Note from the Editors: Instructions for reviewers of study protocols

Since launching in 2011, BMJ Open has published study protocols for planned or ongoing research studies. If data collection is complete, we will not consider the manuscript.

Publishing study protocols enables researchers and funding bodies to stay up to date in their fields by providing exposure to research activity that may not otherwise be widely publicised. This can help prevent unnecessary duplication of work and will hopefully enable collaboration. Publishing protocols in full also makes available more information than is currently required by trial registries and increases transparency, making it easier for others (editors, reviewers and readers) to see and understand any deviations from the protocol that occur during the conduct of the study.

The scientific integrity and the credibility of the study data depend substantially on the study design and methodology, which is why the study protocol requires a thorough peer-review.

BMJ Open will consider for publication protocols for any study design, including observational studies and systematic reviews.

Some things to keep in mind when reviewing the study protocol:

- Protocol papers should report planned or ongoing studies. The dates of the study should be included in the manuscript.
- Unfortunately we are unable to customize the reviewer report form for study protocols. As such, some of the items (i.e., those pertaining to results) on the form should be scores as Not Applicable (N/A).
- While some baseline data can be presented, there should be no results or conclusions present in the study protocol.
- For studies that are ongoing, it is generally the case that very few changes can be made to the methodology. As such, requests for revisions are generally clarifications for the rationale or details relating to the methods. If there is a major flaw in the study that would prevent a sound interpretation of the data, we would expect the study protocol to be rejected.

BMJ Open

BMJ Open

Prospective cohort study of genomic newborn screening: BabyScreen+ study protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-081426
Article Type:	Protocol
Date Submitted by the Author:	27-Oct-2023
Complete List of Authors:	Lunke, Sebastian; Murdoch Children's Research Institute, Victorian Clinical Genetics Services; University of Melbourne Bouffler, Sophie; Australian Genomics Health Alliance; Murdoch Children's Research Institute Downie, Lilian; Victorian Clinical Genetics Services Ltd, Victorian Clinical Genetics Service; University of Melbourne Caruana, Jade; Murdoch Children's Research Institute Amor, David J.; Murdoch Children's Research Institute, University of Melbourne Archibald, Alison; Murdoch Children's Research Institute, Victorian Clinical Genetics Services; University of Melbourne Bombard, Yvonne; St Michael's Hospital, Genomics Health Services Research Program; University of Toronto, Institute of Health Policy, Management and Evaluation Christodoulou, John; Murdoch Childrens Research Institute, Brain and Mitochondrial Research Group; The University of Melbourne, Department of Paediatrics Clausen, Marc; St Michael's Hospital, Genomics Health Services Research Program De Fazio, Paul; Murdoch Children's Research Institute, Victorian Clinical Genetics Services (Iniversity of Melbourne Hollizeck, Sebastian; Murdoch Children's Research Institute, Victorian Clinical Genetics Services (Iniversity of Melbourne Hollizeck, Sebastian; Murdoch Children's Research Institute, Victorian Clinical Genetics Services (Xanga-Parabia, Anaita; University of Melbourne; Murdoch Children's Research Institute Lang, Nitzan; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Lynch, Fiona; University of Melbourne Peters, Riccarda; University of Melbourne Sadedin, Simon; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Tutty, Frin; University of Melbourne Peters, Stefanie; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Tutty, Frin; University of Melbourne Sadedin, Simon; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Wall, Meaghan; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Wall, Meaghan; Murdoch Children

	Yeung, Alison ; Murdoch Children's Research Institute, Victorian Clinical Genetics Services; University of Melbourne Gaff , Clara; Walter and Eliza Hall Institute of Medical Research, Melbourne Genomics Health Alliance ; University of Melbourne Gyngell, Christopher; University of Melbourne; Murdoch Children's Research Institute Vears, Danya F; University of Melbourne; Murdoch Children's Research Institute Best, Stephanie; Peter MacCallum Cancer Centre, Department of Health Services Research; Australian Genomics Health Alliance Goranitis, I; University of Melbourne; Australian Genomics Health Alliance Stark, Zornitza; Murdoch Children's Research Institute, Victorian Clinical Genetics Services; Australian Genomics Health Alliance
Keywords:	GENETICS, PAEDIATRICS, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

Prospective cohort study of genomic newborn screening: BabyScreen+ study protocol Sebastian Lunke^{1,2}, Sophie E Bouffler^{3,4}, Lilian Downie^{1,2}, Jade Caruana⁴, David J Amor^{2,4}, Alison D Archibald^{1,2}, Yvonne Bombard^{5,6}, John Christodoulou^{2,4}, Marc Clausen⁵, Paul De Fazio¹, Ronda F Greaves^{1,2}, Sebastian Hollizeck¹, Anaita Kanga-Parabia^{2,4}, Nitzan Lang¹, Fiona Lynch², Riccarda Peters², Simon Sadedin¹, Erin Tutty^{2,4}, Stefanie Eggers ¹, Crystle Lee ¹, Meaghan Wall^{1,2}, Alison Yeung^{1,2}, Clara L Gaff^{2,7}, Christopher Gyngell^{2,4}, Danya F Vears^{2,4}, Stephanie Best^{3,8}, Ilias Goranitis^{2,3}, Zornitza Stark^{1,3}

¹Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne,

Australia

²University of Melbourne, Melbourne, Australia

³Australian Genomics, Melbourne, Australia

⁴Murdoch Children's Research Institute, Melbourne, Australia

⁵Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto,

Toronto, Ontario, Canada

⁶Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto,

Ontario, Canada

⁷Melbourne Genomics Health Alliance, Melbourne Australia

⁸Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne,

Victoria, Australia

Corresponding authors: Sebastian Lunke, Sebastian.lunke@mcri.edu.au, Murdoch

Children's Research Institute, Melbourne, VIC, Australia. Zornitza Stark,

Zornitza.stark@vcgs.org.au, Victorian Clinical Genetics Services, VIC, Australia.

ABSTRACT

Introduction: Newborn bloodspot screening (NBS) is a highly successful public health program that utilises biochemical and other assays to screen for severe but treatable childhood-onset conditions. Introducing genomic sequencing into NBS programs increases the range of detectable conditions but raises practical and ethical issues. Evidence from prospectively ascertained cohorts is required to guide policy and future implementation. This study aims to develop, implement, and evaluate a genomic NBS (gNBS) pilot program. Methods and analysis: The BabyScreen+ study will pilot gNBS in three phases. In the preimplementation phase, study materials, including education resources, decision support and data collection tools, will be designed. Focus groups and key informant interviews will also be undertaken to inform delivery of the study and future gNBS programs. During the implementation phase, we will prospectively recruit birth parents in Victoria, Australia, to screen 1000 newborns for over 600 severe, treatable, childhood-onset conditions. Clinically accredited whole genome sequencing will be performed following stdNBS using the same sample. High chance results will be returned by genetic healthcare professionals, with follow-on genetic and other confirmatory testing and referral to specialist services as required. The post-implementation phase will evaluate the feasibility of gNBS as the primary aim, and assess ethical, implementation, psychosocial, and health economic factors to inform future service delivery.

Ethics and dissemination: This project received ethics approval from the Royal Children's Hospital Melbourne Research Ethics Committee: HREC/91500/RCHM-2023, HREC/90929/RCHM-2022 and HREC/91392/RCHM-2022. Findings will be disseminated to policy makers, and through peer-reviewed journals and conferences.

Word count: 2715

Keywords: Genomic newborn screening, rare disease, genomics, implementation

tor beer terien only

ARTICLE SUMMARY

Strengths and limitations of this study

- A prospective feasibility study to offer genomic newborn screening to birth parents during pregnancy.
- The study includes a multidisciplinary evaluation approach ascertaining perspectives from public, health professionals and participating parents.
- The study will utilise online recruitment tools to facilitate education and consent to allow scaling up for a future screening program.
- Interpreter-assisted recruitment is available for people who use a language other than English.
- Recruitment will encompass birth parents in the private and public healthcare system, however, may not be representative of the wider population as this is a pilot study.

INTRODUCTION

Newborn bloodspot screening (NBS) is a well-established and highly successful public health intervention that has enabled the early diagnosis and prompt treatment of many severe childhood conditions.(1) Traditionally, NBS programs select conditions for inclusion using the classic Wilson and Jungner screening principles,(2) and employ targeted biochemical and other assays that can be delivered at scale with rapid turnaround times and at a relatively low cost. Wide variability exists between, and even within, countries in the number of conditions included, ranging from nine in the United Kingdom to 80 in California, USA.(3) Currently in Australia, NBS programs are funded by state and territory governments and screen for around 27 conditions.

BMJ Open

In the last decade, the use of genomic sequencing in the research and clinical setting has transformed rare disease diagnosis.(3) At the same time, increased understanding of the underlying molecular mechanisms of disease has accelerated the development of precision treatments.(4) The gap between the number of rare diseases now considered 'treatable' and those included in NBS programs is expanding rapidly. Integrating genomic sequencing into NBS programs would enable screening for a much broader range of conditions, while also providing the flexibility to quickly add more conditions at low incremental cost.

The concept of performing genomic sequencing in all children at birth, termed genomic newborn screening (gNBS), has been extensively debated. Empirical evidence to guide decision-making is starting to emerge,(5-9) addressing important questions of test design, diagnostic performance, and clinical utility, as well as parental and healthcare professionals' (HCP) views and concerns.(10) However, evidence from prospective cohorts is limited, with the most extensively evaluated cohort, the BabySeq study,(11) having recruited 159 infants.

Many concerns have been raised, including reduced sensitivity of genomic testing for some of the metabolic conditions screened via standard NBS (stdNBS),(7) and the appropriate timing and means of parental education to ensure informed consent.(12) None of the studies to date have fully addressed the key questions of acceptability, feasibility, scalability, and cost-effectiveness of gNBS. Most have focussed on the clinical, legal, insurance, and social contexts in the USA,(1, 6, 7, 9, 11, 12) which have limited applicability to the Australian and other public healthcare systems.

BMJ Open

Our prospective cohort study, BabyScreen+, will address many of these questions in an Australian context to inform a future population-scale gNBS program. We will perform gNBS for a cohort of 1000 Victorian newborns using whole genome sequencing (WGS) that will increase the range of conditions screened in stdNBS to over 600 treatable, childhood-onset conditions. Insights from our research will be used to design laboratory processes that can deliver clinically accredited gNBS in an appropriate timeframe and at population scale. In addition, our study will inform the design of pre- and post-test processes, including education, decision support, informed consent, and results management, aimed at facilitating understanding and acceptance of gNBS for parents, HCP, and the Australian public.

METHODS AND ANALYSIS

Study design

The BabyScreen+ study will involve three phases, as outlined in Figure 1. Following the design and implementation of education and consent materials, research data collection tools, and laboratory pathways, we will offer and evaluate the feasibility of gNBS. Clinically accredited gNBS will be performed for over 600 treatable, childhood-onset conditions following stdNBS. Evaluation will focus on the health economic, implementation science, psychosocial, and ethical aspects of gNBS.

Study aims

The overall aim of this study is to design and deliver a gNBS program to screen 1000 prospectively recruited newborns and assess feasibility.

Secondary aims are to evaluate:

- Public preferences and perspectives for the delivery of gNBS
- Ethical issues
- Performance of gNBS alongside stdNBS, comparing diagnostic performance, and clinical utility
- Parental screening experience and psychosocial outcomes
- Cost-effectiveness and cost-benefit of gNBS relative to stdNBS
- Implementation of gNBS, including acceptability to HCP, parents, and the public
- Value and ethical implications of using genomic data generated at birth as a lifelong healthcare resource

Study timetable and sites

The pre-implementation phase of the study commenced in July 2022 (Figure 1). Staged recruitment into the implementation phase of the study began on 20 July 2023 at three sites, including a private obstetrics practice and two public hospitals. The post-implementation phase will commence at the completion of recruitment, and the study will be completed by 31 May 2027.

Pre-implementation phase

The pre-implementation phase comprises the design, development, and testing of study processes and materials. These include HCP education materials; the online enrolment, decision support, education, and consent platform; evaluation data collection tools; the list of genes for inclusion in screening; and laboratory protocols. Key informant interviews,

BMJ Open

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	

60

focus groups, and discrete choice experiments will be undertaken to assess public and HCP views on study processes and acceptability of gNBS.

Condition and gene selection

The overarching condition selection principles that are used in stdNBS were maintained when considering which genes and conditions to include in this study.(2) Included

conditions:

- have a well-established gene-disease association and the majority of known clinically relevant variants are ascertainable by WGS
- are considered severe (i.e., causing mortality or considerable morbidity/disability in the majority of affected children if untreated),
- have early-onset of disease or significantly benefit from early intervention (<5 years of age in the majority), and
- have an available treatment (e.g., drugs/supplements, enzyme replacement therapy, organ or bone marrow transplant, diet modification, gene therapy) or other intervention that significantly alters the natural progression of the condition.
 Interventions must be accessible to study participants in Victoria, Australia.

We included all conditions that are currently screened in stdNBS in Australia. The gene selection process and panel content has been informed by prior local and international gNBS projects.(13, 14) Genes included in the study are publicly available for review and comment on PanelApp Australia (BabyScreen+ newborn screening panel: https://panelapp.agha.umccr.org/panels/3931/) and on the study website along with a plain language description of the gene selection process and screening approach.

Key informant interviews

The implementation phase will be informed by interviews with key stakeholders involved in the current delivery of stdNBS. These include laboratory staff, HCP offering stdNBS, other antenatal HCP, and paediatric physicians. Data collection and analysis will be guided by the Action, Actor, Context, Target, Time (AACTT) framework(15) to capture views on who should do what and when. Interviews will explore opinions on offering gNBS; education and consent; sample collection and testing; and result management.

Eliciting public preferences and perspectives

Public preferences and values will be sought through a multi-phase mixed-methods design involving focus groups and discrete choice experiment surveys (DCEs) with members of the Australian public. Focus groups will explore public preferences and perspectives for 1) implementation of gNBS, 2) risks and benefits of gNBS, and 3) use of data generated by gNBS as a lifetime resource and will involve qualitative exploration through facilitated discussion to elicit characteristics of gNBS delivery. Outcomes from the focus groups will be used to inform the implementation phase of the study. The DCE surveys will elicit public preferences, values, and priorities for gNBS to support the economic evaluation and implementation of gNBS in Australia.

Implementation phase

HCP engagement

We will invite HCP from selected public and private healthcare settings to offer the study to their patients. HCP participation is voluntary and will not be incentivised. HCP who wish to

BMJ Open

be involved will receive education and support from the study team regarding gNBS and study processes.

Participant eligibility and recruitment

Pregnant individuals will be invited to take part at in the third trimester. At one public hospital, recruitment will also occur via advertisement on a digital pregnancy care platform. To be eligible to participate, birth parents must be due to give birth in Victoria, Australia, within the study timeframe, and participate in the state-based stdNBS. They must be aged 16 years or over, or have a legal representative capable of providing informed consent on their behalf. Enrolment must be completed by two weeks after their baby is born, to ensure that results are returned in a clinically meaningful timeframe.

Enrolment and Consent

After receiving a study invitation, birth parents will complete enrolment and consent for the study online. Figure 2 provides a detailed outline of the participation process.

Birth parents will first be asked to provide consent for the research component of the study via REDCap.(16, 17) This encompasses collection of personal and health related data and survey responses. Participants who use a language other than English will be assisted to enrol and take part by a research genetic counsellor and an interpreter.

Birth parents who consent to research will receive education and decision support, as well as provide informed consent to clinical gNBS for their baby, via the online Genetics Adviser platform. Genetics Adviser is a patient-centred interactive online tool that provides

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

> educational, decisional, and counselling support to patients undergoing genetic testing, along with managing consent capture and return of results (<u>https://www.geneticsadviser.com/</u>). Genetics Adviser has been extensively evaluated and improved by iterative co-design and has been shown to improve participant knowledge and decisional confidence.(18-21) The study will use a locally deployed version of the platform, adapted in collaboration with the Genetics Adviser team.

A 'check-in' module in Genetics Adviser will automatically remind birth parents about the study four weeks prior to their estimated due date via email and SMS. Participants will be invited to log back into Genetics Adviser via email and SMS, where they will receive a brief refresher on gNBS, explore how they are currently feeling, and have the option to review their gNBS consent.

Genetic counselling is available at any time, if requested. Consent to research participation can be withdrawn at any time. Consent to clinical gNBS can be withdrawn at any time prior to result reporting.

Sample testing

Sample collection will be performed by the pregnancy service provider as part of stdNBS undertaken by Victorian Clinical Genetics Services (VCGS). Following completion of stdNBS, four 3mm punches will be taken from a single dried blood spot and processed using clinically accredited protocols and procedures at VCGS. Following DNA extraction, PCR-free genome sequencing libraries will be created using the PCR-free DNA prep kit (Illumina) and sequenced to an average depth of 30x on NovaSeq 6000 of X Plus instruments (Illumina).

BMJ Open

For samples with insufficient quantity or quality of DNA, the study team will contact the participant to arrange sample recollection.

Genome data analysis and interpretation will be performed using validated and clinically accredited, cloud-based analysis pipelines and procedures, including the Dragen and eMedgene (Illumina) analysis tools. Interpretation will be restricted to genes on the BabyScreen+ gNBS panel, and only variants that are classified as likely pathogenic or pathogenic will be considered for reporting. We will not report carrier status, adult-onset conditions, or variants of uncertain significance. All variants that are considered for reporting will be discussed by a team of clinical specialists, genetic pathologists, and medical scientists.

Screening results

Results will be returned within four weeks of sample collection. There will be two categories of result:

- 1) A low chance result, where no reportable variants are identified, or
- 2) A high chance result, where one or more reportable variants are identified.

For low chance results, birth parents will be informed via the online Genetics Adviser platform following notification of result availability via email and SMS. Genetic counselling follow-up will be available on request.

For high chance results, birth parents will receive a phone call from a genetics HCP to discuss the result, arrange an appointment and any required additional testing (including

confirmation of reported variants), as well as referral to specialist services. Further genetic counselling support will also be available.

Post-implementation phase

The study will move to the post-implementation phase after recruitment, with a focus on evaluation and data analysis. See Figure 1 and Figure 2 for details on the data collection tools, timepoints, and evaluation focus areas.

