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Supplemental Methods 

Sectioning, immunostaining and imaging 

Adult flies were fixed in formalin at 1, 10 and 30 days of age and embedded in paraffin. 

Serial frontal sections including the entire brain were prepared. Sections were stained 

with hematoxylin and eosin to assess brain vacuolization, which was quantified by 

counting vacuoles larger than 5 microns throughout the entire brain. For immunostaining, 

antigen retrieval was performed by microwaving the sections in 10 mM sodium citrate 

buffer. Immunohistochemistry was performed with the avidin–biotin–peroxidase complex 

detection method (Vector Laboratories). For immunofluorescence, secondary antibodies 

coupled to Alexa 488 or Alexa 555 (Invitrogen, 1:200) were used and sections were 

mounted in DAPI containing mounting media. The number of PCNA-positive cells 

throughout the entire brain was counted following immunostaining. For quantification of 

pH2Av, a region of interest comprised of approximately 100 Kenyon neurons was 

identified in well-oriented sections of the mushroom body and the number of neurons 

containing one or more than one immuno-positive foci was determined. Images were 

taken on Zeiss LSM800 confocal microscope (Carl Zeiss, AG), and quantification was 

performed using Image-J software. For all histological analyses, at least 6 brains were 

analyzed per genotype and time point. The sample size (n), mean and SEM are given in 

the figure legends. All statistical analyses were performed using GraphPad Prism 5.0. For 

comparisons across more than 2 groups, one-way ANOVA with Tukey post-hoc analysis 

was used. For comparison of 2 groups Student’s t-tests were performed. 
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Comet assay 

Two brains per genotype were dissected from adult flies in ice cold PBS. The brains were 

homogenized with a plastic pestle and subjected to comet using commercially available 

reagents (CometAssay, Trevigen). Fifty nuclei were quantified per trail using Casplab 

software. The experiment was repeated 3 times. 

 

Measurement of oxygen consumption and extracellular acidification rates 

The OCR and extracellular acidification rate were measured as previously described 

(Sarkar et al. 2020). Briefly, brains from 10-day-old flies were dissected and plated at one 

brain per well on XFe96 plates (Seahorse Bioscience) and metabolic parameters were 

assayed. 6 brains per genotype were analyzed. OCR values were normalized to DNA 

content using a CyQUANT assay (Thermo Fisher Scientific) following the manufacturer’s 

protocol.  

 

scRNA sequencing: sample preparation  

To dissociate fly brains for the scRNA sequencing we modified previously published fly 

brain dissociation protocols (Li et al. 2017; Davie et al. 2018). Briefly, 20 male and 20 

female brains from 10-day-old flies were dissected on ice cold Schneider’s medium with 

FBS (Gibco, filtered 10% FBS). After a brief centrifugation, the supernatant was removed 

and the brains washed with ice cold PBS to remove Schneider’s medium. The brains were 

then incubated at 25 °C with 300 µl of 0.05% trypsin-EDTA (Fisher Scientific) for 30 

minutes, with continuous pipetting every 5 minutes. Additionally, the solution containing 

brain chunks was passed through 25-gauge needle (25G 5/8), without introducing air 
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bubbles, roughly 50 times. After the brains were fully dissociated, the resultant solution 

was poured through a 10 µm pluri-select cell strainer (Fisher Scientific) and 400 µl of ice-

cold Schneider’s medium containing FBS was added to inactivate trypsin. The sample 

was centrifuged for 15 minutes at 600 x g and the supernatant was removed without 

disturbing the pellet. The pellet was suspended in sterile PBS containing 0.04% BSA. The 

cells were quantified, and the viability was determined using AO-PI reagents (Logos 

Biosystems). 

Single-cell encapsulation, sequencing, and downstream processing 

We proceeded only with samples having more than 90% viability for the single-cell 

encapsulation. The samples were encapsulated, 6 libraries were prepared, 3 control and 

3 tau P251L knock-in, at the single-cell core facility at Harvard Medical School, following 

the manufacturer’s protocol (10x Genomics). The libraries were sequenced on NovaSeq 

6000 V1.5 S2 located in the Harvard Medical School Biopolymers Facility.  

10x raw data processing 

The sequenced libraries were processed using Cellranger (version 6.0, 10x Genomics). 

