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REVIEWER COMMENTS 

 

Reviewer #1 (expert in the epigenetics of rheumatoid arthritis): 

 

Weinand and colleaques present data from an integrated single-cell RNA/ATAC sequencing 

approach to define cellular states in the synovium. The data is novel and of high scientific interest. 

The analysis is very well done and presented in a clear way. I have the following suggestions to 

improve the manuscript. 

 

OA samples were included to increase cell counts, but the analysis would be cleaner if only RA 

samples were used. It would be best to add a sufficient number of OA samples to separate the 

data sets and make a valid comparison. Alternatively, at least the cell counts in the supplemental 

data showing the individual cell clusters should indicate which were OA samples and it should be 

mentioned how many cells are from OA samples. It is assumed that the T/B cell analysis mainly 

reflects RA states, whereas a more significant contribution from OA samples is expected in the 

stromal population. 

 

In Suppl. Fig. 1e, one sample contained very few cells and did not reflect all synovial cells. Also, 

for cell counts for specific cell types, the different chromatin classes contained less than 100 cells 

in some samples (especially B/plasma cells and endothelial cells). Here, the analysis is determined 

by a few samples. Samples with so few cells/patients should be re-examined in detail and possibly 

removed. At least this should be mentioned as a limitation in the discussion. 

 

The hypothesis of chromatin superstates of cell populations is very compelling. However, to match 

these cellular superstates with long-known subclasses of cells (e.g., in T cells), it would be helpful 

to perform the analysis approach from the other end (presorting known cell subclasses and then 

ATACseq), at least in one subclass. For example, there was good overlap between Tregs as defined 

by ATACseq in PBMC and in tissues. How do these chromatin profiles compare to a chromatin 

profile of a PBMC Treg population sorted using established protein markers? 

 

Was the enrichment of transcription factor motifs in a particular chromatin state associated with 

increased transcription of these transcription factors in the superstates or their corresponding 

subclasses? 

 

It seems that the correlation between chromatin class and marker gene expression is markedly 

different between different cell types (best in T cells, worst in myeloid and B cells). Possible 

explanations for these differences should be discussed. 

 

The enrichment of DNA methylation changes in SA-0 is interesting. Were the genomic sites 

affected by changes in DNA methylation within the SA-0 cluster random or were they enriched for 

marker genes important for differentiating this cluster from the other fibroblast clusters? If the 

latter, one could speculate that changes in DNA methylation stabilize the phenotype of the SA-0 

cluster or one of its subclusters. 

 

Since changes in DNA methylation have been detected in cultured cells in fibroblasts, the question 

arises whether chromatin classes are maintained in cell culture even if the transcriptional profile is 

lost. Single-cell ATAC sequencing of cultured RA synovial fibroblasts should be performed to clarify 

the stability of chromatin classes independent of the synovial environment. 

 

Caroline Ospelt 

 

 

 

Reviewer #2 (expert in expert in computational biology and single-cell/single-nucleus 

transcriptomics/genomics): 

 

The manuscript by Weinand et al. entitled “The Chromatin Landscape of Pathogenic Transcriptional 



Cell States in Rheumatoid Arthritis” describes an evaluation of cells isolated from synovial tissue of 

RA patients using scATAC-seq and combined snATAC-seq and snRNA-seq assays to define discrete 

chromatin states, a comparison of these chromatin states with previously published single cell 

transcriptional analysis of synovial tissue and PBMCs from RA patients, and a correlation between 

these chromatin states and their marker genes and clinical metrics of RA, previously defined RA 

subtypes, and previously identified RA genetic risk variants. The computational methods used for 

QC and batch correction are appropriate and the data analysis approaches are state-of-the-art for 

the analysis and interpretation of these types of single cell datasets and their correlation with the 

clinical and other parameters. This is an excellent manuscript and the results reported will serve as 

a valuable reference about the cellular and molecular characteristics of this important autoimmune 

disease. 

 

Several suggested edits would contribute to enhancing the information reported as a reference for 

RA. 

 

1. An important outcome of these kinds of single cell studies is the definition of discrete cell types 

using the measure characteristics, in this case chromatin states. In order for information about 

these cell types to be reusable, it is necessary to assign the cell types with was some kind of 

unique cell type name/label. The authors use an interesting syntactical approach for naming cell 

types based on these chromatin characteristics – broad cell class, accessibility (A) subscript, 

sequential number, marker gene(s), previously-characterized cell class – e.g., TA-2: CD4+ PD-1+ 

TFH/TPH. From their combined analysis of chromatin promoter accessibility and gene expression, 

they note that both PD-1 and CTLA4 are expressed and their promoters are accessible. I’m 

guessing that their analysis reveals several genes with similar expression/accessibility 

characteristics for each cell type. The authors should clarify how/why a given gene (e.g., PD-1 

alone) was selected for the cell type label. It appears that this is based on prior knowledge 

combined with the analysis results, but there may be some circumstances where a data driven 

approach would be better than relying on prior knowledge, which may be incomplete and biased. 

2. They should also clarify how they connect the chromatin defined cell types with the previously-

characterized cell class (e.g., TFH/TPH). Was this done manually? Could it be done 

statistically/computationally in such a way that captures some quantitative measure of confidence? 

3. In the T cell section, 5 chromatin classes were defined. How do these relate to the naïve/central 

memory/effector memory T cell subsets paradigm? 

4. In several of the figures, the authors show examples where the open chromatin state matches 

the gene expression data for the associated gene (e.g., Fig 2b). This raises the question of if the 

chromatin analysis has added any value to the transcriptional state analysis that has already been 

reported. In Fig 7 they make the interesting observation that the same chromatin class is 

associated with multiple transcriptional classes, but not vice versa. This is an interesting result, but 

still begs the question of added value of the chromatin analysis. It would be good if the authors 

added a more detailed discussion of what unique insights are provided by the chromatin analysis 

above and beyond those provided by the transcriptional state analysis alone. 

5. Along these lines, it would be interesting to explore if the difference in transcriptional states 

could be explained by different transcription factors accessing subsets of the open chromatin 

regions. 

6. The authors use the concordance between chromatin accessibility and gene expression to 

validate cell type-specific marker genes. But it is also interesting to describe genes that have open 

chromatin but are not expressed. These may be genes that are poised to respond to changes in 

their environment in a cell type-specific fashion. These are also very interesting genes and so it 

would be useful to look for and highlight these genes in the different chromatin cell types. 

7. The identification of pathogenic RA chromatin classes is a very important finding from these 

studies. I would move Supplementary Figure 7 to the main body of the manuscript. 

8. The paper is packed with a lot of very valuable information about these chromatin cell types, 

their gene accessibility biomarkers, with and without correlated gene expression, and their 

association with clinical metrics of RA, previously defined RA subtypes, and previously identified RA 

genetic risk variants that is buried throughout the text. I would strongly recommend that the 

authors compile all of this useful information into a single summary table that could serve as a 

reference to the community. 

 

 



 

Reviewer #3 (expert in computational biology, regulation of gene expression and epigenomics): 

 

This study presents a comprehensive analysis of chromatin landscape of synovial tissues from RA 

patients at single cell levels using scATAC-seq and multiomic analyses. The data are highly 

valuable to the community and timely needed for studying RA pathogenesis. Clustering analysis 

defined 6 broad cell types and 24 chromatin classes were further uncovered within 5 of these cell 

types, from which marker genes and motifs were uncovered. These chromatin classes were 

compared with the AMP RA clusters defined from single cell transcriptomic studies and each 

chromatin class corresponded to multiple transcriptomic classes. The authors therefore referred to 

the chromatin classes as superstates corresponding to multiple transcriptional cell states. This is 

an interesting but not surprising observation and this superstate hypothesis needs additional 

validations. 

 

Overall, this is an interesting study and the authors may want to consider the following points to 

improve the manuscript. (1) As a data driven study, the scATAC-seq, multiome and CITE-seq data 

from previous study were analyzed in this work. The clarity of the description on data analysis and 

integration needs to be improved and workflow chart is recommended to summarize the procedure 

and elucidate the logic. (2) The superstate hypothesis is intriguing but additional validations are 

needed. 

 

Detailed comments are the following. 

 

1. As the large dataset is a valuable resource to the community, it would be helpful to have a 

summary table of QC such as total reads, mapping rate, percentage of reads falling in peak 

neighborhoods, reads in promoters, mitochondrial reads, reads falling in the blacklisted regions for 

the final selected cells. 

 

2. Access ID for raw and processed data should be provided. 

 

3. While the consensus open chromatin peaks of scATAC-seq are called from all the cells pooled to 

a bulk, how are peaks called for snATAC-seq? Line 797-798, “an average of 75% (n=12 datasets; 

range: 66%-83%) of the 200bp trimmed snATAC-seq donor-specific peaks overlapping the scATAC-

seq consensus peaks”, how are donor-specific snATAC-seq peaks called? More details need to be 

provided. 

 

4. “Broad cell type clustering” in Methods does not really describe the procedure. Initial broad cell 

type clustering is mentioned in “ATAC quality control”. Is there any further broad cell type 

clustering after the initial one? It’d better present a summary of the procedure with a workflow 

chart to help readers understand how the open chromatin data are clustered to six cell types. 

 

5. scATAC-seq and snATAC-seq data are combined in each broad cell type to define fine-grain 

chromatin classes within the cell type. Line 841-842, “After subsetting the matrix by PMA peaks, 

we ran the same clustering pipeline detailed in the broad cell type clustering section with 10 PCs 

requested.” There is no detailed description of the pipeline in the broad cell type clustering section 

with 10 PCs. Are all the cells from scATAC and snATAC pooled to call consensus peaks for 

clustering? How to decide the number of clusters (not much discussion on Supplementary Fig. 10)? 

Need to clarify and provide details. 

 

6. Line 828-831, “We also classified the multiome snRNA cells into the AMP-RA CITE-seq study12 

broad cell 

types using Symphony (see Symphony classification of transcriptional cell state). The small 

minority of cells (2%) with discordant cell types defined in the snATAC, snRNA, and CITE seq 

modalities for the multiome datasets were removed.”. snRNA-seq were classified to the broad cell 

types defined by AMP-RA CITE-seq study using Symphony. 

 

7. It is weird to compare the RA tissue with healthy PBMC. It is hard to draw any solid conclusion 

because the tissue chromatin classes can be due to the difference between synovial tissue and 

blood. 



 

8. It is common that scRNA-seq identifies more clusters than scATAC-seq. For the “superstate” 

found from scATAC-seq data that represent multiple transcriptional states, is it possible that it is 

due to the different coverages of scRNA-seq and scATAC-seq? To rule out this possibility and 

validate the superstate hypothesis, cells in the same superstate need to sorted out and their 

transcriptomic profiles need to be analyzed at single cell level. 

 

9. Another analysis missing from the manuscript is to compare the pooled snATAC profiles of the 

multiome cells in different AMP RA transcriptional states to which snRNA were assigned. As snRNA 

cells were assigned to the AMP RA transcriptomic clusters, pooling snATAC in the same cluster can 

improve the coverage and may detect the differences between the transcriptional states or confirm 

there is no difference. 

 

10. In Discussion Line 605-608, any evidence to support that non-pathogenic transcriptional cell 

states are able to transition to pathogenic transcriptional cell state if they correspond to the same 

chromatin class? 
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RESPONSE TO REVIEWERS’ COMMENTS 

We thank all three reviewers for their support of our study and their valuable feedback. We were very 

encouraged by Reviewers' praise of the novelty of our study and its usefulness as a reference in the 

field. For example, Reviewer 1 declared “The data is novel and of high scientific interest. The analysis 

is very well done and presented in a clear way.” Reviewer 2 affirmed “This is an excellent manuscript 

and the results reported will serve as a valuable reference about the cellular and molecular 

characteristics of this important autoimmune disease.” 

 

However, there were some improvements suggested by the Reviewers that we have sought to address 

by adding four major areas to our manuscript, summarized here. We include more details, to these 

areas and indeed all comments, in our point-by-point response. 

1. Experimental validation of our proposed superstate model. Using valuable peripheral blood 

from four RA patients, we FAC-sorted four populations spanning two chromatin classes and four 

transcriptional states: CD4+CD127-CD25hi Treg, CD4+CD127-CD25int Treg, CD4+CD25-

PD1+CXCR5+ TFH, and CD4+CD25-PD1+CXCR5- TPH. We then performed a multiome 

experiment and obtained ATAC, RNA, and surface protein information for each gold standard 

sorted population. This optimized strategy allowed us to confirm that our RA tissue chromatin 

classes matched the sorted chromatin classes, our four transcriptional cell states were distinct 

using FACS, and the differential genes between states within a class did not appear to have 

corresponding differential promoter peaks. We believe this dataset adds to the robust resource 

presented in this manuscript and provides a reference dataset for future investigations into 

putatively pathogenic T cell populations in RA from multiple viewpoints, and will thus be publicly 

available as well. Please see Reviewer 1 Comment 3 and Reviewer 3 Comment 8 for more 

details. 

2. Methods section reorganization and workflow figure. As many of our methods are reused in 

different contexts, we followed Reviewer 3’s useful suggestion of creating a workflow figure 

(Supplementary Fig. 1). We have gone further and have restructured our Methods section to 

follow this new workflow. The result is a more streamlined section that is easier for readers to 

follow. We augmented this section by adding clarifying details throughout, but especially in the 

sections describing peak calling and clustering. Please see Reviewer 3 Comments 3-6 for more 

details. 

3. Details regarding chromatin class identification. Additionally, we added more details about 

how we named our chromatin classes. Briefly, we used: 1) the class-specificity of the marker 

gene’s expression, 2) the class-specificity of the marker peak associated with that gene’s 

promoter, 3) cross-referencing literature about the gene as a marker for specific cell states, and 

4) reference mapping to a well-annotated RA tissue CITE-seq dataset. Please see Reviewer 2 

Comments 1-2 and 8 for more details. 

4. Data access. We have deposited our data into public, curated databases. Raw unimodal 

scATAC FASTQs and all processed files are in Synapse (accession ID syn53650034). Raw 

multimodal snATAC and snRNA FASTQs, including those for the sorted RA PBMC experiment, 

are in dbGaP (accession ID phs003417.v1.p1). Please see Reviewer 3 Comment 2 for more 

details. 

 

  



2 

 

Reviewer #1 (expert in the epigenetics of rheumatoid arthritis): 

 
Weinand and colleagues present data from an integrated single-cell RNA/ATAC 

sequencing approach to define cellular states in the synovium. The data is 

novel and of high scientific interest. The analysis is very well done and 

presented in a clear way. I have the following suggestions to improve the 

manuscript. 

 

Response: We thank the reviewer for their endorsements and helpful suggestions. 