Evaluation

Feasibility will be evaluated through a set of key performance indicators gathered from laboratory data. This includes data on the percentage of study samples that:

- Are successfully identified from stdNBS samples
- Require a recollect due to insufficient DNA
- Fail sequencing
- Are processed within the expected turn-around time
- Have a concordant high chance result from stdNBS and gNBS

Views on acceptability and participant experiences will be collected during the first two phases of the study. Participant, public and HCP views will be captured through key informant interviews, focus groups, surveys, and discrete choice experiments (see Figures 1 and 2 and Table 1). Participants will complete compulsory surveys at enrolment (T1) and after consent (T2), followed by optional surveys at 3-months post-result (T3) and ~12months post-result (T4). Participants will also be invited to take part in interviews before and after receiving their gNBS results. Participants who decline gNBS will be asked to

complete a modified T2 survey and invited to take part in an interview. Refer to Table 1 for survey and interview measures.

Table 1: Survey and interview measures used to ascertain parental experiences and

preferences throughout the study

Measure	Description	T1	T2	Pre- result int	Т3	Post- result int	Т4	Decliner int
Details of pregnancy and demographics	Estimated due date, intended birth hospital, sex of baby (if known), twin/triplet pregnancy details (if applicable), education, income, language, marital status, number of children, prior experience with genomic testing, family	x						
Acceptability E-scale [gNBS accepter]	history, ancestry. Seven-item scale to determine the acceptability and usability of computerised health- related programs(22).	2	x	2				
Information in Genetics Adviser [gNBS accepter]	Three study-specific questions to assess the perceived bias of Genetics Adviser content and review/influence of the study gene list.		X	C	うこ	1		
Knowledge of gNBS [gNBS accepter]	Eight study-specific True/False questions to determine participants' understanding of gNBS.		X		Х		Х	
Difficulty and deliberation of decision [gNBS accepter]	Three study-specific questions to assess the level of difficulty making a decision, length of deliberation and sources of information used		x					

	when consenting to gNBS.						
Reasons for accepting or declining [gNBS accepter]	One study-specific question addressing reasons for consenting to gNBS. Participants are asked to rate a selection of reasons on a 5-point Likert scale and asked to comment if there are other reasons not listed.		x				
Willingness to pay [gNBS accepter]	Dynamic triple-bounded dichotomous choice contingent valuation, also known as a 'bidding game', to assess the value participants place on gNBS.		X		X	X	
State trait anxiety index (STAI-AD) [gNBS accepter]	26-item scale measuring state and trait anxiety. <i>Copyright © 1968, 1977</i> <i>by Charles D.</i> <i>Spielberger. All rights</i> <i>reserved in all media.</i> <i>Published by Mind</i> <i>Garden,Inc.</i> <i>www.mindgarden.com</i> Note: Only the 6 questions that form the STAI-6 short form(23) are repeated at each timepoint.	S.C.V.	x	2	×	X	
Reasons for declining [gNBS decliner]	One study-specific question exploring the reasons for declining. Participants are presented with 11 reasons and asked to rate how much each one influenced their decision on a scale of 1 (did not influence) to 5 (strongly influenced).		x				
Result recall	One study-specific question to determine if participants recall their baby's result correctly.				X	X	

Page 17 of 26

Decision	Five-item scale to			X		Х	
regret scale	measure regret after a						
	health care decision(24).						
Health system	One study-specific			X		Х	
utilisation	question to determine						
	health system utilisation						
	post-result.						
Result	One study-specific			X			
dissemination	question for people to						
[high chance	determine who						
result only]	participants have shared						
	their result with and						
	why.						
Genomics	Six-item scale based on			X			
Outcome Scale	the Genetic Counselling						
[high chance	Outcome Scale-24						
result only]	adapted to assess						
	outcomes of genetic						
	counselling and patient						
	empowerment.(25)						
Service	10 study-specific			X			
delivery	questions assessing						
preferences	opinions on if, how, and	0					
	when gNBS should be						
	offered, and what						
	conditions should be						
	screened.						
Experience of	Questions on prior		X		Х		Х
gNBS	knowledge of genetic or						
	genomic testing and						
	experiences taking part						
	in the study.						
Expectations	Questions on expected		Х				
of results	result and how they						
	plan to use the result.						
Receiving	Questions on result				Х		
results,	including knowledge of						
understanding,	outcomes and how they						
and making	plan to use the result.						
meaning							
Attitudes and	Questions on if, how,		Х		Х		Х
perceptions	and when gNBS should						
	be offered, and what						
	conditions should be						
	screened.						
Decision	Questions on reasons						Х
making	for declining gNBS.						

Data re-use	Study-specific questions		X	
	around preferences for			
	additional analyses of			
	gNBS data.			
Future gNBS	One study-specific		X	
decision	question asking			
	preference for gNBS for			
	future children			

T1, survey at enrolment; T2, survey post-consent; T3, 3-months post result survey; T4, 12months post result survey; int, interviews; STAI-6, Six-item State-Trait Anxiety Inventory; STAI-AD, State-Trait Anxiety Inventory for Adults; gNBS, genomic newborn screening.

Health economic analyses will be performed from the perspective of the Australian healthcare system, using a lifetime horizon, and based on the outcomes of cost per additional diagnosis, cost per quality-adjusted life-year gained, and net benefit. A budget impact analysis will be conducted to provide policy-relevant insights into the affordability and sustainability of implementing gNBS.

Potential barriers and enablers to implementation of gNBS will be identified to generate strategies to support successful delivery and inform future studies. These will be ascertained through theory-informed interviews. This will include capturing the experiences of professionals including HCP involved in the delivery of gNBS, and those impacted by the implementation of gNBS, including perinatal HCP and paediatric physicians. In addition, process mapping will be undertaken with laboratory staff and study team members at intervals throughout the study to understand adaptations required to deliver gNBS at scale and within clinically meaningful timeframes.

BMJ Open

Data analysis

Personal identifying information, clinical, and evaluation data will be collected using recording devices, and electronic data collection forms in the online Genetics Adviser platform(21) and REDCap,(16, 17) both hosted at the Murdoch Children's Research Institute, Melbourne, Australia.

Findings from interviews and surveys will be used to provide qualitative and statistical information on the associations between a particular behaviour and opinions or attitudes about the program. Qualitative data will be either deductively analysed where a theoretical framework has been employed e.g., AACTT(15) or analysed using inductive content analysis(26) or thematic analysis to generate rich descriptions responding to the research aims e.g., acceptability of testing. Economic evaluation and discrete choice experiments will be conducted according to best practice recommendations.(27-29) Quotes from participants will be used to illustrate qualitative findings in scientific presentations and other publications. Statistical analysis will utilise appropriate methods and tests depending on the nature of the data and its normality. Probability values of <0.05 will be considered statistically significant, and confidence intervals will be calculated where possible.

Patient and public involvement

The pre-implementation phase of the study involved extensive consultation with the public via focus groups and discrete choice experiment surveys. These have informed the design of the implementation phase. Condition selection has been done in conjunction with patient

support groups. The study also uses Genetics Adviser, a decision support platform with extensive public input into design and development.(18-21)

ETHICS AND DISSEMINATION

This study is governed and administered by the Murdoch Children's Research Institute (MCRI), Melbourne, Australia. All genetic testing is performed by VCGS, Melbourne, Australia, a wholly owned not-for-profit subsidiary of MCRI. VCGS is clinically accredited (NATA/RCPA) to ISO15189;2012 to carry out genetic and genomic testing. The project has received ethics approval from the Royal Children's Hospital Melbourne Human Research Ethics Committee (main BabyScreen+ protocol: HREC/91500/RCHM-2023; key informant interviews: HREC/90929/RCHM-2022; and focus groups and DCE: HREC/91392/RCHM-2022). Findings from this study will be published in peer-reviewed scientific journal articles and presented at appropriate clinical and research conferences. The findings will also be disseminated to policy makers including the Standing Committee on Screening. All participants have provided informed consent to be involved in this study.

The research conducted at the Murdoch Children's Research Institute was supported by the Victorian Government's Operational Infrastructure Support Program. The Chair in Genomic Medicine awarded to JC is generously supported by The Royal Children's Hospital Foundation. YB holds the Canada Research Chair in Genomics Health Services and Policy, funded by the Canada Research Chairs Program.

AUTHOR CONTRIBUTIONS

All authors contributed to the design of the protocol, including its concept and the critical review and final approval of the manuscript. Sebastian Lunke, Sophie Bouffler and Zornitza Stark drafted the manuscript. Simon Sadedin, Stefanie Eggers, Sebastian Hollizeck, Crystle Lee, Meaghan Wall, Ronda Greaves, Paul De Fazio and Sebastian Lunke contributed to the design of the laboratory processes. David Amor, Lilian Downie, Alison Archibald, John Christodoulou, Alison Yeung, Zornitza Stark and Sebastian Lunke contributed to the design of the gene list. Yvonne Bombard, Marc Clausen, Jade Caruana, Alison Archibald, Lilian Downie, Clara Gaff, Sophie Bouffler, Nitzan Lang, Anaita Kanga-Parabia and Zornitza Stark contributed to the design of participant and HCP education materials. Danya Vears, Fiona Lynch and Christopher Gyngell contributed to the design of the ethical evaluation. Erin Tutty, Anaita Kanga-Parabia, Alison Archibald and Stephanie Best contributed to the design of the psychosocial and implementation evaluation. Riccarda Peters and Ilias Goranitis contributed to the design of the health economic evaluation.

FUNDING STATEMENT

The BabyScreen+ study is funded by the Australian Government's Medical Research Future Fund as part of the Genomics Health Futures Mission, grant MRF2015937 titled 'Genomic

newborn screening for personalised lifelong healthcare in Australian babies'.

COMPETING INTERESTS

re Genetics Adviser. YB and MC are cofounders of the Genetics Adviser. The other authors declare no relevant

disclosures.

REFERENCES

1. Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJ, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39(3):171-87.

2. Wilson JMG, Jungner G, World Health O. Principles and practice of screening for disease. Geneva: World Health Organization; 1968.

Stark Z, Scott RH. Genomic newborn screening for rare diseases. Nat Rev Genet.
2023.

4. Tambuyzer E, Vandendriessche B, Austin CP, Brooks PJ, Larsson K, Miller Needleman KI, et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat Rev Drug Discov. 2020;19(2):93-111.

5. Berg JS, Agrawal PB, Bailey DB, Jr., Beggs AH, Brenner SE, Brower AM, et al. Newborn Sequencing in Genomic Medicine and Public Health. Pediatrics. 2017;139(2).

6. Roman TS, Crowley SB, Roche MI, Foreman AKM, O'Daniel JM, Seifert BA, et al. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am J Hum Genet. 2020;107(4):596-611.

7. Adhikari AN, Gallagher RC, Wang Y, Currier RJ, Amatuni G, Bassaganyas L, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med. 2020;26(9):1392-7.

8. Ceyhan-Birsoy O, Machini K, Lebo MS, Yu TW, Agrawal PB, Parad RB, et al. A curated gene list for reporting results of newborn genomic sequencing. Genet Med. 2017;19(7):809-18.

9. Pereira S, Robinson JO, Gutierrez AM, Petersen DK, Hsu RL, Lee CH, et al. Perceived Benefits, Risks, and Utility of Newborn Genomic Sequencing in the BabySeq Project. Pediatrics. 2019;143(Suppl 1):S6-s13.

10. Downie L, Halliday J, Lewis S, Amor DJ. Principles of Genomic Newborn Screening Programs: A Systematic Review. JAMA Netw Open. 2021;4(7):e2114336.

11. Ceyhan-Birsoy O, Murry JB, Machini K, Lebo MS, Yu TW, Fayer S, et al. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. Am J Hum Genet. 2019;104(1):76-93.

12. Timmins GT, Wynn J, Saami AM, Espinal A, Chung WK. Diverse Parental Perspectives of the Social and Educational Needs for Expanding Newborn Screening through Genomic Sequencing. Public Health Genomics. 2022:1-8.

13. Downie L, Halliday JL, Burt RA, Lunke S, Lynch E, Martyn M, et al. A protocol for whole-exome sequencing in newborns with congenital deafness: a prospective population-based cohort. BMJ Paediatr Open. 2017;1(1):e000119.

14. Kingsmore SF, Smith LD, Kunard CM, Bainbridge M, Batalov S, Benson W, et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am J Hum Genet. 2022;109(9):1605-19.

15. Presseau J, McCleary N, Lorencatto F, Patey AM, Grimshaw JM, Francis JJ. Action, actor, context, target, time (AACTT): a framework for specifying behaviour. Implementation Science. 2019;14(1):102.

16. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics. 2019;95:103208.

17. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for

providing translational research informatics support. Journal of Biomedical Informatics. 2009;42(2):377-81.

18. Bombard Y, Clausen M, Shickh S, Mighton C, Casalino S, Kim THM, et al. Effectiveness of the Genomics ADvISER decision aid for the selection of secondary findings from genomic sequencing: a randomized clinical trial. Genetics in Medicine. 2020;22(4):727-35.

19. Shickh S, Rafferty SA, Clausen M, Kodida R, Mighton C, Panchal S, et al. The role of digital tools in the delivery of genomic medicine: enhancing patient-centered care. Genetics in Medicine. 2021;23(6):1086-94.

20. Bombard Y, Clausen M, Mighton C, Carlsson L, Casalino S, Glogowski E, et al. The Genomics ADvISER: development and usability testing of a decision aid for the selection of incidental sequencing results. European Journal of Human Genetics. 2018;26(7):984-95.

21. Shickh S, Hirjikaka D, Clausen M, Kodida R, Mighton C, Reble E, et al. Genetics Adviser: a protocol for a mixed-methods randomised controlled trial evaluating a digital platform for genetics service delivery. BMJ Open. 2022;12(4):e060899.

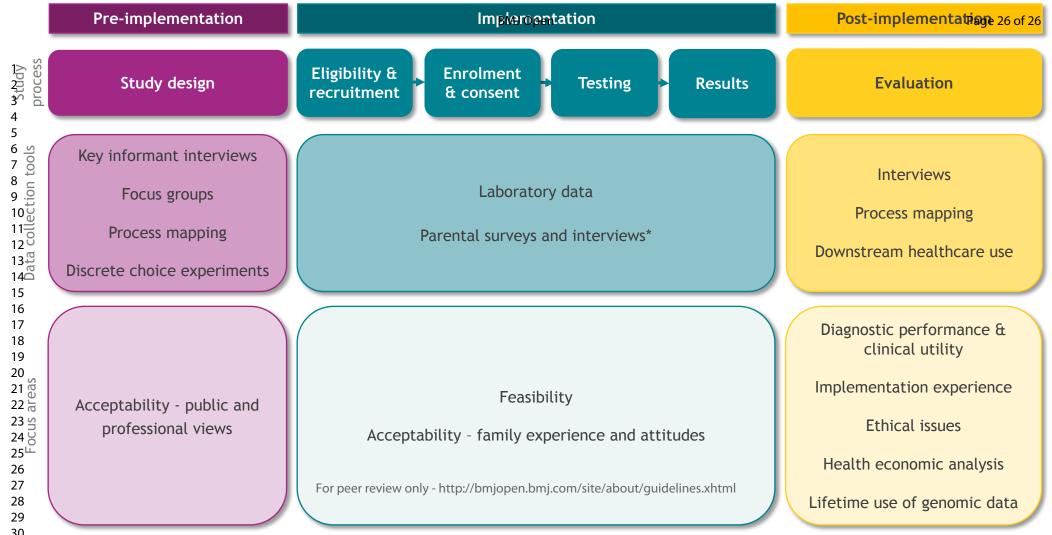
22. Tariman JD, Berry DL, Halpenny B, Wolpin S, Schepp K. Validation and testing of the Acceptability E-scale for web-based patient-reported outcomes in cancer care. Appl Nurs Res. 2011;24(1):53-8.

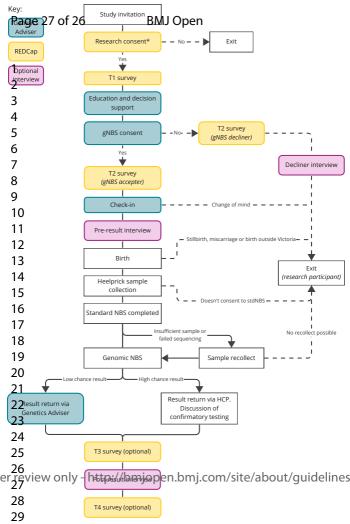
23. Marteau TM, Bekker H. The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). Br J Clin Psychol. 1992;31(3):301-6.

24. Brehaut JC, O'Connor AM, Wood TJ, Hack TF, Siminoff L, Gordon E, et al. Validation of a decision regret scale. Medical decision making : an international journal of the Society for Medical Decision Making. 2003;23(4):281-92.

25. Grant PE, Pampaka M, Payne K, Clarke A, McAllister M. Developing a short-form of the Genetic Counselling Outcome Scale: The Genomics Outcome Scale. Eur J Med Genet. 2019;62(5):324-34.

26. Vears DF, Gillam L. Inductive content analysis: A guide for beginning qualitative researchers. Focus on Health Professional Education. 2022;23(1):111-27.


27. Briggs A, Sculpher M, Claxton K. Decision modelling for health economic evaluation. Oxford: Oxford University Press; 2006.


28. Hauber AB, González JM, Groothuis-Oudshoorn CG, Prior T, Marshall DA, Cunningham C, et al. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Value Health. 2016;19(4):300-15.

29. Reed Johnson F, Lancsar E, Marshall D, Kilambi V, Mühlbacher A, Regier DA, et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Health. 2013;16(1):3-13.

Figure 1: The three phases of the BabyScreen+ study including data collection tools and research focus areas. *refer to Table 1 for survey and interview measures.

Figure 2: Participation process for birth parents. Solid lines represent the expected end-toend study pathway (offer to result and final surveys), dashed lines represent anticipated study exit pathways. *Participants not able to complete enrolment in English will be supported by a genetic counsellor and an interpreter. HCP, healthcare professional; NBS, newborn bloodspot screening; T1-T4, survey timepoints/identifiers.