The Drosophila reference genome BDGP6.32 was used and built following 10x Genomics 

users guide instruction. The output of Cellranger were used as an input of SoupX (version 

1.5.2) and Scrublet (version 0.2.2) to remove potential ambient RNA and doublets, 

respectively. The resulting count matrices, indicating transcripts (UMI) and cells 

(barcodes) detected by sequencing, were used for quality control and downstream 

analysis. 
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Seurat data processing 

The ambient RNA and doublet removed count matrices were used as input of Seurat in 

R (version 4.1.0) (Team 2016; Butler et al. 2018). For each library, cells with less than 

10% of mitochondrial genes were kept for upstream analysis. In addition, cells with 

feature counts and UMI counts within 3 standard deviations of the mean library feature 

counts and UMI counts were kept for downstream processing. In addition, only features 

detected in at least 3 cells were kept. Data normalization was then performed across 

libraries to remove variation of sequencing depth, by employing a global-scaling 

normalization method “LogNormalize” (i.e., the feature expression measurements for 

each cell were divided by the total expression, multiplied by a scale factor of 10,000, and 

then log-transformed). The top 2,000 most variable features were selected and used for 

downstream analysis including dimension reduction. To annotate cell types and perform 

differential expression analysis between conditions in an experiment, libraries sequenced 

in one experiment were integrated by identifying common anchors between conditions. 

The dimensions of the expression matrices were then reduced by principal component 

analysis (PCA). The ElbowPlot function was used to determine the optimal number of 

dimensions used to identify cell clusters. Cell clusters were identified with the default 

method in Seurat. In brief, a K nearest neighbors (KNN) graph was first constructed based 

on the Euclidean distance of cells in PCA space, and the edge weights between any two 

cells were refined based on the shared overlap in their local neighborhoods (Jaccard 

similarity). Louvain algorithm was applied to iteratively group cells together to form 

optimized communities with the resolution parameter of 0.5. Cells within the graph-based 

clusters determined above were further visualized and explored by Uniform Manifold 



 
9 

Approximation and Projection (UMAP) non-linear dimensional reduction (Becht et al. 

2019). The cell clusters were then annotated based on manual inspection of top feature 

genes and known marker genes expression in each cluster. Finally, the differentially 

expressed genes across conditions were examined by comparing expression profile of 

each cluster across experimental conditions using MAST 1.23.1 (Finak et al. 2015). The 

significant differentially expressed genes (DEGs) were defined as FDR-adjusted p-value 

< 0.05 and absolute log2fold-change > 0.25. The top DEGs were also shown in the 

volcano plots and the heatmap. 

Cell cluster annotation, gene enrichment, and Ontology analyses 

To annotate cluster identity, we used data collated by the Drosophila RNAi Screening 

Center single-cell RNA sequencing DataBase (DRscDB) from previous Drosophila brain 

single cell sequencing analyses (Davie et al. 2018; Hu et al. 2021; Li et al. 2022). Gene 

enrichment and Ontology analyses were performed with FlyEnrichr(Chen et al. 2013; 

Kuleshov et al. 2016) using 2 differentially enriched gene lists: 1) differentially up-

regulated genes, FDR-adjusted p-value < 0.05 and log2fold-change > 0.25, throughout all 

brain cell clusters, and 2) differentially down-regulated genes, FDR-adjusted p-value < 

0.05 and log2fold-change > -0.25 throughout all cell clusters in the tau P251L Drosophila 

brain. GeneRIF terms were used for Gene Ontology analysis. We showed the top 5 

enriched terms for all the gene enrichment analysis and removed the redundant terms in 

the same gene sets. Enrichment analysis data is presented as a combined score, which 

is the combination of the p-value (computed using Fisher exact test) and z-score 

(computed to assess the deviation from the expected rank) calculated by multiplying the 

two scores, giving the combined score (c) = log(p)*z (Chen et al. 2013). Gene enrichment 



 
10 

terms, genes, genes contributing to the identified enrichment terms, p-values, z-scores, 

and combined scores are given in each supplementary files and displayed in the 

corresponding figures. 