 

 
R1C1. OA samples were included to increase cell counts, but the analysis 

would be cleaner if only RA samples were used. It would be best to add a 

sufficient number of OA samples to separate the data sets and make a valid 

comparison. Alternatively, at least the cell counts in the supplemental data 

showing the individual cell clusters should indicate which were OA samples 

and it should be mentioned how many cells are from OA samples. It is assumed 

that the T/B cell analysis mainly reflects RA states, whereas a more 

significant contribution from OA samples is expected in the stromal 

population. 

 

Response: Inspired by the reviewer’s insightful comment, we wanted to understand if including OA 

samples was altering our definition of chromatin classes. To verify that our chromatin classes remain 

valid when only using RA samples, we removed OA samples and re-clustered remaining cells in the 

same manner as the original chromatin classes described in Methods section Fine-grain chromatin 

class clustering. After removing 5 OA samples with 2,395 total T cells, we found that the RA only T 

cell clusters had a 1-1 correspondence with our original chromatin classes with a positive, significant 

odds ratio only between corresponding classes in Supplementary Fig. 8a. This analysis validates the 

assumption that our T cell chromatin classes are mainly driven by RA samples. We also performed a 

similar analysis with stromal cells by removing the 5 OA samples with 4,462 total stromal cells and 

reclustering the remaining cells. While these clusters split slightly differently, all 4 of our original stromal 

chromatin classes have corresponding RA only cluster(s) in Supplementary Fig. 8b. Removing a 

higher proportion of OA cells in stromal populations did have a larger effect on the clusters generated 

than in T cells, but our original chromatin classes are maintained. 

 

Additional Supplementary Fig. 8: 
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Legend: Supplementary Fig. 8. Chromatin classes are stable including or excluding OA and 

low-cell-count samples. 

a. UMAP colored by T cell clusters defined from unimodal scATAC and multimodal snATAC T 

cells in RA samples only (left) and the natural log of the Odds Ratio between these clusters and 

the T cell chromatin classes defined in Fig. 2 (right). 

b. UMAP colored by stromal clusters defined from unimodal scATAC and multimodal snATAC 

stromal cells in RA samples only (left) and the natural log of the Odds Ratio between these 

clusters and the stromal chromatin classes defined in Fig. 3 (right). 

 

We agree with the reviewer that while a comparison between RA and OA would add further insights 

into the disease pathogenesis of OA, our study is primarily focused on characterizing the chromatin 

landscapes of RA synovial cells. A detailed analysis of OA synovial cells from a well-characterized OA 

cohort is warranted in a separate, dedicated study. As the alternative suggested by the reviewer, we 

highlighted the presence of OA samples in Supplementary Fig. 2d-e and panel a in Supplementary 

Figs. 3-7 with a ‘>’ symbol on the y-axis and outlining their bars in black. We also created 

Supplementary Table 6 that lists both the absolute cell counts and relative frequencies of OA and RA 

cells for each chromatin class. In general, we did see higher OA cell proportions in stromal populations 

than in T cells, as hypothesized by the reviewer, with the highest proportion (23%) of OA cells in the SA-

1: PRG4+ lining cells, as seen in multiple studies (Zhang et al., Nature, 2023; Zhang et al., Nat 

Immunol, 2019; Mizoguchi et al., Nat Comm, 2018). Plasma cells also had low proportions of OA cells 

while B cells had higher proportions relative to the other chromatin classes, though with lower cell 

counts, as this reviewer pointed out in the next comment, proportions are less reliable. 

 

Addition to Results [Between endothelial cell type and Tissue vs PBMC comparison]: 
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Chromatin classes are stable irrespective of OA and low cell count samples 

 Our chromatin classes were determined using all samples for maximum power, so we 

next investigated the contribution of OA and low-cell-count samples to this classification. While 

we were underpowered to reliably detect differences between RA and OA, we saw evidence 

that chromatin classes varied in their proportions between these two diseases (Supplementary 

Table 6). To determine if the chromatin class definitions were robust to the exclusion of OA 

samples, we removed the 2,395 T cells corresponding to OA samples and reclustered the 

remaining cells. We only observed positive, significant odds ratios (ORs) for cells from a new 

RA-only cluster belonging to their corresponding original chromatin class relative to the other 

classes (Supplementary Fig. 8a). This showed that the same groups of RA T cells cluster 

together regardless of whether OA T cells were included in the clustering. Since stromal cells 

had a higher proportion of OA cells, particularly in lining fibroblasts (Supplementary Table 6; 

Zhang et al., Nature, 2023; Mizoguchi et al., Nature Communications, 2018), we also 

reclustered the stromal cells after removing 4,462 cells from OA samples and found that all four 

of our original stromal chromatin classes had corresponding RA-only cluster(s) (Supplementary 

Fig. 8b). 

 

Addition to the Supplementary Figs.: 

 

Supplementary Fig. 2d-e: 

 
Legend: d.-e. Broad cell type cell counts per sample for (d.) unimodal and (e.) multimodal 

datasets. OA samples are highlighted with a ‘>’ symbol and black bar outlines.  

 

Supplementary Fig. 3a: 
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Legend: a. T cell chromatin class cell counts per sample for unimodal and multimodal datasets. 

OA samples are highlighted with a ‘>’ symbol and black bar outlines.  

 

Supplementary Fig. 4a: 

 
Legend: a. Stromal chromatin class cell counts per sample for unimodal and multimodal 

datasets. OA samples are highlighted with a ‘>’ symbol and black bar outlines. 

 

Supplementary Fig. 5a: 
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Legend: a. Myeloid chromatin class cell counts per sample for unimodal and multimodal 

datasets. OA samples are highlighted with a ‘>’ symbol and black bar outlines. 

 

Supplementary Fig. 6a: 

 
Legend: a. B/plasma chromatin class cell counts per sample for unimodal and multimodal 

datasets. OA samples are highlighted with a ‘>’ symbol and black bar outlines. 

 

Supplementary Fig. 7a: 
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Legend: a. Endothelial chromatin class cell counts per sample for unimodal and multimodal 

datasets. OA samples are highlighted with a ‘>’ symbol and black bar outlines. 

 

Additional Supplementary Table 6: 

 
Supplementary Table 6. The absolute cell counts and relative frequencies of OA and RA cells 

in each chromatin class. 

 

 
R1C2. In Suppl. Fig. 1e, one sample contained very few cells and did not 

reflect all synovial cells. Also, for cell counts for specific cell types, 

the different chromatin classes contained less than 100 cells in some 

samples (especially B/plasma cells and endothelial cells). Here, the 

analysis is determined by a few samples. Samples with so few cells/patients 

should be re-examined in detail and possibly removed. At least this should 

be mentioned as a limitation in the discussion. 

 

Response: We thank the reviewer for highlighting the issue of samples and cell types with lower cell 

counts. To better address this limitation, we did a secondary analysis directly testing this limitation and 

added it to the main text results and discussion. 

 

To determine the effect of removing these low count samples, especially in the overall lower cell count 

cell types, we reanalyzed the B/plasma populations after removing 11 samples, including the low cell 

count sample the reviewer noted in Supplementary Fig. 2e (previously Supplementary Fig. 1e), with 

fewer than 100 B/plasma cells for a total of 467 cells removed. All of the original B/plasma chromatin 

classes were represented in this reclustering analysis (Supplementary Fig. 8c), suggesting that these 
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low cell count samples do not alter chromatin class definitions. Similarly, we repeated this analysis in 

endothelial cells, removing 954 cells from 19 samples, and saw a strong 1-1 correspondence between 

the new clusters and our original chromatin classes (Supplementary Fig. 8d). 

 

Additional Supplementary Fig. 8: 

 
Legend: c. UMAP colored by B/plasma clusters defined from unimodal scATAC and multimodal 

snATAC B/plasma cells in high-cell-count (HCC) samples with at least 100 B/plasma cells (left) 

and the natural log of the Odds Ratio between these clusters and the B/plasma chromatin 

classes defined in Fig. 5 (right). 

d. UMAP colored by endothelial clusters defined from unimodal scATAC and multimodal 

snATAC endothelial cells in HCC samples with at least 100 endothelial cells (left) and the 

natural log of the Odds Ratio between these clusters and the endothelial chromatin classes 

defined in Fig. 6 (right).  

In all right panels, non-significant (FDR>0.05) OR values are white and the colors of the x-axis 

labels correspond to the colors in the UMAPs on the left. 

 

We decided on the basis of this analysis to include all samples. We further note that we account for 

sample differences by correcting batch effects. We felt that including and making as much of this data 

accessible to the public was valuable. 

 

Addition to Results [continuation of paragraph in R1C1]:  

Furthermore, we were curious if including the low-cell-count samples was impacting the 

chromatin class definitions, especially for the cell types with lower cell counts overall. To test 

this, we removed 467 cells from 11 samples with fewer than 100 B/plasma cells and reclustered 

the remaining cells. We were able to recover all the original B/plasma chromatin classes 
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(Supplementary Fig. 8c), suggesting that these low-cell-count samples did not drive our 

original classes. We saw similar results in endothelial cells after removing 954 cells from 19 

samples (Supplementary Fig. 8d). These analyses suggested our chromatin classes were 

robust to the inclusion of both OA and low-cell-count samples. 

 

Addition to Discussion [in the next steps paragraph]: 

Third, even though we did not see large effects of OA and low cell counts samples on our 

chromatin classes, a larger study with a more even distribution of RA and OA samples with 

higher cell counts would be better able to distinguish between RA- and OA-specific chromatin 

variation.  

 

 
R1C3. The hypothesis of chromatin superstates of cell populations is very 

compelling. However, to match these cellular superstates with long-known 

subclasses of cells (e.g., in T cells), it would be helpful to perform the 

analysis approach from the other end (presorting known cell subclasses and 

then ATACseq), at least in one subclass. For example, there was good overlap 

between Tregs as defined by ATACseq in PBMC and in tissues. How do these 

chromatin profiles compare to a chromatin profile of a PBMC Treg population 

sorted using established protein markers? 

 

Response: We thank the reviewer for this wonderful suggestion. With the proposed superstate model 

being such an important conclusion within our paper, we were very excited to experimentally validate it. 

Using PBMC samples from four RA patients, we sorted CD4+CD127-CD25+ Tregs and CD4+CD25-PD1+ 

TFH/TPH populations via FACS and obtained single cell ATAC data. This experiment was also used to 

address R3C8, where it is presented in additional detail. 

 

To answer your question, we determined that the chromatin profiles of the FACS RA PBMC populations 

corresponded to our chromatin classes by replicating the healthy PBMC and RA tissue ATAC analysis 

shown in Supplementary Fig. 9. Briefly, we de novo clustered the combined tissue and PBMC ATAC 

profiles into 10 clusters (Supplementary Fig. 15c). We found that RA PBMC TFH/TPH cells were most 

enriched in combined cluster 2 (OR=4), which was most highly enriched for RA tissue TFH/TPH cells 

(OR=32). Similarly, RA PBMC Tregs were most enriched for cluster 4 (OR=3), which was most highly 

enriched for tissue Tregs (OR=24). This confirmed that our tissue annotations agreed with long-known 

subclasses of T cells sorted using established protein markers. Unsurprisingly, since the combined 

clusters were determined by ATAC clustering, the RA tissue chromatin classes, also determined by 

ATAC clustering, had better ORs than the protein-sorted hashtags. 

 

Additional Supplementary Fig. 15: 
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Legend: c. Clustering RA tissue unimodal scATAC, RA tissue multimodal snATAC, and sorted 

RA PBMC multimodal snATAC cells together visualized on UMAP (left) and the natural log of 

the Odds Ratio between these clusters and the RA tissue/PBMC labels (right). Non-significant 

(FDR>0.05) OR values are white. The colors of the x-axis labels on the right correspond to the 

colors in the UMAPs on the left. On the right y-axis, RA tissue chromatin classes are colored in 

purple and PBMC cell states are colored in red. 

 

Addition to Results [last paragraph in superstate section]: 

When we de novo clustered the ATAC modalities of the combined PBMC and tissue cells 

(Supplementary Fig. 15c; Methods), we found that the sorted RA PBMC TFH/TPH cells were 

most enriched in combined cluster 2 (OR=4), which was most highly enriched for RA tissue 

TFH/TPH cells (OR=32). Similarly, sorted RA PBMC Tregs were most enriched for combined 

cluster 4 (OR=3), which was most highly enriched for RA tissue Tregs (OR=24). This confirmed 

that our tissue class annotations agreed with well-known subclasses of T cells sorted using 

established protein markers. 

 

Addition to Discussion [in next steps paragraph]: 

Second, to better understand whether the more pathogenic chromatin classes such as TA-2: 

CD4+ PD-1+ TFH/TPH and MA-1: FCN1+ SAMSN1+ infiltrating monocytes are indeed only in 

tissue, a RA PBMC scATAC-seq study may be warranted. While we saw a general consensus 

between the chromatin landscapes of RA tissue and our small population of RA blood TFH/TPH 

cells, a larger PBMC study would be better powered to determine if the chromatin environment 

in blood may be a proxy for the environment in tissue that gives rise to pathogenic 

transcriptional populations. 

 

Addition to Methods [in Tissue and blood analysis section]: 

We replicated this analysis using the RA PBMCs for TFH/TPH and Treg FACS populations and 

the 5 RA tissue chromatin classes. 

 

 
R1C4. Was the enrichment of transcription factor motifs in a particular 

chromatin state associated with increased transcription of these 

transcription factors in the superstates or their corresponding subclasses? 

 

Response: We thank the reviewer for this interesting question. We note that we only included the 

transcription factor (TF) in our motif heatmap if the corresponding TF had expression above a minimal 
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mean threshold within the chromatin class as referenced in the Transcription Factor motif analysis 

Methods section. However, we had not explicitly assessed whether the TF gene expression is higher in 

the class with that TF motif enriched than the other classes in that cell type.  

 

Therefore, we investigated whether TFs were more highly expressed in the chromatin class in which 

their motif was among the most accessible. For each top TF gene and chromatin class combination 

within a cell type, we used a one-tailed Wilcoxon test comparing the normalized gene expression 

between cells in that chromatin class and cells not in that class (Supplementary Table 5). We 

calculated a False Discovery Rate (FDR) from these nominal p-values within each cell type. 

Reassuringly, we do see specific instances of known TFs having good correspondence between TF 

motif accessibility and TF gene expression, such as EOMES in TA-0 (FDR=1.92e-84), BATF in TA-2 

(FDR=3.10e-127), TEAD1 in SA-0 (FDR=1.05e-27), STAT3 in SA-0 (FDR=1.65e-17), SPIB in MA-3 

(FDR=6.93e-74), EBF1 in BA-2 (FDR=8.59e-49), JUN in BA-1 (FDR=1.60e-47), and SOX17 in EA-2 

(FDR=4.29e-19). However, we do find some TF/class combinations, such as TCF7L2 in TA-1 and EBF3 

in SA-3, with a lack of concordance. This could be because TFs are generally lowly expressed, TFs do 

not have to be differentially expressed to be functional, accessible motifs are not always bound by TFs, 

and motifs can be bound by multiple TFs (Vaquerizas et al., Nature Reviews Genetics, 2009; Lambert 

et al., Cell, 2018). 