BMJ Open

BMJ Open

Prospective cohort study of genomic newborn screening: BabyScreen+ pilot study protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-081426.R1
Article Type:	Protocol
Date Submitted by the Author:	13-Dec-2023
Complete List of Authors:	Lunke, Sebastian; Murdoch Children's Research Institute, Victorian Clinical Genetics Services; University of Melbourne Bouffler, Sophie; Australian Genomics Health Alliance; Murdoch Children's Research Institute Downie, Lilian; Murdoch Children's Research Institute, Victorian Clinical Genetics Service; University of Melbourne Caruana, Jade; Murdoch Children's Research Institute Amor, David J.; Murdoch Children's Research Institute; University of Melbourne Archibald, Alison; Murdoch Children's Research Institute, Victorian Clinical Genetics Services; University of Melbourne Bombard, Yvonne; St Michael's Hospital, Genomics Health Services Research Program; University of Toronto, Institute of Health Policy, Management and Evaluation Christodoulou, John; Murdoch Childrens Research Institute, Brain and Mitochondrial Research Group; The University of Melbourne, Department of Paediatrics Clausen, Marc; St Michael's Hospital, Genomics Health Services Research Program De Fazio, Paul; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Greaves, Ronda; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Kanga-Parabia, Anaita; University of Melbourne Hollizeck, Sebastian; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Lynch, Fiona; University of Melbourne Hollizeck, Sebastian; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Lynch, Fiona; University of Melbourne Peters, Riccarda; University of Melbourne Sadedin, Simon; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Tutty, Frin; University of Melbourne Peters, Riccarda; University of Melbourne Sadedin, Simon; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Uuty, Frin; University of Melbourne Sadedin, Simon; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Wall, Meaghan; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Wall, Meaghan; Murdoch Children's Research In

	Yeung, Alison ; Murdoch Children's Research Institute, Victorian Clinical Genetics Services; University of Melbourne Gaff , Clara; Walter and Eliza Hall Institute of Medical Research, Melbourne Genomics Health Alliance ; University of Melbourne Gyngell, Christopher; University of Melbourne; Murdoch Children's Research Institute Vears, Danya F; University of Melbourne; Murdoch Children's Research Institute Best, Stephanie; Peter MacCallum Cancer Centre, Department of Health Services Research; Australian Genomics Health Alliance Goranitis, I; University of Melbourne; Australian Genomics Health Alliance Stark, Zornitza; Murdoch Children's Research Institute, Victorian Clinical Genetics Services; Australian Genomics Health Alliance
Primary Subject Heading :	Genetics and genomics
Secondary Subject Heading:	Health services research
Keywords:	GENETICS, PAEDIATRICS, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

Prospective cohort study of genomic newborn screening: BabyScreen+ pilot study protocol Sebastian Lunke^{1,2}, Sophie E Bouffler^{3,4}, Lilian Downie^{1,2}, Jade Caruana⁴, David J Amor^{2,4}, Alison D Archibald^{1,2}, Yvonne Bombard^{5,6}, John Christodoulou^{2,4}, Marc Clausen⁵, Paul De Fazio¹, Ronda F Greaves^{1,2}, Sebastian Hollizeck¹, Anaita Kanga-Parabia^{2,4}, Nitzan Lang¹, Fiona Lynch², Riccarda Peters², Simon Sadedin¹, Erin Tutty^{2,4}, Stefanie Eggers ¹, Crystle Lee ¹, Meaghan Wall^{1,2}, Alison Yeung^{1,2}, Clara L Gaff^{2,7}, Christopher Gyngell^{2,4}, Danya F Vears^{2,4}, Stephanie Best^{3,8}, Ilias Goranitis^{2,3}, Zornitza Stark^{1,3}

¹Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne,

Australia

²University of Melbourne, Melbourne, Australia

³Australian Genomics, Melbourne, Australia

⁴Murdoch Children's Research Institute, Melbourne, Australia

⁵Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto,

Toronto, Ontario, Canada

⁶Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto,

Ontario, Canada

⁷Melbourne Genomics Health Alliance, Melbourne Australia

⁸Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne,

Victoria, Australia

Corresponding authors: Sebastian Lunke, Sebastian.lunke@mcri.edu.au, Murdoch

Children's Research Institute, Melbourne, VIC, Australia. Zornitza Stark,

Zornitza.stark@vcgs.org.au, Victorian Clinical Genetics Services, VIC, Australia.

ABSTRACT

Introduction: Newborn bloodspot screening (NBS) is a highly successful public health program that utilises biochemical and other assays to screen for severe but treatable childhood-onset conditions. Introducing genomic sequencing into NBS programs increases the range of detectable conditions but raises practical and ethical issues. Evidence from prospectively ascertained cohorts is required to guide policy and future implementation. This study aims to develop, implement, and evaluate a genomic NBS (gNBS) pilot program. Methods and analysis: The BabyScreen+ study will pilot gNBS in three phases. In the preimplementation phase, study materials, including education resources, decision support and data collection tools, will be designed. Focus groups and key informant interviews will also be undertaken to inform delivery of the study and future gNBS programs. During the implementation phase, we will prospectively recruit birth parents in Victoria, Australia, to screen 1000 newborns for over 600 severe, treatable, childhood-onset conditions. Clinically accredited whole genome sequencing will be performed following standard NBS using the same sample. High chance results will be returned by genetic healthcare professionals, with follow-on genetic and other confirmatory testing and referral to specialist services as required. The post-implementation phase will evaluate the feasibility of gNBS as the primary aim, and assess ethical, implementation, psychosocial, and health economic factors to inform future service delivery.

Ethics and dissemination: This project received ethics approval from the Royal Children's Hospital Melbourne Research Ethics Committee: HREC/91500/RCHM-2023, HREC/90929/RCHM-2022 and HREC/91392/RCHM-2022. Findings will be disseminated to policy makers, and through peer-reviewed journals and conferences.

Word count: 3049

Keywords: Genomic newborn screening, rare disease, genomics, implementation

tor beer teriew only

ARTICLE SUMMARY

Strengths and limitations of this study

- A prospective feasibility study to offer genomic newborn screening to birth parents during pregnancy.
- The study includes a multidisciplinary evaluation approach ascertaining perspectives from public, health professionals and participating parents.
- The study will utilise online recruitment tools to facilitate education and consent to allow scaling up for a future screening program. Interpreter-assisted recruitment is available for people who use a language other than English.
- Recruitment will encompass birth parents in the private and public healthcare system, however, may not be representative of the wider population as this is a pilot study.
- As this is a pilot study, we are unable to fully assess the value of stored genomic data for lifelong healthcare use.

INTRODUCTION

Newborn bloodspot screening (NBS) is a well-established and highly successful public health intervention that has enabled the early diagnosis and prompt treatment of many severe childhood conditions.(1) Traditionally, NBS programs select conditions for inclusion using the classic Wilson and Jungner screening principles,(2) and employ targeted biochemical and other assays that can be delivered at scale with rapid turnaround times and at a relatively low cost. Wide variability exists between, and even within, countries in the number of conditions included, ranging from nine in the United Kingdom to 80 in California, USA.(1, 3-

5) Currently in Australia, NBS programs are funded by state and territory governments and screen for around 27 conditions.(6)

In the last decade, the use of genomic sequencing in the research and clinical setting has transformed rare disease diagnosis.(3) At the same time, increased understanding of the underlying molecular mechanisms of disease has accelerated the development of precision treatments.(7) The gap between the number of rare diseases now considered 'treatable'(8) and those included in NBS programs is expanding rapidly. Integrating genomic sequencing into NBS programs would enable screening for a much broader range of conditions, while also providing the flexibility to quickly add more conditions at low incremental cost.

The concept of performing genomic sequencing in all children at birth, termed genomic newborn screening (gNBS), has been extensively debated. Empirical evidence to guide decision-making is starting to emerge, (9-13) addressing important questions of test design, diagnostic performance, and clinical utility, as well as parental and healthcare professionals' (HCP) views and concerns. (14-18) However, evidence from prospective cohorts is limited, with the most extensively evaluated cohort, the BabySeq study, (19) having recruited 159 infants.

Many concerns have been raised, including reduced sensitivity of genomic testing for some of the metabolic conditions screened via standard NBS (stdNBS),(11) and the appropriate timing and means of parental education to ensure informed consent.(20) None of the studies to date have fully addressed the key questions of acceptability, feasibility, scalability, and cost-effectiveness of gNBS. Most have focussed on the clinical, legal, insurance, and

BMJ Open

social contexts in the USA,(1, 10, 11, 13, 19, 20) which have limited applicability to the Australian and other public healthcare systems. Several large-scale newborn genomic screening studies are currently launching worldwide to address these gaps in knowledge.(3, 21, 22)

Our prospective cohort study, BabyScreen+, will address many of these questions in an Australian context to inform a future population-scale gNBS program. We will perform gNBS for a cohort of 1000 Victorian newborns using whole genome sequencing (WGS) that will increase the range of conditions screened in stdNBS to over 600 treatable, childhood-onset conditions. Insights from our research will be used to design laboratory processes that can deliver clinically accredited gNBS in an appropriate timeframe and at population scale. In addition, our study will inform the design of pre- and post-test processes, including education, decision support, informed consent, and results management, aimed at facilitating understanding and acceptance of gNBS for parents, HCP, and the Australian public.

METHODS AND ANALYSIS

Study design

The BabyScreen+ study will involve three phases, as outlined in Figure 1. Following the design and implementation of education and consent materials, research data collection tools, and laboratory pathways, we will offer and evaluate the feasibility of gNBS. Clinically accredited gNBS will be performed for over 600 treatable, childhood-onset conditions following stdNBS. Evaluation will focus on the health economic, implementation science, psychosocial, and ethical aspects of gNBS.

Study aims

The overall aim of this study is to design and deliver a gNBS program to screen 1000

prospectively recruited newborns and assess feasibility.

Secondary aims are to evaluate:

- Public preferences and perspectives for the delivery of gNBS
- Ethical issues
- Performance of gNBS alongside stdNBS, comparing diagnostic performance, and clinical utility
- Parental screening experience and psychosocial outcomes
- Cost-effectiveness and cost-benefit of gNBS relative to stdNBS
- Implementation of gNBS, including acceptability to HCP, parents, and the public
- Value and ethical implications of using genomic data generated at birth as a lifelong

healthcare resource

Study timetable and sites

The pre-implementation phase of the study commenced in July 2022 (Figure 1). Staged recruitment into the implementation phase of the study began on 20 July 2023 at three sites, including a private obstetrics practice and two public hospitals. The post-implementation phase will commence at the completion of recruitment, and the study will be completed by 31 May 2027.

Pre-implementation phase

BMJ Open

The pre-implementation phase comprises the design, development, and testing of study processes and materials. These include HCP education materials; the online enrolment, decision support, education, and consent platform; evaluation data collection tools; the list of genes for inclusion in screening; and laboratory protocols. Key informant interviews, focus groups, and discrete choice experiments will be undertaken to assess public and HCP views on study processes and acceptability of gNBS.

Condition and gene selection

The overarching condition selection principles that are used in stdNBS were maintained when considering which genes and conditions to include in this study.(2) Included conditions:

- have a well-established gene-disease association and the majority of known clinically relevant variants are ascertainable by WGS
- are considered severe (i.e., causing mortality or considerable morbidity/disability in the majority of affected children if untreated),
- have early-onset of disease or significantly benefit from early intervention (<5 years of age in the majority), and
- have an available treatment (e.g., drugs/supplements, enzyme replacement therapy, organ or bone marrow transplant, diet modification, gene therapy) or other intervention that significantly alters the natural progression of the condition.
 Interventions must be accessible to study participants in Victoria, Australia.

We included all conditions that are currently screened in stdNBS in Australia. The gene selection process and panel content has been informed by prior local and international

gNBS projects.(21, 23) Genes included in the study are publicly available for review and comment on PanelApp Australia (BabyScreen+ newborn screening panel:

https://panelapp.agha.umccr.org/panels/3931/; Supplementary Table 1) and on the study website along with a plain language description of the gene selection process and screening approach.

Key informant interviews

The implementation phase will be informed by interviews with key stakeholders involved in the current delivery of stdNBS. These include laboratory staff, HCP offering stdNBS, other antenatal HCP, and paediatric physicians. Data collection and analysis will be guided by the Action, Actor, Context, Target, Time (AACTT) framework(24) to capture views on who should do what and when. Interviews will explore opinions on offering gNBS; education and consent; sample collection and testing; and result management.

Eliciting public preferences and perspectives

Public preferences and values will be sought through a multi-phase mixed-methods design involving focus groups and discrete choice experiment surveys (DCEs) with members of the Australian public. Focus groups will explore public preferences and perspectives for 1) implementation of gNBS, 2) risks and benefits of gNBS, and 3) use of data generated by gNBS as a lifetime resource and will involve qualitative exploration through facilitated discussion to elicit characteristics of gNBS delivery. Outcomes from the focus groups will be used to inform the implementation phase of the study. The DCE surveys will elicit public preferences, values, and priorities for gNBS to support the economic evaluation and implementation of gNBS in Australia.

Implementation phase

HCP engagement

We will invite HCP from selected public and private healthcare settings to offer the study to their patients. HCP participation is voluntary and will not be incentivised. HCP who wish to be involved will receive education and support from the study team regarding gNBS and

study processes.

Participant eligibility and recruitment

Pregnant individuals will be invited to take part in the third trimester. At one public hospital, recruitment will also occur via advertisement on a digital pregnancy care platform. To be eligible to participate, birth parents must be due to give birth in Victoria, Australia, within the study timeframe, and participate in the state-based stdNBS. They must be aged 16 years or over, or have a legal representative capable of providing informed consent on their behalf. Enrolment must be completed by two weeks after their baby is born. This timeframe allows for exceptional circumstances, e.g., premature delivery, where enrolment is not completed before birth. However, in the majority of cases we expect enrolment to be completed during pregnancy. The study team will follow up incomplete enrolments two weeks before the expected due date to ensure that results can be returned in a clinically meaningful timeframe.

Enrolment and Consent

After receiving a study invitation, birth parents will complete enrolment and consent for the study online. gNBS and all required pre- and post-test support will be offered at no cost to birth parents. Figure 2 provides a detailed outline of the participation process.

Birth parents will first be asked to provide consent for the research component of the study via Research Electronic Data Capture (REDCap).(25, 26) This encompasses collection of personal and health related data and survey responses. Participants who use a language other than English will be assisted to enrol and take part by a research genetic counsellor and an interpreter.

Birth parents who consent to research will receive education and decision support, as well as provide informed consent to clinical gNBS for their baby, via the online Genetics Adviser platform. Genetics Adviser is a patient-centred interactive online tool that provides educational, decisional, and counselling support to patients undergoing genetic testing, along with managing consent capture and return of results

(<u>https://www.geneticsadviser.com/</u>). Genetics Adviser has been extensively evaluated and improved by iterative co-design and has been shown to improve participant knowledge and decisional confidence.(27-30) The study will use a locally deployed version of the platform, adapted in collaboration with the Genetics Adviser team.

A 'check-in' module in Genetics Adviser will automatically remind birth parents about the study four weeks prior to their estimated due date via email and SMS. Participants will be invited to log back into Genetics Adviser via email and SMS, where they will receive a brief

BMJ Open

refresher on gNBS, explore how they are currently feeling, and have the option to review their gNBS consent.

Genetic counselling is available at any time, if requested. Consent to research participation can be withdrawn at any time. Consent to clinical gNBS can be withdrawn at any time prior to result reporting.

Sample testing

Sample collection will be performed by the pregnancy service provider as part of stdNBS undertaken by Victorian Clinical Genetics Services (VCGS). StdNBS is expected to take up to two weeks. In order to comply with local requirements for access to NBS cards and avoid interference with stdNBS, BabyScreen+ will only have access to the sample once the routine process is complete. Following completion of stdNBS, four 3mm punches will be taken from a single dried blood spot and processed using clinically accredited protocols and procedures at VCGS. DNA will be extracted using the Omega Biotek Mag-Bind DNA Blood and Tissue kit. Following DNA extraction, PCR-free genome sequencing libraries will be created using the PCR-free DNA prep kit (Illumina) and sequenced using a 2x150 base paired end read configuration to an average depth of 30x on NovaSeq 6000 of X Plus instruments (Illumina). The target timeframe for return of results following handover of the punches from the stdNBS laboratory is two weeks. Considering the two blocks of two weeks, results will be returned within four weeks of sample collection. For samples with insufficient quantity or quality of DNA, the study team will contact the participant to arrange sample recollection.

> Genome data analysis and interpretation will be performed using validated and clinically accredited, cloud-based analysis pipelines and procedures, using the Dragen and eMedgene (Illumina) analysis tools, with custom in-house filtering configuration. Interpretation will be restricted to genes on the BabyScreen+ gNBS panel, and only variants that are classified as likely pathogenic or pathogenic will be considered for reporting. We will not report carrier status, adult-onset conditions, or variants of uncertain significance. All variants that are considered for reporting will be discussed by a team of clinical specialists, genetic pathologists, and medical scientists.

Screening results

There will be two categories of result:

- 1) A low chance result, where no reportable variants are identified, or
- 2) A high chance result, where one or more reportable variants are identified.

For low chance results, birth parents will be informed via the online Genetics Adviser platform following notification of result availability via email and SMS. Genetic counselling follow-up will be available on request.

For high chance results, birth parents will receive a phone call from a genetics HCP to discuss the result, arrange an appointment and any required additional testing (including confirmation of reported variants), as well as referral to specialist services. Further genetic counselling support will also be available.

2
3
4
5
6
7
8
0
9
10
11
12
13
13 14 15 16 17
15
15
16
17
18
19
20
20 21
22
22
23
24 25
25
26
26 27
28
29
29
30
31
32
33
34
34 35
36
50
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
59

60

Post-implementation phase

The study will move to the post-implementation phase after recruitment, with a focus on evaluation and data analysis. See Figure 1 and Figure 2 for details on the data collection tools, timepoints, and evaluation focus areas.