Protein-protein interaction network and cell-cell communication analysis 

For the protein-protein network analysis, all the annotated clusters in the single-cell RNA 

sequencing dataset were classified based on their location within the Drosophila brain: 

central body, optic lobe, and glial cells. Differentially expressed genes with a log2 fold 

change > 0.25 and < -0.25 with FDR < 0.05, were used as input for the OmicsIntegrator 

protein-protein interaction package (Tuncbag et al. 2016). Fold change was used as the 

prize. Network hyperparameters were sorted hierarchically by the average node 

specificity, node robustness, and KS statistic of the degree of predicted nodes to that of 

prize nodes to choose a parameter set. In short, robustness was determined as the 

percentage of times a node appeared in the network after 100 random permutations of 

the network edges. Node specificity was the percentage of networks in which the node 

was observed after randomly shuffling the prize values and re-running the algorithm 100 

times. A network parameter set corresponding to smaller specificity values, higher 

robustness values, and smaller KS statistics was selected. The genes identified in each 

network were used to annotate the biological processes using FlyEnrichr (Kuleshov et al. 

2016). The cell-cell interaction analysis was performed as previously published (Liu et al. 

2022).  

Trajectory analysis 

Trajectory analysis was performed using Slingshot (Street et al. 2018) on astrocyte 

subclusters. Trajectories were calculated on defined subclusters with the cell type 
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showing the highest entropy used as a starting cluster (Guo et al. 2017). Differential gene 

expression along each pseudotime lineage was calculated using a generalized additive 

model (Chambers and Hastie 2017). The first 1000 genes from all lineages were 

calculated and top 100 genes were shown on the heatmaps.  

Gene regulatory network analyses 

The previously published pySCENIC (v 0.10.0) (Single-Cell rEgulatory Network Inference 

and Clustering) pipeline with the Drosophila genome 9 (Dm9) reference genome was 

used to assess gene regulatory networks (Van de Sande et al. 2020). The level of regulon 

activity in each cell was scored using AUCell, which was then converted to a binary scale 

to reflect the presence or absence of the regulon.  
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Supplemental Table S7: Details of regulons identified, via gene regulatory network 
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Supplemental Figures 
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Supplemental Figure S1: Multiple sequence alignment of tau across species. 

Alignment of human tau (4 repeat) and C. elegans PTL1 (tau homolog) to tau from 

different species. Conserved residues are highlighted in bold, and human proline 301 and 

orthologous prolines in other species are shown in bold red. The alignment highlights 

conservation of microtubule binding domains (MTBD). 
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Supplemental Figure S2: Drosophila tau levels and PCNA staining in tau P251L KI 

brains compared to controls. Immunoblotting analysis using an antibody to Drosophila 

tau shows equivalent levels of wild type and P251L tau (A). The blot is reprobed with an 

antibody to GAPDH to illustrate equivalent protein loading. Representative images of 

proliferating cell nuclear antigen staining in control and tau P251L knock-in Kenyon cells 

(arrows, identified with the neuronal marker elav) (B). Control is elav-GAL4/+. Flies are 

10 days old in (A) and 30 days old in (B). 
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Supplemental Figure S3: Relative abundance of the cells and neuronal identities 

within the final integrated dataset. Individual 10x runs were integrated and contained 

cells from all clusters: 3 of control and 3 of tau P251L KI and relative abundance (%) of 

the medullary neurons (14 clusters), Kenyon cells (3 clusters), glial cell (2 clusters), 

MBON cluster, and T-neurons (3 clusters) in the individual scRNA-seq runs (A,B). 

Relative abundance (%) of the 3 integrated control and tau P251L KI datasets (C). 

