleus (which is below the STN midpoint); (3) if corresponding coronal MRI images that disfinguish the 

STN and SNR were shown, and then these were compared to both axial and coronal Lead DBS atlas 

images at the level of the acfive contact(s). Befter sfill, the authors should quanfify the inaccuracy of 

atlas-fifting for randomly selected DBS pafients with successful outcomes from a pool of those whose 

anatomy deviates from the mean (e.g. wide 3rd ventricle, narrow and broad STN width, anterior and 

posterior displacement of the STN midpoint). The word “ridiculous” may be too strong, but there are 

major incorrect simplificafions and assumpfions that are glossed over, increasing confusion in the field.

In response to comments about the effects of changing jifter in the localizafion of the DBS lead, the 

authors respond (Figure S28) that shifts of 2 mm result in highly correlated esfimates of symptom 

specific tract sfimulafion (once again, using correlafion as the stafisfical measure). But this in fact proves 

the point of the crificism—longstanding clinical experience demonstrates that 2 mm shifts in the 

electrode very significantly impacts clinical efficacy (which is why intraoperafive tesfing is performed and 



why MER tracts are spaced 2 mm apart). The claim by the authors that 2 mm shifts do not significantly 

change symptoms specific tract sfimulafion underscores that this analysis, with all of its assumpfions, is 

simply unable to explain the variability in clinical outcomes with lead locafion that are seen in pracfice. 

That is a real problem for the overall premise of the manuscript.

Relevance of correlafions to clinical DBS programming algorithm development or mechanisfic 

understanding is minimal.

The authors respond that higher correlafions are not expected due to addifional sources of variability in 

outcomes. Here again, the authors may have not completely understood or addressed the concern. 

While there clearly are mulfiple sources of variability in DBS outcomes, and that the magnitude of these 

contribufions may be guessed at, the authors have in their data, a number which normalizes out many of 

these variables—the levodopa response. ON/OFF Meds could be compared to OFF MEDS ON/OFF DBS—

data that is gathered in most reputable centers. One would expect the quality of lead placement to 

highly correlate with the amount and variability of Levodopa response (perhaps excluding non-

responsive tremor and dyskinesia scores).

What is left unaddressed by the response is the low correspondence of model esfimates and clinical 

outcomes. The authors claim (see Figure 5) that the “Original model predicts outcomes in validafion 

cohort.” But does it? The percentage of predicfion falls in a narrow band of 0.4 to 0.6 percent 

improvement while the empirical data range from 0 to 0.8. The authors seek to jusfify the conclusion 

with a (low) correlafion of R = 0.37. This conflates accuracy and precision, which should be examined 

separately. In this and essenfially all results in this work, the means are close (i.e. the result may be 

accurate, though should be reported as mean/SEM of both distribufions), but precision, which 

determines how much this approach can be applied to individuals, is clearly extremely low. There are 

mulfiple ways to present such a comparison, including the coefficient of determinafion (accuracy), the 

mean squared error (precision) or a Bland-Altman plot (both). This and previous studies from this group 

lack this sort of rigorous analysis to quanfify the usefulness of LeadDBS.

Cleartune validafion: You can sfimulate a subject with many different parameter seftings (or different 

contacts) and get good/similar clinical results.

The authors have expanded the analysis from a single pafient and have now performed and included a 

study of 5 pafients. The logic here is that the system appears to work in a few cases. What is not known 

is how much these 5 pafients differed from the mean anatomy represented in the atlas. The addifional 

data are helpful, of course, but do not subsfitute for the rigorous stafisfical analysis described above 

which is needed to support the author’s very strong claims.

Addifional More Minor Methodological Concerns and Comments:

The above commentary notwithstanding, the authors may argue that the LeadDBS software provides a 

tool to improve symptom-specific outcomes that empirically works (at least on average across a broad 

pafient populafion). In this regard, it would be similar to atlas-based approaches dafing Schaltenbrand–

Wahren in 1977. The challenge, then and now, has not been one of populafion-based accuracy but of 

precision at the level of individual pafients. Despite the volume of papers published by this influenfial 



group, the problem of precision remains vexing.

Some addifional and more minor comments/quesfions include:

1) The abstract does not clearly differenfiate this work with past findings and makes broad claims. To 

minimize misunderstanding, the abstract should reflect the methods and findings of the current work. 

Similarly, the fitle should be more specific and telegraphic for the content of the manuscript.

2) Figures 2-5 and 7 do not show scale bars and it is not clear how the anatomic image background 

relates to the streamlines shown. This should be added/clarified.

3) Figure 1: Scale bars and orientafion informafion are missing. The relafionship of the imaged cortex to 

the displayed STN is unclear.

4) Figure 2: How are indirect pathway streamlines between STN and pallidum idenfified? In addifion, it 

appears that all relevant tracts lie lateral to the STN, but most effecfive sfimulafion is medial—how are 

fiber tracts idenfified within and medial to the STN, which are the areas of effecfive clinical sfimulafion 

(and also where it is difficult if not impossible to perform accurate streamline tracing?)

5) Figure 3: The very broad representafion of tremor-associated fibers in Figure 3A is difficult to reconcile 

with the very narrow representafion in Figure 2, subsequent figures, and Reviewer Figure 1. Under the 

premises of the LeadDBS, it would suggest that tremor should be effecfively treated across broad 

swathes of the posterior/anterior, superficial and deep STN. However, this is not the case. How are the 

associated fibers tuned?

6) Figure 4: In the figure, the pafient selected for display is one of very few that happens to have an 

extremely accurate mulfi-tract and single-tract predicfion. The cross-validafion panel shows that the 

mulfi-tract analysis had very poor performance for individuals who had lowest quarfile clinical outcomes. 

In general, the model predicted 0.4 to 0.6 improvement, although the actual response was -.2 to 0.4. 

This is exactly what would be expected, even if the atlas is correct, for pafients whose lead locafion is 

distorted by atlas fifting.

7) Figure 5: As commented above, here also the precision of predicfion is poor.

8) Figure 6: Here the axes values are presented at a scale that is unreadably small. There should be 

idenfical values on both axes in all panels. When this is done, it will be clear that, as in other figures, the 

predicfions fall in a narrow range, while the empirical findings are very broad, indicafing a lack of 

precision of the Lead DBS approach.

9) In bilateral sfimulafion, how are the effects of each sfimulafion side accounted for and incorporated 

into the model? Are symptom responses lateralized in the analysis? While all pafients underwent 

bilateral STN DBS and bilateral sfimulafion, the effects of each side are not differenfiated or methods 

explained in the figures or methods.



10) The LeadDBS algorithms ignore side effects. However, how is sfimulafion from primary motor cortex 

to STN disfinguished from fibers that would produce motor side effects? Does applicafion of the authors’ 

methods allow these therapeufic and side-effect producing tracts to be disfinguished? Is there any data 

that predicts motor side effects? This seems an important component towards validafion of the overall 

approach.

Again, this is important work by an influenfial group that seeks to address very significant issues in the 

field. I am grateful for the opportunity to review this very detailed and extensive collecfion of studies, 

which will no doubt be published in a high-impact journal. Upon review, I believe that DBS pafients and 

the field (again 1000 studies) will most benefit if the limitafions, assumpfions, and potenfial 

shortcomings of the approach are now clearly and transparently reported by the authors, so that the 

capabilifies of Lead DBS are not overstated and misunderstood.



Rajamani et al - Response to Reviewers 

Nature communications, NCOMMS-23-08030    

Points made by original reviewer 01 

Points made by reviewer 03 

Response by authors 

Additions/Changes to the manuscript 

 

Reviewer #3: 

Thank you for the opportunity to review this revised manuscript. The authors have 

provided a lengthy rebuttal of the previous reviewer comments, adding additional data 

and discussion. The manuscript is expanded and some aspects are clarified. At the same 

time, while seeking to refute earlier commentary, the authors have not directly addressed 

the core methodological concerns and seem, in their enthusiasm for this approach, to 

overstate the robustness of their findings. 

 

We would like to thank the reviewer for the very thoughtful and critical comments that helped 

us revise the manuscript further. We would also like to additionally thank the reviewer for also 

overseeing responses we made to original reviewer #01’s concerns. We apologize that we were 

not yet able to fully convince the reviewer about the robustness of our findings and do our best 

to respond to remaining points. We feel that beyond a few specific additional analyses that 

were requested (and which we were able to gladly carry out), one main theme of the criticism 

seems to be in overstating claims. We now add an extensive limitations section and additionally 

toned down the language throughout the manuscript (see below).  

A second main theme of the criticism seems to point to general concern about the use of the 

Lead-DBS software. The manuscript already features a replication of main results carried out 

with an independent software, and we now include a five-page supplementary figure that shows 

better views of individual cases reconstructed with Lead-DBS. 

 

The following changes were made to tone down the language and to discuss limitations: 

 

1.Use of the word ‘predict’: We apologize for this general overstatement and have changed any 

occurrence of the word to e.g. ‘account for’, ‘estimate’, or ‘explain significant amounts of 

variance in’. Indeed, the reviewer is correct that our models are not capable of accurately 

predicting improvement values in unseen data. Rather, if at all, the model seems to be able to 

https://mts-ncomms.nature.com/cgi-bin/main.plex?form_type=view_ms&j_id=18&ms_id=415535&ms_rev_no=0&ms_id_key=ftdLTazvijQAIhIxxQUHqkJRw


predict the ranks of improvements to some degree, or, as now stated, to account for variance in 

improvements of unseen data. In this regard, we would like to beg the reviewer to consider the 

state of the art in the field: As the reviewer mentions, no DBS imaging model is currently 

capable of accurately predicting individual outcomes across cohorts and centers. As the 

reviewer notes below, this is what we all dream of since years. But given our analysis made in 

and around figure S35, we are less optimistic that this is generally possible. There are many 

sources that contribute to the variance in outcomes above and beyond stimulation location. This 

does not mean, that we, as a field, are not interested in the optimal stimulation location, 

however. Hence, we argue that a location or network that is capable of predicting the ranks 

within an unseen cohort is still key to identify (as done here). 

2.Limitations section: We have added a more extensive and candid discussion of limitations: 

 

“Despite this, the use of normative connectomes is inherently limited and does not include 

patient-specific variability of white-matter tracts. Relatedly, the use of normative tractograms 

includes the necessity to register patient and atlas data, which is inherently prone to 

inaccuracies. In other words, a patient scan can never be perfectly aligned with an atlas, despite 

all efforts. This leads to inaccuracies of the model and, as a function of that, to its predictive 

power, i.e. it biases our results toward non-significance.” – limitations, p. 24 

 

“Next, the bioelectrical model employed here is simple compared to other methods 59,60 and has 

not been directly validated using electrophysiological data. Namely, while the forward solution 

provided by the SimBio/FieldTrip pipeline 26 as employed here, solves the static formulation of 

the Laplace equation to estimate the electric field in an established fashion (as widely used in 

the EEG literature), our process ends there and we calculate statistics directly on level of this 

field. Our reasoning behind choosing this simpler and more probabilistic approach, which does 

not assume sharp borders of the stimulation field, has been described at length elsewhere 61,62. 