 

Addition to Results: 

T cell TF paragraph: 

In the primarily CD8+ classes, TA-0: CD8A+ GZMK+ and TA-4: CD8A+ PRF1+ cytotoxic, we 

found EOMES (padj=7.44e-99, 8.12e-44, respectively) and T-bet (TBX21) (padj=4.92e-90, 2.75e-

38, respectively) motifs preferentially enriched (Fig. 2c); the corresponding TFs are known to 

drive memory and effector CD8+ cell states36. EOMES had significantly higher gene expression 

in TA-0 cells compared to all other T cells (Wilcoxon FDR=1.92e-84; Supplementary Table 5).  

[…] 

Within the TA-2: CD4+ PD-1+ TFH/TPH class, we observed high enrichments for AP-1 motifs, 

especially BATF (padj=3.31e-103; Fig. 2d), which promotes expression of key programs in TFH 

cells39 and had higher gene expression in this class’s cells (Wilcoxon FDR=3.10e-127; 

Supplementary Table 5). 

 

Stromal TF paragraph: 

In the SA-0: CXCL12+ HLA-DRhi sublining chromatin class, we found TEAD152 (padj=2.86e-52; 

Fig. 3c) and STAT1/3 TF motif enrichments (padj=3.34e-37, 4.27e-38, respectively; Fig. 3c), 

with the latter likely regulating the JAK/STAT pathway responsible for proinflammatory cytokine 

activation central to RA clinical activity9,53. The gene expression of TEAD1 and STAT3 in SA-0 

cells was significantly higher than in the other stromal cells (Wilcoxon FDR= 1.05e-27 and 

1.65e-17, respectively; Supplementary Table 5). 

 

Myeloid TF paragraph: 

SPI1 (PU.1) is the master regulator of myeloid development66, including conventional DCs67. We 

found PU.1 motifs most strongly enriched in the DC cluster MA-3 (padj=3.24e-55; Fig. 4c), 

though the related SPIB motif’s corresponding transcription factor, known to function in pDCs 

(Schotte et al., J Exp Med, 2004), was more specifically expressed in this class (Wilcoxon 

FDR=6.93e-74; Supplementary Table 5). 
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B/plasma TF paragraph: 

BA-1 was enriched for AP-1 factor motifs82, namely BATF::JUN (padj=0; Fig. 5c-d, 

Supplementary Fig. 6c). Both BATF and JUN gene expression was higher in BA-1 cells 

compared to those in other B/plasma classes (Wilcoxon FDR= 9.29e-04 and 1.60e-47, 

respectively; Supplementary Table 5).  

 

Endothelial TF paragraph: 

We identified SOX motifs87 in EA-2, STAT motifs88 in EA-0, and AP-1 motifs89 in EA-1 (Fig. 6c). 

Sox17 is a crucial intermediary between Wnt and Notch signaling that specifically initiates and 

maintains endothelial arterial identity in mice87. Similarly, we found a SOX17 motif (padj=3.27e-8) 

in the promoter of NES90,91 with its highest accessibility and expression (Wilcoxon FDR=4.29e-

19; Supplementary Table 5) in EA-2 cells (Fig. 6d). 

 

Addition to Methods [in Transcription Factor motif analysis section]: 

For the TFs associated to the top class-specific accessible motifs, we used a one-tailed 

Wilcoxon test to compare the normalized gene expression for the TF between cells in that 

chromatin class and the other cells within that cell type, with the alternative hypothesis being 

“greater” and multiple hypothesis test correction within cell types using FDR (Supplementary 

Table 5). 

 

Additional Supplementary Table 5 [full table in Excel]: 
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Supplementary Table 5. Wilcoxon test between the normalized gene expression of the TF 

gene in cells in the specified chromatin class (‘In Class’) and all other cells in that cell type 

(‘Outside of Class’). The TFs chosen correspond to the top motifs enriched in class-specific 

accessible chromatin from Fig. 2-6c, right. FDRs calculated within cell types. 

 

 
R1C5. It seems that the correlation between chromatin class and marker gene 

expression is markedly different between different cell types (best in T 

cells, worst in myeloid and B cells). Possible explanations for these 

differences should be discussed. 

 

Response: We thank the reviewer for this thought-provoking comment.  

 

One of the reasons for variable correlation is the set of marker genes chosen for each cell type. Based 

on Reviewer 2’s comments 8 and 1, we formalized our differential peak and gene analyses and 



14 

updated our marker gene heatmaps in Supplementary Figs. 3-7b as well as added Supplementary 

Table 9. For the chosen markers in Supplementary Figs. 3-7b, the peak/gene correlation improved. 

Overall, the range of correlation values decreased with the relative ordering of cell types staying 

consistent: T cells had the best correlation at 0.92 and myeloid and B/plasma cells had the worst at 

0.76 each. 

 

A potential reason why the correlation between scaled peak accessibility and gene expression for the 

chromatin classes varies between cell types may be the heterogeneity within a cell type. For instance, 

the myeloid cell type contains cells resembling tissue resident macrophages, infiltrating monocytes, and 

dendritic cells; the B/plasma cell type contains multiple classes of B cells and plasma cells; and the 

stromal cell contains fibroblasts and mural cells. Since the scaling done before correlations are 

calculated is across classes per gene or peak, these more heterogeneous cell types might be more 

affected by outliers than a more homogeneous cell type like T or endothelial cells. Furthermore, since 

peaks were called across broad cell types, some of these smaller populations like dendritic cells have 

slightly worse representation in their marker peaks (e.g., no peak for FCER1A). We also noted in the 

manuscript on Lines 296-297 that plasma cells were particularly hard to annotate with marker peaks as 

the immunoglobulin genes in our datasets had a paucity of chromatin accessibility. 

 

Addition to Discussion: 

Simultaneous chromatin accessibility and gene expression measurements in the multiome cells 

were essential to test the relationship between marker peaks and genes. Across cell types, the 

correlations between scaled marker peak accessibility and gene expression across our chosen 

markers varied. T cells had higher correlation (R=0.92; Supplementary Fig. 3b) while myeloid 

cells had lower correlation (R=0.76; Supplementary Fig. 5b), potentially due to more 

heterogeneous subpopulations such as tissue-resident macrophages, infiltrating monocytes, 

and dendritic cells. 

 

 
R1C6. The enrichment of DNA methylation changes in SA-0 is interesting. Were 

the genomic sites affected by changes in DNA methylation within the SA-0 

cluster random or were they enriched for marker genes important for 

differentiating this cluster from the other fibroblast clusters? If the 

latter, one could speculate that changes in DNA methylation stabilize the 

phenotype of the SA-0 cluster or one of its subclusters. 

 

Response: We thank the reviewer for this interesting next step in the stromal DNA methylation analysis. 

We used the genes assigned to each differentially methylated region (DMR) by the original paper 

(Nakano et al., Ann Rheum Dis, 2013) and subsetted them to those corresponding to the DMR in our 

open peaks. We also subset to the fibroblasts within chromatin classes SA-0, SA-1, and SA-2, as mural 

cells were not present in the original DMR paper and were not associated to either hypo- or hyper-

methylated DMR in Supplementary Fig. 4c. We then plotted the scaled mean normalized gene 

expression for the genes related to hypomethylated DMR. Intriguingly, we saw that the genes 

associated with hypomethylated DMRs were predominantly expressed in the SA-0 chromatin class 

(Supplementary Fig. 4d, right; Methods), with many of those genes being prominent members of 

signaling pathways known to be relevant in RA sublining fibroblasts (Nakano et al., Ann Rheum Dis, 

2013; Zhang et al., Nature, 2023): STAT3 in IL-6 signaling, CASP1 in IL-1 signaling, TRAF2 in TNF 

signaling, and TGFB3 in TGFβ signaling. This could suggest that the hypomethylation in these key 
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genes allows for their high expression (Nakano et al., Ann Rheum Dis, 2013), thus contributing to the 

stabilization of the inflammatory sublining fibroblast phenotype as suggested by the reviewer. 

 

Addition to Supplementary Fig. 4: 

 
Legend: d. Scaled mean normalized gene expression across fibroblast chromatin classes in 

multimodal datasets for genes associated with hypermethylated (left) and hypomethylated 

(right) differentially methylated regions (DMR). 

 

As we were intrigued by the results of the hypomethylated DMR, we repeated this analysis in the 

hypermethylated DMR. We found many more genes had higher expression in SA-1: PRG4+ lining 

fibroblasts (Supplementary Fig. 4d, left), with many of them known to be relevant in RA lining 

fibroblasts (Zhang et al., Nat Immunol, 2019; Collins, Roelofs et al., Ann Rheum Dis, 2023): CLIC5, 

CD55, HBEGF, FOXO1. 

 

Addition to Results [stromal DNA methylation paragraph]: 

DNA methylation and chromatin accessibility work in tandem to define cell-type-specific gene 

regulation through silencing CpG-dense promoters and repressing methylation-sensitive TF 

binding46. Methylation changes have been previously described between cultured fibroblast cell 

lines from RA and OA patients47,48. Thus, we wondered if a specific subset of fibroblasts might 

be the source of these differentially methylated regions (DMRs). Using a published set of DMRs 

for RA versus OA fibroblast-like synoviocyte (FLS) cell lines47, we defined a per-cell score of 

peak accessibility associated to hypermethylated (positive) or hypomethylated (negative) loci in 

RA (Methods). The sublining fibroblasts in SA-0 were enriched for hypomethylated regions 

(Wilcoxon SA-0 cells versus rest one-sided p<2.2e-16), suggesting that the RA synovial 

fibroblast DMRs were relatively enriched for putatively functional chromatin accessible regions 

specifically in sublining fibroblasts (Supplementary Fig. 4c). Furthermore, the genes 

associated to these FLS differentially methylated regions were expressed primarily in tissue SA-

0 (Supplementary Fig. 4d, right; Methods) and are crucial to a number of signaling pathways 

potentially at play in these inflammatory fibroblasts (Nakano et al., Ann Rheum Dis, 2013): 

STAT3 in IL-6 signaling, CASP1 in IL-1 signaling, TRAF2 in TNF signaling, and TGFB3 in TGFβ 

signaling. These results proposed the possibility of epigenetic memory retention even after 

multiple FLS cell line passages49, as sublining fibroblasts, particularly HLA-DRhi and CD34- 

fibroblasts, are expanded in RA relative to OA in synovial tissue samples11.  

 

Addition to Methods [in Stromal DNA methylation analysis section]: 

We used the genes assigned to the DM loci from the original paper (Nakano et al., Ann Rheum 

Dis, 2013). For the genes related to hypermethylated DM and hypomethylated DM accessible 
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loci separately, we plotted their scaled mean normalized gene expression within fibroblast 

classes SA-0, SA-1, and SA-2 to assess fibroblast class preferences. 

 

 
R1C7. Since changes in DNA methylation have been detected in cultured cells 

in fibroblasts, the question arises whether chromatin classes are maintained 

in cell culture even if the transcriptional profile is lost. Single-cell 

ATAC sequencing of cultured RA synovial fibroblasts should be performed to 

clarify the stability of chromatin classes independent of the synovial 

environment. 

 

Response: We thank the reviewer for this intriguing question. To answer it, we requested data from our 

collaborators in the Donlin Lab from their recent paper, “Drivers of heterogeneity in synovial fibroblasts 

in rheumatoid arthritis” (Smith et al., Nat Immunol, 2023). Within that paper, they isolated fibroblast-like 

synoviocytes (FLS) from 2 RA synovial tissue samples, cultured them for three passages, and 

performed multiome sequencing. From those experiments, we used their genes x cells matrix and their 

fragments to quantify their cells’ fragment overlap with our peaks. Within our own RA tissue fibroblast 

cells, we created two fibroblast identity scores defining lining vs sublining: one using the most 

differentially expressed genes and one using the most differentially accessible peaks, subject to fold 

change and significance cutoffs. We used a Wilcoxon test to perform the differential testing and 

generated a per-cell score as done in the T cell lineage and stromal DNA methylation analyses 

(Methods) for both RNA and ATAC scores on our RA tissue fibroblasts and their cultured FLS cells. 

Unsurprisingly, we found that differential genes from tissue were able to separate tissue lining and 

tissue sublining cells, but the unstimulated cultured FLS after three passages did not have discernable 

lining and sublining populations with most scores around 0 (Supplementary Fig. 4e). This 

convergence of transcriptional identity in passaged FLS was also seen in a recent fibroblast study 

investigating the positional identity of stromal cells along the Notch gradient (Wei, Korsunsky, et al., 

Nature, 2021). More surprisingly, we saw similar results using the ATAC fibroblast score 

(Supplementary Fig. 4f), suggesting that fibroblast ATAC identity, and more broadly chromatin class 

identity, was not maintained in cell culture after multiple passages. This disconnect between DNA 

methylation and chromatin accessibility was also seen previously when assaying both directly using 

ATAC-Me in the monocyte-to-macrophage cell fate transition (Barnett et al., Mol Cell, 2020). That study 

found that chromatin accessibility, TF binding, and gene expression all occurred before substantial 

changes to the DNA methylation in distal regions important for cell fate transitions, suggesting that DNA 

methylation is more persistent than previously thought. Indeed, some TFs prefer to bind methylated 

DNA (Yin et al., Science, 2017), a potentially key mechanism to allow gene regulatory networks to 

persist even within ‘silenced’ regions (de Mendoza et al., Genome Biology, 2022).  

 

Addition to Supplementary Fig. 4: 
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Legend: e-f. Fibroblast identity score between lining and sublining fibroblasts by cell based on 

(e.) normalized gene expression for differentially expressed genes and (f.) normalized peak 

accessibility for differentially accessible peaks in tissue (Methods), segregated by fibroblast 

source. The cultured fibroblast-like synoviocyte (FLS) data was obtained from Smith et al., Nat 

Immunol. 202344. All pairwise combinations of scores by source were significantly different by 

Wilcoxon test within both RNA and ATAC sets. 

 

Addition to Results [after stromal methylation paragraph]: 

We then considered if the retention of DNA methylation after multiple passages 

extended to a retention of chromatin accessibility or whether that would be lost alongside 

transcriptional identity (Wei, Korsunksy, et al., Nature, 2021). To assess this, we developed two 

per-cell scores of fibroblast identity comparing tissue lining (SA-1) to sublining (SA-0, SA-2) cells. 

The two scores were for RNA and ATAC modalities using differentially expressed genes and 

differentially accessible peaks, respectively (Methods). Using a multiome dataset of isolated 

FLS from two RA synovial tissue samples cultured for three passages in a recent RA fibroblast 

heterogeneity study (Smith et al., Nat Immunol, 2023) (Methods), we compared their per-cell 

fibroblast identity score to our tissue fibroblast populations in both RNA and ATAC space. 