Evaluation

Feasibility will be evaluated through a set of key performance indicators gathered from laboratory data. This includes data on the percentage of study samples that:

- Are successfully identified from stdNBS samples
- Require a recollect due to insufficient DNA
- Fail sequencing
- Are processed within the expected turn-around time
- Have a concordant high chance result from stdNBS and gNBS

Performance of gNBS will be further evaluated against stdNBS where a genetic diagnosis is confirmed. We will collect data on subsequent clinical management, including the timing of commencement of therapies and downstream healthcare utilisation. Where possible, we will compare this against historical controls from VCGS and the Royal Children's Hospital (RCH) (patients diagnosed with the same disorder in the last 10 years). Cost-effectiveness and cost-benefit analyses will be conducted to evaluate whether the additional cost of gNBS relative to stdNBS is outweighed by longer-term cost-savings and improvements in diagnostic, clinical, and personal outcomes for children and families. Clinical and laboratory data from RCH and VCGS will be accessed and examined to establish if and for what purpose genomic data generated at birth has been accessed and/or re-analysed within five years post-result.

Views on acceptability and participant experiences will be collected during the first two phases of the study. Participant, public and HCP views will be captured through key informant interviews, focus groups, surveys, and discrete choice experiments (see Figures 1 and 2 and Table 1). Participants will complete compulsory surveys at enrolment (T1) and after consent (T2), followed by optional surveys at 3-months post-result (T3) and ~12months post-result (T4). Participants will also be invited to take part in interviews before and after receiving their gNBS results. Participants who decline gNBS will be asked to complete a modified T2 survey and invited to take part in an interview. Refer to Table 1 for survey and interview measures.

Table 1: Survey and interview measures used to ascertain parental experiences and preferences throughout the study

Measure	Description	T1	T2	Pre- result int	тз	Post- result int	Т4	Decliner int
Details of pregnancy and demographics	Estimated due date, intended birth hospital, sex of baby (if known), twin/triplet pregnancy details (if applicable), education, income, language, marital status, number of children, prior experience with genomic testing, family history, ancestry.	X						
Acceptability E-scale	Seven-item scale to determine the acceptability and		X					

Page 17 of 41

[gNBS accepter]	usability of computerised health-					
	related programs(31).					
Information in	Three study-specific		Х			
Genetics	questions to assess the					
Adviser	perceived bias of					
[gNBS	Genetics Adviser					
accepter]	content and					
	review/influence of the					
	study gene list.					
Knowledge of	Eight study-specific		Х	X	X	
gNBS	True/False questions to					
[gNBS	determine participants'					
accepter]	understanding of gNBS.					
Difficulty and	Three study-specific		Х			
deliberation of	questions to assess the					
decision	level of difficulty making					
[gNBS	a decision, length of					
accepter]	deliberation and sources					
	of information used					
	when consenting to					
	gNBS.					
Reasons for	One study-specific	n.	Х			
accepting or	question addressing					
declining	reasons for consenting					
[gNBS	to gNBS. Participants are					
accepter]	asked to rate a selection					
	of reasons on a 5-point					
	Likert scale and asked to					
	comment if there are					
	other reasons not listed.					
Willingness to	Dynamic triple-bounded		Х	X	X	
рау	dichotomous choice					
[gNBS	contingent valuation,					
accepter]	also known as a 'bidding					
	game', to assess the					
	value participants place					
	on gNBS.					
State trait	26-item scale measuring		Х	X	X	
anxiety index	state and trait anxiety.					
(STAI-AD)	Copyright © 1968, 1977					
[gNBS	by Charles D.					
accepter]	Spielberger. All rights					
	reserved in all media.					
	Published by Mind					
	Garden,Inc.					
	www.mindgarden.com					

	Note: Only the 6 questions that form the STAI-6 short form(32) are repeated at each timepoint.					
Reasons for declining [gNBS decliner]	One study-specific question exploring the reasons for declining. Participants are presented with 11 reasons and asked to rate how much each one influenced their decision on a scale of 1 (did not influence) to 5 (strongly influenced).	×				
Result recall	One study-specific question to determine if participants recall their baby's result correctly.			Х	X	
Decision regret scale	Five-item scale to measure regret after a health care decision(33).			Х	Х	
Health system utilisation	One study-specific question to determine health system utilisation post-result.	NC		Х	Х	
Result dissemination [high chance result only]	One study-specific question for people to determine who participants have shared their result with and why.		20	x		
Genomics Outcome Scale [high chance result only]	Six-item scale based on the Genetic Counselling Outcome Scale-24 adapted to assess outcomes of genetic counselling and patient empowerment.(34)			X		
Service delivery preferences	10 study-specific questions assessing opinions on if, how, and when gNBS should be offered, and what conditions should be screened.			X		

2	
$\begin{array}{c}2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\4\\35\\36\\7\\38\end{array}$	
5	
6 7	
8	
9 10	
11	
12	
14 15	
15 16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31 32	
33	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	
60	

	1	T			1	
Experience of	Questions on prior		Х	Х		X
gNBS	knowledge of genetic or					
	genomic testing and					
	experiences taking part					
	in the study.					
Expectations	Questions on expected		Х			
of results	result and how they					
	plan to use the result.					
Receiving	Questions on result			Х		
results,	including knowledge of					
understanding,	outcomes and how they					
and making	plan to use the result.					
meaning						
Attitudes and	Questions on if, how,		Х	Х		X
perceptions	and when gNBS should					
	be offered, and what					
	conditions should be					
	screened.					
Decision	Questions on reasons					X
making	for declining gNBS.					
Data re-use	Study-specific questions				X	
	around preferences for					
	additional analyses of					
	gNBS data.					
Future gNBS	One study-specific				Х	
decision	question asking					
	preference for gNBS for					
	future children					

T1, survey at enrolment; T2, survey post-consent; T3, 3-months post result survey; T4, 12months post result survey; int, interviews; STAI-6, Six-item State-Trait Anxiety Inventory; STAI-AD, State-Trait Anxiety Inventory for Adults; gNBS, genomic newborn screening.

Health economic analyses will be performed from the perspective of the Australian healthcare system, using a lifetime horizon, and based on the outcomes of cost per additional diagnosis, cost per quality-adjusted life-year gained, and net benefit. A budget impact analysis will be conducted to provide policy-relevant insights into the affordability and sustainability of implementing gNBS.

Potential barriers and enablers to implementation of gNBS will be identified to generate strategies to support successful delivery and inform future studies. These will be ascertained through theory-informed interviews. This will include capturing the experiences of professionals including HCP involved in the delivery of gNBS, and those impacted by the implementation of gNBS, including perinatal HCP and paediatric physicians. In addition, process mapping will be undertaken with laboratory staff and study team members at intervals throughout the study to understand adaptations required to deliver gNBS at scale and within clinically meaningful timeframes.

Data analysis

Personal identifying information, clinical, and evaluation data will be collected using recording devices, and electronic data collection forms in the online Genetics Adviser platform(30) and REDCap,(25, 26) both hosted at the Murdoch Children's Research Institute, Melbourne, Australia.

Findings from interviews and surveys will be used to provide qualitative and statistical information on the associations between a particular behaviour and opinions or attitudes about the program. Qualitative data will be either deductively analysed where a theoretical framework has been employed e.g., AACTT(24) or analysed using inductive content analysis(35) or thematic analysis to generate rich descriptions responding to the research aims e.g., acceptability of testing. Economic evaluation and discrete choice experiments will be conducted according to best practice recommendations.(36-38) Quotes from participants will be used to illustrate qualitative findings in scientific presentations and other publications. Statistical analysis will utilise appropriate methods and tests depending on the

nature of the data and its normality. Probability values of <0.05 will be considered statistically significant, and confidence intervals will be calculated where possible.

Patient and public involvement

The pre-implementation phase of the study involved extensive consultation with the public via focus groups and discrete choice experiment surveys. These have informed the design of the implementation phase. Condition selection has been done in conjunction with patient support groups. The study also uses Genetics Adviser, a decision support platform with extensive public input into design and development.(27-30)

ETHICS AND DISSEMINATION

This study is governed and administered by the Murdoch Children's Research Institute (MCRI), Melbourne, Australia. All genetic testing is performed by VCGS, Melbourne, Australia, a wholly owned not-for-profit subsidiary of MCRI. VCGS is clinically accredited (NATA/RCPA) to ISO15189;2012 to carry out genetic and genomic testing. The project has received ethics approval from the Royal Children's Hospital Melbourne Human Research Ethics Committee (main BabyScreen+ protocol: HREC/91500/RCHM-2023; key informant interviews: HREC/90929/RCHM-2022; and focus groups and DCE: HREC/91392/RCHM-2022). Findings from this study will be published in peer-reviewed scientific journal articles and presented at appropriate clinical and research conferences. The findings will also be disseminated to policy makers including the Standing Committee on Screening. All participants have provided informed consent to be involved in this study.

ACKNOWLEDGEMENTS

The research conducted at the Murdoch Children's Research Institute was supported by the Victorian Government's Operational Infrastructure Support Program. The Chair in Genomic Medicine awarded to JC is generously supported by The Royal Children's Hospital Foundation. YB holds the Canada Research Chair in Genomics Health Services and Policy, funded by the Canada Research Chairs Program.

AUTHOR CONTRIBUTIONS

All authors contributed to the design of the protocol, including its concept and the critical review and final approval of the manuscript. Sebastian Lunke, Sophie Bouffler and Zornitza Stark drafted the manuscript. Simon Sadedin, Stefanie Eggers, Sebastian Hollizeck, Crystle Lee, Meaghan Wall, Ronda Greaves, Paul De Fazio and Sebastian Lunke contributed to the design of the laboratory processes. David Amor, Lilian Downie, Alison Archibald, John Christodoulou, Alison Yeung, Zornitza Stark and Sebastian Lunke contributed to the design of the gene list. Yvonne Bombard, Marc Clausen, Jade Caruana, Alison Archibald, Lilian Downie, Clara Gaff, Sophie Bouffler, Nitzan Lang, Anaita Kanga-Parabia and Zornitza Stark contributed to the design of participant and HCP education materials. Danya Vears, Fiona Lynch and Christopher Gyngell contributed to the design of the ethical evaluation. Erin Tutty, Anaita Kanga-Parabia, Alison Archibald and Stephanie Best contributed to the design of the psychosocial and implementation evaluation. Riccarda Peters and Ilias Goranitis contributed to the design of the health economic evaluation.

FUNDING STATEMENT

The BabyScreen+ study is funded by the Australian Government's Medical Research Future Fund as part of the Genomics Health Futures Mission, grant MRF2015937 titled 'Genomic

newborn screening for personalised lifelong healthcare in Australian babies'.

COMPETING INTERESTS

.ne Genetics Adviser. YB and MC are cofounders of the Genetics Adviser. The other authors declare no relevant

disclosures.

REFERENCES

1. Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJ, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39(3):171-87.

2. Wilson JMG, Jungner G, World Health O. Principles and practice of screening for disease. Geneva: World Health Organization; 1968.

Stark Z, Scott RH. Genomic newborn screening for rare diseases. Nat Rev Genet.
2023.

4. Koracin V, Mlinaric M, Baric I, Brincat I, Djordjevic M, Drole Torkar A, et al. Current Status of Newborn Screening in Southeastern Europe. Frontiers in Pediatrics. 2021;9.

5. Sikonja J, Groselj U, Scarpa M, la Marca G, Cheillan D, Kölker S, et al. Towards Achieving Equity and Innovation in Newborn Screening across Europe. International Journal of Neonatal Screening. 2022;8(2):31.

6. Department of Health and Aged Care. What is screened in the program 2023 [Available from: <u>https://www.health.gov.au/our-work/newborn-bloodspot-screening/what-is-screened</u>.

7. Tambuyzer E, Vandendriessche B, Austin CP, Brooks PJ, Larsson K, Miller Needleman KI, et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat Rev Drug Discov. 2020;19(2):93-111.

8. Bick D, Bick SL, Dimmock DP, Fowler TA, Caulfield MJ, Scott RH. An online compendium of treatable genetic disorders. Am J Med Genet C Semin Med Genet. 2021;187(1):48-54.

9. Berg JS, Agrawal PB, Bailey DB, Jr., Beggs AH, Brenner SE, Brower AM, et al. Newborn Sequencing in Genomic Medicine and Public Health. Pediatrics. 2017;139(2).

10. Roman TS, Crowley SB, Roche MI, Foreman AKM, O'Daniel JM, Seifert BA, et al. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am J Hum Genet. 2020;107(4):596-611.

11. Adhikari AN, Gallagher RC, Wang Y, Currier RJ, Amatuni G, Bassaganyas L, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med. 2020;26(9):1392-7.

12. Ceyhan-Birsoy O, Machini K, Lebo MS, Yu TW, Agrawal PB, Parad RB, et al. A curated gene list for reporting results of newborn genomic sequencing. Genet Med. 2017;19(7):809-18.

13. Pereira S, Robinson JO, Gutierrez AM, Petersen DK, Hsu RL, Lee CH, et al. Perceived Benefits, Risks, and Utility of Newborn Genomic Sequencing in the BabySeq Project. Pediatrics. 2019;143(Suppl 1):S6-s13.

14. Downie L, Halliday J, Lewis S, Amor DJ. Principles of Genomic Newborn Screening Programs: A Systematic Review. JAMA Netw Open. 2021;4(7):e2114336.

15. Cao M, Notini L, Ayres S, Vears DF. Australian healthcare professionals' perspectives on the ethical and practical issues associated with genomic newborn screening. J Genet Couns. 2023;32(2):376-86.

16. Iskrov G, Angelova V, Bochev B, Valchinova V, Gencheva T, Dzhuleva D, et al. Prospects for Expansion of Universal Newborn Screening in Bulgaria: A Survey among Medical Professionals. International Journal of Neonatal Screening. 2023;9(4):57.

17. Goldenberg AJ, Dodson DS, Davis MM, Tarini BA. Parents' interest in whole-genome sequencing of newborns. Genet Med. 2014;16(1):78-84.

BMJ Open

 18. Waisbren SE, Bäck DK, Liu C, Kalia SS, Ringer SA, Holm IA, et al. Parents are interested in newborn genomic testing during the early postpartum period. Genet Med. 2015;17(6):501-4.

19. Ceyhan-Birsoy O, Murry JB, Machini K, Lebo MS, Yu TW, Fayer S, et al. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. Am J Hum Genet. 2019;104(1):76-93.

20. Timmins GT, Wynn J, Saami AM, Espinal A, Chung WK. Diverse Parental Perspectives of the Social and Educational Needs for Expanding Newborn Screening through Genomic Sequencing. Public Health Genomics. 2022:1-8.

21. Kingsmore SF, Smith LD, Kunard CM, Bainbridge M, Batalov S, Benson W, et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am J Hum Genet. 2022;109(9):1605-19.

22. Spiekerkoetter U, Bick D, Scott R, Hopkins H, Krones T, Gross ES, et al. Genomic newborn screening: Are we entering a new era of screening? J Inherit Metab Dis. 2023;46(5):778-95.

23. Downie L, Halliday JL, Burt RA, Lunke S, Lynch E, Martyn M, et al. A protocol for whole-exome sequencing in newborns with congenital deafness: a prospective populationbased cohort. BMJ Paediatr Open. 2017;1(1):e000119.

24. Presseau J, McCleary N, Lorencatto F, Patey AM, Grimshaw JM, Francis JJ. Action, actor, context, target, time (AACTT): a framework for specifying behaviour. Implementation Science. 2019;14(1):102.

25. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics. 2019;95:103208.

26. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics. 2009;42(2):377-81.

27. Bombard Y, Clausen M, Shickh S, Mighton C, Casalino S, Kim THM, et al. Effectiveness of the Genomics ADvISER decision aid for the selection of secondary findings from genomic sequencing: a randomized clinical trial. Genetics in Medicine. 2020;22(4):727-35.

28. Shickh S, Rafferty SA, Clausen M, Kodida R, Mighton C, Panchal S, et al. The role of digital tools in the delivery of genomic medicine: enhancing patient-centered care. Genetics in Medicine. 2021;23(6):1086-94.

29. Bombard Y, Clausen M, Mighton C, Carlsson L, Casalino S, Glogowski E, et al. The Genomics ADvISER: development and usability testing of a decision aid for the selection of incidental sequencing results. European Journal of Human Genetics. 2018;26(7):984-95.

30. Shickh S, Hirjikaka D, Clausen M, Kodida R, Mighton C, Reble E, et al. Genetics Adviser: a protocol for a mixed-methods randomised controlled trial evaluating a digital platform for genetics service delivery. BMJ Open. 2022;12(4):e060899.

31. Tariman JD, Berry DL, Halpenny B, Wolpin S, Schepp K. Validation and testing of the Acceptability E-scale for web-based patient-reported outcomes in cancer care. Appl Nurs Res. 2011;24(1):53-8.

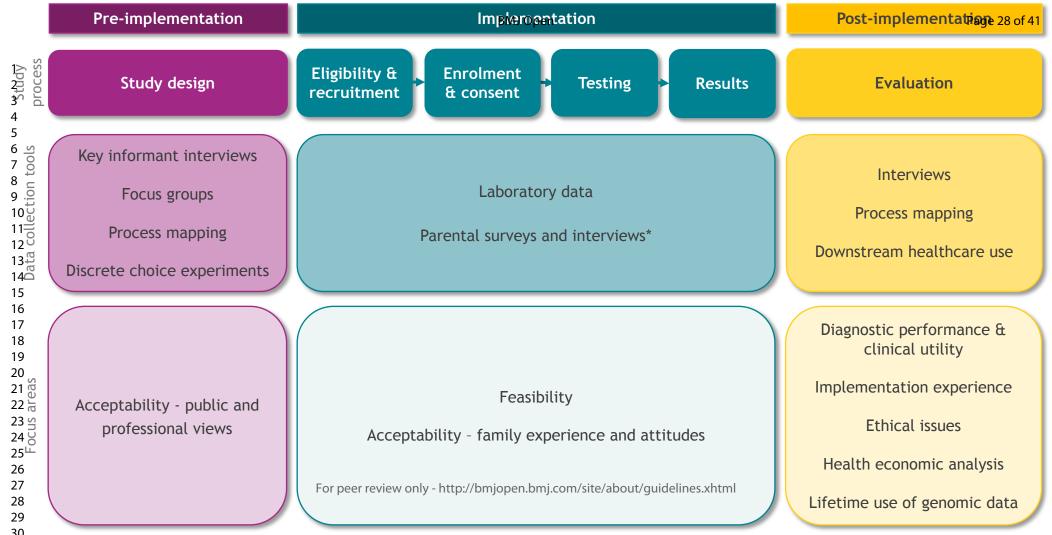
32. Marteau TM, Bekker H. The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). Br J Clin Psychol. 1992;31(3):301-6.