However, it is key to mention that more elaborate biophysical modelling pipelines have 

combined the volume conductor models with axonal cable models (placed orthogonally to the 

lead63 or along pathways 59 to probe in more deterministic fashion whether axons would fire 

additional action potentials due to the DBS pulse. Even such models ignore the fact that 

GABAergic vs. Glutamatergic axons respond differently to DBS (the former fire along while 

the latter deplete readily64). In addition, concepts that model axons require to pose many 

assumptions, such as fiber type (mixed, myelinated and unmyelinated axons), axon diameters, 

degree of myelinisation, degree of arborization of both dendritic and axonal terminals, number 



of nodes of Ranvier to include into the model, conductivity of axonal, interstitial vs. myelin 

components, degree of microstructural anisotropy, heterogeneity and dispersivity of tissue 

conductivity, specific properties of the encapsulation layer, capacitive properties, and others. 

Still, more elaborate models are often deemed more biophysically plausible to the simpler 

approach applied here. To this end, we replicated our main results using a more elaborate 

pipeline that has been developed by a different team 27, which calculated pathway activation 

models, that, when subjected to fiber filtering, produced comparable results.” – limitations, p. 

25 

 

“Next, it is possible stimulate a patient with many different parameter settings (or different 

contacts) and get good/similar clinical results. This matter makes demonstration of clinical 

utility of both out-of-sample estimates of improvements and the Cleartune algorithm difficult. 

This task is even more complicated in the present monopolar review cohort (N = 20), where 

only the three segments of a given contact level were compared (which are even closer to one 

another than different contact levels). While results seem promising and Cleartune was able to 

suggest the clinically chosen contact above chance, this general limitation still applies to any 

form of image guided programming.” – limitations, p. 24 

 

“Finally, correlations between model estimates and empirical improvements are moderate. 

Crucially, if at all, our model is capable of estimating ranks of improvements within a given 

cohort, rather than absolute improvement values in individual patients. We point the reader to 

our modelling considerations section S5 for additional thoughts on this matter. In brief, many 

factors beyond electrode placement influence clinical outcomes following DBS. Critically, 

however, stimulation location is a key variable that can be influenced by doctors, while other 

factors (such as age, disease-subtype, etc) cannot. This isolates the variable of stimulation 

placement as a key one to improve patient care. Hence, despite the model not being able to 

predict improvements accurately, we argue that identifying ideal targets for given symptoms, as 

done here, is, while limited, still key to move forward.” – limitations, p. 26 

 

3.Toned down language throughout the manuscript. We made numerous changes in the 

wording and are unable to paste all examples below. The following are examples but represent 

typical sentences which made claims that were now toned down in the revised manuscript: 

 



“Here, we pursue two goals: i) creating a circuit model in stereotactic standard space for four 

cardinal motor symptom categories (tremor, bradykinesia, rigidity, and axial symptoms) and ii) 

derive and apply an algorithm that uses the model to suggest optimal stimulation parameters as 

a function of the baseline symptom severity profile in each patient.” – introduction, p. 5 

 

“While three of the five patients preferred Cleartune over SoC settings, in two patients, 

Cleartune settings led to side-effects (dyskinesia in patient 05 and dizziness in patient 04). This 

emphasizes that the current model was purely driven by improvements (and not by side-

effects), which is a clear limitation for clinical applicability. […] While generally promising, 

given the low N, these results should not be overinterpreted. Rather, this trial was carried out to 

test feasibility of applying Cleartune in a clinical setting and to gather first experience in 

preparation for a proper prospective trial. As such, the trial was not powered to compare 

Cleartune vs. SoC settings (non-inferiority or superiority).” – results, p. 19-20 

 

“It is important to clarify at this point that our results do not suggest that one symptom domain 

can be modulated independently by a specific set of streamlines. There were considerable 

overlaps between connections, most especially on a cortical level and along the indirect 

(pallidosubthalamic) projections. On the other hand, projection zones of hyperdirect (cortical) 

input to the STN seemed quite segregated.” – discussion, p. 21 

 

As noted, this is a statistical tour-de-force of Lead-DBS analyses. The overarching claim 

is that Lead-DBS can be used to personalize STN DBS stimulation parameters by 

mapping implanted leads to a standardized atlas that includes labelled DTI streamlines. 

The premises are (1) that there are symptom specific tracts which respond favorably to 

DBS stimulation; and (2) that STN DBS for PD may be tailored by directing stimulation 

based on these individual symptoms. The authors further claim that (3) an atlas of circuit 

pathways accurately represents the relative locations of individual symptom-associated 

circuits in standard stereotactic space; and (4) that individual patient data (pre-op MRI, 

post-op CT, symptom characteristics) can be fed into an algorithm that outputs optimal 

stimulation parameters based on these internal models. These claims are explored further 

below. 

 

There are numerous assumptions underlying these claims. First (A) that individual 

anatomy in the STN region can be reliably and accurately warped into standard 



stereotactic space; and (B) that the result of such warping will not only be affine but will 

also accurately map to an atlas with sub-millimeter precision. Similarly, (C) that the 

relevant tracts connecting cortical and subcortical brain regions can be identified with 

submillimeter precision in a MR-tractography atlas; and that (D) these anatomical 

relationships will be maintained after atlas-fitting at the individual patient level. In this 

and previous work, this influential group has not included clear statements of these and 

other assumptions, leading to broad claims that seem “too good to be true.” Wherever 

this manuscript is published, the assumptions and an assessment of their weaknesses and 

strength should be clearly stated and the statistical shortcomings, particularly significant 

confusion between accuracy and precision, must be addressed. 

 

We agree with the reviewer regarding these limitations and have added the following 

paragraphs to the limitations section: 

 

“First, our main model applies normative tractograms instead of patient-specific tractography 

data to isolate symptom-associated networks. The reasons to focus on normative datasets are 

manifold: It is hard, if not impossible, to reconstruct thin bundles such as the ansa lenticularis, 

the comb fibers or the striatopallidofugal bundle based on clinical imaging since these are thin 

structures that traverse through gray matter and/or orthogonally to the internal capsule 42–44 

(also see section S2). However, even in normative data, these structures may not be identifiable 

with submillimeter precision.” – limitations, p. 23 

 

“Despite this, the use of normative connectomes is inherently limited and does not include 

patient-specific variability of white-matter tracts. Relatedly, the use of normative tractograms 

includes the necessity to register patient and atlas data, which is inherently prone to 

inaccuracies. In other words, a patient scan can never be perfectly aligned with an atlas, despite 

all efforts. This leads to inaccuracies of the model and, as a function of that, to its predictive 

power, i.e. it biases our results toward non-significance. Relatedly, DBS electrode 

reconstructions should be seen as models that inherently include an amount of uncertainty.” – 

limitations, p. 24 

 

That said, the challenge of DBS targeting and programming is significant and important 

for the field, and the authors are to be commended for their efforts and for creating an 

easily accessible set of tools that have been broadly adopted (1000 studies!). Soberingly, 



the history of science and medicine is filled with fundamentally flawed (or limited) 

approaches that are enthusiastically supported, and transiently and widely adopted, 

before abandonment. Hence, it is critical that influential authors of potentially impactful 

manuscripts like this group directly acknowledge and (where possible) address potential 

shortcomings, rather than dismiss criticisms with appeals to authority or citing broad 

adoption. Readers should not only understand the potential but also the limitations of this 

work, or many patients will suffer. In this manuscript, the limitations are greatly 

obscured. 

 

We are very sorry if our reasoning came across as dismissive (or appealing to authority). 

Original reviewer 01 had pointed out that Lead-DBS models were ‘grossly inaccurate’, which 

we had to politely disagree with. To address those comments, we aimed at pointing the 

reviewer to a large body of studies that validated specific components of the software (table 

S2).  

 

We now include a more thorough discussion of the limitations of the biophysical models 

created within the SimBio/FieldTrip pipeline (as employed within Lead-DBS): 

 

“Next, the bioelectrical model employed here is simple compared to other methods 59,60 and has 

not been directly validated using electrophysiological data. Namely, while the forward solution 

provided by the SimBio/FieldTrip pipeline 26 as employed here, solves the static formulation of 

the Laplace equation to estimate the electric field in an established fashion (as widely used in 

the EEG literature), our process ends there and we calculate statistics directly on level of this 

field. Our reasoning behind choosing this simpler and more probabilistic approach, which does 

not assume sharp borders of the stimulation field, has been described at length elsewhere 61,62. 

However, it is key to mention that more elaborate biophysical modelling pipelines have 

combined the volume conductor models with axonal cable models (placed orthogonally to the 

lead63 or along pathways 59 to probe in more deterministic fashion whether axons would fire 

additional action potentials due to the DBS pulse. To this end, we recalculate main findings of 

our study with a deterministic solution that includes axon cable models and show that results 

remain similar. Even such models ignore the fact that GABAergic vs. Glutamatergic axons 

respond differently to DBS (the former fire along while the latter deplete readily64). In addition, 

concepts that model axons require to pose many assumptions, such as fiber type (mixed, 

myelinated and unmyelinated axons), axon diameters, degree of myelinisation, degree of 



arborization of both dendritic and axonal terminals, number of nodes of Ranvier to include into 

the model, conductivity of axonal, interstitial vs. myelin components, degree of microstructural 

anisotropy, heterogeneity and dispersivity of tissue conductivity, specific properties of the 

encapsulation layer, capacitive properties, and others. Still, more elaborate models are often 

deemed more biophysically plausible to the simpler approach applied here. To this end, we 

replicated our main results using a more elaborate pipeline that has been developed by a 

different team 27, which calculated pathway activation models, that, when subjected to fiber 

filtering, produced comparable results.”  – limitations, p. 24-25 

 

A basic flaw of this study is the highly unrealistic assumption that all subjects have a 

“common” response to stimulation in the same anatomical location of the brain atlas. 

 

The authors have responded with additional analysis of 93 patients and testing of 10 

additional patients (20 electrodes) which showed positive correlation with empirical 

improvement. These results are unsurprising. They show that the patient population has, 

on average, average anatomy.  