Unsurprisingly, we found that differential genes from tissue were able to separate tissue lining 

and tissue sublining cells, but the cultured FLS did not have discernable lining and sublining 

populations by the same measure, consistent with previous results (Wei, Korsunsky, et al., 

Nature, 2021) (Supplementary Fig. 4e). More surprisingly, we saw similar results using the 

ATAC fibroblast identity score (Supplementary Fig. 4f), suggesting that fibroblast ATAC 

identity, and more broadly chromatin class identity, was not maintained in cell culture after 

multiple passages. This disconnect between DNA methylation and chromatin accessibility has 

also been seen previously when assaying both directly using ATAC-Me in the monocyte-to-

macrophage cell fate transition (Barnett et al., Mol Cell, 2020). 

 

Addition to Methods: 

Cultured fibroblast datasets. We obtained two cultured unstimulated fibroblast-like 

synoviocyte (FLS) multiome datasets from Smith et al., Nat Immunol, 2023. We downloaded 

their genes x cells matrices from Immport accession ID SDY2213 and fragment files from the 

authors. We subset these files by their QCed cells found in Immport file 

adata_scatac_chromVAR_motif_cultured.968213.h5; there were 19,573 QC cells across the 

two samples. We overlapped this subsetted fragment file by our peaks to create a peaks x cells 
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matrix. We saw good overlap in that matrix with 99.99% of our peaks having at least 1 cell 

represented and all cells having overlapping fragments with at least a few hundred peaks. For 

both RNA and ATAC matrices individually, we concatenated the two samples and normalized. 

 

Fibroblast identity analysis. We subsetted our stromal tissue datasets to only include 

fibroblast populations (SA-0, SA-1, SA-2). We calculated differentially expressed genes between 

tissue lining (SA-1) and sublining (SA-0, SA-2) populations in the normalized gene expression 

matrix using presto::wilcoxauc and adjusted p-values using FDR. We created gene sets of 382 

lining and 254 sublining genes using the cutoffs: FDR<0.1, logFC>0.25, and AUC>0.6. We then 

calculated a per-cell score as in the T cell lineage analysis section, but with positive scores 

corresponding to lining fibroblasts and negative scores to sublining fibroblasts. Using the tissue 

gene sets, we calculated this per-cell RNA fibroblast identity score in the normalized cultured 

fibroblast gene expression matrix (see Cultured fibroblast datasets). We used a Wilcoxon test 

of RNA fibroblast identity scores between all pairs of fibroblast sources to determine 

significance via ggpubr::compare_means. We did the same analysis with differentially 

accessible peaks in the normalized chromatin accessibility matrix using cutoffs FDR<0.1, 

logFC>0.1, and AUC>0.58 to get 248 lining peaks and 294 sublining peaks. 

 

 

Caroline Ospelt 

 

 

Reviewer #2 (expert in computational biology and single-cell/single-nucleus transcriptomics/genomics): 

 
The manuscript by Weinand et al. entitled “The Chromatin Landscape of 

Pathogenic Transcriptional Cell States in Rheumatoid Arthritis” describes an 

evaluation of cells isolated from synovial tissue of RA patients using 

scATAC-seq and combined snATAC-seq and snRNA-seq assays to define discrete 

chromatin states, a comparison of these chromatin states with previously 

published single cell transcriptional analysis of synovial tissue and PBMCs 

from RA patients, and a correlation between these chromatin states and their 

marker genes and clinical metrics of RA, previously defined RA subtypes, and 

previously identified RA genetic risk variants. The computational methods 

used for QC and batch correction are appropriate and the data analysis 

approaches are state-of-the-art for the analysis and interpretation of these 

types of single cell datasets and their correlation with the clinical and 

other parameters. This is an excellent manuscript and the results reported 

will serve as a valuable reference about the cellular and molecular 

characteristics of this important autoimmune disease. 

 
Several suggested edits would contribute to enhancing the information 

reported as a reference for RA. 

 

Response: We thank the reviewer for their complimentary words and beneficial edits to make our 

manuscript an even better RA reference. 
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R2C1. An important outcome of these kinds of single cell studies is the 

definition of discrete cell types using the measure characteristics, in this 

case chromatin states. In order for information about these cell types to be 

reusable, it is necessary to assign the cell types with some kind of unique 

cell type name/label. The authors use an interesting syntactical approach 

for naming cell types based on these chromatin characteristics – broad cell 

class, accessibility (A) subscript, sequential number, marker gene(s), 

previously-characterized cell class – e.g., TA-2: CD4+ PD-1+ TFH/TPH. From 

their combined analysis of chromatin promoter accessibility and gene 

expression, they note that both PD-1 and CTLA4 are expressed and their 

promoters are accessible. I’m guessing that their analysis reveals several 

genes with similar expression/accessibility characteristics for each cell 

type. The authors should clarify how/why a given gene (e.g., PD-1 alone) was 

selected for the cell type label. It appears that this is based on prior 

knowledge combined with the analysis results, but there may be some 

circumstances where a data driven approach would be better than relying on 

prior knowledge, which may be incomplete and biased. 

 

Response: We thank the reviewer for this important comment. 

 

We picked genes for chromatin class names based on a number of factors: 1) the class-specificity of 

the marker gene’s expression, 2) the class-specificity of the marker peak associated to that gene’s 

transcriptional start site, and 3) the recognizability of that gene as a marker of a specific cell identity in 

the field. Since we did not make this information clear enough in the existing Methods, we have added 

it to the Fine-grain chromatin class clustering section. 

 

In regards to the number of named makers, we included two markers instead of one in the T cells as 

CD4 and CD8 are the most common types of T cells, but are insufficiently specific in our case. For 

example, PD-1 can be expressed by exhausted CD8 T cells, with some expression in TA-0, even if it 

was most strongly expressed in our TA-2 CD4 TFH/TPH cells. We also included two markers if one 

marker gene did not have a marker peak nearby (e.g., BA-3: FCER2+ IGHD+ naive B), if a more 

differential markers is less recognizable to the field (e.g., SA-2: CD34+ MFAP5+ sublining, MA-1: FCN1+ 

SAMSN1+ infiltrating monocytes), or if two markers were equally good and informative (e.g., SA-0: 

CXCL12+ HLA-DRhi sublining, MA-2: LYVE1+ TIMD4+ TRM).  

 

We showed both the named marker genes as well as other genes with similar expression/accessibility 

characteristics for each cell type in panel b of Supplementary Figs. 3-7, which we updated and 

expanded as part of your eighth comment along with Supplementary Table 9, which lists the top 5 

differential peaks and genes as well as known markers for each class as part of a more data driven 

approach. 

 

As a further data-driven approach, we used the transcriptional cell state annotations from the large 

(>300K cells), well-curated AMP-RA reference of synovial tissue CITE-seq data to provide further 

support for the named markers and proposed class identity in our multiome data (Fig. 7a-c; 

Supplementary Fig. 10g-h). We used Symphony to map each multiome cell’s gene expression onto 

the CITE-seq reference, and annotated each multiome cell’s state as the most common transcriptional 

cell state among their 5 nearest neighbors in the reference (for more information, see Methods section 
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Symphony classification of transcriptional identity). The accuracy of this approach is described 

elsewhere (Kang et al Nat Comm 2021). As we noted in the main text, most cells mapped confidently, 

with at least 3/5 neighbors agreeing. Then, to translate this mapping to classes as a whole, we used an 

odds ratio to measure the strength of association between cells’ membership in each pair of 

transcriptional cell state and chromatin class; we used a Fisher’s exact test to measure significance (for 

more information, see Methods section Class/state odds ratio). The original reference paper (Zhang 

et al., Nature, 2023) listed differentially expressed genes for each transcriptional cell state, which we 

consulted when picking the markers chosen for the multiome class names. 

 

Addition to Methods [in Fine-grain chromatin class clustering section]: 

To label chromatin classes, we used the first letter of the broad cell types (T - T cell; S - stromal; 

M - myeloid; B - B/plasma; E - endothelial), a subscript A for accessibility, a cluster number 

(ordered by number of cells, with the biggest cluster named 0). To give biological context, we 

took advantage of both the peak accessibility and gene expression profiles. We chose a class’s 

markers based on a number of factors: 1) the class-specificity of the marker gene’s expression, 

2) the class-specificity of the marker peak associated to that gene’s promoter, 3) previous 

reports of that gene as a cell type marker in the literature, and 4) corroboration with a well-

annotated RA tissue CITE-seq dataset via reference mapping (Figs. 2-6b, 7a-c; 

Supplementary Figs. 1d, 3-7b, 10g-h; Supplementary Tables 7,9; Methods sections Single 

cell differential peak analysis, Single cell differential gene analysis, Symphony 

classification of transcriptional identity, and Class/state odds ratio). 

 

 
R2C2. They should also clarify how they connect the chromatin defined cell 

types with the previously-characterized cell class (e.g., TFH/TPH). Was this 

done manually? Could it be done statistically/computationally in such a way 

that captures some quantitative measure of confidence? 

 

Response: We thank the reviewer for this comment.  

 

As discussed in the response to your previous comment, we first looked at known marker genes and 

their corresponding promoter peak accessibility to propose a chromatin class identity, such as PDCD1 

and CXCL13 in TFH/TPH (Rao et al., Nature, 2017) or PRG4 and CD55 in lining fibroblasts (Wei, 

Korsunsky, et al., Nature, 2021). We further supported the chromatin class identity by reference 

mapping to the larger RA tissue mRNA/protein atlas and comparing our class to their state annotations, 

respectively quantified with a mapping score and odds ratio.  

 

In light of this comment, we were motivated to combine those two metrics to calculate the accuracy of 

the correspondence between class and state annotations. To be confident in our class-to-state 

mappings, we would expect the highest accuracy to be in cells whose class and state agreed, or in 

other words, transcriptional cell states that corresponded to a chromatin class based on our odds ratio 

strategy described above. We denoted those as ‘concordant’ cells, with an example being a multiome 

cell that was annotated as both class TA-0: CD8A+ GZMK+ and state T-14: CD8A+ GZMK+ memory. 

We compared them to cells whose class and state disagreed (‘discordant’; e.g., TA-2: CD4+ PD-1+ 

TFH/TPH and T-14: CD8+ GZMK+ memory). We defined accuracy as the percentage of multiome cells 

with perfect mapping (i.e., all 5 nearest neighbors in the reference had the same cell state) within each 

group of ‘concordant’ or ‘discordant’ cells. For each cell type, the ‘concordant’ cells had a more 
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confident state annotation than the ‘discordant’ cells, suggesting that cells whose state and class 

agreed with each other also agreed better with the well-annotated reference cells, giving multiple lines 

of evidence pointing to that cell identity. We note that T cells were once again artificially hampered in 

this metric by its 24 reference fine-grained cell states, making perfect agreement harder to achieve. 

 

Addition to Supplementary Fig. 10: 

 
Legend: i. For each cell type, the percentage of cells with perfect mapping (i.e., all 5 nearest 

neighbors in the reference had the same cell state) segregated by whether the cell’s classified 

transcriptional cell state was in the corresponding chromatin class (‘concordant’) or not 

(‘discordant’), as determined by the OR (Fig. 7a-c, Supplementary Fig. 10g-h). 

 

Addition to the Results [superstate paragraph]: 

We observed that each transcriptional cell state generally corresponded to a single chromatin 

class (Fig. 7a-c; Supplementary Fig. 10g-h). In contrast, a single chromatin class represents a 

superstate encompassing multiple transcriptionally defined cell states. For example, cells in the 

TA-0: CD8A+ GZMK+ chromatin class were more likely to be labeled in the T-5: CD4+ GZMK+ 

memory, T-13: CD8+ GZMK/B+ memory, and T-14: CD8+ GZMK+ transcriptional cell states 

across CD4/CD8 lineages (OR=11, 12, 11, respectively; Fig. 7a); the high GZMK promoter 

accessibility and expression shared by these states may contribute to this categorization 

(Supplementary Fig. 10f). We saw examples of this model in every cell type: SA-1 linked to F-

0/F-1 and SA-0 to F-6/F-5/F-3/F-8 in stromal cells; MA-1 to M-7/M-11 and MA-4 to M-3/M-4 in 

myeloid cells; BA-4 to B-1/B-3 in B/plasma cells; and EA-0 to E-1/E-2 in endothelial cells as more 

examples (Fig. 7b-c; Supplementary Fig. 10g-h; Supplementary Table 7). In all cell types, 

the transcriptional cell state classification was more accurate within cells whose transcriptional 

cell state and chromatin class were concordant (e.g., T-14 and TA-0), supporting our class-to-

state mapping (Supplementary Fig. 10i; Methods). 

 

Addition to Methods [in Fine-grain chromatin class clustering section]: 

We proposed a cell identity based on known markers in the field; for example, PDCD1 and 

CXCL13 in TFH/TPH (Rao et al., Nature, 2017) or PRG4 and CD55 in lining fibroblasts (Wei, 

Korsunsky, et al., Nature, 2021). We further supported the proposed identity by the 

correspondence to the transcriptional cell state annotation from the well-annotated AMP-RA 

reference of synovial tissue CITE-seq data (Fig. 7a-c; Supplementary Fig. 10g-h; 

Supplementary Table 7; Methods sections Symphony classification of transcriptional 

identity, Class/state odds ratio).  

 



22 

Addition to Methods [in Class/state odds ratio section]: 

We defined the accuracy of the class/state correspondence as the percentage of multiome cells 

with perfect mapping (i.e., all 5 nearest neighbors in the reference had the same cell state) 

within each group of ‘concordant’ (i.e., cells whose class and state agreed as determined by the 

odds ratio) or ‘discordant’ (i.e., cells whose class and state disagreed) cells per cell type. For 

example, cells mapping to class TA-0: CD8A+ GZMK+ and state T-14: CD8+ GZMK+ memory 

would be ‘concordant’ cells while cells mapping to class TA-2: CD4+ PD-1+ TFH/TPH and state 

T-14: CD8+ GZMK+ memory would be ‘discordant’ cells. 

 
 

R2C3. In the T cell section, 5 chromatin classes were defined. How do these 

relate to the naïve/central memory/effector memory T cell subsets paradigm? 

 

Response: We thank the reviewer for this intriguing comment regarding the principally protein-derived 

naïve/central memory/effector memory paradigm in T cells. 

 

 Regarding naive cells, we highlight two sentences on Lines 134-138 from the original manuscript: 

We found one more predominantly CD4+ T cell class, TA-1: CD4+ IL7R+, with high expression 

and accessibility for IL7R, encoding the CD127 protein. This marker is typically lost with 

activation, suggesting that TA-1 is a population of unactivated naive or central memory T cells, 

as further evidenced by SELL and CCR7 expression (Fig. 2b; Supplementary Fig. 3b). 