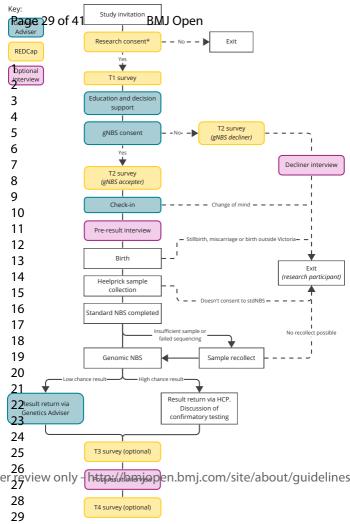
BMJ Open

33. Brehaut JC, O'Connor AM, Wood TJ, Hack TF, Siminoff L, Gordon E, et al. Validation of a decision regret scale. Medical decision making : an international journal of the Society for Medical Decision Making. 2003;23(4):281-92.

34. Grant P, Pampaka M, Payne K, Clarke A, McAllister M. Developing a short-form of the Genetic Counselling Outcome Scale: The Genomics Outcome Scale. European journal of medical genetics. 2018.

35. Vears DF, Gillam L. Inductive content analysis: A guide for beginning qualitative researchers. Focus on Health Professional Education. 2022;23(1):111-27.


36. Briggs A, Sculpher M, Claxton K. Decision modelling for health economic evaluation. Oxford: Oxford University Press; 2006.


37. Hauber AB, González JM, Groothuis-Oudshoorn CG, Prior T, Marshall DA, Cunningham C, et al. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Value Health. 2016;19(4):300-15.

38. Reed Johnson F, Lancsar E, Marshall D, Kilambi V, Mühlbacher A, Regier DA, et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Health. 2013;16(1):3-13.

Figure 1: The three phases of the BabyScreen+ study including data collection tools and research focus areas. *refer to Table 1 for survey and interview measures.

Figure 2: Participation process for birth parents. Solid lines represent the expected end-toend study pathway (offer to result and final surveys), dashed lines represent anticipated study exit pathways. *Participants not able to complete enrolment in English will be supported by a genetic counsellor and an interpreter. HCP, healthcare professional; NBS, newborn bloodspot screening; T1-T4, survey timepoints/identifiers.

Supplementary Table 1: BabyScreen+ gene panel

	5 4	Supplementa	ary Table 1: BabyScreen+ gene panel	
	5	Gene Name	Model_Of_Inheritance	Phenotypes
	5	AAAS	BIALLELIC	Achalasia-addisonianism-alacrimia syndrome, MIM#231550
	7	ABCC6	BIALLELIC	Arterial calcification, generalized, of infancy, 2, #MIM614473
	3	ABCC8	BOTH monoallelic and biallelic	Hyperinsulinemic hypoglycemia, familial, MIM#256450
	9	ABCD1	X-LINKED: hemizygous mutation in males	Adrenoleukodystrophy, MIM# 300100
	10	ABCD4	BIALLELIC	Methylmalonic aciduria and homocystinuria, cblJ type MIM#614857
	11	ABCG5	BIALLELIC	Sitosterolaemia 2, MIM# 618666
	12	ACAD9	BIALLELIC	Mitochondrial complex I deficiency, nuclear type 20, MIM#611126
	13	ACADM	BIALLELIC	Medium chain acyl CoA dehydrogenase deficiency, MIM#201450
	14	ACADVL	BIALLELIC	VLCAD deficiency, MIM#201475
	14	ACAT1	BIALLELIC	Alpha-methylacetoacetic aciduria, MIM#203750
	16	ACTA2	BOTH monoallelic and biallelic	Aortic aneurysm, familial thoracic 6, MIM# 611788
	17	ACVRL1	MONOALLELIC	Telangiectasia, hereditary hemorrhagic, type 2, MIM#600376
	18	ADA	BIALLELIC	Severe combined immunodeficiency due to ADA deficiency, MIM# 102700, MONDO:0007064
	19			Vasculitis, autoinflammation, immunodeficiency, and haematologic defects
2	20	ADA2	BIALLELIC	syndrome, MIM# 615688
	21	ADAMTS13	BIALLELIC BIALLELIC BIALLELIC	Thrombotic thrombocytopenic purpura, familial, MIM#274150
2	22	ADGRV1	BIALLELIC	Usher syndrome, type 2C, MIM# 605472
:	23	AGL	BIALLELIC	Glycogen storage disease IIIa, MIM#232400
	24 25	AGRN	BIALLELIC	Myasthenic syndrome, congenital, 8, with pre- and postsynaptic defects, MIM# 615120
	25 26	AGXT	BIALLELIC	Hyperoxaluria, primary, type 1, MIM# 259900, MONDO:0009823
				Hypermethioninemia with deficiency of S-adenosylhomocysteine hydrolase,
	27	AHCY	BIALLELIC	MIM#613752
	28 29	AICDA	BIALLELIC	Immunodeficiency with hyper-IgM, type 2, MIM#605258
	30	AIRE	BIALLELIC	Autoimmune polyendocrinopathy syndrome , type I, with or without reversible metaphyseal dysplasia, MIM#240300
	31	AK2	BIALLELIC	Reticular dysgenesis, MIM# 267500;MONDO:0009973
	32	AKR1D1	BIALLELIC	Bile acid synthesis defect, congenital, 2
	33	ALDH4A1	BIALLELIC	Hyperprolinemia, type II MIM#239510
	34	ALDH7A1	BIALLELIC	Epilepsy, pyridoxine-dependent, MIM#266100
	35	ALDOB	BIALLELIC	Fructose intolerance, hereditary, MIM# 229600
	36 37	ALPL	BIALLELIC	Hypophosphatasia, childhood OMIM#241510;Hypophosphatasia, infantile OMIM#241500
2	38	AMACR	BIALLELIC	Bile acid synthesis defect, congenital, 4, MIM# 214950
2	39	AMN	BIALLELIC	Megaloblastic anemia-1, Norwegian type, MIM#618882
4	40	AP3B1	BIALLELIC	Hermansky-Pudlak syndrome 2, MIM# 608233 MONDO:0011997
4	41	AQP2	BOTH monoallelic and biallelic	Diabetes insipidus, nephrogenic, 2, MIM#125800
4	42	ARG1	BIALLELIC	Arginase deficiency, MIM#207800
4	43	ARPC1B	BIALLELIC	Immunodeficiency 71 with inflammatory disease and congenital
4	14			thrombocytopenia, MIM#617718
4	45	ARSA	BIALLELIC	Metachromatic leukodystrophy, MIM# 250100
4	46	ARSB	BIALLELIC	Mucopolysaccharidosis VI (MPS6, MIM# 253200
4	47	ASL ASS1	BIALLELIC BIALLELIC	Argininosuccinic aciduria, MIM#207900 Citrullinaemia, MIM#215700
4	48	A331	BIALLELIC	
	49 50	ATP6V0A4	BIALLELIC	Distal renal tubular acidosis 3, with or without sensorineural hearing loss, MIM3602722
!	51	ATP6V1B1	BIALLELIC	Distal renal tubular acidosis 2 with progressive sensorineural hearing loss, MIM# 267300
1	52	ATP7A	X-LINKED: hemizygous mutation in males	Menkes disease, MIM# 309400
	53	ATP7B	BIALLELIC	Wilson disease MIM#277900
	54	AVP	MONOALLELIC	Diabetes insipidus, neurohypophyseal MIM#125700
	55	AVPR2	X-LINKED: hemizygous mutation in males	Diabetes insipidus, nephrogenic, MIM#304800
	56	BCHE	BIALLELIC	Butyrylcholinesterase deficiency, MIM#617936
	57	BCKDHA	BIALLELIC	Maple syrup urine disease, type Ia, MIM# 248600
	58	BCKDHB	BIALLELIC	Maple syrup urine disease, type lb, MIM# 248600
	59	BCKDK	BIALLELIC	Branched-chain keto acid dehydrogenase kinase deficiency, MIM#614923
(50	BLNK	BIALLELIC	Agammaglobulinaemia 4, MIM#613502

1			
2			
3	BMP1	BIALLELIC	Osteogenesis imperfecta, type XIII, MIM#614856
4	BRCA1	BIALLELIC	Fanconi anemia, complementation group S, MIM# 617883
5	BRCA2	BIALLELIC	Fanconi anaemia, complementation group D1, MIM# 605724
6	BRIP1	BIALLELIC	Fanconi anaemia, complementation group J, MIM#609054
7			Lipodystrophy, congenital generalized, type 2, MIM# 269700;Berardinelli-Seip
8	BSCL2	BIALLELIC	lipodystrophy
9	BSND	BIALLELIC	Bartter syndrome, type 4a, MIM# 602522
10	BTD	BIALLELIC	Biotinidase deficiency, MIM#253260
11	ВТК	X-LINKED: hemizygous mutation in males	Agammaglobulinemia, X-linked 1, MIM#300755
12	C17orf62	BIALLELIC	Chronic granulomatous disease 5, autosomal recessive, MIM# 618935
13	C2	BIALLELIC	C2 deficiency, MIM#217000
13	C3	BIALLELIC	C3 deficiency, MIM#613779
15	C5	BIALLELIC	C5 deficiency, MIM#609536
	C6	BIALLELIC	C6 deficiency, MIM#612446
16	C7	BIALLELIC	C7 deficiency, MIM#610102
17	C8B	BIALLELIC	C8 deficiency, type II, MIM#613789
18	C9	BIALLELIC	C9 deficiency, MIM#613825
19	CA12	BIALLELIC	Hyperchlorhidrosis, isolated MIM#143860
20	CA2		Osteopetrosis, autosomal recessive 3, with renal tubular acidosis,
21	CA2	BIALLELIC BIALLELIC BIALLELIC	MIM#259730
22	CA5A	BIALLELIC	Hyperammonaemia due to carbonic anhydrase VA deficiency, MIM#615751
23	CABP2	BIALLELIC	Deafness, autosomal recessive 93, MIM# 614899
24	CACNA1S	MONOALLELIC	Malignant hyperthermia susceptibility 5, MIM# 601887
25	CAD	BIALLELIC	Developmental and epileptic encephalopathy 50, MIM#616457
26	CALM3	MONOALLELIC	Long QT syndrome 16, MIM#618782
27			In mundafisioner 114, autocomal reasoning, NINA# (1520), Immunadafisioner
28	CARD11	BOTH monoallelic and biallelic	Immunodeficiency 11A, autosomal recessive, MIM# 615206;Immunodeficiency
29			11B with atopic dermatitis, autosomal dominant, MIM# 617638
30	CASR	BOTH monoallelic and biallelic	Hypocalcemia, autosomal dominant MIM#601198;Hyperparathyroidism,
31	CASK		neonatal MIM#239200
32	CAV1	BIALLELIC	Lipodystrophy, congenital generalized, type 3, MIM#612526
	CAVIN1	BIALLELIC	Lipodystrophy, congenital generalized, type 4, MIM# 613327
33	CD19	BIALLELIC	Immunodeficiency, common variable, 3, MIM#613493
34	CD247	BIALLELIC	Immunodeficiency 25, MIM# 610163
35	CD27	BIALLELIC	CD27-deficiency MIM# 615122
36	CD3D	BIALLELIC	Immunodeficiency 19, MIM#615617
37	CD3E	BIALLELIC	Immunodeficiency 18, MIM#615615
38	CD3G	BIALLELIC	Immunodeficiency 17;CD3 gamma deficient MIM# 615607
39	CD40	BIALLELIC	Immunodeficiency with hyper-IgM, type 3, MIM#606843
40	CD40LG	X-LINKED: hemizygous mutation in males	Immunodeficiency, X-linked, with hyper-IgM MIM# 308230
41			Complement hyperactivation, angiopathic thrombosis, and protein-losing
42	CD55	BIALLELIC	enteropathy, MIM# 226300
43	CD70	BIALLELIC	Lymphoproliferative syndrome 3, MIM# 618261
44	CD79A	BIALLELIC	Agammaglobulinaemia 3, MIM#613501
45	CD79B	BIALLELIC	Agammaglobulinaemia 6, MIM#612692
46			Deafness, autosomal recessive 32, with or without immotile sperm, MIM#
47	CDC14A	BIALLELIC	608653
48			Immunodeficiency-centromeric instability-facial anomalies syndrome 3, MIM#
	CDCA7	BIALLELIC	616910
49 50	CDCA8	BOTH monoallelic and biallelic	Congenital hypothyroidism, MONDO:0018612, CDCA8-related
50	CDU22		Usher syndrome, type 1D (MIM# 601067);Deafness, autosomal recessive 12
51	CDH23	BIALLELIC	(MIM # 601386);Usher syndrome, type 1D/F digenic (MIM #601067)
52	CDKN1C	MONOALLELIC, imprinted	IMAGe syndrome, MIM# 614732
53	CEBPE	BIALLELIC	Specific granule deficiency, MIM# 245480
54	CFD	BIALLELIC	Complement factor D deficiency, MIM#613912
55	CFH	BIALLELIC	Complement factor H deficiency, MIM# 609814
56	CFI	BIALLELIC	Complement factor I deficiency MIM#610984
57	CFP	X-LINKED: hemizygous mutation in males	Properdin deficiency, X-linked, MIM#312060
58	CFTR	BIALLELIC	Cystic fibrosis, MIM#219700
59	CHAT	BIALLELIC	Congenital myasthenic syndrome, MIM#254210
60			

1		
2		
3		
4	CHRNA1	BIALLELIC
5		
6	CHRNB1	BIALLELIC
7		
8		
9	CHRND	BIALLELIC
10		
11		
12		
13	CHRNE	BIALLELIC
14	CHINIC	DIALLEIC
15		
16	CIB2	BIALLELIC
17	CIITA	BIALLELIC
18	CLCN7	BIALLELIC
19	CLDN14	BIALLELIC
20	CLPP	BIALLELIC
20	COCH	BIALLELIC
	COL11A1	MONOALLELIC
22	COL11A2 COL13A1	BIALLELIC BIALLELIC
23 24	COLISAI COLIA1	MONOALLELIC
	COLIAI COL1A2	MONOALLELIC
25 26	COLIA2 COL2A1	MONOALLELIC
26	COL4A3	BIALLELIC
27	COL4A4	BIALLELIC
28	COL4A5	X-LINKED: hemizygous mutation in r
29	COL9A1	BIALLELIC
30	COL9A2	BIALLELIC
31	COL9A3	BIALLELIC
32	COLQ	BIALLELIC
33	COQ2	BIALLELIC
34	COQ4	BIALLELIC
35	COQ6	BIALLELIC
36	COQ8A	BIALLELIC
37	CORO1A	BIALLELIC
38	CPS1	BIALLELIC
39	CPT1A	BIALLELIC
40	CPT2	BIALLELIC
41		
42	CRTAP	BIALLELIC
43	CSF3R	BIALLELIC
44	CTNS	BIALLELIC
45	CTPS1	BIALLELIC BIALLELIC
46	CUBN CUL3	MONOALLELIC
47	CXCR4	MONOALLELIC
48	CYB561	
49	СҮВА	BIALLELIC
50	СҮВВ	X-LINKED: hemizygous mutation in r
51		
52	CYP11A1	BIALLELIC
53	0/04404	
54	CYP11B1	BIALLELIC
55		
56	CYP11B2	BIALLELIC
57		
58	CYP17A1	BIALLELIC
59	CYP21A2	BIALLELIC
60		-

Myasthenic syndrome, congenital, 1A, slow-channel, MIM# 601462; Myasthenic

ALLELIC	syndrome, congenital, 1B, fast-channel, MIM#608930
ALLELIC	Myasthenic syndrome, congenital, 2C, associated with acetylcholine receptor deficiency, MIM# 616314;Congenital myasthenic syndrome
	Myasthenic syndrome, congenital, 3B, fast-channel, MIM#616322;Myasthenic syndrome, congenital, 3C, associated with acetylcholine receptor deficiency,
ALLELIC	MIM#616323; Myasthenic syndrome, congenital, 3A, slow-channel,
	MIM#616321;Multiple pterygium syndrome, lethal type, MIM# 253290;MONDO:0009668
	Myasthenic syndrome, congenital, 4B, fast-channel, 616324;Myasthenic
ALLELIC	syndrome, congenital, 4C, associated with acetylcholine receptor deficiency, 608931;Myasthenic syndrome, slow-channel congenital, 601462;Myasthenic syndrome, congenital, 4A, slow-channel, 605809
ALLELIC	Deafness, autosomal recessive 48, MIM# 609439
ALLELIC	Bare Lymphocyte Syndrome, type II, complementation group A MIM# 209920
ALLELIC	Osteopetrosis, autosomal recessive 4, MIM# 611490
ALLELIC	Deafness, autosomal recessive 29, MIM# 614035
ALLELIC	Perrault syndrome 3, MIM# 614129
ALLELIC	Deafness, autosomal recessive 110, MIM# 618094
ONOALLELIC	Stickler syndrome, type II, MIM# 604841
ALLELIC	Deafness, autosomal recessive 53, MIM# 609706
ALLELIC	Myasthenic syndrome, congenital, 19, MIM#616720
ONOALLELIC	Osteogenesis imperfecta, type I, MIM#166200
ONOALLELIC	Osteogenesis imperfecta, type II, MIM#166210
ONOALLELIC	Stickler syndrome, type I, MIM# 108300
ALLELIC	Alport syndrome 2, autosomal recessive, MIM# 203780
ALLELIC	Alport syndrome 2, autosomal recessive MIM#203780
LINKED: hemizygous mutation in males	Alport syndrome 1, X-linked, MIM# 301050
ALLELIC	Stickler syndrome, type IV, MIM#614134
ALLELIC	Stickler syndrome, type V, MIM# 614284
ALLELIC	Stickler syndrome, type VI, MIM# 620022
ALLELIC	Congenital myasthenic syndrome, MIM#603034
ALLELIC	Coenzyme Q10 deficiency, primary, 1, MIM#607426
ALLELIC	Coenzyme Q10 deficiency, primary, 7, MIM#616276
ALLELIC	Coenzyme Q10 deficiency, primary, 6, MIM#614650
ALLELIC	Coenzyme Q10 deficiency, primary, 4, MIM#612016
ALLELIC	Immunodeficiency 8 MIM# 615401
ALLELIC ALLELIC	Carbamoylphosphate synthetase I deficiency, MIM#237300 Carnitine palmitoyltransferase I deficiency, MIM#255120
ALLELIC	CPT II deficiency, infantile 600649;CPT II deficiency, lethal neonatal 608836;CPT II deficiency, myopathic, stress-induced 255110
ALLELIC	Osteogenesis imperfecta, type VII, MIM# MIM#610682
ALLELIC	Neutropenia, severe congenital, 7, autosomal recessive, MIM#617014
ALLELIC	Cystinosis, nephropathic MIM#219800
ALLELIC	Immunodeficiency 24, MIM#615897
ALLELIC	Megaloblastic anaemia-1, Finnish type, MIM#261100
ONOALLELIC	Pseudohypoaldosteronism, type IIE 614496
ONOALLELIC	WHIM syndrome 1, MIM#193670
ALLELIC	Orthostatic hypotension 2, MIM#618182
ALLELIC	Chronic granulomatous disease, MIM#233690
LINKED: hemizygous mutation in males	Chronic granulomatous disease, MIM#306400
ALLELIC	Adrenal insufficiency, congenital, with 46XY sex reversal, partial or complete, MIM#613743
ALLELIC	Adrenal hyperplasia, congenital, due to 11-beta-hydroxylase deficiency, MIM#202010
ALLELIC	Hypoaldosteronism, congenital, due to CMO I deficiency, MIM#203400;Hypoaldosteronism, congenital, due to CMO II deficiency, MIM#610600
ALLELIC	17,20-lyase deficiency, isolated, MIM#202110
ALLELIC	Adrenal hyperplasia, congenital, due to 21-hydroxylase deficiency, MIM#201910