 

While we understand where the reviewer is coming from, we would beg to politely appeal to 

this point. When the reviewer writes that these results are unsurprising, a feeling of dismissal 

emerges, and we are somewhat surprised that the reviewer glosses over these validations as if 

they were obvious and contributed little, but instead focuses their review in many accounts on 

the fact that such a model is not theoretically possible (or ‘too good to be true’). Indeed, few if 

even no prior publications have created a model on N = 129 DBS patients and validated results 

on an independent large cohort of 93 patients.  

Second, we believe that especially the additional N = 20 electrodes dataset (which features 

many stimulation settings per patient as requested by original reviewer #01) shows that in the 

majority of electrodes, a positive relationship between estimates and actual clinical responses is 

seen. What may have gotten lost in the bulk of results is that these settings were all tested on 

the same contact level (but on different segments). In our view, this shows that the model is 

indeed capable of resolving minute differences in stimulation settings in individual patients. 

Critically, this held true when correcting for stimulation amplitudes and this relationship was 

symptom-specific (i.e., it worked for global outcomes, but also for an adapted algorithm that 

focused on rigidity vs. bradykinesia). To the best of our knowledge, no comparable models 

have been demonstrated in the field. 



 

We added the following paragraph that further discusses these findings: 

 

“These patients had been implanted with directional electrodes (Boston Scientific Vercise 

Cartesia) and for the directional levels with best clinical response, each segment had been 

tested in increasing 1 mA steps until a side effect occurred or until reaching 5 mA. In addition, 

the omnidirectional setting (switching on all three segments) was tested in the same way. As 

above, we calculated predictions for each setting using the original model (from the N = 129 

discovery cohort). In 17 of the 20 electrodes, rank estimates positively correlated with clinical 

improvements (all correlation plots with over six data points are shown in figure S32). 

Naturally, a one-sample t-test across these R-values was significant (T = 4.155, p < 0.001; 

figure. 6).” – results, p. 16 

 

The authors gloss over the fact that even state-of-art atlases cannot capture the diversity 

of unique, individual brains within the accuracy required for DBS stimulation (2 mm).  

This is due to the fact, well recognized by anatomists (See work by PP Mitra or S Haber) 

that at the mesoscopic scale (0.1 to 10 mm) there is a transition from a macroscopic level, 

where a stable, species-typical neural architecture is observed, to a finer scale where 

individual variation is prominent. This is readily apparent, though consistently ignored 

and de-emphasized, throughout the manuscript (as but one example, in Reviewer figure 

1, even though fiber tracts are projected onto the same anatomic MRI, the differences 

between the individual and population means are striking).  

 

Regarding individual dMRI results: While these often differ substantially, they also do so when 

scanning the same brain twice. In other words, if single subject dMRI results show differences, 

these may be i) based on true differences in anatomy and/or ii) based on noise. This is not 

relevant for most dMRI test-retest studies since they work with large tracts such as the 

superolateral fascicle or the internal capsule. Indeed, test-retest studies in the field of DBS 

show that, for instance, the impact of the MRI machine is larger than the impact of the 

individual brain (10.3174/ajnr.A3140), and that even when scanning the same subject multiple 

times on the same machine, large deviations of results in the order of ~2 mm may occur 

(10.3171/2016.4.JNS1624). Hence, while tracts created with tractography look impressive, they 

do not necessarily represent the anatomical truth (also see Irontract challenge work by S Haber 

or the famous Maier-Hein study in Nature Comms).   



 

Regarding the discussion of patient-specific vs. normative tractograms, we very much agree 

with the reviewer: There is some degree of similarity between each brain’s anatomy (if not, no 

brain atlas would ever be helpful), and this similarity can be augmented further when precisely 

co-registering brains nonlinearly. Despite these efforts, a substantial degree of diversity across 

brains will always remain. Unfortunately, we have no means of measuring this diversity 

accurately. Indeed, the reviewer makes this point (‘assumption C’) above, where they doubt 

whether diffusion tractography may lend itself to define tracts with submillimeter precision.  

 

As a bottom line: We agree (and have agreed in all other queries raised above) that these 

methods have their limits. The only way we see to test whether the models are meaningful 

despite these limitations is to empirically test whether i) the associated correlations are 

significant after corrections for multiple comparisons (which the correlation coefficients of our 

tract models are), whether ii) they hold when subjected to cross-validations (which our tract 

models do) and iii) whether they can estimate clinical improvements in unseen (out-of-sample) 

data (which they do in two unseen test datasets and five prospective patient cases). 

 

We hope that the additional sections of the now extensive limitations section, our attempts to 

tone down language throughout the manuscript further, and responses to multiple similar points 

in this letter will convince the reviewer that our aim is not to gloss over inaccuracies. To 

directly address this point further, we added the following limitation statement that further 

highlights inaccuracies that are prone to the concept of spatial normalizations and the 

limitations in the use of normative tractograms:  

 

“Despite this, the use of normative connectomes is inherently limited and does not include 

patient-specific variability of white-matter tracts. Relatedly, the use of normative tractograms 

includes the necessity to register patient and atlas data, which is inherently prone to 

inaccuracies. In other words, a patient scan can never be perfectly aligned with an atlas, despite 

all efforts. This leads to inaccuracies of the model and, as a function of that, to its predictive 

power, i.e. it biases our results toward non-significance.” – limitations, p. 24  

 

The atlas has not been reviewed/legitimized/validated in the literature, by either 

anatomists or imaging people, but is a “Frankenstein” amalgamation. 

 



The authors have responded with a favorable comparison of streamlines in the atlas and 

“anatomical ground-truth data”. But what are “ground-truth” data?  

 

We have responded to this original query by including the extensive backlog and anatomical 

co-authors that had helped us create the atlas in the first place. Originally, we had planned to 

publish this work separately. While our manuscript did not use the term ‘ground-truth’ data, we 

refer to the head-to-head comparisons between tract visualizations and Klingler dissections, 

dark-field microscopy data and text-book results, which were carried out by anatomists, 

neurosurgeons and neuroradiologists (see list of coauthors). We do not believe that 

substantially better ways to validate tractography results exist but very much agree that ‘ground 

truth’ is a broad term. We have now added the following point to clarify limitations of the 

‘ground truth’ data into our limitations section: 

 

“Here, we created an atlas that was directly compared to anatomical data from Klingler 

dissections and textbook results (see section S2). While we believe this to be the only viable 

way to compare tractography results to ‘ground-truth’ data, it is indirect in nature and bases on 

visual comparisons by anatomists and neurosurgeons as the co-authors of the present work that 

were involved in this part of this work.” – limitations, p. 24 

 

In Table S1, the authors repeatedly cite “Expert Neuroanatomist’s Definition” or popular 

atlases, and include multiple photos in the supplemental material. Fair enough. However, 

to validate this approach, the authors not only need to know the location of, for example, 

the pallidothalamic tracts not only on average (assuming the exemplar used to create an 

atlas is representative of this) but also the variability in this location for the specific 

individual. This is a currently impossible task.  

 

We very much agree with the assumption that this is a currently impossible task and add this to 

the limitations section, as well: 

 

“Furthermore, the identified tracts represent group averages, and it is currently impossible to 

match them to the exact tracts present in the individual patient.” – discussion, p. 24 

 

Regarding the term ‘Expert neuroanatomist definition’, we now include the initials of Erik 

Middlebrooks, who created these respective tracts. Critically, however, they were further 



assessed by Vanessa Milanese who has a strong track record in Klingler’s dissections and 

neurosurgery, as well as by the team in Greece (GPS, SK, AK) together with the core authors 

of the study (HM, CN, AH), all with a track record of publishing about subcortical anatomy. 

 

An additional problem here is that what is known about cortico-subthalamic projections, 

which are proposed to be clinically relevant in this groups work (and very well may be) 

does not accord with the experience of clinical DBS. For example, it is known (see for 

example Parent and Hazrati 1995) that cortico-subthalamic projects are not sharply 

differentiated, and that Area 4 projections are dorsolateral while premotor (Area 6,8,9) 

projections are ventromedial. In LeadDBS, the medio-lateral dimension is de-emphasized. 

If the authors wish to claim, as they do, that tremor control arises from stimulation to Area 

4 projections and rigidity/bradykinesia from premotor/prefrontal projections, then there 

are several vexing questions to answer: 1) Why does the atlas (Figure 2) show sharply 

delineated tracts all along the lateral aspect of the STN?;  

 

We are aware of the work by Parent and Hazrati 1995 (10.1016/0165-0173(94)00008-d), but, 

potentially, the reviewer may have misconceived the idea that premotor areas project to the STN 

from its ventromedial border. The authors write:  

“The premotor cortex (areas 8, 9 and 6) also projects to the primate subthalamic nucleus. These 

projections terminate principally in the ventromedial sectors of the nucleus, the projection from 

area 6 being the most ventral and medial.”  

 

While the authors make a statement about the terminal fields of these projections within the STN, 

in this article, they do not mention from which side/aspect of the nucleus the projections enter it. 

Indeed, as e.g. beautifully seen in the work by the single axon tracing work from the same group 

from 2018 (10.1007/s00429-018-1726-x), cortical projections from the STN enter the nucleus 

mainly from its lateral aspect (the one facing the capsule) but then traverse through the nucleus, 

also into its ventromedial aspects. The aforementioned beautiful atlas published by the McIntyre 

group (10.1016/0165-0173(94)00008-d), which Martin Parent co-authored, also maps 

projections all hyperdirect projections this way (the side facing the internal capsule, see e.g. 

figure 4 in the article by Petersen et al.). We further confirmed this notion in personal 

communication with both Dr. Parent (below). 

 



  

Reviewer Figure 1: Response to our inquiry from Prof. Martin Parent. 

We hope that these thoughts could clarify the matter but are happy to discuss further, if needed.  

 

2) How does stimulation at single electrode contacts at the ZI/dorsal surface of STN, at 

amplitudes that produce a 2-3 mm VTA routinely eliminate all cardinal motor symptoms 

of PD?;  

 

This is a very important point, and indeed based on clinical practice, we also anticipated that 

tracts could not be segregated since a single VTA would mediate all four symptoms at the same 

time. Upon further thought, however, we realized that a typical VTA would easily encompass all 

four tract systems. To preconceive this criticism, we had included a paragraph of discussion and 

a corresponding figure into the manuscript, which we again paste below for convenience. In the 

figure, panel A is particularly important to this discussion, which shows that a single well-placed 

electrode can very well modulate all four fiber systems (which, as the reviewer mentions, fits 

clinical experience): 

 

jwu9191
Text Box
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Figure 7. Hypothetical future use of symptom-tract model. A) A well-placed, standard omnidirectional 

(Medtronic 3389) electrode is shown with a single stimulation volume that equally covers all symptom-specific 

tracts. B) A hypothetical future concept with a modern electrode (Boston Scientific Cartesia X electrode with 15 

directional contacts and one omnidirectional contact) is shown. With some devices, it is possible to steer multiple 

stimulation volumes toward individual tracts. In our example, one volume could target tremor streamlines 

(potentially with a high frequency of 180 Hz). A second volume would focus on the axial/gait streamlines connecting 

to the PPN region (potentially with a low frequency of 25 Hz). S = Superior, A = Anterior, I = Inferior. 