Relative expression (>2 fold) of the key neuronal identity markers genes, such as VAChT 

for cholinergic neurons, Gad1 for GABAergic neurons, VGlut for glutamatergic neurons, 

and DAT for dopaminergic neurons, within the integrated dataset (D). Relative abundance 

(%) of the neuronal identities within the integrated dataset (E). Relative abundance (%) 

of the neuronal identities in the individual scRNA-seq runs (F). Relative abundance (%) 

of neuronal identities in the 3 integrated control and tau P251L KI datasets (G). 
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Supplemental Figure S4: Expression profile of the top genes within the integrated 

dataset. The proportion of each sample, 3 of control and 3 of tau P251L KI, within the 

final integrated dataset obtained after scRNA-seq bioinformatics pipeline (A). Heatmap of 

the top 10 highly expressed genes emerged after dimensionality reduction in all the 

clusters within the integrated dataset (B). A dot plot showing the percentage expression 

of the top 3 genes within each single cell cluster identified in the integrated dataset. These 

3 top markers and other top 7 markers (top 10 markers) were used to annotate the single 

cell cluster identities (C).  
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Supplemental Figure S5: Individual expression UMAP plots of the top 3 genes used 

to annotate cellular populations. Relative expression of the top marker genes, such as 

dac, crb, and jdp, within the integrated dataset used to annotate Kenyon cells (A). Relative 

expression of top marker genes, such as Yp1, Yp2, and Yp3, within the integrated dataset 

used to annotate mushroom body output neurons (MBON) (B). Relative expression of top 

marker genes, such as MtnA, CG8369, and CG1522, within the integrated dataset 

annotating the glial cells (C). Relative expression of top marker genes, such as CG34355, 

Gad1, and mamo, within the integrated dataset, used to annotate the medullary neurons 

(D). Relative expression of top marker genes, such as acj6, Lim1, and sosie, within the 

integrated dataset, used to annotate the T neurons (E). 
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Supplemental Figure S6: Differentially regulated enrichment terms in tau P251L KI 

brains compared to controls. KEGG pathways analysis of all up-regulated genes in tau 

P251L KI brains identified the AGE-RAGE signaling pathway in diabetic complications 

and the glycolysis pathway for the down-regulated genes in tau P251L KI brains (A). RNAi 

screen from genome RNAi identified Gq-linked GPCR signaling RNAi screen for the up-

regulated genes in tau P251L KI brains and Drosophila C virus infection screen for the 

down-regulated in tau P251L KI brains (B). The transcription factor analysis identified 

most of the up-regulated genes in tau P251L KI brains as associated with the Trl 

transcription factor and down-regulated genes in tau P251L KI brains as associated with 

the Mad transcription factor (C). Protein-protein interactions network hub analysis 

identified up-regulated genes in tau P251L KI brains associated with the Sec5 and down-

regulated genes in tau P251L KI brains to be associated with dorsal PPI network hub (D). 

InterPro domain analysis identified the C2 domain as associated with the up-regulated 

genes in tau P251L KI brains and the Glycoside hydrolase family 18 as associated with 

the down-regulated genes in tau P251L KI brains (E). Loss of function (LOF) phenotype 

analysis identified the term recessive associated with the up-regulated genes in tau 

P251L KI brains and minute associated with the down-regulated genes in tau P251L KI 

brains (F). score = log(p)*z. 
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Supplemental Figure S7: Differential gene expression in the central body, optic 

lobe, and glia in tau P251L knock-in brains compared to controls. Differentially 

regulated genes, both up-and down-regulated, in the central body of tau P251L knock-in 

brains (A). GO analysis shows biological processes associated with up-regulated and 

down-regulated genes in the central body of tau P251L knock-in brains (B). Differentially 

regulated genes, both up and down-regulated, in the optic lobe of tau P251L knock-in 

brains (C). GO analysis shows biological processes associated with up-regulated and 

down-regulated genes in the optic lobe of tau P251L knock-in brains (D). Biological 

processes, up and down-regulated, in the common neuronal genes in the central body 

and optic lobe (E). Differentially regulated genes, both up and down-regulated, in glia of 

tau P251L knock-in brains (F). GO analysis shows biological processes associated with 

up-regulated and down-regulated genes in the glia of tau P251L knock-in brains (G). All 

dots on the volcano plots are significant at FDR < 0.05 and log2fold-change > 0.25 for up-

regulated and < -0.25 for down-regulated genes. The score represents the combined 

score c = log(p)*z (Chen et al. 2013). 
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Supplemental Figure S8: Protein interaction networks enriched in the central body 

of tau P251L KI brains. OmicsIntegrator identified various PPI interaction maps in the 