2			
3	CYP27A1	BIALLELIC	Cerebrotendinous xanthomatosis, MIM# 213700
4	CYP27B1	BIALLELIC	Vitamin D-dependent rickets, type I MIM#264700
5	CYP2R1	BIALLELIC	Rickets due to defect in vitamin D 25-hydroxylation deficiency MIM#600081
6	CYP7B1	BIALLELIC	Bile acid synthesis defect, congenital, 3, MIM# 613812
7	DBT	BIALLELIC	Maple syrup urine disease, MIM#248600
	DDT	DIALLEIC	Severe combined immunodeficiency, Athabascan type MIM# 602450;Omenn
8	DCLRE1C	BIALLELIC	syndrome, MIM# 603554
9	DDC	BIALLELIC	Aromatic L-amino acid decarboxylase deficiency, MIM#608643
10	DFNB59	BIALLELIC	Deafness, autosomal recessive 59, MIM# 610220
11	DGAT1	BIALLELIC	Diarrhea 7, protein-losing enteropathy type , MIM#615863
12	DHCR7	BIALLELIC	Smith-Lemli-Opitz syndrome, MIM#270400
13			Megaloblastic anaemia due to dihydrofolate reductase deficiency, MIM#
14	DHFR	BIALLELIC	613839
15	DICER1	MONOALLELIC	DICER1 syndrome, MONDO:0017288
16	DLAT	BIALLELIC	Pyruvate dehydrogenase E2 deficiency, MIM#245348
17	DMP1	BIALLELIC	Hypophosphatemic rickets MIM#241520
18	DNAJC12	BIALLELIC	Hyperphenylalaninemia, mild, non-BH4-deficient, MIM#617384
19	DNAJC21	BIALLELIC	Bone marrow failure syndrome 3, MIM#617052
20	DNASE2	BIALLELIC	Autoinflammatory-pancytopenia syndrome, MIM# 619858
21			Immunodeficiency-centromeric instability-facial anomalies syndrome 1, MIM#
22	DNMT3B	BIALLELIC BIALLELIC BIALLELIC	242860
23	DOCK2	BIALLELIC	Immunodeficiency 40 MIM# 616433
24	DOCK8	BIALLELIC	Hyper-IgE syndrome, MIM#243700
25	DOK7	BIALLELIC	Congenital myasthenic syndrome, MIM# 254300
26			Congenital disorder of glycosylation, type Ij, MIM# 608093;DPAGT1-CDG
27	DPAGT1	BIALLELIC	MONDO:0011964; Myasthenic syndrome, congenital, 13, with tubular
28			aggregates, MIM# 614750
29	DUOX2	BIALLELIC	Thyroid dyshormonogenesis 6, MIM# 607200
30	DUOXA2	BIALLELIC	Thyroid dyshormonogenesis 5, MIM# 274900
31	ECHS1	BIALLELIC	Mitochondrial short-chain enoyl-CoA hydratase 1 deficiency MIM# 616277
32	EDN3	BIALLELIC	Waardenburg syndrome, type 4B, MIM# 613265
	EDNRB	BOTH monoallelic and biallelic	Waardenburg syndrome, type 4A, MIM# 277580
33	EFL1	BIALLELIC	Shwachman-Diamond syndrome 2, MIM#617941
34 25	EIF2AK3	BIALLELIC	Wolcott-Rallison syndrome, MIM#226980
35	ELANE	MONOALLELIC	Neutropenia, congenital, MIM#202700
36	ENG	MONOALLELIC	Telangiectasia, hereditary hemorrhagic, type 1 MIM#187300
37	ENPP1	BIALLELIC	Arterial calcification, generalized, of infancy, 1, MIM#
38	2		208000;Hypophosphatemic rickets, autosomal recessive, 2, MIM# 613312
39	EPS8	BIALLELIC	Autosomal recessive nonsyndromic hearing loss 102, MIM#600205,
40			MONDO:0014428
41	ERCC4	BIALLELIC	Fanconi anemia, complementation group Q, MIM# 615272
42	ESPN	BIALLELIC	Deafness, autosomal recessive 36, MIM# 609006
43	ESRRB	BIALLELIC	Deafness, autosomal recessive 35, MIM#608565
44	ETFA	BIALLELIC	Glutaric acidaemia IIA, MIM#231680
45	ETFB	BIALLELIC	Glutaric acidemia IIB, MIM#231680
46	ETFDH	BIALLELIC	Glutaric acidemia IIC, MIM#231680
47	ETHE1	BIALLELIC	Ethylmalonic encephalopathy, MIM#602473
48	F10	BIALLELIC	Factor X deficiency, MIM#227600
49	F13A1	BIALLELIC	Factor XIIIA deficiency, MIM#613225
50	F13B	BIALLELIC	Factor XIIIB deficiency, MIM#613235
51	F7	BIALLELIC	Factor VII deficiency MIM# 227500
52	F9	X-LINKED: hemizygous mutation in males	Haemophilia B, MIM#306900
53	FAH	BIALLELIC	Tyrosinaemia, type I, MIM#276700
54	FAM111A	MONOALLELIC	Kenny-Caffey syndrome, type 2, MIM# 127000
55	FANCA	BIALLELIC	Fanconi anaemia, complementation group A, MIM# 227650;MONDO:0009215
56		V LINKED: homissions mutations in and	Esperani anaomia complementation areur D. MINAH 200544
57	FANCB	X-LINKED: hemizygous mutation in males	Fanconi anaemia, complementation group B, MIM# 300514
58	FANCC	BIALLELIC	Fanconi anemia, complementation group C, MIM# 227645;MONDO:0009213
	FANCD2	BIALLELIC	Fanconi anaemia, complementation group D2, MIM# 227646;MONDO:0009214
59 60	FANCG	BIALLELIC	Fanconi anaemia, MIM#614082
60		DIALLEUG	

ן ר			
2 3		2	
4	FANCI	BIALLELIC	Fanconi anaemia, MIM#609053
4 5	FBN1	MONOALLELIC	Marfan syndrome, MIM# 154700
	FBP1	BIALLELIC	Fructose-1,6-bisphosphatase deficiency MIM# 229700
6	FCHO1	BIALLELIC	Immunodeficiency 76, MIM# 619164
7	FECH	BIALLELIC	Protoporphyria, erythropoietic, 1, MIM#177000
8	FERMT3	BIALLELIC	Leukocyte adhesion deficiency, type III, MIM#612840
9	FGA	BIALLELIC	Afibrinogenemia, congenital (MIM#202400)
10	FGB	BIALLELIC	Afibrinogenaemia, congenital, MIM# 202400
11	56533		autosomal dominant hypophosphatemic rickets MONDO:0008660;familial
12	FGF23	BOTH monoallelic and biallelic	hyperphosphatemic tumoral calcinosis/hyperphosphatemic hyperostosis
13			syndrome MONDO:0100251
14	FGF3	BIALLELIC	Deafness, congenital with inner ear agenesis, microtia, and microdontia, MIM# 610706
15	FGFR3	MONOALLELIC	Achondroplasia MONDO:0007037
16	FGG	BIALLELIC	Afibrinogenemia, congenital, MIM# 202400
17	FH	BIALLELIC	Fumurase deficiency MIM# 606812
18	FKBP10	BIALLELIC	Osteogenesis imperfecta, type XI, OMIM:610968
19	TRDI 10	DIALLELIC	Lipid storage myopathy due to flavin adenine dinucleotide synthetase
20	FLAD1	BIALLELIC	deficiency, MIM#255100
21			
22	FOLR1	BIALLELIC	Neurodegeneration due to cerebral folate transport deficiency, MIM# 613068
23	FOXA2	MONOALLELIC	Hyperinsulinism MONDO:0002177
24	FOXE1	BIALLELIC	Bamforth-Lazarus syndrome MIM# 241850
25	1 O/LEI		T-cell immunodeficiency, congenital alopecia, and nail dystrophy, autosomal
25 26	FOXN1	BOTH monoallelic and biallelic	recessive MIM# 601705;T-cell lymphopenia, infantile, with or without nail
	10/111	be in monouncile and blanche	dystrophy, autosomal dominant, MIM#t 618806
27	FOXP3	X-LINKED: hemizygous mutation in males	IPEX syndrome, MIM#304790
28	FUCA1	BIALLELIC	Fucosidosis, MIM# 230000
29	G6PC	BIALLELIC	Glycogen storage disease Ia, MIM#232200
30	G6PC3	BIALLELIC	Neutropaenia, congenital, MIM#612541
31	G6PD	X-LINKED: hemizygous mutation in males	Glucose-6-phosphate dehydrogenase deficiency, MIM#300908
32	GAA	BIALLELIC	Glycogen storage disease II, Pompe disease, MIM# 232300
33	GALC	BIALLELIC	Krabbe disease, MIM#245200
34	GALE	BIALLELIC	Galactose epimerase deficiency, MIM#230350
35	GALK1	BIALLELIC	Galactokinase deficiency with cataracts, MIM#230200
36	GALM	BIALLELIC	Galactosemia IV MIM#618881
37	GALNS	BIALLELIC	Mucopolysaccharidosis IVA, MIM#253000
38	GALNT3	BIALLELIC	Tumoral calcinosis, hyperphosphatemic, familial, 1, MIM# 211900
39	GALT	BIALLELIC	Galactosaemia, MIM#230400
40	GAMT	BIALLELIC	Cerebral creatine deficiency syndrome 2, MIM#612736
41	GATA2	MONOALLELIC	Immunodeficiency 21 MIM# 614172;Emberger syndrome MIM# 614038
42	C 1 T 1 2		Hypoparathyroidism, sensorineural deafness, and renal dysplasia, MIM#
43	GATA3	MONOALLELIC	146255
44	GATA4	MONOALLELIC	Neonatal diabetes mellitus, MONDO:0016391, GATA4-related
45	GATM	BIALLELIC	Cerebral creatine deficiency syndrome 3 MIM#612718
46	GBA	BIALLELIC	Gaucher disease type 1, MIM#230800
40 47	GCDH	BIALLELIC	Glutaric aciduria, type I, MIM#231670
	C CI 14		Hyperphenylalaninemia, BH4-deficient, B, MIM# 233910;Dystonia, DOPA-
48	GCH1	BOTH monoallelic and biallelic	responsive, with or without hyperphenylalaninemia, MIM# 128230
49 50	GCK	BOTH monoallelic and biallelic	Hyperinsulinemic hypoglycemia, familial, MIM#602485
50	C CN 42	DOTU meneglialis and highlin	Hyperparathyroidism 4, OMIM #617343;Hypoparathyroidism, familial isolated
51	GCM2	BOTH monoallelic and biallelic	2, OMIM #618883
52	GFI1	MONOALLELIC	Neutropenia, severe congenital 2, autosomal dominant, MIM# 613107
53	GGCX	BIALLELIC	Vitamin K-dependent clotting factors, combined deficiency of, 1 MIM# 277450
54			
55	GH1	BOTH monoallelic and biallelic	Growth hormone deficiency, isolated, type IA, MIM# 262400;Growth hormone
56			deficiency, isolated, type II, MIM# 173100;Kowarski syndrome, MIM# 262650
57	GHR	BOTH monoallelic and biallelic	Growth hormone insensitivity, partial, MIM# 604271;Laron dwarfism, MIM#
58			262500
59	GHRHR	BIALLELIC	Growth hormone deficiency, isolated, type IV, MIM# 618157
60	GIF	BIALLELIC	Intrinsic factor deficiency, MIM#261000

1			
2			
3	GIPC3	BIALLELIC	Deafness, autosomal recessive 15, MIM# 601869
4	GJB2	BIALLELIC	Deafness, autosomal recessive 1A, MIM# 220290
5	GLA	X-LINKED: hemizygous mutation in males	Fabry disease (MIM# 301500)
6	GLIS3	BIALLELIC	Diabetes mellitus, neonatal, with congenital hypothyroidism MIM#610199
7	GLRA1	BOTH monoallelic and biallelic	Hyperekplexia, hereditary 1, autosomal dominant or recessive, MIM#149400
8	GLUD1	MONOALLELIC	Hyperinsulinism, MIM#606762
9 10	GNAS	MONOALLELIC	Pseudopseudohypoparathyroidism MIM#612463;Pseudohypoparathyroidism MIM#612462, MIM#603233, MIM#103580
10	GOT2	BIALLELIC	Developmental and epileptic encephalopathy 82, MIM#618721
12	GPIHBP1	BIALLELIC	Hyperlipoproteinemia, type 1D MIM#615947;familial chylomicronemia syndrome
13	GREB1L	MONOALLELIC	Deafness, autosomal dominant 80MIM#619274
14	GRHPR	BIALLELIC	Hyperoxaluria, primary, type II, MIM# 260000
15	GRXCR1	BIALLELIC	Deafness, autosomal recessive 25, MIM#613285
16	GUSB	BIALLELIC	Mucopolysaccharidosis VII, MIM#253220
17	GYS2	BIALLELIC	Glycogen storage disease 0, liver (MIM#240600)
18	HADH	BIALLELIC	3-hydroxyacyl-CoA dehydrogenase deficiency, MIM# 231530
19			Mitochondrial trifunctional protein deficiency, MIM#609015;LCHAD deficiency,
20 21	HADHA	BIALLELIC	MIM#609016
21	HADHB	BIALLELIC	Mitochondrial trifunctional protein deficiency, MIM#609015
22	HAX1	BIALLELIC	Neutropenia, severe congenital 3, autosomal recessive, MIM# 610738;Kostmann syndrome MONDO:0012548
24	HBB	BIALLELIC	Sickle cell anaemia, MIM# 603903
25 26	HELLS	BIALLELIC	Immunodeficiency-centromeric instability-facial anomalies syndrome 4, MIM# 616911
27	HESX1	BOTH monoallelic and biallelic	Pituitary hormone deficiency, combined, 5, MIM# 182230
28	HGF	BIALLELIC	Deafness, autosomal recessive 39, MIM# 608265
29	HIBCH	BIALLELIC	3-hydroxyisobutryl-CoA hydrolase deficiency MIM#250620
30	HK1	MONOALLELIC	Hyperinsulinism MONDO:0002177, HK1-related
31	HLCS	BIALLELIC	Holocarboxylase synthetase deficiency, MIM#253270
32	HMGCL	BIALLELIC	3-hydroxy-3-methylglutaric aciduria, MIM#246450
33	HOGA1	BIALLELIC	Hyperoxaluria, primary, type III MIM#613616
	HSD11B2	BIALLELIC	Apparent mineralocorticoid excess, MIM# 218030;MONDO:0009025
34 35	HSD3B2	BIALLELIC	Adrenal hyperplasia, congenital, due to 3-beta-hydroxysteroid dehydrogenase 2 deficiency MIM# 201810
36	HSD3B7	BIALLELIC	Bile acid synthesis defect, congenital, 1 MIM#607765
37	ICOS	BIALLELIC	Immunodeficiency, common variable, 1 MIM# 607594
38	IDS	X-LINKED: hemizygous mutation in males	Mucopolysaccharidosis II (MPS2, Hunter syndrome) 309900
39	IDUA	BIALLELIC	Mucopolysaccharidosis type 1, MONDO:0001586
40	IFITM5	MONOALLELIC	Osteogenesis imperfecta, type V MIM#610967
41	IGF1	BIALLELIC	Insulin-like growth factor I deficiency, MIM# 608747
42	IGHM	BIALLELIC	Agammaglobulinaemia 1, MIM#601495
43	IGLL1	BIALLELIC	Agammaglobulinaemia 2, MIM#613500
44	IGSF1	X-LINKED: hemizygous mutation in males	Hypothyroidism, central, and testicular enlargement, MIM# 300888
45	IKBKB	BIALLELIC	Immunodeficiency 15B, MIM#615592
46	IKZF1	MONOALLELIC	Immunodeficiency, common variable, 13 MIM# 616873
47	IL10	BIALLELIC	Autoinflammatory syndrome, MONDO:0019751, IL10-related
48	IL10RA	BIALLELIC	Inflammatory bowel disease 28, early onset, autosomal recessive, MIM#
49			613148
50	IL10RB	BIALLELIC	Inflammatory bowel disease 25, early onset, autosomal recessive, MIM#612567
51	IL1RN	BIALLELIC	Interleukin 1 receptor antagonist deficiency, MIM# 612852
52	IL21R	BIALLELIC	Immunodeficiency 56, MIM# 615207
53 54	IL2RA	BIALLELIC	Immunodeficiency 41 with lymphoproliferation and autoimmunity, MIM# 606367
55 56	IL2RB	BIALLELIC	Immunodeficiency 63 with lymphoproliferation and autoimmunity,
			MIM#618495
57 59	IL2RG	X-LINKED: hemizygous mutation in males	Severe combined immunodeficiency, X-linked, MIM#312863
58 50	IL36RN	BIALLELIC	Psoriasis 14, pustular, MIM# 614204
59 60	IL7R	BIALLELIC	Severe combined immunodeficiency, T-cell negative, B-cell/natural killer cell- positive type MIM#608971