 

“It is important to clarify at this point that our results do not suggest that one symptom domain 

can be modulated independently by a specific set of streamlines. There were considerable 

overlaps between connections, most especially on a cortical level and along the indirect 

(pallidosubthalamic) projections. On the other hand, projection zones of hyperdirect (cortical) 

input to the STN seemed quite segregated. At first glance, this could seem contradictory to 

clinical experience: Indeed, the same DBS setting typically modulates many symptoms at once, 

seemingly with similar intensity. However, this notion does not conflict with our results: the 

identified tracts reside very close to one another, spanning across a region of millimeters within 

the sensorimotor functional zone of the STN level. As figure 7A shows, a single well-placed 

electrode may produce a stimulation volume that modulates all identified tracts (and hence 

symptoms), simultaneously. However, figure 7B shows potential use of the tract model with a 

modern 16-contact segmented electrode (such as the Boston Scientific model Cartesia X). Using 

Multiple Independent Current Control (MICC) technology, distinct stimulation volumes may be 

generated along the same electrode, each with different amplitudes and frequencies 31. In the 

hypothetical example shown in figure 7, one could steer a first volume at high frequency (180 



Hz) to the tremor streamlines and a second at low frequency (25 Hz) to the axial & gait 

streamlines to treat the two symptoms as optimally, as possible.” – discussion, p. 21-22 

 

and 3) why does ventral STN stimulation (where they show these tracts to converge) 

routinely fail to produce benefit? 

 

In clinical practice, ‘ventral STN DBS’ is sometimes conflated with anteromedial STN DBS 

(associative / limbic domains). For this reason, we are uncertain which typical scenario the 

reviewer exactly refers to. First, the reviewer could refer to a misplaced electrode that is too 

anteromedial (often referred to as too ventral in clinical practice, see panel A in the reviewer 

figure below), i.e., in the associative-limbic domain of the nucleus. This would be a position used 

for treatment of OCD, but in PD, stimulation at this site is at times associated with hypomania 

and other cognitive-affective side effects. If the reviewer refers to this scenario, our tracts do not 

converge here. Alternatively, the reviewer could refer to ventral contacts of a generally well-

placed electrode (black dot in panel B). While we are not as certain that such a stimulation will 

always fail to produce benefit, the Cleartune algorithm presented here would usually pick such 

contacts when selecting the best contact to improve axial symptoms and gait. This matches the 

experience of our clinical co-authors: Indeed, such contacts often fail to produce apparent benefit 

especially for tremor, which could be explained by the tremor tracts (green) traversing off at that 

level but are often activated or at least probed when gait problems arise further down the line. 

Multiple papers by different groups point to an optimal general location that is pretty much in 

the center of the premotor/motor STN (white dot in both figure panels). This location would very 

much be in line with the site of most convergence of our tract model. To mention some reports 

by various groups that independently identified this ‘optimal general location’ using various 

methods:  

1. Bordeaux group using AC-PC coordinates (10.1007/s00701-013-1782-1),  

2. Amsterdam group using stereotactic landmarks (10.1136/jnnp-2017-316907),  

3. London group using Suretune software, (10.1016/j.neuroimage.2017.07.012),  

4. our own group using Lead-DBS (10.1101/2020.01.14.904615; for a review see 

10.1097/WCO.0000000000000679).  

 



 

Reviewer Figure 2: Different definitions of “ventral” stimulation sometimes used in clinical 

practice. Panel A shows an extreme position that would stimulate the limbic portion of the STN. 

STN-DBS electrodes implanted for OCD, for instance, go into this direction. Panel B shows the 

location that inferior contacts of a well-placed STN-DBS electrode for PD would typically fall 

into. 

 

For now, we refrain from making changes to the manuscript related to this point for reasons of 

brevity and reading flow. We are happy to include these ideas if the reviewer deems important 

to include.  

 

There has never been a published study dedicated to explicitly comparing the biophysical 

models used in Lead-DBS to any established standards or electrophysiological 

measurements. 

 

While some studies exist that compared Lead-DBS models and localizations with 

electrophysiological markers (see our table S2), we assume the reviewer speaks of EMG studies 

that measure capsular effects, or evoked potentials. While we are aware of two ongoing studies 

of this nature with very promising results, it is true that no such study has been published. The 

same is true, for instance, for the models included in the FDA approved software solutions of 

SureTune (Medtronic) or GuideXT (BSci), or comparable research software (e.g. DBSproc).  

 

We very much agree with the reviewer that the lack of direct head-to-head trials should be 

declared and added the following limitations section about this: 



 

“Next, the bioelectrical model employed here is simple compared to other methods 59,60 and has 

not been directly validated using electrophysiological data.” – limitations, page 25 

 

The authors surprisingly respond with a table of publications in which the Lead-DBS 

package has been used. Is the logic in this response that 1000 studies cannot be wrong? A 

more credible response would be to acknowledge the limitations of the VTA modeling 

presented by the authors.  

 

Our logic in mentioning this was not that 1,000 studies cannot be wrong. But the assumption that 

all this research is wrong, and all authors that used the software are essentially unable to see ‘its 

many flaws’ would sound similarly off to us. We do believe that heavy usage of a tool comes 

with a certain degree of scrutiny, especially if the code is open source and the user base includes 

sophisticated authors in the field. Many key experts use the tool on a daily basis and have adapted 

it in ways that show their deep understanding of the underlying methods (for instance multiple 

reports by the Mayo Jacksonville group, the adaptation of Lead-DBS to macaque brains by the 

Neurospin group; https://www.science.org/doi/abs/10.1126/sciadv.abl5547, the adaptation to 

Swine model by the Miami group; 10.1016/j.brs.2021.02.017 or the additions to the code by 

Enrico Opri for Lead-DBS to support unilateral cases). These are a few of many examples where 

‘users’ just by the scope of their work demonstrated deep understanding of the methods and 

strong adaptations of the work. The tool is developed by many institutions world-wide and has 

gone through code review and extensive usage by key experts in the field (e.g., Till Dembek, 

Erik Middlebrooks, Kai Miller, Andreas Nowacki, or the methods-heavy groups of Mark 

Richardson & Philip Starr just to name a few). Numerous groups have their own forks and work 

on their own extensions (e.g.,https://github.com/Brain-Modulation-Lab/ECoG_localization, 

https://github.com/oprienrico/leaddbs__dev).  

Hence, the notion that all these groups simply do not see the ‘basic flaws’ and all make ‘highly 

unrealistic assumptions’ (quotes by original reviewer 01) seems somewhat biased to us, and we 

did not see a better way of responding to this strong criticism than to list evidence that many 

parts of the Lead-DBS pipeline have indeed been validated in various ways. 

 

Table S2 does not feature a list of studies which have merely used Lead-DBS. As the reviewer 

mentions, this list would be much longer. Each of the listed study supports specific aspects of 

the tool. We added this table in direct response to the claim by reviewer 1, that “The only 

https://www.science.org/doi/abs/10.1126/sciadv.abl5547
https://doi.org/10.1016/j.brs.2021.02.017
https://github.com/Brain-Modulation-Lab/ECoG_localization
https://github.com/oprienrico/leaddbs__dev


comparisons that are available in the literature suggest that the simulations performed in Lead-

DBS are grossly inaccurate.”, which this table demonstrates to be incorrect. 

 

On top, we also recalculated the main model using pathway activations calculated by the much 

more sophisticated and independently developed software OSS-DBS. This method surpasses the 

state of the art of biophysical modelling (including work of the McIntyre group) in the following 

ways: 

1) Patient-specific heterogeneous anisotropic volume conductor models are used. Note that 

anisotropic conductivity is highly relevant in the context of white matter tracts. 

2) Tissue dispersion is accounted for by the Fourier Finite Element Method 

3) Pathway Activation Modeling to quantify axonal responses to extracellular stimulation (in 

contrast to VTA / E-field or Driving Force based approximations) are used. 

 

Nonetheless, we agree with the reviewer that a more thorough discussion of limitations of our E-

field model can be helpful to many readers and added the following to the revised version of the 

manuscript: 

 

“Next, the bioelectrical model employed here is simple compared to other methods 59,60 and has 

not been directly validated using electrophysiological data. Namely, while the forward solution 

provided by the SimBio/FieldTrip pipeline 26 as employed here, solves the static formulation of 

the Laplace equation to estimate the electric field in an established fashion (as widely used in 

the EEG literature), our process ends there and we calculate statistics directly on level of this 

field. Our reasoning behind choosing this simpler and more probabilistic approach, which does 

not assume sharp borders of the stimulation field, has been described at length elsewhere 61,62. 

However, it is key to mention that more elaborate biophysical modelling pipelines have 

combined the volume conductor models with axonal cable models (placed orthogonally to the 

lead63 or along pathways 59 to probe in more deterministic fashion whether axons would fire 

additional action potentials due to the DBS pulse. Even such models ignore the fact that 

GABAergic vs. Glutamatergic axons respond differently to DBS (the former fire along while 

the latter deplete readily64). In addition, concepts that model axons require to pose many 

assumptions, such as fiber type (mixed, myelinated and unmyelinated axons), axon diameters, 

degree of myelinisation, degree of arborization of both dendritic and axonal terminals, number 

of nodes of Ranvier to include into the model, conductivity of axonal, interstitial vs. myelin 

components, degree of microstructural anisotropy, heterogeneity and dispersivity of tissue 



conductivity, specific properties of the encapsulation layer, capacitive properties, and others. 

Still, more elaborate models are often deemed more biophysically plausible than the simpler 

approach applied here. To this end, we replicated our main results using a more elaborate 

pipeline that has been developed by a different team 27, which calculated pathway activation 

models, that, when subjected to fiber filtering, produced comparable results.” – limitations, p. 

25  

 

In fact, the authors do not, and cannot, know the local anisotropic conductance of tissue 

around the DBS lead in any individual let alone on average. These models, at their best, 

rely upon atlases that are derived from classical studies of white and grey matter, or more 

recently, estimates based on low resolution DTI. This is not to say that isotropic modeling 

that produces a spherical VTA has no value. However, the size of the VTA is unknown 

within a millimeter, does not have a sharp border, and is exceedingly unlikely to affect 

heterogenous fiber tracts in a uniform way. Again, without a candid approach to 

discussing limitations clearly and explicitly in this and previous LeadDBS papers, and 

therefore a clearer understanding among non-specialist clinicians, overstated conclusions 

will continue to permeate the DBS literature. 