Because cell surface proteins are the gold standard for this classification, we used the well-annotated 

CITE-seq reference of RA synovial tissue to informally confirm that both naive transcriptional cell states 

(T-4: CD4+ naive and T-16: CD8+ CD45ROlow/naive, as defined by CD45RA protein expression) were 

associated with the TA-1 multiome superstate (Fig. 7a). As synovial tissue mainly harbors memory 

populations, as seen by widespread CD45RO expression in the CITE-seq reference, it is perhaps not 

surprising that we did not see distinct naive populations in our 5 chromatin classes (Fig. 2b) or at 

higher resolutions (Supplementary Fig. 13a). 

 

TA-1 likely also harbored some central memory T cells since we saw SELL and CCR7 expression and 

promoter peak accessibility. Other studies have shown a notable overlap in central memory T cell 

chromatin landscapes with naïve and effector memory cells (Jadhav et al., EBioMedicine, 2022; Giles 

et al., Immunity, 2022). While we confirmed that memory states containing CD45RO protein expression 

mapped to TA-1 (T-0, T-1, T-2 in Fig. 7a), we could not ascertain the central memory identity given 

CD62L and CCR7 were absent in the CITE-seq panels.  

 

Since both TA-0: CD8A+ GZMK+ and TA-4: CD8A+ PRF1+ cytotoxic were depleted for SELL and CCR7 

gene expression and enriched for granzymes and perforin (Supplementary Fig. 3b), it is likely that 

they are primarily effector memory cells. 

 

Addition to Results [in T cell section first paragraph]: 

We found one more predominantly CD4+ T cell class, TA-1: CD4+ IL7R+, with high expression 

and accessibility for IL7R, encoding the CD127 protein. This marker is typically lost with 

activation, suggesting that TA-1 is a population of unactivated naive or central memory T cells, 

as further evidenced by SELL and CCR7 expression (Fig. 2b; Supplementary Fig. 3b). 

[…] 



23 

We found another primarily CD8+ group of T cells, the TA-4: CD8A+ PRF1+ cytotoxic cluster, 

which had high accessibility for the PRF1 promoter and expression for the PRF1, GNLY, and 

GZMB genes, suggesting an effector memory phenotype (Fig. 2b; Supplementary Fig. 3b). 

 

 
R2C4. In several of the figures, the authors show examples where the open 

chromatin state matches the gene expression data for the associated gene 

(e.g., Fig 2b). This raises the question of if the chromatin analysis has 

added any value to the transcriptional state analysis that has already been 

reported. In Fig 7 they make the interesting observation that the same 

chromatin class is associated with multiple transcriptional classes, but not 

vice versa. This is an interesting result, but still begs the question of 

added value of the chromatin analysis. It would be good if the authors added 

a more detailed discussion of what unique insights are provided by the 

chromatin analysis above and beyond those provided by the transcriptional 

state analysis alone. 

 

Response: We thank the reviewer for reminding us to emphasize some of ATAC’s unique insights. 

 

We started by identifying correlated promoter peak chromatin accessibility and gene expression as that 

is the most straightforward sequence of events: the promoter of a required gene is accessible, thus 

allowing RNA pol II to transcribe it. However, that does not always have to be the case, as we show in 

response to R2C6, where sometimes the chromatin appears to be more promiscuously open, but the 

gene is more specifically expressed. For example, the specific expression of RTKN2 may be dependent 

on FOXP3 binding and CCL2 expression may be dependent on TNF or IFNγ signaling. Thus, one 

added benefit of chromatin accessibility is the ability to determine poised states as a regulatory feature 

of gene transcription (Guyer et al., Cell Reports, 2023; Yu et al., Cell Reports, 2020).  

 

Another added benefit of ATAC data is the ability to determine where transcription factors might be 

binding, as most TFs require open chromatin to bind. While it is not as accurate as TF ChIP-seq or 

CUT&RUN, chromatin accessibility datasets are not factor-specific or dependent on antibodies, so they 

can capture potential regulatory sites for a broader set of factors. We depicted both (1) enriched motifs 

per class (Fig. 2-6c) as well as (2) specific examples where a differential motif is likely bound to a 

differential promoter peak that likely allows for differential gene expression (Fig. 2-6d). This cellular 

annotation by accessible TFs could help identify which populations are good candidates for a TF-

specific ChIP-seq or CUT&RUN experiment. More generally, these interactions can be linked together 

in gene regulatory networks, where the inclusion of chromatin accessibility data can improve GRN 

inference (scRNA-seq only SCENIC vs multiome SCENIC+ in Gonzalez-Blas et al., Nature Methods, 

2023), though that type of analysis was beyond the scope of our paper.  

 

A third benefit of chromatin accessibility data is the inference of a noncoding variant’s likely cell type of 

action (Fig. 8d). Roughly 90% of disease-causal genetic variants occur in noncoding regions (Farh et 

al., Nature, 2015), where there is no obvious coding change, thus requiring additional data to infer how 

the non-coding variant is regulating disease. scATAC-seq data by itself can point to which cell types 

that variant could be functioning as open chromatin is generally required for TF binding, the most direct 

way non-coding variants affect downstream processes.  
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Addition to Discussion [after first paragraph]: 

Chromatin accessibility is a key piece in the puzzle of gene regulation. It determines which 

regions of the genome may participate in regulatory events such as TF binding or may be 

impacted by non-coding genetic variants. Accessible TF motifs are not guaranteed to be bound, 

in contrast to the regions identified in gold standard TF ChIP-seq (Solomon et al., Cell, 1988) or 

CUT&RUN (Skene and Henikoff, eLife, 2017). However, chromatin accessibility datasets are 

not TF-specific or dependent on antibodies, so they can capture potential regulatory sites for a 

broader set of factors. At a small scale, the regulation of key loci can be interrogated using 

scATAC-seq. For example, we found accessible AP-1 motifs in the differentially accessible 

promoter peak of MMP3, a key driver of RA extracellular matrix destruction, in lining fibroblasts 

compared to other stromal cells (Fig. 3c-d). Multiple drugs (e.g., CKD-506, T-5224, Roflumilast) 

are under investigation to disrupt this specific interaction of AP-1 at the MMP3 promoter, and 

AP-1 signaling targets more broadly, in models of arthritis as well as clinical trials of RA patients 

(Balendran et al., Front Immunol., 2023). At a large scale, these TF-gene interactions can be 

linked together to form gene regulatory networks in silico (Gonzalez-Blas et al., Nature Methods, 

2023; Kamimoto et al., Nature, 2023) to interrogate the more widespread effects of disrupting 

signaling cascades. Furthermore, as roughly 90% of disease causal genetic variants fall in non-

coding regions (Farh et al., Nature, 2015), chromatin accessibility can prioritize where to look for 

functional effects of putatively causal RA genetic variants, particularly for those that disrupt TF 

motifs. Our analyses suggested that the likely causal SNP rs798000 may disrupt STAT binding 

in a TFH/TPH regulatory region reported to act on CD2, an important T cell co-stimulatory 

gene122,123. Therefore, our study underscores the value of chromatin accessibility studies in 

disease-specific transcriptional regulation. 

 

 
R2C5. Along these lines, it would be interesting to explore if the 

difference in transcriptional states could be explained by different 

transcription factors accessing subsets of the open chromatin regions. 

 

Response: We thank the reviewer for this suggestion. We do find differences in the accessible TF 

motifs between different classes (Fig. 2-6c); therefore, we expect that the states that do not share a 

chromatin class will also show those differences. However, when we compared chromatin accessibility 

at promoter peaks between states within the same class (see R3C9 for more details), we found that 

very few peaks are differentially accessible (median 23 peaks across classes). Therefore, we were not 

able to investigate differential TF motifs between states as there were too few differentially open 

chromatin regions to complete a well-powered analysis.  

 

 
R2C6. The authors use the concordance between chromatin accessibility and 

gene expression to validate cell type-specific marker genes. But it is also 

interesting to describe genes that have open chromatin but are not 

expressed. These may be genes that are poised to respond to changes in their 

environment in a cell type-specific fashion. These are also very interesting 

genes and so it would be useful to look for and highlight these genes in the 

different chromatin cell types. 
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Response: We thank the reviewer for this comment and we agree that it would be interesting to 

highlight some of these poised genes with promiscuous chromatin accessibility, but class-specific gene 

expression. One such gene is RTKN2, which has open chromatin at its promoter peak in all CD4 T cells 

but is only expressed in Tregs (Supplementary Fig. 3b). This class-specific gene expression in Tregs 

may arise from direct binding of the Treg master regulator FOXP3 as noted in mouse cells (Ferraro et 

al. PNAS, 2014). Furthermore, using human FOXP3 TF ChIP-seq datasets from both Tregs and 

conventional T cells (Schmidl et al., Blood, 2014), FOXP3 only bound the RTKN2 marker peak in the 

Tregs. Another example is CCL2, a leukocyte-recruiting chemokine, in stromal cells, where the 

promoter is accessible in sublining and mural cell populations, but the gene is primarily expressed in 

the inflammatory sublining population SA-0 (Supplementary Fig. 4b). Multiple studies have shown that 

CCL2 is induced by TNF and/or IFNγ (Koch et al., J Clin Invest., 1992; Mizoguchi et al., Nat Comm, 

2018). Moreover, a recent study by Smith et al., (Nature Immunology, 2023) showed cultured RA tissue 

fibroblast-like synoviocytes (FLSs) had increased CCL2 expression after TNF and IFNɣ stimulation; 

CCL2 expression was strongest in activated sublining populations, which is similar to our SA-0 

population. They also stimulated FLS with TNF, IFNγ and IL-1β and found CCL2 protein expression 

there compared to unstimulated FLS was notably weaker than expected in their CD34+ sublining 

population, mirroring our SA-2 population’s lack of comparable CCL2 gene expression. Furthermore, 

Armaka and colleagues suggested CCL2 is primed to be expressed in inflammatory fibroblasts, but 

only after NFkB regulation (Armaka et al., Genome Med, 2022); we also see an RELA motif, which 

NFkB TFs bind, in our CCL2 marker peak. We also see some examples in the B cells, such as FCER2, 

whose promoter peak is open in the naive BA-3, unswitched memory BA-4, and switched memory BA-2 

classes, but whose gene is primarily expressed in the initial naive cells. Similarly, ITGAX is expressed 

mainly in ABC BA-5, but its peak is open in all memory B cells classes (BA-4, BA-2, and BA-5) 

(Supplementary Fig. 6b). 

 

Addition to Discussion [in multiome/superstate paragraphs]: 

Furthermore, when we did not see class correspondence between chromatin accessibility and 

gene expression on the individual gene level, we observed more class-specific gene expression 

in the context of promiscuous chromatin accessibility. This suggested a poised chromatin state 

that depends on the presence of a specific TF or extracellular signal to give rise to a particular 

transcriptional outcome. For example, the promoter peak of RTKN2 was accessible in all CD4 T 

cells, but the gene was primarily expressed in Tregs (Supplementary Fig. 3b), likely because it 

is a direct target of the Treg master regulator FOXP3 (Ferraro et al., PNAS, 2014). CCL2 in 

stromal fibroblasts had an accessible promoter peak in both sublining populations, but was 

primarily expressed in the inflammatory subset (Supplementary Fig. 4b), likely due to 

stimulation by TNF/INFγ (Koch et al., J Clin Invest., 1992; Smith et al., Nature Immunology, 

2023).  

 

 
R2C7. The identification of pathogenic RA chromatin classes is a very 

important finding from these studies. I would move Supplementary Figure 7 to 

the main body of the manuscript. 

 

Response: We thank the reviewer for their enthusiastic response to this analysis! We thought it was so 

important that we repeated this analysis with the RA PBMCs we generated to answer R1C3 in 

Supplementary Fig. 15c. However, Reviewer 3 gave us conflicting advice, as articulated in R3C7. 
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Therefore, we decided to compromise between the differing opinions and keep this original analysis as 

a supplementary analysis, now in Supplementary Fig. 9. 

 

 
R2C8. The paper is packed with a lot of very valuable information about 

these chromatin cell types, their gene accessibility biomarkers, with and 

without correlated gene expression, and their association with clinical 

metrics of RA, previously defined RA subtypes, and previously identified RA 

genetic risk variants that is buried throughout the text. I would strongly 

recommend that the authors compile all of this useful information into a 

single summary table that could serve as a reference to the community. 

 

Response: We thank the reviewer for this wonderful suggestion! We have compiled the main results for 

the requested information types in Supplementary Tables 9-10. To get a systematic, data-driven list of 

biomarkers as suggested here as well as in R2C1, we formalized our differential peak and gene 

analyses for each chromatin class within a cell type and added the results in Supplementary Table 9; 

we separated them out from the other requested information types, found in Supplementary Table 10, 

to keep both tables readable. Briefly, for the differential peak analysis, we used a logistic model on 

single cells within a cell type to relate the binarized promoter peak counts of minimal accessibility to 

their chromatin class, sample, and fragment count. While for the differential gene analysis, we used a 

Wilcoxon Rank-Sum test to relate the normalized gene counts per cell to their assigned chromatin 

class. Additionally, we added relevant markers for both peaks and genes to the maker heatmaps in 

Supplementary Figs. 3-7b. 

 

Addition to Discussion: 

In this study, we described 24 chromatin classes across 5 broad cell types in 30 synovial tissue 

samples assayed with unimodal scATAC and multimodal snATAC along with TFs potentially 

regulating them. Based on our observation that cells from the same chromatin class 

corresponded to multiple transcriptional cell states, we proposed that these chromatin classes 

are putative superstates of related transcriptional cell states. Finally, we assessed these 

chromatin classes’ relationship to RA clinical metrics, subtypes, and genetic risk variants. Our 

main findings are summarized in Supplementary Tables 9-10. 

 

Addition to Methods: 

Single cell differential peak analysis. We used a logistic model to determine differential 

promoter peaks across chromatin class identity. We did this at the single cell level for the 

combined unimodal scATAC and multimodal snATAC cells and took into account the sample’s 

sample (‘sample’) and overall fragment counts (‘nFragments’) as covariates. Genome-wide 

promoter peaks were defined per cell type as in T cell lineage analysis. For each peak and cell 

type combination, we calculated two logistic regressions using lme4::glmer121 with a nloptwrap 

optimizer for speed:  

Full model: peak ~ cellType + (1|sample) + scale(log10(nFragments)) 

Null model: peak ~ (1|sample) + scale(log10(nFragments)) 

The log2FC was determined as the cell type beta. We calculated significance as a likelihood 

ratio test (LRT) between the full and null models with multiple hypothesis test correction using 

FDR. The top 5 peaks per class, defined as having log2FC>0.5 and -log10(FDR)>5, ordered by 

FDR, are shown in Supplementary Table 9.  
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Single cell differential gene analysis. For the multiome cells only, we calculated differentially 

expressed genes between chromatin class identities within a cell type via a Wilcoxon Rank-Sum 

test using a normalized gene expression matrix input to presto::wilcoxauc. The top 5 genes per 

class, defined as having logFC>0.5 and -log10(FDR)>5, ordered by FDR and logFC, are shown 

in Supplementary Table 9. We selected one peak of potentially multiple that overlapped the 

annotated gene based on the differential peak’s significance in the corresponding class. 