2			
3	ILDR1	BIALLELIC	Deafness, autosomal recessive 42, MIM# 609646
4			Diabetes mellitus, insulin-dependent, 2, MIM# 125852;Diabetes mellitus,
5	INS	BOTH monoallelic and biallelic	permanent neonatal 4, MIM# 618858;Maturity-onset diabetes of the young,
6			type 10, MIM# 613370
7	IRAK4	BIALLELIC	Immunodeficiency 67, MIM#607676
8 9	IRF8	BIALLELIC	Immunodeficiency 32B, monocyte and dendritic cell deficiency, autosomal recessive, MIM# 226990
10	IRS4	X-LINKED: hemizygous mutation in males	Hypothyroidism, congenital, nongoitrous, 9, MIM# 301035
11	ITGA2B	BIALLELIC	Glanzmann thrombasthaenia 1, MIM# 273800
12	ITGB2	BIALLELIC	Leukocyte adhesion deficiency, MIM#116920
13	ITGB3	BIALLELIC	Glanzmann thrombasthenia 2, MIM#619267
13	ITK	BIALLELIC	Lymphoproliferative syndrome 1, MIM#613011
	IVD	BIALLELIC	Isovaleric acidemia, MIM#243500
15	IYD	BIALLELIC	Thyroid dyshormonogenesis 4, MIM# 274800
16	JAGN1	BIALLELIC	Neutropenia, severe congenital, 6, autosomal recessive, MIM# 616022
17	JAK3	BIALLELIC	SCID, autosomal recessive, T-negative/B-positive type, MIM#600802
18	KCNH2	MONOALLELIC	Long QT syndrome 2, MIM# 613688
19	KCNJ1	BIALLELIC	Bartter syndrome, type 2, 241200
20			Diabetes mellitus, transient neonatal, 3 610582;Diabetes, permanent
21	KCNJ11	BOTH monoallelic and biallelic	neonatal, with or without neurologic features 606176;Hyperinsulinemic
22			hypoglycemia, familial, 2 601820
23	KCNJ2	MONOALLELIC	Andersen syndrome MIM#170390
24	KCNO1	DOTU mencellalis and highelis	Jervell and Lange-Nielsen syndrome MIM#220400;Long QT syndrome 1, MIM#
25	KCNQ1	BOTH monoallelic and biallelic	192500
26	KDELR2	BIALLELIC	Osteogenesis imperfecta 21, MIM# 619131
27	KLHL3	BOTH monoallelic and biallelic	Pseudohypoaldosteronism, type IID, MIM# 614495
28	LAMA2	BIALLELIC	Muscular dystrophy, congenital, merosin deficient or partially deficient, MIM# 607855
29	LAT	BIALLELIC	Immunodeficiency 52, MIM# 617514
30	LDLR	BIALLELIC	Hypercholesterolemia, familial, 1, MIM# 143890
31	LEP	BIALLELIC	Obesity, morbid, due to leptin deficiency (MIM#614962)
32	LEPR	BIALLELIC	Obesity, morbid, due to leptin receptor deficiency (MIM#614963)
33	LHFPL5	BIALLELIC	Deafness, autosomal recessive 67, MIM# 610265
34	LHX3	BIALLELIC	Pituitary hormone deficiency, combined, MIM#221750
35	LHX4	MONOALLELIC	Pituitary hormone deficiency, combined, 4, MIM#227700
36	LIG1	BIALLELIC	Immunodeficiency 96, MIM#619774
37	LIG4	BIALLELIC	LIG4 syndrome, MIM# 606593
38	LIPA	BIALLELIC	Wolman syndrome, MIM#278000
39	LMBRD1	BIALLELIC	Methylmalonic aciduria and homocystinuria, MIM#277380
40	LOXHD1	BIALLELIC	Deafness, autosomal recessive 77, MIM# 613079
40	LPL	BIALLELIC	Lipoprotein lipase deficiency, MIM# 238600
	LRBA	BIALLELIC	Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700
42	LRP5	BIALLELIC	Osteoporosis-pseudoglioma syndrome, MIM# 259770
43	LRTOMT	BIALLELIC	Deafness, autosomal recessive 63, MIM# 611451
44	LYST	BIALLELIC	Chediak-Higashi syndrome, MIM#214500
45	MAFB	MONOALLELIC	Multicentric carpotarsal osteolysis syndrome (MIM#166300)
46	IVIAI D	MONOALLELIC	
47 48	MAGT1	X-LINKED: hemizygous mutation in males	Immunodeficiency, X-linked, with magnesium defect, Epstein-Barr virus infection and neoplasia (MIM# 300853)
49	MALT1	BIALLELIC	Immunodeficiency 12 MIM# 615468
50	MAN2B1	BIALLELIC	Mannosidosis, alpha-, types I and II, MIM# 248500
51	MARVELD2	BIALLELIC	Deafness, autosomal recessive 49, MIM# 610153
	MC2R	BIALLELIC	Glucocorticoid deficiency, due to ACTH unresponsiveness, MIM#202200
52	MCEE	BIALLELIC	Methylmalonyl-CoA epimerase deficiency MIM#251120
53	MEFV	BIALLELIC	Familial Mediterranean fever MIM# 249100
54	MESD	BIALLELIC	Osteogenesis imperfecta, type XX, MIM#618644
55	MITF	BOTH monoallelic and biallelic	Waardenburg syndrome, type 2A, MIM# 193510;Deafness
56	MLH1	BIALLELIC	Mismatch repair cancer syndrome 1, MIM# 276300
57	MLYCD	BIALLELIC	Malonyl-CoA decarboxylase deficiency, MIM# 248360
58	MMAA	BIALLELIC	Methylmalonic aciduria, vitamin B12-responsive, MIM#251100
59	MMAB	BIALLELIC	Methylmalonic aciduria, vitamin B12-responsive, due to defect in synthesis of
60			adenosylcobalamin, cblB complementation type, MIM#251110

1			
2			
3	MMACHC	BIALLELIC	Methylmalonic aciduria and homocystinuria, cblC type, MIM#277400
4	MMADHC	BIALLELIC	Methylmalonic aciduria and homocystinuria, cblD type, MIM#277410
5	MNX1	BIALLELIC	Permanent neonatal diabetes mellitus, MONDO:0100164, MNX1-related
6	MOCS1	BIALLELIC	Molybdenum cofactor deficiency, MIM#252150
7	MPI	BIALLELIC	Congenital disorder of glycosylation, type lb, MIM# 602579
8	MPL	BIALLELIC	Thrombocytopenia, congenital amegakaryocytic, MIM# 604498
9	MRAP	BIALLELIC	Glucocorticoid deficiency 2, MIM#607398
10	MSH2	BIALLELIC	Mismatch repair cancer syndrome 2, MIM# 619096
10	MSH6	BIALLELIC	Mismatch repair cancer syndrome 3, MIM# 619097
			Combined immunodeficiency and megaloblastic anemia with or without
12	MTHFD1	BIALLELIC	hyperhomocysteinaemia MIM # 617780
13			Homocystinuria-megaloblastic anaemia, cblG complementation type, MIM#
14	MTR	BIALLELIC	250940
15	MT-RNR1	MITOCHONDRIAL	Aminoglycoside sensitivity
16	MTRR	BIALLELIC	Methylmalonic aciduria and homocystinuria, MIM#236270
17	MTTP	BIALLELIC	Abetalipoproteinemia, MIM# 200100
18	MUSK	BIALLELIC	Congenital myasthenic syndrome, MIM#616325
19	MUT		Methylmalonic aciduria, mut(0) type, MIM#251000
20	MVK	BIALLELIC	Mevalonic aciduria, MIM# 610377
21	MYD88	BIALLELIC BIALLELIC BIALLELIC BIALLELIC BIALLELIC BIALLELIC	Immunodeficiency 68, MIM# 612260
22	MYH7	BIALLELIC	Cardiomyopathy, hypertrophic, 1, MIM# 192600
23	MYO15A	BIALLELIC	Deafness, autosomal recessive 3, MIM# 600316
24	MYO3A	BIALLELIC	Deafness, autosomal recessive 30, MIM:600310
25	MYO6	BIALLELIC	Deafness, autosomal recessive 30, MIM.007101
	WH OO	BIALLELIC	
26	MYO7A	BIALLELIC	Deafness, autosomal recessive 2, 600060;Usher syndrome, type 1B, MIM# 276900
27	MYSM1	BIALLELIC	Bone marrow failure syndrome 4, MIM#618116
28	NAGLU		
29	NAGLO	BIALLELIC	Mucopolysaccharidosis type IIIB (Sanfilippo B), MIM# 252920
30		BIALLELIC	N-acetylglutamate synthetase deficiency, MIM#237310
31	NCF2	BIALLELIC	Chronic granulomatous disease, MIM#233710
32	NCF4	BIALLELIC	Granulomatous disease, chronic, autosomal recessive, cytochrome b-positive,
33			type III MIM#613960
34	NEUROG3	BIALLELIC	Diarrhoea 4, malabsorptive, congenital, MIM# 610370
35	NFKBIA	MONOALLELIC	Ectodermal dysplasia and immunodeficiency 2 MIM# 612132
36	NHEJ1	BIALLELIC	Severe combined immunodeficiency with microcephaly, growth retardation,
37			and sensitivity to ionizing radiation, MIM#611291
38	NIPAL4	BIALLELIC	Ichthyosis, congenital, autosomal recessive 6, MIM# 612281
	NKX2-1	MONOALLELIC	Choreoathetosis, hypothyroidism, and neonatal respiratory distress
39			MIM#610978
40	NKX2-5	MONOALLELIC	Atrial septal defect 7, with or without AV conduction defects, MIM#108900
41	NNT	BIALLELIC	Glucocorticoid deficiency 4, with or without mineralocorticoid deficiency,
42			MIM#614736
43	NPC1	BIALLELIC	Niemann-Pick disease type C1, MIM#257220
44	NPC2	BIALLELIC	Niemann-Pick disease type C2, MIM#607625
45	NR0B1	X-LINKED: hemizygous mutation in males	Adrenal hypoplasia, congenital (MIM# 300200)
46	NR3C2	MONOALLELIC	Pseudohypoaldosteronism type I, autosomal dominant, MIM#177735
47	NR5A1	MONOALLELIC	Adrenocortical insufficiency, (MIM#612964)
48	OAS1	MONOALLELIC	Immunodeficiency 100 with pulmonary alveolar proteinosis and
49			hypogammaglobulinaemia, MIM#618042
50	OAT	BIALLELIC	Gyrate atrophy of choroid and retina with or without ornithinemia
51	U		MIM#258870
	ORAI1	BIALLELIC	Immunodeficiency 9, MIM# 612782
52	OTC	X-LINKED: hemizygous mutation in males	Ornithine transcarbamylase deficiency, MIM#311250
53	ΟΤΟΑ	BIALLELIC	Deafness, autosomal recessive 22, MIM#607039
54	OTOF	BIALLELIC	Deafness, autosomal recessive 9, MIM#601071
55	OTOG	BIALLELIC	Deafness, autosomal recessive 18B - MIM#614945
56	OTOGL	BIALLELIC	Deafness, autosomal recessive 84B, MIM# 614944
57	OTULIN	BIALLELIC	Autoinflammation, panniculitis, and dermatosis syndrome, MIM# 617099
58	OTX2	MONOALLELIC	Pituitary hormone deficiency, combined, 6, MIM# 613986
59	OXCT1	BIALLELIC	Succinyl CoA:3-oxoacid CoA transferase deficiency, MIM#245050
60	P3H1	BIALLELIC	Osteogenesis imperfecta, type VIII, (MIM# 610915)

2			
3	PAH	BIALLELIC	Phenylketonuria, MIM#261600
4	PALB2	BIALLELIC	Fanconi anemia, complementation group N, MIM# 610832
5	PAX3	MONOALLELIC	Waardenburg syndrome, type 1, OMIM 193500
6 7	PAX8	MONOALLELIC	Hypothyroidism, congenital, due to thyroid dysgenesis or hypoplasia, MIM#218700
8	PC	BIALLELIC	Pyruvate carboxylase deficiency, MIM# 266150
9	PCBD1	BIALLELIC	Hyperphenylalaninemia, BH4-deficient, D, MIM#264070
10	PCCA	BIALLELIC	Propionic acidaemia, MIM#606054
11	PCCB	BIALLELIC	Propionicacidaemia, MIM#606054
12	PCDH15	BIALLELIC	Usher syndrome, type 1F 602083, Deafness, autosomal recessive 23 609533
13	PCSK9	MONOALLELIC	Hypercholesterolaemia, familial, 3, MIM# 603776
14	PDHA1	X-LINKED: hemizygous mutation in males	Pyruvate dehydrogenase E1-alpha deficiency, MIM# 312170
15	PDHB	BIALLELIC	Pyruvate dehydrogenase E1-beta deficiency, MIM#614111
16	PDHX	BIALLELIC	Lactic acidaemia due to PDX1 deficiency, MIM# 245349
	PDP1	BIALLELIC	Pyruvate dehydrogenase phosphatase deficiency, MIM# 608782
17	PDX1	BIALLELIC	Pancreatic agenesis, MIM# # 260370
18 19	PDZD7	BIALLELIC	Deafness, autosomal recessive 57, MIM# 618003;Usher syndrome, type IIC, GPR98/PDZD7 digenic, MIM# 605472
20	PGM1	BIALLELIC	Congenital disorder of glycosylation, type It, MIM#614921
21	PGM3	BIALLELIC	Immunodeficiency 23, MIM#615816
22	PHEX	X-LINKED: hemizygous mutation in males	Hypophosphatemic rickets, X-linked dominant, MIM#307800
23	PHGDH	BIALLELIC	Phosphoglycerate dehydrogenase deficiency, MIM#601815
24	ΡΗΚΑ2	X-LINKED: hemizygous mutation in males	Glycogen storage disease, type IXa1 and a2, MIM# 306000
25 26	РНКВ	BIALLELIC	Phosphorylase kinase deficiency of liver and muscle, autosomal recessive 261750;Glycogen storage disease IXb, MONDO:0009868
20	PHKG2	BIALLELIC	Glycogen storage disease IXc, MIM# 613027
	111102	Divillere	Immunodeficiency 14B, autosomal recessive, MIM# 619281;Immunodeficiency
28 29	PIK3CD	BOTH monoallelic and biallelic	14A, autosomal dominant, MIM# 615513
30 31	PIK3R1	BOTH monoallelic and biallelic	Agammaglobulinemia 7, autosomal recessive, MIM# 615214;Immunodeficiency 36, MIM#616005
32	PKLR	BIALLELIC	Pyruvate kinase deficiency, MIM#266200
33	PLG	BIALLELIC	Plasminogen deficiency, type I, MIM# 217090
33	PLPBP	BIALLELIC	Epilepsy, early-onset, vitamin B6-dependent, MIM#617290
35	PLS3	X-LINKED: hemizygous mutation in males	Bone mineral density QTL18, osteoporosis - MIM#300910
36	PNP	BIALLELIC	Immunodeficiency due to purine nucleoside phosphorylase deficiency MIM#613179
37	PNPO	BIALLELIC	Pyridoxamine 5'-phosphate oxidase deficiency, MIM# 610090
38	POLE	BIALLELIC	IMAGE-I syndrome, MIM#618336
39 40	POMC	BIALLELIC	Obesity, adrenal insufficiency, and red hair due to POMC deficiency MIM#609734
41			Antley-Bixler syndrome with genital anomalies and disordered
42 43	POR	BIALLELIC	steroidogenesis, MIM#201750;Disordered steroidogenesis due to cytochrome P450 oxidoreductase, MIM# 613571
43	POU1F1	BOTH monoallelic and biallelic	Pituitary hormone deficiency, combined, 1 MIM# 613038
44 45	POU3F4	X-LINKED: hemizygous mutation in males	Deafness, X-linked 2, MIM#304400
	PPOX	BIALLELIC	Variegate porphyria, childhood-onset, MIM# 620483
46	PRDX1	Other	Methylmalonic aciduria and homocystinuria, cblC type, digenic MIM#277400
47	PRF1	BIALLELIC	Haemophagocytic lymphohistiocytosis, familial, 2, MIM#603553
48	PRKAR1A	MONOALLELIC	Carney complex, type 1, MIM# 160980
49	PRKDC	BIALLELIC	Immunodeficiency 26, with or without neurologic abnormalities, MIM#615966
50	PROP1	BIALLELIC	Pituitary hormone deficiency, combined, 2, MIM#262600
51	PSTPIP1	MONOALLELIC	Pyogenic sterile arthritis, pyoderma gangrenosum, and acne, MIM# 604416
52	PTCH1	MONOALLELIC	Basal cell nevus syndrome, MIM# 109400
53 54	PTF1A	BIALLELIC	Pancreatic and cerebellar agenesis, MIM#609069;Pancreatic agenesis 2, MIM#615935
55			Severe combined immunodeficiency, T cell-negative, B-cell/natural killer-cell
56	PTPRC	BIALLELIC	positive MIM# 608971
57			Deafness, autosomal recessive 84A, MIM# 613391;Deafness, autosomal
58	PTPRQ	BOTH monoallelic and biallelic	dominant 73, MIM# 617663
59	PTS	BIALLELIC	Hyperphenylalaninemia, BH4-deficient, A, MIM#261640
60	PYGL	BIALLELIC	Glycogen storage disease VI, MIM# 232700