 

We very much agree with the reviewer. For precisely this reason, we do not model VTAs in the 

present study, but apply statistics on the electric fields directly (i.e. our model does not assume 

sharp borders). We believe that modeling physics (i.e., the field) is already complicated, but 

may be more readily feasible than modeling biology (which requires manifold assumptions in 

the axonal, neuronal, glial and surrounding tissue properties, see above). The following (also 

see above point) has been amended to discuss this in our limitations section: 

 

“Our reasoning behind choosing this simpler and more probabilistic approach, which does not 

assume sharp borders of the stimulation field, has been described at length elsewhere 61,62. 

However, it is key to mention that more elaborate biophysical modelling pipelines have 

combined the volume conductor models with axonal cable models (placed orthogonally to the 

lead63 or along pathways 59 to probe in more deterministic fashion whether axons would fire 

additional action potentials due to the DBS pulse. Even such models ignore the fact that 

GABAergic vs. Glutamatergic axons respond differently to DBS (the former fire along while 

the latter deplete readily64). In addition, concepts that model axons require to pose many 

assumptions, such as fiber type (mixed, myelinated and unmyelinated axons), axon diameters, 



degree of myelinisation, degree of arborization of both dendritic and axonal terminals, number 

of nodes of Ranvier to include into the model, conductivity of axonal, interstitial vs. myelin 

components, degree of microstructural anisotropy, heterogeneity and dispersivity of tissue 

conductivity, specific properties of the encapsulation layer, capacitive properties, and others. 

Still, more elaborate models are often deemed more biophysically plausible than the simpler 

approach applied here.” – limitations, p. 25 

 

Ridiculous assumption that the DBS lead location is precisely known for each subject, and 

that there is zero variability associated with that component of the model.  

 

The authors respond that “modeling the effect of uncertainty in electrode placement is an 

exciting idea” and recalculate the symptom specific tract model. This response does not 

address the concern. As illustrated in Figure 1, there are examples at each of the centers 

(though most pronounced in Wurzburg and Beijing) where stimulation, according to 

Lead DBS projections, is very far from any location expected to have therapeutic benefit, 

let alone to allow for the excellent results reported in Table 1. The authors, in this and 

previous publications, have not addressed this limitation. In this reviewer’s experience, 

comparison of the Lead DBS mapping to actual patient high-resolution pre-operative 

MRI and post-operative CT (after pneumocephalus has resolved) often distorts the 

location of the active contact multiple millimeters from its original location. The authors 

seek to address this issue with examples of misplaced leads in Figure S1. The result would 

be more convincing if (1) Axial T2 and co-registered CT were shown at a higher 

magnification that shows the anatomy more clearly; (2) Axial images were selected at the 

level of the STN and not mid-red Nucleus (which is below the STN midpoint); (3) if 

corresponding coronal MRI images that distinguish the STN and SNR were shown, and 

then these were compared to both axial and coronal Lead DBS atlas images at the level of 

the active contact(s). Better still, the authors should quantify the inaccuracy of atlas-

fitting for randomly selected DBS patients with successful outcomes from a pool of those 

whose anatomy deviates from the mean (e.g. wide 3rd ventricle, narrow and broad STN 

width, anterior and posterior displacement of the STN midpoint). The word “ridiculous” 

may be too strong, but there are major incorrect simplifications and assumptions that are 

glossed over, increasing confusion in the field. 

 



We have added the requested figures showing registrations of the atlas and electrode localizations 

in more detail for the same selection of patients as we used before (now one full-page figure per 

patient in the supplements): 

 

Section S1. Variability in Electrode Placement  
 



  

Figure S1. Comparison of imaging data with 3D DBS models of example cases with suboptimal electrode 

placements (continued on the next pages). Each figure shows in order from top to bottom: A preoperative T2 

(axial & coronal sections) with thresholded registered postoperative CT superimposed for the cases of 



postoperative CT usage, the same views superimposing the segmented subthalamic nucleus (based on the 

diffeomorphic transform following spatial normalization and WarpDrive correction), and a 3D reconstruction of 

the same data (Lead-DBS output). The left columns shows the respective views in native (AC/PC registered) 

space, the right columns show the same data after transform into MNI space.  

 



 
Figure S1 (continued). 



 
Figure S1 (continued). 
 



 
Figure S1 (continued). 
 



 
Figure S1 (continued). 
 

 

 



Regarding a quantitative comparison between manual segmentations and Lead-DBS 

reconstructions, this has been done extensively, before (by us: 

10.1016/j.neuroimage.2018.09.061 and by others: 10.1016/j.nicl.2020.102271). However, 

critically, these papers quantified DICE coefficients and surface distances using the automated 

pipeline (ANTs multispectral effective low variance + subcortical refinement protocol used 

here). After the automated results, we apply manual refinements using the WarpDrive tool 

(10.1016/j.media.2023.103041). This tool essentially fuses the process of manual segmentations 

and spatial normalizations, i.e., its results become as good as the human eye (and the underlying 

imaging data). Indeed, since the introduction of this method, our laboratory would use 

WarpDrive to manually segment STN nuclei rather than drawing in the structure slice by slice. 

Hence, the comparison between normalizations and segmentations would be between WarpDrive 

and itself and is hence not sensible to carry out. We point the reviewer to a WarpDrive demo 

video that shows how we segmented/normalized the STN in the present manuscript (and all 

recent papers from our group): https://youtu.be/EgtN168LFUI. As requested by the reviewer, we 

added an additional figure showing this manually adjusted fit of the STN in a series of patients 

with atypical anatomy.  

 

 

In response to comments about the effects of changing jitter in the localization of the DBS 

lead, the authors respond (Figure S28) that shifts of 2 mm result in highly correlated 

estimates of symptom specific tract stimulation (once again, using correlation as the 

statistical measure). But this in fact proves the point of the criticism—longstanding 

clinical experience demonstrates that 2 mm shifts in the electrode very significantly 

impacts clinical efficacy (which is why intraoperative testing is performed and why MER 

tracts are spaced 2 mm apart). The claim by the authors that 2 mm shifts do not 

significantly change symptoms specific tract stimulation underscores that this analysis, 

with all of its assumptions, is simply unable to explain the variability in clinical outcomes 

with lead location that are seen in practice. That is a real problem for the overall premise 

of the manuscript. 

 

We agree that 2 mm shifts are significant and have shown numerous times that Lead-DBS can 

resolve such differences (e.g., in the main methods papers of the toolbox, or multiple other 

papers, see table S2).  

https://youtu.be/EgtN168LFUI


However, it is critical to emphasize that the 2 mm shift was not applied to all leads at the same 

time and not in the same direction (note that the mean displacement along axes was ~0 mm). 

Rather, in this analysis, we introduced 3D Gaussian noise onto the group level analysis. This 

could demonstrate that the effect size was large enough to rediscover the same tracts when noise 

was added to the placements of active contacts. Stated differently, the model was robust to noise 

in the exact electrode placements on a group level, which was the correct analysis to carry out to 

empirically test the assumption laid out by the original reviewer 1. We hope that this helps in 

better understanding this control analysis. We added the following paragraph to clarify the 

analysis further: 

 

“To test this, we iteratively recalculated the symptom associated tract model 1,000 times, each 

time after spatially jittering each electrical field based on a 3D Gaussian distribution with 2 mm 

full width half maximum. Critically, this introduced random noise to the electrode placements 

on a group level (not all electrodes were moved in the same direction).” – results, p. 12 

 

Relevance of correlations to clinical DBS programming algorithm development or 

mechanistic understanding is minimal. 

 

The authors respond that higher correlations are not expected due to additional sources 

of variability in outcomes. Here again, the authors may have not completely understood 

or addressed the concern. While there clearly are multiple sources of variability in DBS 

outcomes, and that the magnitude of these contributions may be guessed at, the authors 

have in their data, a number which normalizes out many of these variables—the levodopa 

response. ON/OFF Meds could be compared to OFF MEDS ON/OFF DBS—data that is 

gathered in most reputable centers. One would expect the quality of lead placement to 

highly correlate with the amount and variability of Levodopa response (perhaps 

excluding non-responsive tremor and dyskinesia scores). 

 

This is a good idea, but unfortunately the ON/OFF data for these cases is not available to us. The 

goal of the study is to find the optimal stimulation target (defined as a set of streamlines) for 

specific symptoms. We are unsure how one could use the medication effect to help this analysis 

further. 

Furthermore, while acquired in many centers, multiple studies have shown that the Levodopa 

response is, in fact, not a valid predictor of DBS response. As Zaidel et al. illustrate 



(10.1002/mds.23294), the common concept that Levodopa response correlates with DBS 

response, may build on the fact that both share a common variable (the OFF/off UPDRS-III 

score). Given that both are a factor of this variable, they will strongly correlate by design. In fact, 

in all the cohorts we have analyzed so far, the UPDRS-III DBS/Med OFF score alone is an 

excellent predictor for the improvement. This is not surprising, since a variable A (baseline) will 

most often correlate to some degree with a variable such as A-B (total improvement) or (A-B)/A 

(relative improvement).  

Even if the levodopa response were a good predictor (as commonly assumed in the field), it 

would not control for numerous of the nuisance factors we listed in figure S35 (e.g. Inter- and 

intrarater reliability of scores, day-to-day variance, onset age, age, comorbidities in the affective 

realm, brain atrophy, PD phenotype, etc). For data on this, please check our covariance structure 

analyses of outcome variables in one of the highest quality studies in the field (Earlystim), e.g., 

as outlined in the supplementary material of (10.1002/mds.28952), or the excellent long-term 

predictor analysis carried out by the Moro group (10.1002/ana.25994). Complex covariance 

relationships resulting from these and similar studies stand opposed to the notion that levodopa 

challenge data could control for most nuisance variables.  

 

Instead, based on our own clinical experience, we are not surprised that electrode placement can 

only explain ~10% of variance in outcomes – especially when they are measured using a single 

long-term score taken by different raters across cohorts and centers. 

 

However, stimulation placement is the only variable we can really influence as care providers 

(we cannot change the patient age, PD subtype or levodopa responsiveness, etc.). For this reason, 

in the present manuscript, our goal was not to create a maximally predictive model, but to define 

the optimal target for specific symptoms.  