central body of tau P251L KI brains, including regulation of lipid localization, cGMP-

mediated signaling, alpha-amino acid transport, cellular protein catabolic process, sodium 

ion homeostasis, receptor clustering, regulation of FGF signaling, transepithelial 

transport, nuclear organization, SRP dependent co-translation, membrane protein 

proteolysis, mRNA processing, and electron transport chain. 
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Supplemental Figure S9: Protein interaction networks enriched in the optic lobe of 

tau P251L KI brains. OmicsIntegrator identified various PPI interaction maps in the optic 

lobe of tau P251L KI brains, including mitochondrial electron transport chain, larval 

muscle development, oxidative phosphorylation, tetrahydrofolate metabolic process, 

nucleus organization, synaptic vesicle exocytosis, lipid modification, cellular response to 

superoxide and electron transport chain.  
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Supplemental Figure S10: Protein interaction networks enriched in glial cells of tau 

P251L KI brains. OmicsIntegrator identified various PPI interaction maps in glial cells of 

tau P251L KI brains, including cellular protein catabolic process, electron transport chain, 

fatty acid metabolic process, replication fork processing, epithelial tube formation, 

ceramide metabolic process, actin polymerization or depolymerization, NAD metabolic 

process, regulation of wound healing, calcium ion-dependent exocytosis, response to 

peptide-mediated signaling, second messenger mediated signaling. 
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Supplemental Figure S11: Compared to control, cell-cell communication analysis 

of tau P251L KI brains reveals a distinctive role of glial and Kenyon cells. Perineurial 

glial cells actively send ligands of integrin-mediated signaling to other clusters in the 

control brain, but perineurial don’t send these signals in tau P251L KI brains (A). EGFR 

signaling increases from perineurial glial cells to the other tau P251L KI brain clusters. 

Further, 4 clusters send ligands of the EGFR signaling in control, but 5 clusters send 

ligands in tau P251L KI brains (B). Like EGFR signaling, FGFR signaling increases in tau 

P251L KI brains: 4 clusters send ligands in the control brain, but 8 clusters send ligands 

in tau P251L KI brains (C). An increase of hedgehog signaling from the perineurial glial 

cells to other clusters can be observed in tau P251L KI brains. Further, 4 clusters send 

hedgehog signaling ligands in the control brains, but 5 clusters in tau P251L KI brains 

(D). A decrease of insulin (10 clusters send ligands in the control while 8 clusters send 

ligands in tau P251L KI brains)  and Wnt signaling (decreased communication lines from 

cluster 18 in tau P251L KI brains)  in tau P251L KI brains (E&F).  
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Supplemental Figure S12: Differential gene expression and enrichment analysis in 

the Kenyon cells (KC) of tau P251L KI brains compared to controls. The volcano plot 

shows differentially up and down-regulated genes in the g KC cluster (A). Gene Ontology 

analysis found zonula adherens assembly to be the most common up-regulated and DNA 

packaging to be the most common down-regulated biological process in the g KC cluster 

(B) The volcano plot shows differentially up and down-regulated genes in the a/b KC 

cluster (C). Gene Ontology analysis found zonula adherens assembly to be the most 

common up-regulated and DNA packaging to be the most common down-regulated 

biological process in the a/b KC cluster (D). The volcano plot shows differentially up and 

down-regulated genes in the a’/b’ KC cluster (F). Gene Ontology analysis found RNA 

splicing to be the most common up-regulated and RNA export from the nucleus to be the 

most common down-regulated biological process in the a’/b’ KC cluster (F). All red dots 

on the volcano plots are significant genes meeting the cutoff of FDR-adjusted p-value < 

0.05 and log2fold-change > 0.25 for up-regulated and < - 0.25 for down-regulated genes, 

score = log(p)*z.  
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Supplemental Figure S13: Density plots compare the expression of regulons 

enriched in tau P251L knock-in Kenyon cells compared to controls.  The density 

plots comparing the expression of regulons in the control vs tau P251L knock-in Kenyon 

cells show that the expression of regulons such as HSF, fru, Zfh2, usp, Stat92E, and Parp 

is significantly elevated in tau P251L knock-in Kenyon cells compared to controls.  
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