1			
2			
3	QDPR	BIALLELIC	Dihydropteridine reductase deficiency, MIM#261630
4 5	RAB27A	BIALLELIC	Griscelli syndrome, MIM#607624
6	RAC2	MONOALLELIC	Immunodeficiency 73B with defective neutrophil chemotaxis and lymphopenia MIM# 618986
7 8 9 10 11	RAG1	BIALLELIC	Alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus infection, and autoimmunity MIM# 609889;Combined cellular and humoral immune defects with granulomas MIM# 233650;Omenn syndrome MIM# 603554;Severe combined immunodeficiency, B cell-negative MIM# 601457
12 13 14	RAG2	BIALLELIC	Omenn syndrome MIM# 603554;Severe combined immunodeficiency, B cell- negative MIM# 601457;Combined cellular and humoral immune defects with granulomas MIM# 233650
15	RAPSN	BIALLELIC	Myasthenic syndrome, congenital, 11, associated with acetylcholine receptor deficiency (MIM#616326)
16 17	RASGRP1	BIALLELIC	Immunodeficiency 64 (MIM#618534)
17 18	RB1	MONOALLELIC	Retinoblastoma, MIM# 180200
18	RDX	BIALLELIC	Deafness, autosomal recessive 24, MIM# 611022
20	REST RET	MONOALLELIC	{Wilms tumor 6, susceptibility to}, MIM# 616806
20	KEI	MONOALLELIC	Multiple endocrine neoplasia IIB;Multiple endocrine neoplasia IIA Bare lymphocyte syndrome, type II, complementation group C MIM#
22	RFX5	BIALLELIC	209920;Bare lymphocyte syndrome, type II, complementation group C MIM# 209920;Bare lymphocyte syndrome, type II, complementation group E MIM#
23 24	RFXANK	BIALLELIC	MHC class II deficiency, complementation group B, MIM#209920
24 25	RFXAP	BIALLELIC	Bare lymphocyte syndrome, type II, complementation group D MIM# 209920
25	RMRP	BIALLELIC	Cartilage-hair hypoplasia MIM#250250
20	RNPC3	BIALLELIC	Pituitary hormone deficiency, combined or isolated, 7, MIM# 618160
28	RPE65	BIALLELIC	Leber congenital amaurosis 2 MIM#204100;Retinitis pigmentosa 20 MIM#613794
29	RPL11	MONOALLELIC	Diamond-Blackfan anaemia, MIM#612562
30	RPL15	MONOALLELIC	Diamond-Blackfan anaemia 12 , MIM#615550
31	RPL35A	MONOALLELIC	Diamond-Blackfan anaemia 5, MIM#612528
32 33	RPL5	MONOALLELIC	Diamond-Blackfan anaemia, MIM#612561
33	RPS10	MONOALLELIC	Diamond-Blackfan anaemia 9, MIM#613308
35	RPS17	MONOALLELIC	Diamond-Blackfan anaemia, MIM#612527
36	RPS19 RPS24	MONOALLELIC MONOALLELIC	Diamond-Blackfan anaemia, MIM#105650 Diamond-Blackfan anaemia, MIM#610629
37	RPS24 RPS26	MONOALLELIC	Diamond-Blackfan anaemia, MM#610209
38	RPS7	MONOALLELIC	Diamond-Blackfan anaemia 8, MIM#612563
39	RUNX1	MONOALLELIC	Platelet disorder, familial, with associated myeloid malignancy, MIM# 601399
40	RYR1	MONOALLELIC	{Malignant hyperthermia susceptibility 1} MIM#145600
41		MONOAU FUC	Arrhythmogenic right ventricular dysplasia 2;Ventricular tachycardia,
42	RYR2	MONOALLELIC	catecholaminergic polymorphic
43	S1PR2	BIALLELIC	Deafness, autosomal recessive 68, MIM# 610419
44	SAMD9	MONOALLELIC	MIRAGE syndrome, MIM#617053
45	SAMD9L	MONOALLELIC	Ataxia-pancytopenia syndrome, MIM# 159550
46	SAR1B	BIALLELIC	Chylomicron retention disease, MIM# 246700
47	SBDS SCNN1A	BIALLELIC BIALLELIC	Shwachman-Diamond syndrome, MIM# 260400 Pseudohypoaldosteronism, type I, MIM# 264350
48	SCNN1A SCNN1B	BIALLELIC	Pseudohypoaldosteronism, type I MIM# 264350 Pseudohypoaldosteronism, type I MIM# 264350
49	SCNN1B	BIALLELIC	Pseudohypoaldosteronism, type I, MIM#264350
50	SERPINF1	BIALLELIC	Osteogenesis imperfecta, type VI, MIM# 613982
51	SERPINH1	BIALLELIC	Osteogenesis imperfecta, type X, MIM#613848
52	SGPL1	BIALLELIC	Nephrotic syndrome, type 14 MIM#617575
53	SH2D1A	X-LINKED: hemizygous mutation in males	Lymphoproliferative syndrome, X-linked, 1, MIM# 308240
54 55	SI	BIALLELIC	Sucrase-isomaltase deficiency, congenital, MIM#222900
55 56	SLC12A1	BIALLELIC	Bartter syndrome, type 1, MIM# 601678
56 57	SLC18A2	BIALLELIC	Parkinsonism-dystonia, infantile, 2, MIM# 618049
57 58	SLC18A3 SLC19A2	BIALLELIC BIALLELIC	Myasthenic syndrome, congenital, 21, presynaptic, MIM#617239 Thiamine-responsive megaloblastic anemia syndrome, MIM# 249270
58 59			Thiamine metabolism dysfunction syndrome 2 (biotin- or thiamine-responsive
60	SLC19A3	BIALLELIC	encephalopathy type 2), MIM# 607483

2			
2 3	SLC22A5	BIALLELIC	Comiting deficiency systemic primary MIN# 212140, MONDO:0009010
4	SLC22A5 SLC25A13	BIALLELIC	Carnitine deficiency, systemic primary, MIM# 212140, MONDO:0008919 Citrullinemia, type II, neonatal-onset, MIM# 605814
5			Hyperornithinemia-hyperammonemia-homocitrullinemia syndrome,
б	SLC25A15	BIALLELIC	MIM#238970
7	SLC25A19	BIALLELIC	Thiamine metabolism dysfunction syndrome 4 (progressive polyneuropathy
8			type), MIM#613710
9	SLC25A20	BIALLELIC	Carnitine-acylcarnitine translocase deficiency, MIM#212138
10	SLC25A38 SLC26A3	BIALLELIC BIALLELIC	Anemia, sideroblastic, 2, pyridoxine-refractory, MIM# 205950 Diarrhoea 1, secretory chloride, congenital, MIM# 214700
11			Deafness, autosomal recessive 4, with enlarged vestibular aqueduct
12 13	SLC26A4	BIALLELIC	600791;Pendred syndrome 274600
14	SLC26A7	BIALLELIC	Congenital hypothyroidism, MONDO:0018612, SLC26A7-related
15			GLUT1 deficiency syndrome 2, childhood onset, 612126;{Epilepsy, idiopathic
16	SLC2A1	BOTH monoallelic and biallelic	generalized, susceptibility to, 12}, MIM#614847;GLUT1 deficiency syndrome 1, infantile onset, severe, 606777
17	SLC30A10	BIALLELIC	Hypermanganesemia with dystonia 1, MIM# 613280
18	SLC34A3	BIALLELIC	Hypophosphatemic rickets with hypercalciuria, MIM#241530
19	SLC35A2	X-LINKED: hemizygous mutation in males	Congenital disorder of glycosylation, type IIm, MIM #300896
20	SLC37A4	BOTH monoallelic and biallelic	Glycogen storage disease Ib, MIM# 232220;Glycogen storage disease Ic, MIM#
21			232240;Congenital disorder of glycosylation, type IIw, MIM# 619525
22	SLC39A4	BIALLELIC	Acrodermatitis enteropathica, MIM# 201100
23 24	SLC39A7 SLC39A8	BIALLELIC	Agammaglobulinaemia 9, autosomal recessive, MIM# 619693 Congenital disorder of glycosylation, type IIn , MIM#16721
24	SLC46A1	BIALLELIC	Folate malabsorption, hereditary, MIM# 229050
26	SLC4A1	BIALLELIC	Distal renal tubular acidosis 4 with haemolytic anaemia MIM# 611590
27	SLC52A2	BIALLELIC	Brown-Vialetto-Van Laere syndrome 2, MIM# 614707
28	SLC52A3	BIALLELIC	Brown-Vialetto-Van Laere syndrome 1, MIM# 211530
29	SLC5A1	BIALLELIC	Glucose/galactose malabsorption, MIM# 606824
30	SLC5A5	BIALLELIC	Thyroid dyshormonogenesis 1, MIM# 274400
31	SLC5A6 SLC5A7	BIALLELIC BIALLELIC	Neurodegeneration, infantile-onset, biotin-responsive, MIM# 618973 Myasthenic syndrome, congenital, 20, presynaptic, MIM# 617143
32	SLC7A7	BIALLELIC	Lysinuric protein intolerance, MIM# 222700
33	SLITRK6	BIALLELIC	Deafness and myopia MIM#221200
34	SLX4	BIALLELIC	Fanconi anaemia, complementation group P, MIM# 613951
35	SMAD2	MONOALLELIC	Loeys-Dietz syndrome 6, MIM# 619656
36 37	SMAD3	MONOALLELIC	Loeys-Dietz syndrome 3, MIM# 613795
37	SMARCD2	BIALLELIC	Specific granule deficiency 2 MIM#617475
39	SMN1	BIALLELIC	Spinal muscular atrophy type 1, MIM#253300 Niemann-Pick disease, type A, MIM# 257200;Niemann-Pick disease, type B,
40	SMPD1	BIALLELIC	MIM# 607616
41	SNX10	BIALLELIC	Osteopetrosis, autosomal recessive 8 MIM#615085
42	SP110	BIALLELIC	Hepatic veno-occlusive disease with immunodeficiency MIM#235550
43	SPR	BIALLELIC	Dystonia, dopa-responsive, due to sepiapterin reductase deficiency, MIM#
44			612716
45	SRP54	MONOALLELIC	Neutropenia, severe congenital, 8, autosomal dominant, MIM# 618752
46	STAR	BIALLELIC	Congenital lipoid adrenal hyperplasia, MIM#201710 Immunodeficiency 31B, mycobacterial and viral infections, autosomal
47	STAT1	BIALLELIC	recessive MIM#613796
48 49	STAT3	MONOALLELIC	Autoimmune disease, multisystem, infantile-onset, 1 MIM# 615952
49 50	STIM1	BIALLELIC	Immunodeficiency 10 MIM612783
50	STK4	BIALLELIC	T-cell immunodeficiency, recurrent infections, autoimmunity, and cardiac
52			malformations MIM#614868
53	STX11 STX16	BIALLELIC MONOALLELIC, imprinted	Haemophagocytic lymphohistiocytosis, familial, 4, MIM#603552 Pseudohypoparathyroidism, type IB MIM#603233
54	STXBP2	BIALLELIC	Hemophagocytic lymphohistiocytosis, familial, 5, MIM# 613101
55			Myasthenic syndrome, congenital, 7B, presynaptic, autosomal recessive
56	SYT2	BIALLELIC	MIM#619461
57	TANGO2	BIALLELIC	Metabolic encephalomyopathic crises, recurrent, with rhabdomyolysis, cardiac
58			arrhythmias, and neurodegeneration, MIM# 616878
59	TAT TBL1X	BIALLELIC X-LINKED: hemizygous mutation in males	Tyrosinemia, type II, MIM#276600 Hypothyroidism, congenital, nongoitrous, 8 MIM#301033
60	IDLIV	A ENARCED. HEIMZYBOUS MULATION IN MIDLES	riypotriyi olalsini, congenitai, nongolti oas, o ivinivi n sottoss

3	TBX19	BIALLELIC	Adrenocorticotropic hormone deficiency, MIM#201400
4	TCF3	BOTH monoallelic and biallelic	Agammaglobulinaemia 8, autosomal dominant, MIM#
5	TCF5		616941;Agammaglobulinaemia 8B, autosomal recessive, MIM# 619824
6	TCIRG1	BIALLELIC	Osteopetrosis, autosomal recessive 1, MIM# 259700
7	TCN2	BIALLELIC	Transcobalamin II deficiency MIM# 275350
8 9	TECTA	BOTH monoallelic and biallelic	Deafness, autosomal recessive 21 603629;Deafness, autosomal dominant 8/12 601543
10	TF	BIALLELIC	Atransferrinemia MIM#209300
11	TG	BIALLELIC	Thyroid dyshormonogenesis 3, MIM# 274700
12	TGFB2	MONOALLELIC	Loeys-Dietz syndrome 4, MIM#614816
13	TGFB3	MONOALLELIC	Loeys-Dietz syndrome 5 , MIM#615582
	TGFBR1	MONOALLELIC	Loeys-Dietz syndrome 1, MIM# 609192
14	TGFBR2	MONOALLELIC	Loeys-Dietz syndrome 2, MIM# 610168
15	тн	BIALLELIC	Tyrosine hydroxylase deficiency, MIM#605407
16	THRA	MONOALLELIC	Hypothyroidism, congenital, nongoitrous, 6, MIM# 614450
17	ТК2	BIALLELIC	Mitochondrial DNA depletion syndrome 2 (myopathic type), 609560
18	TMC1	BIALLELIC	Deafness, autosomal recessive 7 MIM#600974
19	TMEM38B	BIALLELIC	Osteogenesis imperfecta, type XIV, MIM#615066
20	TMIE	BIALLELIC BIALLELIC BIALLELIC MONOALLELIC	Deafness, autosomal recessive 6 MIM#600971
21	TMPRSS3	BIALLELIC	deafness, autosomal recessive MIM#601072
22	TNFRSF11A	BIALLELIC	Osteopetrosis, autosomal recessive 7 - MIM# 612301
23	TP53	MONOALLELIC	Li-Fraumeni syndrome MIM#151623
24			Thiamine metabolism dysfunction syndrome 5 (episodic encephalopathy type)
25	TPK1	BIALLELIC	MIM#614458
26	TPO	BIALLELIC	Thyroid dyshormonogenesis 2A MIM#274500
	TPP1	BIALLELIC	Ceroid lipofuscinosis, neuronal, 2 MIM#204500 (Batten disease)
28	TPRN	BIALLELIC	Deafness, autosomal recessive 79, MIM# 613307
29	TRHR	BIALLELIC	Hypothyroidism, congenital, nongoitrous, 7, MIM# 618573
30	TRIM28	MONOALLELIC	Wilms tumour, MONDO:0006058, TRIM28-related
	TRIOBP	BIALLELIC	Deafness, autosomal recessive 28, MIM#609823
31	TRMU	BIALLELIC	Liver failure, transient infantile MIM# 613070
32	TRPM6	BIALLELIC	Hypomagnesemia 1, intestinal MIM#602014
33	TSHB	BIALLELIC	Hypothyroidism, congenital, nongoitrous 4, MIM#275100
34	TSHR	BOTH monoallelic and biallelic	Hypothyroidism, congenital, nongoitrous, 1 - MIM#275200
35	ТТРА	BIALLELIC	Ataxia with isolated vitamin E deficiency MIM#277460
36			Congenital hypothyroidism, MONDO:0018612, TUBB1-
37 38	TUBB1	MONOALLELIC	related;Macrothrombocytopenia, autosomal dominant, TUBB1-related, OMIM # 613112
39	UBE2T	BIALLELIC	Fanconi anaemia, complementation group T, MIM# 616435
40	UGT1A1	BIALLELIC	Crigler-Najjar syndrome, type I, MIM#218800
41	UMPS	BIALLELIC	Orotic aciduriaMIM#258900
42	UNC13D	BIALLELIC	Haemophagocytic lymphohistiocytosis, familial, 3, MIM#608898
43	UROS	BIALLELIC	Porphyria, congenital erythropoietic MIM#263700
44	USH1C	BIALLELIC	Usher syndrome type 1 MIM#276904
45	USH1G	BIALLELIC	Usher syndrome type 1 MIM#606943
46	USH2A	BIALLELIC	Usher Syndrome Type II MIM#276901
47	VAMP1	BIALLELIC	Myasthenic syndrome, congenital, 25, MIM# 618323
48	VDR	BIALLELIC	Rickets, vitamin D-resistant, type IIA MIM#277440
49	VHL	MONOALLELIC	von Hippel-Lindau syndrome MIM#193300
50	VKORC1	BIALLELIC	Vitamin K-dependent clotting factors, combined deficiency of, 2 MIM#607473
51	VPS45	BIALLELIC	Neutropenia, severe congenital, 5, autosomal recessive, MIM#615285
52	WAS	X-LINKED: hemizygous mutation in males	Neutropenia, severe congenital, X-linked, MIM#300299;Thrombocytopaenia, X-linked, MIM# 313900;Wiskott-Aldrich syndrome, MIM# 301000
53 54	WDR1	BIALLELIC	Periodic fever, immunodeficiency, and thrombocytopenia syndrome MIM#150550
55 56	WDR72	BIALLELIC	Amelogenesis imperfecta, type IIA3, MIM# 613211;Distal RTA MONDO:0015827
57 58	WHRN	BIALLELIC	Usher syndrome, type 2D, MIM# 611383;Deafness, autosomal recessive 31, MIM# 607084
59	WIPF1	BIALLELIC	Wiskott-Aldrich syndrome 2 MIM#614493
60	WNK1	MONOALLELIC	Pseudohypoaldosteronism 2C (PHA2C), MIM#614492

2 3 4 5 6 7 8 9	WNK4 WT1 XIAP XPA XPC ZAP70	MONOALLELIC MONOALLELIC X-LINKED: hemizygous mutation in males BIALLELIC BIALLELIC BIALLELIC	Pseudohypoaldosteronism, type IIB MIM#614491 Wilms tumor, type 1, MIM#194070 Lymphoproliferative syndrome, X-linked, 2, MIM# 300635 Xeroderma pigmentosum, group A MIM#278700 Xeroderma pigmentosum, group C MIM#278720 Immunodeficiency MIM#176947
10 11 12 13 14			
15 16 17 18 19			
20 21 22 23 24			
25 26 27 28 29			
30 31 32 33 34			
35 36 37 38 39			
40 41 42 43 44			
44 45 46 47 48 49			
50 51 52 53			
54 55 56 57			

60