 

Adding covariates to the model (as requested by the same reviewer in the last round) did help to 

explain more variance but a maximally predictive model was not the focus of our study. We paste 

the paragraph with additional covariates again below for convenience: 

 

“Given the moderate strength of the correlation coefficients between the estimated improvement 

and empirical clinical improvements, we investigated whether a linear model considering other 

demographic factors could explain additional variance. To do so, we fit a linear model that 

additionally included UPDRS-III baseline, patient age at surgery, sex, and levodopa equivalent 



dose (LEDD) reduction as covariates. This model explained 25.5% of the variance in clinical 

improvements (R2 = 0.26, p < 10-6). The estimated improvements of the multi-tract model 

remained a significant regressor (t = 3.2, p < 0.0017). UPDRS-III baseline scores (t = 3.3, p = 

0.001) and sex also explained significant amounts of variance (t = 3.0, p = 0.03), while the other 

variables did not (LEDD reduction: p = 0.43, age: p = 0.39). Of note, none of these variables may 

be influenced due to medical practice, with the sole exception of the electrode placement and 

stimulation settings, which renders the multi-tract model estimates (which are based on these 

factors) the critical anchor point with an opportunity to potentially improve patient care.” – 

results, p. 14-15 

 

What is left unaddressed by the response is the low correspondence of model estimates 

and clinical outcomes. The authors claim (see Figure 5) that the “Original model predicts 

outcomes in validation cohort.” But does it? The percentage of prediction falls in a 

narrow band of 0.4 to 0.6 percent improvement while the empirical data range from 0 to 

0.8. The authors seek to justify the conclusion with a (low) correlation of R = 0.37. This 

conflates accuracy and precision, which should be examined separately. In this and 

essentially all results in this work, the means are close (i.e. the result may be accurate, 

though should be reported as mean/SEM of both distributions), but precision, which 

determines how much this approach can be applied to individuals, is clearly extremely 

low. There are multiple ways to present such a comparison, including the coefficient of 

determination (accuracy), the mean squared error (precision) or a Bland-Altman plot 

(both). This and previous studies from this group lack this sort of rigorous analysis to 

quantify the usefulness of LeadDBS.  

 

This is a very valid point, and we very much agree and apologize for our general overstatement 

to use the word ‘predict’ in the manuscript. As mentioned in the introduction, we have changed 

any occurrence of the word to e.g. ‘account for’, ‘estimate’, or ‘explain significant amounts of 

variance in’. While definitions of the word ‘predict’ drastically vary, and while the coefficient 

of determination (below) is positive in our test-validation (and our results fulfill all criteria to 

claim evidence of prediction as recommended by Poldrack et al., 

10.1001/jamapsychiatry.2019.3671), we are happy to remove any claims of predictions since, 

as mentioned above, this was not the focus of our study. We agree with the reviewer that, to 

stay on the conservative side, claims of prediction should not be made given our results. 

Rather, if at all, the model seems to be able to predict variance in the ranks of improvements to 



some degree, or, as now stated, to account for variance in improvements of unseen data. We 

added the following paragraph to clarify this (and have removed any claim for prediction): 

 

“Finally, correlations between model estimates and empirical improvements are moderate. 

Crucially, if at all, our model is capable of estimating ranks of improvements within a given 

cohort, rather than absolute improvement values in individual patients.” – limitations, p. 26. 

 

We also added the RMSE, and R2 value for the estimates of our model on the test data (N = 93) 

in figure 5 (RMSE = 0.22, R2 = 0.07). 

 

 

Figure 5. Retrospective validation on long term clinical outcome data. A) The fiber distribution of the original 

model as shown in previous figures, B) fiber distribution when recalculating the same model on the independent 

test dataset (N = 93). C) Prediction of UPDRS-III improvements in the test set based on the original symptom 

associated model. S = Superior, A = Anterior, I = Inferior. 

 

 

 

Cleartune validation: You can stimulate a subject with many different parameter settings 

(or different contacts) and get good/similar clinical results. 

 

This is very true, which makes the idea of an algorithm that would choose the same contacts as 

clinicians such a hard problem. This task is even more complicated in the Tweed cohort (N = 

20), where only the three segments of a given contact level were compared (which are even 

closer to one another than different contact levels). We were excited that Cleartune chose the 

correct contact way above chance even in this challenging cohort. One advantage of the cohort 

is, that it is cleaner, since it does not build upon retrospective long-term outcomes, but on 



monopolar review data (i.e., many limitations discussed above may not apply). As the original 

reviewer #01 had suggested, such a cohort may represent the better test dataset to validate 

results, which is why we have included it in the last round of revisions. 

 

We have added the following paragraph to discuss this issue further: 

 

“Next, it is possible stimulate a patient with many different parameter settings (or different 

contacts) and get good/similar clinical results. This matter makes demonstration of clinical 

utility of both out-of-sample estimates of improvements and the Cleartune algorithm difficult. 

This task is even more complicated in the present monopolar review cohort (N = 20), where 

only the three segments of a given contact level were compared (which are even closer to one 

another than different contact levels). While results seem promising and Cleartune was able to 

suggest the clinically chosen contact above chance, this general limitation still applies to any 

form of image guided programming.” – Limitations, p. 25-26 

 

The authors have expanded the analysis from a single patient and have now performed 

and included a study of 5 patients. The logic here is that the system appears to work in a 

few cases. What is not known is how much these 5 patients differed from the mean 

anatomy represented in the atlas. The additional data are helpful, of course, but do not 

substitute for the rigorous statistical analysis described above which is needed to support 

the author’s very strong claims. 

 

We appreciate the reviewer’s concerns. Already in the last revision, we removed all claims that 

this prospective application would ‘validate’ our results. Rather, we mentioned that the 

application showed practical feasibility that the approach could be applied in a clinical setting, 

i.e., these results at best consist of preparations for a proper clinical trial. We had even moved 

most of these results into the supplementary material, to further deemphasize them. For 

convenience, we paste the most relevant passages that currently describe the results of the five 

prospective cases (but these are unchanged from the last version of the manuscript). 

 

“In four of the five patients, Cleartune settings led to a higher improvement than SoC settings. 

In the fifth patient, improvements were comparable (36 vs. 38 points improvement). While 

three of the five patients preferred Cleartune over SoC settings, in two patients, Cleartune 

settings led to side-effects (dyskinesia in patient 05 and dizziness in patient 04). This 



emphasizes that the current model was purely driven by improvements (and not by side-

effects), which is a clear limitation for clinical applicability. Tracts of avoidance that code for 

side-effects should be added to the model in future attempts. Alternatively (and additionally), 

clinicians may reduce the stimulation amplitude suggested by Cleartune in case of side-effects 

(while keeping the remaining parameter choices unchanged).” – results, p. 19 

 

“While generally promising, given the low N, these results should not be overinterpreted. 

Rather, this trial was carried out to test feasibility of applying Cleartune in a clinical setting and 

to gather first experience in preparation for a proper prospective trial. As such, the trial was not 

powered to compare Cleartune vs. SoC settings (non-inferiority or superiority).” – results, p. 19 

 

“Section S4. Feasibility trial for prospective application of Cleartune in a clinical setting. 

To test feasibility of applying Cleartune in a clinical setting, a feasibility trial was carried out in 

a small sample of n=5 prospective patients. This trial was designed to include a randomization 

step, where the patient was blinded to the administration of Cleartune vs. clinical settings. 

Clinical data, which included the pre-operative T1w, T2w, and post operative CT images was 

used to localize DBS electrodes in each patient. Baseline scores were taken in the stimulation 

and medication off states. The Cleartune algorithm was executed for each electrode separately, 

for 500 iterations each. This led to Cleartune settings, which were stored in the pulse generator 

as an additional program to the existing standard of care (SoC) setting. In the second week, 

Cleartune settings or clinical settings were applied in randomized order, each for 24 hours. 

Resulting UPDRS-III scores were taken after 24 hours and the respective other program was 

switched on to be evaluated after another 24 hours. Figure S33 summarizes the trial design. 

Results are documented in table S3. In multiple cases, Cleartune suggested higher amplitudes 

than tolerable, and were hence reduced by the clinical team (without altering contact choices). 

Table S3 reports both suggested and programmed amplitudes. From a baseline of 49.8 ± 22.1 

UPDRS-III points, under Cleartune settings, scores improved by 34.4 ± 13.1 points (73 ± 

11.8%). Under standard of care settings, scores improved by 31.8 ± 15.1 points (65.4 ± 12.1%). 

In four of the five patients, Cleartune settings led to a higher improvement than SoC settings. 

In the fourth patient, improvements were comparable (36 vs. 38 points improvement). While 

three of the five patients preferred Cleartune over SoC settings, in two patients, Cleartune 

settings led to side-effects (dyskinesia in patient 05 and dizziness in patient 04). While 

generally promising, given the low N, these results should not be overinterpreted. Rather, this 

trial was carried out to test feasibility of applying Cleartune in a clinical setting and to gather 



first experience in preparation for a proper prospective trial. As such, the trial was not powered 

to compare Cleartune vs. SoC settings (non-inferiority or superiority).” – supplementary 

material, p. 40  

 

Additional More Minor Methodological Concerns and Comments: 

The above commentary notwithstanding, the authors may argue that the LeadDBS 

software provides a tool to improve symptom-specific outcomes that empirically works (at 

least on average across a broad patient population). In this regard, it would be similar to 

atlas-based approaches dating Schaltenbrand–Wahren in 1977. The challenge, then and 

now, has not been one of population-based accuracy but of precision at the level of 

individual patients. Despite the volume of papers published by this influential group, the 

problem of precision remains vexing. 

 

We agree that our work consists in an atlas and are in fact honored by the comparison with the 

work by Schaltenbrand, (Bailey) and Wahren. In fact, our introduction points to the even earlier 

work by Rudolf Hassler which, qualitatively, already established many of the present findings, 

before: 

“The notion that different symptoms of PD map to different brain regions or networks is not new 

9,10. For instance, in seminal work by the Freiburg school of stereotaxy based on 560 ablation 

cases between 1950 and 1958, Hassler et al. concluded that optimal control of tremor involved 

lesioning a loop between cerebellum (and Mollaret triangle), the posterior nucleus ventrooralis 

and primary motor cortex9. In contrast, optimal control of bradykinesia and rigidity involved 

lesioning connections from pallidum to the anterior nucleus ventrooralis and a subregion of the 

supplementary motor area (defined by the Vogt/Hassler/Brodmann school as area 6a⍺). Using 

DBS, Akram et al., among others, in addition confirmed improvements in bradykinesia and 

rigidity to be related to connections from premotor areas and prefrontal cortex11,12. Aside from 

DBS or lesion data but using functional MRI, Helmich et al. associated Parkinsonian rest and, 

likely, action tremor with the cerebellothalamocortical circuit13,14,15. ” – introduction, p. 4 

(unchanged from previous version). 