 

Addition to Methods [in Co-varying neighborhood analysis (CNA) section]: 

In Supplementary Table 10, clinical metrics and cell type abundance phenotypes (CTAPs) 

were listed if the median abundance correlation of the AMP-RA reference cells within their 

Symphony-classified chromatin class was more extreme than the FDR threshold for that patient 

attribute (Zhang et al., Nature, 2023). Classes were considered significantly expanded if that 

class’ cells were positively correlated with that category’s per-sample class abundance within a 

cell type and depleted if negatively correlated. 

 

 

Modified Supplementary Figs.: 

 

Supplementary Fig. 3b: 

 
 

Supplementary Fig. 4b: 

 
 

Supplementary Fig. 5b: 
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Supplementary Fig. 6b: 

 
 

Supplementary Fig. 7b: 

 
 

Additional Supplementary Tables 9-10 [the full Supplementary Table 9 is in Excel]: 
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Supplementary Table 9. Markers for each chromatin class. The top 5 peaks ('T5P') from a 

logistic regression model relating class to binary peak distributions over all ATAC cells 

(Methods), with at least log2FC>0.5 and a log-likelihood ratio test -log10('FDR')>5, ordered by 
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FDR, are shown. The top 5 genes ('T5G') from a Wilcoxon Rank Sum Test via presto relating 

class to normalized gene expression over multiome cells (Methods), with at least logFC>0.5 

and an -log10(adjusted p-value)>5, ordered by adjusted p-value and logFC, are shown. We also 

show some chosen biological markers ('MK'). There are NAs for the peak-associated columns if 

there was not a promoter peak in our set associated with that gene. 
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Supplementary Table 10. Selected main results per chromatin class: TF motifs, transcriptional 

cell states, RA CNA associations, and RA risk variants. In column “RA CNA associations,” 

clinical metrics and cell type abundance phenotypes (CTAPs) were listed if the AMP-RA 

reference cells within their Symphony-classified chromatin class were significantly expanded (+) 

or depleted (-) in association with that patient attribute (Methods). 

 

 

 

Reviewer #3 (expert in computational biology, regulation of gene expression and epigenomics): 

 
This study presents a comprehensive analysis of the chromatin landscape of 

synovial tissues from RA patients at single cell levels using scATAC-seq and 

multiomic analyses. The data are highly valuable to the community and timely 

needed for studying RA pathogenesis. Clustering analysis defined 6 broad 

cell types and 24 chromatin classes were further uncovered within 5 of these 

cell types, from which marker genes and motifs were uncovered. These 

chromatin classes were compared with the AMP RA clusters defined from single 

cell transcriptomic studies and each chromatin class corresponded to 

multiple transcriptomic classes. The authors therefore referred to the 

chromatin classes as superstates corresponding to multiple transcriptional 

cell states. This is an interesting but not surprising observation and this 

superstate hypothesis needs additional validations. 

 
Overall, this is an interesting study and the authors may want to consider 

the following points to improve the manuscript. (1) As a data driven study, 

the scATAC-seq, multiome and CITE-seq data from previous study were analyzed 

in this work. The clarity of the description on data analysis and 

integration needs to be improved and workflow chart is recommended to 

summarize the procedure and elucidate the logic. (2) The superstate 

hypothesis is intriguing but additional validations are needed. 

 
Detailed comments are the following. 

 

Response: We thank the reviewer for their positive feedback and constructive criticisms. 
 

 

R3C1. As the large dataset is a valuable resource to the community, it would 

be helpful to have a summary table of QC such as total reads, mapping rate, 

percentage of reads falling in peak neighborhoods, reads in promoters, 

mitochondrial reads, reads falling in the blacklisted regions for the final 

selected cells. 

 

Response: We thank the reviewer for this excellent suggestion. 

 

We have included a per-cell count of total reads, reads falling in peak neighborhoods, reads in 

promoters, mitochondrial reads, and reads falling in the blacklisted regions for the final selected cells in 

two metadata tables (one per ATAC assay) uploaded to SAGE (accession IDs syn53642004 and 
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syn53642005). Since that was a rather large table, we have also included a mean aggregated version 

by ATAC assay and cell type as Supplementary Table 2. We excluded mapping rate as a criterion 

because the ATAC read QC excluded all non-mapped reads, resulting in 100% mapped reads at the 

point of final cell selection. 

 

Addition to Results [QC paragraph]: 

Applying stringent ATAC quality control, we retained cells with >10,000 reads, >50% of those 

reads falling in peak neighborhoods, >10% of reads in promoter regions, <10% of reads in the 

mitochondrial chromosome, and <10% of reads falling in the ENCODE blacklisted regions24 

(Methods; Supplementary Figs. 1a-b, 2a-b; Supplementary Table 2). 

 

Additional Supplementary Table: 

 
Supplementary Table 2. Mean quality control metrics for ATAC cells segregated by ATAC 

assay and cell type. 

 

 
R3C2. Access ID for raw and processed data should be provided. 

 

Response: We thank the reviewer for this comment. The raw FASTQs for the unimodal scATAC data 

and all the processed data can be found on Synapse under accession ID syn53650034 

(https://doi.org/10.7303/syn53650034). The raw FASTQs for the multimodal snATAC and snRNA for 

the synovial tissue and superstate PBMC datasets are on dbGaP under accession ID phs003417.v1.p1 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003417.v1.p1). The different 

repositories are due to different funding sources. 

 

Addition to Methods [in Data Availability section]: 

The raw FASTQs for the unimodal scATAC data and all the processed data can be found on 

Synapse under accession ID syn53650034. The raw FASTQs for the multimodal snATAC and 

snRNA for the synovial tissue and superstate PBMC datasets are on dbGaP under accession ID 

phs003417.v1.p1. 

 

 
R3C3. While the consensus open chromatin peaks of scATAC-seq are called from 

all the cells pooled to a bulk, how are peaks called for snATAC-seq? Line 

797-798, “an average of 75% (n=12 datasets; range: 66%-83%) of the 200bp 

https://doi.org/10.7303/syn53650034
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003417.v1.p1
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trimmed snATAC-seq donor-specific peaks overlapping the scATAC-seq consensus 

peaks”, how are donor-specific snATAC-seq peaks called? More details need to 

be provided. 

 

Response: We thank the reviewer for calling attention to this under-explained methodological detail. We 

called peaks the same way for the unimodal scATAC-seq consensus peaks across all 18 samples as 

the multiome snATAC-seq sample-specific peaks, as we hope is now made clear in the updated text. 

To further clarify, the only analysis we did with the multiome snATAC-seq sample-specific peaks was 

the overlap statistic the reviewer mentioned. We wanted to reassure ourselves that the unimodal 

scATAC-seq consensus peaks were a valid representation of the multiome samples, as we assumed 

they likely would be since all samples used here were from synovial tissue. We preferred to use the 

consensus peaks for all downstream analyses, as we were already confident about those peaks called 

on more cells from more synovial tissue samples. Also, we changed donor-specific to sample-specific, 

since peaks were called on samples from donors, not donors themselves; each donor contributed one 

sample. 

 

Addition to Methods [in ATAC peak calling section]: 

We wanted to confirm that these unimodal scATAC-seq consensus peaks were reasonable to 

use for the multiome snATAC-seq datasets, beyond just that the datasets were done on the 

same tissue type. Therefore, we called peaks, as done above, on the individual sample 

multimodal snATAC-seq BAM files and found that an average of 75% (n=12 samples; range: 

66%-83%) of the 200bp trimmed multimodal snATAC-seq sample-specific peaks overlapped the 

unimodal scATAC-seq consensus peaks. Furthermore, we used the 5x full consensus peak 

neighborhoods in the cell QC step for multiome datasets as an added safeguard. 

 

 
R3C4. “Broad cell type clustering” in Methods does not really describe the 

procedure. Initial broad cell type clustering is mentioned in “ATAC quality 

control”. Is there any further broad cell type clustering after the initial 

one? It’d better present a summary of the procedure with a workflow chart to 

help readers understand how the open chromatin data are clustered to six 

cell types. 

 

Response: We appreciate the reviewer calling attention to a confusing part of our Methods section and 

the great suggestion of a workflow chart. We added the workflow chart as the new Supplementary Fig. 

1 and reorganized the Methods section to better correspond to it, by: adding an initial Computational 

methods section to introduce the workflow chart; splitting up ATAC quality control into ATAC read QC, 

ATAC cell QC, ATAC clustering, and ATAC doublet cluster removal; reordering the ATAC peak calling 

section; splitting up RNA quality control into RNA cell QC, RNA clustering, and RNA doublet cluster 

removal; and moving Symphony classification of transcriptional cell state, now Symphony classification 

of transcriptional identity, before broad cell type clustering. We kept broad cell type clustering as a 

section since we needed to discuss the extra filters in the multiome datasets that span both ATAC and 

RNA clustering, which the new details added to that section and the workflow chart hopefully now 

clarify. 

 

Specifically, for each modality, we did an initial round of clustering on all post cell-QC cells to determine 

which clusters were likely doublets. We did this by cluster for each modality (mRNA/ATAC) looking at 
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four criteria: (1) multiple cell-type-specific marker genes/peaks, (2) intermediate placement between 

broad cell type clusters in principal component space, (3) high UMI/fragment counts, and (4) high 

doublet scores determined per cell per sample by Scrublet (Wolock et al., Cell Syst, 2019)/ArchR 

(Granja et al., Nat Genet, 2021). We do this by cluster, not by cell, as even if an individual cell (e.g., cell 

A) may not be classified as a doublet using these markers, if it clusters strongly with many other cells 

that look like doublets, cell A is also likely to be a doublet (Wolock et al., Cell Syst, 2019). Then, using 

only the non-doublet cells, we do another round of clustering to define the final broad cell type 

annotations using marker genes/peaks, aka broad cell type clustering. In both rounds of clustering 

described here, the method per modality is the same; however, the cells being clustered get subsetted 

between rounds. 

 

Addition to Results [first paragraph]: 

Applying stringent ATAC quality control, we retained cells with >10,000 reads, >50% of those 

reads falling in peak neighborhoods, >10% of reads in promoter regions, <10% of reads in the 

mitochondrial chromosome, and <10% of reads falling in the ENCODE blacklisted regions24 

(Methods; Supplementary Figs. 1a-b, 2a-b; Supplementary Table 2). We further required 

that cells from the multimodal data passed quality control for the snRNA modality (Methods; 

Supplementary Figs. 1b, 2c). After additional QC within individual cell types combining both 

technologies, the final dataset contained 86,994 cells from 30 samples (median of 2,990 

cells/sample) (Supplementary Figs. 1c-d, 2d-e). 

 

Addition to Methods: 

Computational methods. Supplementary Fig. 1 shows an overview of the computational 

methodology for cell type/state identification, as many of the methods were reused in different 

contexts. In the following sections, we explain the core methodology the first time it is used, and 

then only the ways in which the methodology differs in the different contexts afterwards. 

 

We have not reproduced the fully restructured Methods sections here, for the sake of brevity. Please 

see the revised manuscript. 

 

Additional Supplementary Fig. 1: 
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Supplementary Fig. 1. Computational methods workflows for cell type, chromatin class, and 

transcriptional cell state annotations. 

a. Unimodal scATAC (light blue) workflow from 10x Genomics Cell Ranger ATAC 1.1.0 to broad 

cell type clustering. 

b. Multiome (purple) workflow for both snATAC (dark blue) and snRNA (red) from 10x 

Genomics Cell Ranger ARC 2.0.0 to broad cell type clustering. In addition to calling broad cell 

types within each modality, we used the non-doublet multimodal snRNA cells as a query dataset 

to map onto the AMP-RA synovial tissue CITE-seq broad cell type reference14 using 

Symphony97. We removed any cells whose broad cell types did not match for all three 

annotations (snATAC broad cell type, snRNA broad cell type, and classified AMP-RA broad cell 

type). 

c. Chromatin class (middle blue) workflow from combining unimodal scATAC and multimodal 

snATAC at the broad cell type level to chromatin class clustering. 

d. Transcriptional cell state workflow using multimodal snRNA as a query to map onto the AMP-

RA synovial tissue CITE-seq references14 using Symphony97. This is done for each cell type 

using the cells with chromatin class annotations. 

 

 
R3C5. scATAC-seq and snATAC-seq data are combined in each broad cell type to 

define fine-grain chromatin classes within the cell type. Line 841-842, 

“After subsetting the matrix by PMA peaks, we ran the same clustering 

pipeline detailed in the broad cell type clustering section with 10 PCs 

requested.” There is no detailed description of the pipeline in the broad 

cell type clustering section with 10 PCs. Are all the cells from scATAC and 

snATAC pooled to call consensus peaks for clustering? How to decide the 

number of clusters (not much discussion on Supplementary Fig. 10)? Need to 

clarify and provide details. 
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Response: We thank the reviewer for this comment. 

 

We have restructured the methods section such that there is now an ATAC clustering section, which 

defines how we clustered peaks x cells matrices. To construct each cell type’s input peaks x cells 

matrix for chromatin class clustering, we: 1) concatenated the unimodal scATAC-seq and multimodal 

snATAC-seq cells into the same matrix using the consensus peak set; 2) split up that matrix by each 

cell type’s cells; 3) determined each cell type’s peaks with minimal accessibility (PMA); 4) subset the 

matrix by PMA peaks. For each cell type, that subsetted peaks x cells matrix was used as input into our 

ATAC clustering pipeline, where the only change is that we asked for 10 PCs instead of 20 PCs as 

there were notably fewer cells with less expected variation per cell type as opposed to all cell types 

combined. 

 

We did not re-call peaks on the pooled scATAC and snATAC cells per cell type. We decided to use a 

consensus peak set across downstream analyses for consistency, interpretability, and confidence in 

high-quality peak calls across many cells. 

 

As we originally said in our manuscript about the new Supplementary Fig. 13 (old Supplementary 

Fig. 10):  

We tried a number of clustering resolutions (see Supplementary Fig. 13 for a subset) and 

chose the resolution at which we could define clusters biologically with known markers that 

tracked in both chromatin accessibility and gene expression spaces. 

By biologically meaningful clusters, we meant clustering resolutions that largely respected the gene 

expression and promoter peak chromatin accessibility of known cell-state-specific markers, such as 

PRF1 in TA-4: CD4+ PRF1+ cytotoxic (Fig. 2b) or SPP1 in MA-4: SPP1+ FABP5+ intermediate (Fig. 