In our view, the work is innovative in comparison to textbook atlases in the following ways: We 

explore how well a 3D atlas that is available in stereotactic space and can be deformed to 

individual patients may be used to estimate outcomes in novel patient cohorts, we introduce a 



surrogate optimizer for automated parameter suggestion, and apply it to estimating ranks of 

optimal contacts in unseen data. Another potential strength could be seen in the large multicentric 

cohorts studied here, which may make results more robust than the ones from smaller trials. The 

resulting atlas quantifies symptom-associated improvements in the space of streamlines. 

As mentioned, we have largely toned-down claims throughout the manuscript and have extended 

a now very long and extensive limitations section to cover a more detailed narrative on study 

limitations. We hope that the reviewer may still find at least some aspects of our manuscript 

interesting enough to warrant publication.  

 

Some additional and more minor comments/questions include: 

 

1) The abstract does not clearly differentiate this work with past findings and makes 

broad claims. To minimize misunderstanding, the abstract should reflect the methods and 

findings of the current work. Similarly, the title should be more specific and telegraphic 

for the content of the manuscript.  

 

We very much agree. As the reviewer has published in nature outlets before, they may 

appreciate that the length of the abstract (200 words) and title (15 words) is strongly limited. 

Given the extensive nature of the manuscript with a novel atlas, analyses on three cohorts of 

different nature and the introduction of a novel algorithm to suggest stimulation settings, we 

were still bound to keep the abstract somewhat general without the ability to mention the 

content more in a more detailed way. It now reads: 

 

“Deep Brain Stimulation (DBS) can improve tremor, rigidity, and bradykinesia in patients with 

Parkinson’s disease (PD), but optimally improving each symptom may require stimulation of 

different white matter tracts. Here, we study a large cohort of DBS patients (N = 237 from five 

centers) to identify tracts associated with improvements in each motor symptom. Tremor 

improvements were associated with stimulation of tracts connected to primary motor cortex 

and the cerebellum. In contrast, axial symptoms associated with stimulation of tracts connected 

to the supplementary motor cortex and brainstem. Bradykinesia and rigidity improvements 

associated with stimulation of tracts connected to supplementary motor and premotor cortices, 

respectively. By introducing a novel algorithm that leverages these findings to suggest optimal 

stimulation parameters, we illustrate that these symptom-associated tracts may bear potential to 



ultimately be useful in personalizing DBS parameters based on the symptoms most bothersome 

in an individual patient. Going forward, this concept may pave the way toward connectome-

based personalized DBS.” – abstract, p. 3  

 

2) Figures 2-5 and 7 do not show scale bars and it is not clear how the anatomic image 

background relates to the streamlines shown. This should be added/clarified. 

 

We thank the reviewer for their comment and have added the orientation and scale information 

for these figures. The revised versions are pasted below: 

 

Figure 2: Symptom-network library. Views A-C from medial. A) symptom associated tracts shown in a sagittal 

view from medially and magnified at the level of the STN (orange, insets, one rotated by 180 degrees, i.e., shown 

from laterally). Symptom associated tracts follow a rostrocaudal gradient with tremor most occipital, followed by 

bradykinesia, axial symptoms, and rigidity. All shown tracts significantly correlated with symptom improvements 

after correcting for multiple comparisons (p < 0.05). Note that tracts are in proximity to one another, making it 



possible to modulate all of them with a single well-placed electrode (matching clinical experience). B) Symptom-

associated tracts visualized separately at the STN level with the other tracts grayed out for spatial comparison. 

Insets represent permutation tests and 10-fold cross validation results and for each symptom tract. C) Segregation 

of symptoms within indirect pathway streamlines between STN and pallidum, following a similar rostrocaudal 

gradient. D) Cortical origins of hyperdirect projections. Streamlines associated with tremor improvements 

originated in primary motor cortex, whereas the ones associated with improvements in hypokinetic symptoms 

originated from premotor regions in a more interspersed fashion. S = Superior, I = Inferior, A = Anterior, L = 

Lateral, P  = Posterior. 

 

 

 

Figure 3: Anatomical considerations of circuits associated with improvements of tremor and axial 

symptoms. A) Tremor tracts included projections from the cerebellar nuclei (to thalamus) as well as the cortical 

projections from primary motor cortex (to STN), matching current pathophysiological models of tremor21. B) 

Tracts associated with axial symptoms included a brainstem connection to the pedunculopontine nucleus region. 

C) Segregating axial symptoms Into gait vs. all other (axial) items revealed that this connection was driven by gait 

(and not by other axial symptoms). D) Comparison to the projection site with a matching slice from an histological 

atlas published by Coulombe and colleagues at z = +5.08 mm (panel adapted under the Creative Commons 

Attribution (CC-BY) license from Coulombe et al., 2021 Frontiers in Neuroanatomy25). A = Anterior, L = Lateral, 

P  = Posterior. 

 



 

 

 

 

 

Figure 4: Network Blending. A) Two example patient’' stimulation volume is shown alongside the optimal 

streamlines associated with symptom-associated tracts. This process led to four scores, each coding for one 

symptom. These were linearly weighted by the symptoms prevalent in each patient (since, for instance, a patient 

with severe tremor would profit more from modulating the tremor streamlines) and averaged, leading to a 

weighted-average score that was converted to UPDRS-III improvements based on the training data. These 

predicted improvements significantly correlated with actual improvements (R = 0.33 p < 0.001, mean absolute 

error: 17.87%). B) Stimulation volume of the same two patient’' shown alongside the optimal streamlines 

associated with global UPDRS-III improvements. This fiber score (0.54; 0.20) was transformed to a predicted 

value of global UPDRS-III improvement based on the training data within the 10-fold cross-validation process. 

These predicted improvements significantly correlated with actual improvements (R = 0.28, p = 0.01, mean 

absolute error: 18.11%). The two patients illustrate two extreme cases where our model has correctly estimated 

the empirical outcome (patient 01) and where our model has estimated clinical improvements which deviated 

significantly from the empirical value. S = Superior, A = Anterior, I = Inferior. 

 



 

Figure 5. Retrospective validation on long term clinical outcome data. A) The fiber distribution of the 

original model as shown in previous figures, B) fiber distribution when recalculating the same model on the 

independent test dataset (N = 93). C) Prediction of UPDRS-III improvements in the test set based on the original 

symptom associated model. S = Superior, A = Anterior, I = Inferior. 

 

 

Figure 7. Hypothetical future use of symptom-tract model. A) A well-placed, standard omnidirectional 

(Medtronic 3389) electrode is shown with a single stimulation volume that equally covers all symptom-specific 

tracts. B) A hypothetical future concept with a modern electrode (Boston Scientific Cartesia X electrode with 15 

directional contacts and one omnidirectional contact) is shown. With some devices, it is possible to steer multiple 

stimulation volumes toward individual tracts. In our example, one volume could target tremor streamlines 

(potentially with a high frequency of 180 Hz). A second volume would focus on the axial/gait streamlines 

connecting to the PPN region (potentially with a low frequency of 25 Hz). S = Superior, A = Anterior, I = Inferior. 

 

 



3) Figure 1: Scale bars and orientation information are missing. The relationship of the 

imaged cortex to the displayed STN is unclear.  

 

The appropriate scale bar and orientation have been added to figure 1. The cortex has been 

moved to a coronal slice (y = -7.7 mm) that is closer to the STN. 

 

 

Figure 1: Electrode placement. Active contacts are visualized on a coronal slice of the cortex separately for each 

of the three subcohorts of the discovery cohort (total N = 129, left) and the three validation cohorts (N = 93, 10 

and 5, respectively, right). Please note that orientations here refer to Superior (S), Inferior (I) and Left (L). 

 

4) Figure 2: How are indirect pathway streamlines between STN and pallidum identified? 

In addition, it appears that all relevant tracts lie lateral to the STN, but most effective 

stimulation is medial—how are fiber tracts identified within and medial to the STN, 

which are the areas of effective clinical stimulation (and also where it is difficult if not 

impossible to perform accurate streamline tracing?) 

 

Indirect projections are taken from the Petersen atlas as defined by expert anatomists 

(10.1016/j.neuron.2019.09.030). While the information had been in the supplementary table 

before, we have now further clarified this in the text, as well: 

 



“For instance, pallidosubthalamic and pallidothalamic projections were informed based by the 

Basal Ganglia Pathway Atlas 15, while most other connections were defined based by the DBS 

Tractography atlas 14. Missing connections not represented in any atlas were reconstructed 

following the exact same methodology used to create the latter atlas, as described in detail 

elsewhere23.” – supplementary material, p. 8 

 

While the view in figure 1 may suggest that most stimulation contacts are medial to the STN, 

this is not true – many of the contacts resided along the lateral aspect of the nucleus. Finally, 

electric fields as modeled here extend across a larger span of anatomical tissue. We prepared the 

reviewer figure below to show data from this atlas (which has also been made openly available 

by the original authors in case the reviewer would like to expect it further): 

 

 

Reviewer Figure 3: Relationship between pallidosubthalamic projections as defined by the 

Basal Ganglia Pathway Atlas (and as used here). As can be seen, fibers extend through the 

aspect of the STN. 

 

5) Figure 3: The very broad representation of tremor-associated fibers in Figure 3A is 

difficult to reconcile with the very narrow representation in Figure 2, subsequent figures, 

and Reviewer Figure 1. Under the premises of the LeadDBS, it would suggest that tremor 

should be effectively treated across broad swathes of the posterior/anterior, superficial 

and deep STN. However, this is not the case. How are the associated fibers tuned? 

 

jwu9191
Text Box
[REDACTED]



Indeed, while tracts in all other figures are thresholded by significance following corrections for 

multiple comparisons, we aimed at showing a broader landscape of the tract set in figure 3 to 

demonstrate that defining the borders exactly is not feasible, dependent on power and statistical 

results. We apologize that this had not been made clear and have amended this clarification (see 

below). Please note, that each streamline carries an R-value, i.e., correlation coefficients in the 

narrower set are higher (and significant after FDR correction), while not all streamlines in the 

larger set are. We are not as confident as the reviewer that no amount of tremor can be modulated 

in these broader regions of the STN. Based on our clinical experience, tremor often responds to 

stimulation in most electrode contacts at least to some degree, but maximally responds to contacts 

residing in the dorsolateral aspect and border of the nucleus. The following lines have been 

added: 

 

“When lowering the threshold (i.e., when including streamlines with correlation coefficients 

that did not reach significance after corrections for multiple comparisons), tremor tracts 

additionally included the decussating cerebellothalamic pathway. These exact connections have 

been widely implicated with tremor across a large body of the literature 9,12,19–21.” – results, p. 

10 

 

“Figure 3: Anatomical considerations of circuits associated with improvements of tremor 

and axial symptoms. As opposed to remaining figures, tracts in this figure are not thresholded 

at significance after FDR correction but include a broader set of tracts to appreciate the broader 

distribution of symptoms to streamlines (lower threshold).” – legend of figure 3, p. 11 

 

6) Figure 4: In the figure, the patient selected for display is one of very few that happens 

to have an extremely accurate multi-tract and single-tract prediction. The cross-

validation panel shows that the multi-tract analysis had very poor performance for 

individuals who had lowest quartile clinical outcomes. In general, the model predicted 0.4 

to 0.6 improvement, although the actual response was -.2 to 0.4. This is exactly what 

would be expected, even if the atlas is correct, for patients whose lead location is distorted 

by atlas fitting. 

 

We now added an additional patient to figure 4 to emphasize a patient that our model did not 

estimate correctly, and, as the scatter plot shows, our model has significantly deviated from the 

empirical value for this patient: 



 

 

 

 

Figure 4: Network Blending. A) Two example patients' stimulation volumes are shown alongside the optimal 

streamlines associated with symptom-associated tracts. This process led to four scores, each coding for one 

symptom. These were linearly weighted by the symptoms prevalent in each patient (since, for instance, a patient 

with severe tremor would profit more from modulating the tremor streamlines) and averaged, leading to a 

weighted-average score that was converted to UPDRS-III improvements based on the training data. These 

predicted improvements significantly correlated with actual improvements (R = 0.33 p < 0.001, mean absolute 

error: 17.87%). B) Stimulation volume of the same two patients' shown alongside the optimal streamlines 

associated with global UPDRS-III improvements. This fiber score (0.54; 0.20) was transformed to a predicted 

value of global UPDRS-III improvement based on the training data within the 10-fold cross-validation process. 

These predicted improvements significantly correlated with actual improvements (R = 0.28, p = 0.01, mean 

absolute error: 18.11%). The two patients illustrate two extreme cases where our model has correctly estimated the 

empirical outcome (patient 01) and where our model has estimated clinical improvements which deviated 

significantly from the empirical value. S = Superior, A = Anterior, I = Inferior. 

 

7) Figure 5: As commented above, here also the precision of prediction is poor. 

 

We agree and as commented above have extensively discussed this matter in the revised 

manuscript and in our responses above. 

 



8) Figure 6: Here the axes values are presented at a scale that is unreadably small. There 

should be identical values on both axes in all panels. When this is done, it will be clear 

that, as in other figures, the predictions fall in a narrow range, while the empirical 

findings are very broad, indicating a lack of precision of the Lead DBS approach. 

 

We agree that these correlations do not necessarily qualify as predictions, but, rather as 

predictions of the ranks among them. As discussed above, we have now changed the wording 

and denote the ranks (not the actual improvements) in the correlation plots. Indeed, for the 

purpose of our aim (validation of the Cleartune algorithm), ranks are sufficient: We need the 

algorithm to choose the optimal stimulation setting, not to predict its improvements, accurately. 

Beyond changing the axes to ranks, the font size of the numbers has been increased for better 

readability: 



 



Figure 6. Retrospective validation on monopolar review dataset. A) The left panel illustrates a raincloud plot 

where each data point represents a Spearman’s correlation coefficient between predicted and empirical UPDRS-III 

improvements for settings in one of the 20 electrodes. All correlation plots are shown in figure S32. The right panel 

gives four representative examples. A red eclipse is used to represent the stimulation contact that renders the highest 

improvement in a given patient, while the contact chosen by the model is marked with a blue eclipse, corresponding 

stimulation fields are shown for the example electrodes. 

B and C) To assess symptom-specificity of the model, the analysis was repeated, this time maximally weighting 

either bradykinesia or rigidity symptoms, respectively. Correlations across settings in the 20 electrodes were almost 

all positive when the model was used to predict improvements in the correct symptom, but significantly dropped 

when used to predict improvements in the respective other symptom. In each panel, two representative examples of 

correct vs. incorrect symptom pairings are given. 

 

9) In bilateral stimulation, how are the effects of each stimulation side accounted for and 

incorporated into the model? Are symptom responses lateralized in the analysis? While 

all patients underwent bilateral STN DBS and bilateral stimulation, the effects of each 

side are not differentiated, or methods explained in the figures or methods. 

 

The reviewer brings up an important point and we apologize that this had not been clarified in 

the manuscript, a clear oversight on our part. Indeed, this is a fundamental issue in any type of 

symptom mapping given the fact that two electrodes contribute to one symptom. For some 

symptoms (e.g. tremor) but not all (e.g. axial symptoms), hemiscores could be used. However, 

one would lose critical information such as head tremor & head rigidity, and ipsilateral effects 

on these symptoms have been demonstrated (i.e., it is not a clear one-to-one mapping between 

DBS to the left hemisphere and symptom improvements on the right body side, even for 

symptoms such as tremor). In our view, there is no single clear strategy to resolve this issue. 

Some studies have flipped stimulation fields to the respective other hemisphere to calculate a 

joint field/VTA on one hemisphere, others have analyzed results separately on each 

hemisphere, and finally, others have flipped stimulation fields to the respective other side as 

additional datapoints to augment power. In our lab, for movement disorders, we have followed 

this latter approach thus far (e.g., in 10.1073/pnas.2114985119 or 

10.1016/j.neuroimage.2020.117018), which is the approach we applied here, as well. This was 

now clarified in the methods section, and we again apologize that this had not been made clear, 

before: 

 



“Since two fields (from the two electrodes implanted in a given patient) code for one 

improvement score, following the same approach as in our prior studies 29,61, electric fields 

were mirrored to the respective other side and both used to account for the same improvement 

value when running mass-univariate correlations during fiber filtering (below).” – methods, p. 

28 

 

10) The LeadDBS algorithms ignore side effects. However, how is stimulation from 

primary motor cortex to STN distinguished from fibers that would produce motor side 

effects? Does application of the authors’ methods allow these therapeutic and side-effect 

producing tracts to be distinguished? Is there any data that predicts motor side effects? 

This seems an important component towards validation of the overall approach. 

 

We agree that this is a clear limitation of the approach and warrants further steps (which are 

planned and in part ongoing) to improve the model. Unfortunately, no side-effect data is available 

for these present cohorts. We discuss this limitation in the following parts of the manuscript: 

“While three of the five patients preferred Cleartune over SoC settings, in two patients, 

Cleartune settings led to side-effects (dyskinesia in patient 05 and dizziness in patient 04). This 

emphasizes that the current model was purely driven by improvements (and not by side-

effects), which is a clear limitation for clinical applicability. Tracts of avoidance that code for 

side-effects should be added to the model in future attempts. Alternatively (and additionally), 

clinicians may reduce the stimulation amplitude suggested by Cleartune in case of side-effects 

(while keeping the remaining parameter choices unchanged).” 

 – results p. 19 (this section has not changed from the last version of the manuscript) 

 

“Additionally, our model only considers improvement scores and currently ignores side-effects. 

As the prospective application shows, this is a clear limitation of the algorithm that limits its 

potential utility in clinical practice. While side-effect data was not available for this 

retrospective multi-center cohort, this limitation warrants additional steps to improve the model 

(i.e. to include tracts of avoidance that are associated with capsular effects, speech problems or 

cognitive/affective disturbances58).” – discussion, p. 25 (this section has been newly added)  

 

Again, this is important work by an influential group that seeks to address very 

significant issues in the field. I am grateful for the opportunity to review this very detailed 



and extensive collection of studies, which will no doubt be published in a high-impact 

journal. Upon review, I believe that DBS patients and the field (again 1000 studies) will 

most benefit if the limitations, assumptions, and potential shortcomings of the approach 

are now clearly and transparently reported by the authors, so that the capabilities of 

Lead DBS are not overstated and misunderstood. 

 

We would like to thank the reviewer again for their thorough work and help to further optimize 

our manuscript. We would like to thank the reviewer explicitly for this ‘cookie’ in the end, which 

felt good after the lemonade.  

 

 

 

 

 

 

 

 

 

 



REVIEWERS' COMMENTS

Reviewer #3 (Remarks to the Author):

The reviewer thanks the authors for responding to earlier concerns and suggesfions. With the addifion of 

the robust limitafion secfion and addifional supplementary materials, the majority of my major concerns 

have been addressed. One minor comment is that conclusions (e.g. Line 183 "explained significant 

amounts of variance") could be tempered or clarified ("explained stafisfically significant amounts of 

variance").



Rajamani et al - Response to Reviewers 

Nature communications, NCOMMS-23-08030B 

 

Points made by reviewer 03 

Response by authors 

Additions/Changes to the manuscript 

 

 

Reviewer #3: 

The reviewer thanks the authors for responding to earlier concerns and suggestions. With the 

addition of the robust limitation section and additional supplementary materials, the majority of 

my major concerns have been addressed. One minor comment is that conclusions (e.g. Line 

183 "explained significant amounts of variance") could be tempered or clarified ("explained 

statistically significant amounts of variance"). 

 

We thank the reviewer for their comment, and we have clarified the conclusive lines from 

“explained significant amounts of variance” to “explained statistically significant amounts of 

variance”. 

 

“After FDR correction, this statistically significant set of fibers revealed a distinct rostrocaudal 

gradient of symptom improvements at the subthalamic level (figure 2). ”- results, p. 7 

 

“Second, we subjected tract models to cross-validations. Again, all but the tremor tract model 

explained statistically significant amounts of variance when subjected to 10-fold cross-

validations (bradykinesia: R = 0.20, p = 0.02; rigidity R = 0.20, p = 0.02; axial symptoms R = 

0.22, p = 0.01, also see figure 2). ”- results, p.10 

 

“The resulting model shared a similar topography with the one created by our default pipeline 

and performing a k-10 cross validation yielded statistically significant correlation coefficients 

(Rmultitract = 0.40, p = 0.001; Rsingletract = 0.34, p = 0.03; figure S29). ”- results, p. 10 

 

“To control for subcohorts within the discovery cohort, we reran the original model and applied 

a mixed-effects model that controlled for dataset as a random effect. Results were similar and 

remained statistically significant (R = 0.30, p = 0.0015). ”- results, p .10 



 

“UPDRS-III baseline scores (t = 3.3, p = 0.001) and sex also explained statistically significant 

amounts of variance (t = 3.0, p = 0.03), while the other variables did not (LEDD reduction: p = 

0.43, age: p = 0.39). ”- results, p. 15 

 

“.... Naturally, a one-sample t-test across these R-values was statistically significant (T = 4.155, 

p < 0.001; figure 6).” - results, p.16 
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