4b). If we cluster even one more cluster deep, those markers and the identities more generally are split 

over too many clusters, like T cell clusters 4 and 5 in Supplementary Fig. 13a, left and myeloid 

clusters 4 and 0 in Supplementary Fig. 13c, left.  

 

Addition to Methods: 

ATAC clustering. We did multiple rounds of clustering with different inputs. Generally, we did: 

binarize peaks x cells matrix, log(TFxIDF) normalization using Seurat::TF.IDF133, most variable 

peak feature selection using Symphony::vargenes_vst97, center/scale features to mean 0 and 

variance 1 across cells using base::scale, PCA dimensionality reduction using 

irlba::prcomp_irlba, batch correction by sample using Harmony::HarmonyMatrix27, shared 

nearest neighbor creation using RANN::nn2 and Seurat::ComputeSNN133, Louvain clustering 

using Seurat::RunModulatrityClustering133, and cluster visualization using UMAP coordinates via 

umap::umap. For the unimodal scATAC-seq feature selection, we chose peaks that had at least 

one fragment in at least five percent of cells and TFxIDF normalization using Seurat::TF.IDF133 

before continuing in the above steps. We used 20 PCs for the broad cell type clustering and 10 

PCs for the chromatin class clustering since there was less variation within a cell type. 

 

Fine-grain chromatin class clustering. To define chromatin classes within broad cell types 

(Supplementary Fig. 1c), we made peaks x cells matrices for each broad cell type 

concatenating unimodal scATAC-seq and multimodal snATAC-seq cells of that type across the 

consensus peaks. Since peaks were called on all unimodal scATAC-seq cells regardless of cell 

type, we first subset each consensus peaks x broad cell type cells matrix by “peaks with minimal 

accessibility” (PMA). We defined minimal accessibility as consensus peaks that had a fragment 
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in at least 0.5% of cells of that type, except for endothelial cells which we increased to a 

minimum of 50 cells. After subsetting the matrix by PMA peaks, we ran the same clustering 

pipeline detailed in ATAC clustering. For endothelial cells, due to small cell counts, we batch-

corrected on both sample and assay and updated Harmony’s sigma parameter to 0.2. We did 

another round of QC to exclude cells that clustered primarily due to relatively fewer total 

fragments per cell and fewer peaks with at least one 1 fragment per cell, and then re-clustered. 

We tried a number of clustering resolutions (see Supplementary Fig. 13 for a subset) and 

chose the resolution at which known cell-state-specific markers’ promoter peak chromatin 

accessibility and gene expression largely respected cluster boundaries, such as PRF1 in TA-4: 

CD4+ PRF1+ cytotoxic (Fig. 2b) or SPP1 in MA-4: SPP1+ FABP5+ intermediate (Fig. 4b). 

 

 
R3C6. Line 828-831, “We also classified the multiome snRNA cells into the 

AMP-RA CITE-seq study12 broad cell types using Symphony (see Symphony 

classification of transcriptional cell state). The small minority of cells 

(2%) with discordant cell types defined in the snATAC, snRNA, and CITE seq 

modalities for the multiome datasets were removed.”. snRNA-seq were 

classified to the broad cell types defined by AMP-RA CITE-seq study using 

Symphony. 

 

Response: We thank the reviewer for this comment, though it might have gotten cutoff. We assume it 

was asking for more clarification on the broad cell type annotation using the AMP RA tissue CITE-seq 

reference. We have moved the Methods section Symphony classification of transcriptional cell 

state, renamed Symphony classification of transcriptional identity, before broad cell type 

clustering and clarified that the same procedure was used for the broad cell type and fine-grain cell 

state Symphony references. We also clarified that the non-doublet cells that passed cell QC were used 

to do the Symphony classification of the broad cell types in both the Methods text and Supplementary 

Fig. 1b. 

 

Addition to Methods: 

Symphony classification of transcriptional identity. To determine the RA transcriptional cell 

types/states within our multimodal data, we used Symphony97 to map the multimodal snRNA 

profiles into the AMP-RA reference synovial tissue transcriptional cell types/states14 

(Supplementary Fig. 1b,d). We used one Symphony reference object from that study for the 

broad cell types together and one for each broad cell type we tested (T cell, stromal, myeloid, 

B/plasma, and endothelial) for the fine-grain cell state identities. The broad cell types and 

lymphocyte states were defined using both gene and surface protein expression while the 

others were defined using gene expression only. In each case, we mapped the multimodal 

snRNA gene x cells matrix into the appropriate Symphony reference object using the mapQuery 

function, accounting for sample as a batch variable. Using the knnPredict function with k=5, 

each multiome cell was classified into a reference transcriptional cell type/state by the most 

common annotation of its five nearest AMP-RA reference neighbors in the harmonized 

embedding. We considered it a high confidence mapping if at least 3 out of the 5 nearest 

reference neighbors were the same cell type/state, though the number of cell types/states will 

affect this as more cell types/states means more boundary regions between cell types/states. 
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Broad cell type clustering. For non-doublet cells passing cell QC, we subsetted the feature x 

cells matrices and preformed broad cell type clustering within modalities as described above in 

ATAC clustering for the unimodal scATAC and multimodal snATAC datasets separately and 

RNA clustering for the multimodal snRNA datasets (Supplementary Fig. 1a-b). We also 

classified the multiome snRNA cells into the AMP-RA CITE-seq study14 broad cell types using 

Symphony97 (see Symphony classification of transcriptional identity). The small minority of 

cells (2%) with discordant cell types defined in the snATAC, snRNA, and CITE-seq modalities 

for the multiome datasets were removed (Supplementary Fig. 1b). 

 

 
R3C7. It is weird to compare the RA tissue with healthy PBMC. It is hard to 

draw any solid conclusion because the tissue chromatin classes can be due to 

the difference between synovial tissue and blood. 

 

Response: We concur with the reviewer that there were competing contrasts in the RA tissue and 

healthy PBMC analysis, namely the tissue and blood comparison and the RA and healthy comparison, 

that defied solid conclusions. We have reworded the original caveat in the results section to say that in 

a more straightforward manner. 

 

Addition to Results: 

However, there were some tissue chromatin classes that did not have clear counterparts in 

PBMCs, such as TA-2: CD4+ PD-1+ TFH/TPH, MA-2: LYVE1+ TIMD4+ TRM, MA-4: SPP1+ 

FABP5+ intermediate, and BA-5: ITGAX+ ABC (Supplementary Fig. 9). With the current 

dataset, we cannot conclusively determine whether these disparities reflect tissue and blood or 

RA and healthy differences. 

 

We were expecting some differences to come from the synovial tissue and blood comparison since it is 

known that some populations are enriched in tissue more so than blood, as referenced in the original 

text. But, to our knowledge, the differences in chromatin accessibility had not been articulated. The 

chromatin classes that did not have blood counterparts were those populations that are known to be 

tissue-enriched, but as they were also the populations implicated in RA pathogenesis, it is still not 

entirely clear if the difference being highlighted here is tissue vs blood or RA vs healthy. In either case, 

the conclusion that further study of these populations should be done in diseased tissue is valid. 

 

Addition to Results: 

However, prior studies have shown both that these cell states are tissue-enriched12,95,96 and 

implicated in RA pathogenesis11-13,16,61, suggesting that the study of disease tissue is necessary 

for well-powered analyses of these populations. 

 

To remove one of the contrasts, a better comparison would be RA tissue and RA PBMCs. In light of 

that, we redid this de novo ATAC combined clustering analysis using RA tissue and sorted RA PBMCs 

generated as part of the superstate experiment for R1C3. We saw general concordance with the 

healthy PBMC analysis done originally (new Supplementary Fig. 9). As noted in R1C3, the RA 

tissue/PBMCs TFH/TPH and RA tissue/PBMC Tregs were largely grouped within the same combined 

clusters. However, the relatively small proportions of TFH/TPH cells sorted from 4 RA PBMC samples 

(Supplementary Fig. 15a) suggests that synovial tissue is a better source of these cells. 
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Given Reviewer 2’s opposite opinion in their seventh comment, we decided to compromise between the 

differing opinions and keep the original analysis as a supplementary analysis. 

 

 
R3C8. It is common that scRNA-seq identifies more clusters than scATAC-seq. 

For the “superstate” found from scATAC-seq data that represent multiple 

transcriptional states, is it possible that it is due to the different 

coverages of scRNA-seq and scATAC-seq? To rule out this possibility and 

validate the superstate hypothesis, cells in the same superstate need to 

sorted out and their transcriptomic profiles need to be analyzed at single 

cell level. 

 

Response: We thank the reviewer for this really important recommendation. With the proposed 

superstate model being such a central conclusion within our paper, we were very excited to 

experimentally validate it. Based on our results, we consider it unlikely that our observations were 

primarily driven by technical factors. 

 

Using valuable PBMC samples from four RA patients and FACS of surface protein markers, we sorted 

four populations spanning two chromatin classes and four transcriptional states: CD4+CD127-CD25hi 

Treg, CD4+CD127-CD25int Treg, CD4+CD25-PD1+CXCR5+ TFH, and CD4+CD25-PD1+CXCR5- TPH. We 

then isolated nuclei and hashtagged each population before pooling for a single multiome experiment, 

thus allowing us to get ATAC and RNA information for each gold standard sorted population via FACS 

in a cost-efficient manner. We also used this data to address R1C3. 

 

Additional Supplementary Fig. 15: 

 
Legend: Supplementary Fig. 15. Multiome experimental support for the hypothesized 

superstate model using RA PBMCs sorted for Treg, TFH, TPH populations via FACS. 

a. FACS plots of pooled PBMCs from 4 RA patients sorted for: CD4+CD127-CD25hi Treg, 

CD4+CD127-CD25int Treg, CD4+CD25-PD1+CXCR5+ TFH, and CD4+CD25-PD1+CXCR5- TPH. 

b. Quality control steps ending in the final cell counts for the FACS cell state hashtags in 

snATAC (left) and snRNA (right). allQC refers to cells passing ATAC, RNA, and HTO quality 

control measures (Methods). 
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We used this strategy since it is not possible to directly sort superstates as they are defined via 

chromatin accessibility peaks. However, based on our analysis comparing chromatin profiles of 

established protein markers to our superstates in R1C3, we feel that we have sorted a good 

approximation of the same superstate. Additionally, we used RA PBMCs instead of RA tissue because 

tissue biopsies are rare and logistically challenging to acquire. Moreover, we found concordance 

between tissue and blood Tregs in our analysis in Supplementary Fig. 9.  

 

We also wanted to assess whether the two cell states within a chromatin class defined via cell surface 

proteins (e.g., CD4+CD25-PD1+CXCR5+ TFH and CD4+CD25-PD1+CXCR5- TPH) were transcriptionally 

distinct. By clustering the cells from the four sorted populations based on gene expression, we 

successfully distinguished between the pairs of transcriptomic states from each chromatin class 

(Supplementary Fig. 15d). Moreover, we observed that each gold-standard FACS-defined population 

had a distinct mRNA cluster identity. 

 

Addition to Supplementary Fig. 15: 

 
d. Clustering sorted RA multimodal PBMC snRNA cells visualized on UMAP (left) and the 

natural log of the Odds Ratio between these clusters and the RA PBMC FACS determined cell 

states (right). Non-significant (FDR>0.05) OR values are white. The colors of the y-axis on the 

right correspond to RA PBMC FACS determined cell states as in the UMAPs on the left. 

 

Next, we assessed whether the two transcriptional cell states within a chromatin class had differential 

features in each modality. We calculated differential gene expression using a Wilcoxon test and 

differential promoter peak accessibility using logistic regression, accounting for number of fragments 

within cells. While we found many differentially expressed genes between transcriptional cell states, we 

largely did not observe similar differential accessibility of those genes’ promoter peaks (Fig. 7d-e). We 

saw this phenomenon in both the Treg superstate and the TFH/TPH superstate, the latter of which 

having no significant differentially accessible promoter peaks at FDR=0.10. This finding corroborates 

our proposed superstate model of distinct transcriptional cell states sharing similar open chromatin 

landscapes.  

 

Addition to Fig. 7: 
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Legend: d-e. Using genes and promoter peak pairs with at least minimal signal, the Wilcoxon 

FDR of normalized gene expression (x-axis) and the logistic regression FDR of binary promoter 

peak accessibility (y-axis) between (d.) RA PBMC CD25hi and CD25int Treg populations 

(n=7,208 pairs) and (e.) RA PBMC TFH and TPH populations (n=5,264 pairs) (Methods). Color 

was determined by the state with the higher gene expression and the shape denotes whether 

the state with the higher accessibility agreed. The dotted lines correspond to FDR=0.10, 

calculated separately within modalities. 

 

For example, the PDE4D gene, inhibitors for which are used as a RA treatment (McCann et al., Arthritis 

Research & Therapy, 2010), had significantly higher expression in TPH than TFH cells (unadjusted 

P=4.64e-19), but a non-significant change in the promoter peak accessibility (unadjusted P=0.913) 

(Supplementary Fig. 15e). On the other hand, ZBTB10, a telomere associated transcription factor 

(Bluhm et al., NAR, 2019), was a rare example where the chromatin accessibility and gene expression 

concurred across Treg states (Supplementary Fig. 15f). However, globally, the lack of these examples 

contributed to the lack of 1-1 concordance between transcriptional cell states and chromatin classes. 

 

Addition to Supplementary Fig. 15: 
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e.-f. Normalized gene expression (left) and proportion of cells with or without chromatin 

accessibility in the promoter peak (right) for (e.) PDE4D, segregated by RA PBMC TFH and 

TPH populations and (f.) ZBTB10, segregated by RA PBMC CD25hi and CD25int Treg 

populations. Nominal Wilcoxon (left) and logistic regression (right) P-values above (Methods). 
 

Addition to Results [last paragraph in superstate section; including R1C3 response]: 

Finally, to more thoroughly investigate the validity of the chromatin superstate model, we 

profiled the chromatin accessibility and transcriptomes of select cell states known to be 

functionally distinct and defined by well-characterized surface markers (Rao et al., Nature, 2017; 

Bonelli et al, J Immunol, 2009). We generated a multiome dataset of sorted RA PBMC subsets 

via FACS of four populations spanning two chromatin classes and four transcriptional states: 

CD4+CD127-CD25hi Treg, CD4+CD127-CD25int Treg, CD4+CD25-PD1+CXCR5+ TFH, and 

CD4+CD25-PD1+CXCR5- TPH (Supplementary Fig. 15a; Methods). We performed quality 

control steps in all three modalities and identified FACS cell state labels before doing any 

downstream analysis (Supplementary Fig. 15b; Methods). When we de novo clustered the 

ATAC modalities of the combined PBMC and tissue cells (Supplementary Fig. 15c; Methods), 

we found that the sorted RA PBMC TFH/TPH cells were most enriched in combined cluster 2 

(OR=4), which was most highly enriched for RA tissue TFH/TPH cells (OR=32). Similarly, sorted 

RA PBMC Tregs were most enriched for combined cluster 4 (OR=3), which was most highly 

enriched for RA tissue Tregs (OR=24). This confirmed that our tissue class annotations agreed 

with well-known subclasses of T cells sorted using established protein markers. 

 We also wanted to assess whether the two cell states within a chromatin class defined 

via cell surface proteins (e.g., CD4+CD25-PD1+CXCR5+ TFH and CD4+CD25-PD1+CXCR5- 

TPH) were transcriptionally distinct. By clustering the cells from the four sorted populations 

based on gene expression, we successfully distinguished between the pairs of transcriptomic 

states from each chromatin class (Supplementary Fig. 15d; Methods). Moreover, we observed 

that each gold-standard FACS-defined population had a distinct mRNA cluster identity. Next, we 

calculated the differentially expressed genes and differentially accessible promoter peaks 

between the transcriptional states within the same class. While we found significant 

transcriptional differences, we largely did not observe similar accessibility differences in the 

corresponding genes’ promoter peaks (Fig. 7d-e; Methods). This was consistent with the model 

of transcriptional cell states from a common superstate sharing open chromatin landscapes. For 

example, the PDE4D gene, which encodes an RA treatment target (McCann et al., Arthritis 

Research & Therapy, 2010), had significantly more expression in TPH than TFH cells 

(unadjusted P=4.64e-19), but a non-significant change in the promoter peak accessibility 

(unadjusted P=0.913) (Supplementary Fig. 15e). On the other hand, ZBTB10, a telomere-

associated transcription factor (Bluhm et al., NAR, 2019), was a rare example where the 

chromatin accessibility and gene expression concurred across Treg states (Supplementary 

Fig. 15f). However, globally, the lack of these examples likely contributed to the lack of fully 

distinguished state-specific chromatin classes. 

 

Addition to Discussion [in multiome/superstate paragraph]: 

Indeed, when expanding genome-wide, we saw a similar pattern of class-specific 

transcriptional cell states but chromatin classes encompassing multiple related states in our 

proposed superstate model (Fig. 7a-c; Supplementary Fig. 10g-h). To validate this model, we 

conducted an RA PBMC multiome experiment of FAC-sorted populations. While we saw 

differentially expressed genes between transcriptional cell states within a chromatin class, there 
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was an almost complete lack of differentially accessible promoter peaks corresponding to those 

genes (Fig. 7d-e). 

 

Addition to Methods: 

Superstate multiome experimental protocol. From PBMC samples from 4 RA patients, we 

enriched for CD4 T cells using the MACS protocol and sorted for 4 populations using FACS 

(CD4+CD127-CD25hi Tregs, CD4+CD127-CD25int Tregs, CD4+CD25-PD1+CXCR5+ TFH, and 

CD4+CD25-PD1+CXCR5- TPH). We used the following antibodies: CD3-FITC, CD4-BV421, 

CD25-PE-Cy7, CD127-BV650, CXCR5-PE, PD1-APC, Live/Dead-7AAD. All antibodies were 

purchased by BioLegend except the Live/Dead antibody purchased from ThermoFisher 

Scientific. After nuclei isolation, each sorted population was tagged with a nuclear hashing 

antibody before pooling across populations. Total-SeqTM-A hashtag antibodies were purchased 

from BioLegend. We performed a multiome experiment as described in Multiome experimental 

protocol, with the additional step of producing cDNA from Hashtag oligos (for Protein Antibody 

Hashtags) during GEM incubation, generating the Hashtag library alongside the Gene 

Expression library. The Hashtag library was sequenced at approximately five thousand reads 

per cell. 

 

Superstate multiome quality control. Quality control steps for the superstate multiome 

experiment were the same as the RA tissue multiome experiments, up to and not including the 

doublet step in both ATAC and RNA modalities (Supplementary Fig. 1a-b). To better account 

for doublets between these very similar cell states, we only included cells with a single identity 

determined by running Seurat::HTODemux (Stuart et al., Cell, 2019) on the normalized hashtag 

library. Those cell state identities were strictly used as a label. Cells needed to pass QC in all 

three modalities to be included in the downstream analysis. We kept 402 CD4+CD127-CD25hi 

Tregs, 1,690 CD4+CD127-CD25int Tregs, 535 CD4+CD25-PD1+CXCR5+ TFH, and 371 

CD4+CD25-PD1+CXCR5- TPH cells. 

 

TFH/TPH/Treg differential feature analysis. For the sorted RA PBMCs, we determined 

differential genes and peaks between each pair of states within one chromatin class: (1) 

CD4+CD127-CD25hi Tregs and CD4+CD127-CD25int Tregs; (2) CD4+CD25-PD1+CXCR5+ TFH 

and CD4+CD25-PD1+CXCR5- TPH. We calculated differential genes as in Single cell 

differential gene analysis. Differential promoter peaks were calculated similarly to Single cell 

differential peak analysis, but we excluded sample as a covariate since there was a single 

pooled RA PBMC sample and used stats::glm instead of lme4::glmer since we removed the 

random effect of sample, thus negating the need for a mixed effect model. If a gene had multiple 

promoter peaks, we chose the peak with the max normalized peak accessibility summed across 

cells in that pair of states. Furthermore, we only included peak/gene pairs with at least 1 

fragment/UMI in at least 50 cells in that pair of states. We corrected p-values using FDR 

separately within modalities. 

 

Addition to Methods [in RNA clustering. section]: 

We used 20 PCs for the broad cell type clustering and 10 PCs for the sorted RA PBMC mRNA 

clustering since there was less variation within a cell type. 
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R3C9. Another analysis missing from the manuscript is to compare the pooled 

snATAC profiles of the multiome cells in different AMP RA transcriptional 

states to which snRNA were assigned. As snRNA cells were assigned to the AMP 

RA transcriptomic clusters, pooling snATAC in the same cluster can improve 

the coverage and may detect the differences between the transcriptional 

states or confirm there is no difference. 

 

Response: We thank the reviewer for this comment, and we have added the requested analysis. We 

summed the multiome snATAC reads by sample and transcriptional cell state to get a peaks x 

pseudobulks matrix. As quality control measures, we only included promoter peaks with at least 

minimal accessibility in the cell type and sample/state combinations with at least minimal cell counts 

(Methods). We ran this analysis for all states in a cell type across classes and the states within a class. 

For each peak for each set of states, we calculated two negative binomial models of that peak’s 

sample/state pseudobulk distribution: a full model that accounted for state, sample, and fragment count, 

and a null model that removed state as the variable of interest. We conducted a log-likelihood test 

between the full and null models to get a p-value that we then adjusted for multiple hypotheses via FDR 

within each analysis run.  

 

We expected to find differential peaks between transcriptional cell states within different chromatin 

classes since their chromatin was sufficiently different to be labeled as separate classes. Indeed, when 

we ran this analysis for all states within each cell type, we found many differential peaks at FDR<0.10, 

with a median of 8717 peaks across cell types (Supplementary Fig. 12a). 

 

Additional Supplementary Fig. 12: 

 
Supplementary Fig. 12. Differential promoter peaks between pseudobulk by sample and 

transcriptional cell states within or across chromatin classes. 

a. The number of differential promoter peaks between different transcriptional cell states within 

or across classes, as determined by an ANOVA LRT FDR<0.10 (Methods), colored by class or 
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cell type; peaks with FDR≥0.10 are colored in gray. A dashed line separates the within and 

across class analyses. 

 

However, if our proposed superstate hypothesis is correct, we would expect many fewer differential 

peaks between states within a chromatin class superstate. We found very few differential peaks at 

FDR<0.10 for states within a class, with a median of 23 peaks across classes (Supplementary Fig. 

12a). For example, TA-1 found 218 differentially accessible peaks across the sample/state pseudobulks 

(1.3% of peaks tested). That included the promoter peaks for CD4 and CD8A, as expected given that 

TA-1 encompasses both T-4: CD4+ naive and T-16: CD8+ CD45ROlow/naive states based on their 

shared naive functions, as further evidenced by their shared SELL promoter peaks (Supplementary 

Fig. 12b). This suggests that there are very few differences between transcriptional cell states in the 

same chromatin class at the peak level. Furthermore, this corroborates the similarity of pooled ATAC 

reads by transcriptional cell state for states in the same chromatin class we found at the loci highlighted 

in Supplementary Figs. 11 and 18. 

 

Addition to Supplementary Fig. 12: 
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b. For TA-1: CD4+ IL7R+ chromatin class, the Z-score of the transcriptional cell state beta for 

each differential peak, labeled by the gene associated with that promoter (Methods). T-2: CD4+ 

IL7R+ CCR5+ memory was used as the reference cell type in the model. We highlighted CD4, 

CD8A, and SELL promoter peaks with bolded gene names and a black box. 

 

Addition to Results: 

Indeed, when we aggregated the snATAC reads by states, we observed shared openness 

between transcriptional cell states within the same class (i.e., superstate), as seen with the 

cytotoxic TA-4 grouped cell states T-12/T-15 at the cytotoxicity-associated32 FGFBP2 gene, 

lining fibroblast SA-1 grouped cell states F-0/F-1 at the lining-associated11 CLIC5 gene, and 

intermediary myeloid MA-4 grouped cell states M-3/M-4 at bone marrow macrophage-

associated60 SPP1 gene (Supplementary Fig. 11). Furthermore, we found very few differential 

peaks between transcriptional states in the same chromatin class even after pseudobulking by 

sample and state to decrease sparsity (Methods; Supplementary Fig. 12a). TA-1: CD4+ IL7R+  

had one of the higher numbers of differential peaks within a class, but still only found 1.3% of 

the peaks tested as differential. Among those was the expected CD4 and CD8A promoter peaks 

since both the T-16: CD8+ CD45ROlow/naive state and T-4: CD4+ naive state corresponded to 

TA-1 (Supplementary Fig. 12b; Fig. 7a). These populations likely mapped together since they 

shared naïve T cell transcriptional profiles, consistent with a highly accessible SELL promoter 

peak. This contrasted sharply to the number of differential peaks found between states across 

classes within a cell type (median of 8,717 within a cell type vs 23 within a single class; 

Supplementary Fig. 12a), suggesting that the chromatin landscape in states within a class is 

much more homogeneous than across classes, as proposed by our superstate model. 

 

Addition to Methods: 

ATAC pseudobulk differential peak analysis. For T, stromal, and myeloid cell types, we 

summed the non-binary ATAC peaks x cells matrix by sample and transcriptional cell state 

combinations. We subset the summed matrix to include only samples with more than 150 cells, 

states with more than 130 cells, and combinations with more than 10 cells. For the within class 

analysis, we split the matrix by the transcriptional cell states that belonged to the same 

chromatin class (e.g., 5 T cell matrices); we excluded any class with only 1 state passing our 

QC thresholds. We also kept the full matrix per cell type for the across classes analysis. We 

subset peaks by each cell type’s promoter PMA peaks (see T cell lineage analysis) that had at 

least 5 reads across the pseudobulks within that analysis. For each peak for each set of states 

(either within or across classes), we calculated two negative binomial models of that peak’s 

sample/state pseudobulk distribution using MASS::glm.nb, accounting for covariates of sample 

identity and the number of fragments in the sample and cell state combination and differing by 

the inclusion of transcriptional cell state: 

Full model: peak ~ cell state + sample + scale(log10(nFragments)) 

Null model: peak ~ sample + scale(log10(nFragments)) 

Cell state and sample were represented by a 1-hot encoded matrix. We calculated an ANOVA 

log-likelihood ratio test (LRT) p-value between these two models and reconciled multiple 

hypothesis test correction within each analysis separately via FDR. Peaks were considered 

differential if they had FDR<0.10. 
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R3C10. In Discussion Line 605-608, any evidence to support that non-

pathogenic transcriptional cell states are able to transition to pathogenic 

transcriptional cell state if they correspond to the same chromatin class? 

 

Response: We thank the reviewer for this fascinating question. It would be very useful within the field to 

know if non-pathogenic transcriptional cell states can transition to pathogenic states within a similar 

chromatin context both to understand the biological mechanisms at play and to guide treatment 

strategies (e.g., cell state depletion or signaling disruption). However, the experimental validation of 

such a question is beyond the scope of our study, though we do suggest them as part of our 

discussion. We also give an example of one such study that showed ILCs in a mouse model of 

psoriasis with chromatin accessibility in a disease-relevant population of ILC3s even before disease 

induction, particularly at ILC3 TFs; after addition of disease-inducing IL-23, the chromatin accessibility 

in ILC3s further increased (Bielecki et al., Nature, 2021). 

 

Addition to Discussion: 

Defining the relationship between transcriptional cell states and chromatin classes may 

have important therapeutic implications. One effective RA treatment strategy is the deletion of a 

pathogenic cell state: the use of B-cell depleting antibodies (e.g., rituximab10) is an example. 

However, if one chromatin class corresponds to multiple transcriptional cell states, then deleting 

very specific pathogenic populations may be ineffective as other non-pathogenic states may 

transition into the pathogenic state in response to the same pathogenic tissue environment. As 

an example, a recent study (Bielecki et al., Nature, 2021) of ILCs in a mouse model of psoriasis 

showed chromatin accessibility in a disease-relevant population of ILC3s even before disease 

induction using IL-23, particularly at ILC3 TFs, that then increased further after induction. In that 

case, altering the environment or removing exogenous factors (e.g., TFs, cytokines) might be a 

more effective treatment. Within RA, the SA-0: CXCL12+ HLA-DRhi sublining fibroblast class, 

with its four related transcriptional states in our superstate model, may merit further investigation 

in this regard. SA-0 accessible peaks were enriched for STAT motifs, suggesting potential 

regulation by the JAK/STAT signaling pathway. Indeed, JAK inhibition via tofacitinib and 

upadacitinib has been shown to prevent pro-inflammatory HLA-DR induction in RA synovial 

fibroblasts129. Additional experiments would be required to determine if the F-3: POSTN+ 

sublining transcriptional cell state could transform into the RA-expanded (Zhang et al., Nature, 

2023) F-5: CD74hiHLAhi sublining or F-6: CXCL12+ SFRP1+ sublining fibroblast populations 

under JAK/STAT stimulation. 

 

 



 

 

REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed all my concerns. Congratulations to a very nice paper. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have done an outstanding job responding to all of the reviewers' comments. The 

revisions included in the revised manuscript, have made an excellent paper even better. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have conducted additional experimental and computational analyses to thoroughly 

address all the comments and concerns. In particular, the additional analysis on the sorted 

superstate cells and additional details of data QC and analysis details make the study much more 

solid. 

 

Reviewer #3 (Remarks on code availability): 

 

The code doe provide README files that provide sufficient information to run the scripts. 

 

 

 

 

 


