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Supplementary methods 

Fluorescence-activated flow sorting 

Samples from the time of diagnosis paired with EMM samples were obtained from 

the Biobank as frozen bone marrow mononuclear cells (BMMC) or frozen magnetic-

activated cell sorted (MACS) plasma cells using CD138 magnetic beads (Miltenyi 

Biotec, Germany). BMMC samples, and some MACS samples with sufficient numbers 

of cells, were subsequently FACS sorted as described in the section “FACS” in the 

main text. T-lymphocytes were used as normal cell population for exome sequencing 

and were sorted using CD3 marker from peripheral blood or bone marrow. 

Whole Exome Sequencing data analysis 

The raw reads were aligned to the human reference genome GRCh38 using BWA 

MEM1 v0.7.17 and sorted and indexed with Sambamba2 v0.8.2 . The quality of the raw 

data and alignments was investigated using Picard3 v2.9.2 and MultiQC4 v1.9. Somatic 

single nucleotide variants (SNVs) and short insertions or deletions (INDELs) were 

identified using GATK5 v4.1.4.1 Mutect26, Strelka7 v2.9.10, Manta8 v1.6.0 and 

Varscan9 v2.4.3 and were annotated with vcf2maf10 v1.6.21 algorithm. Variants 

detected by at least two variant callers with Variant Allele Frequency > 0.05 were 

considered for downstream analysis. Furthermore, silent mutations, RNA mutations or 

mutations in Intronic or Intergenic regions were filtered out. Selected mutations were 

visualized as Oncoplot using Maftools11 algorithm. The Copy number 

Aberrations(CNA) were detected using Sequenza12 v3.0.0 with a default ploidy 

between 2 and 2.8. Cancer cell fraction (CCF) was estimated using PyClone13 v0.13.1 

utilizing the filtered mutations and CNAs detected by Sequenza. Visualization of the 



 

 

WES results was performed combining Maftools and Inkscape tool for vector graphics. 

Mutational signatures were investigated using mmsig14 algorithm with cosine similarity 

threshold of 0.05. The stricter threshold was chosen since the default threshold of 0.01 

resulted in overfitting of the data with SBS-MM1 signature corresponding to Melphalan 

exposure in one patient sample at diagnosis without any reported Melphalan exposure 

history. 

 

Transcriptome data analysis 

 The raw fastq files were trimmed for adapter and low-quality reads using 

TrimGalore v0.6.6, a wrapper of the Cutadapt15 program and SortMeRNA16 v4.2.0  was 

used for filtering out rRNA reads. Furthermore, STAR17 aligner v2.7.7a and Qualimap18 

v2.2.2-dev were used for additional quality control. Reads passing the quality check 

was further subjected to transcript quantification using Salmon19 v1.4.0. Differential 

gene expression analyses were performed with DESeq220 v1.30.0. Significant genes 

were selected based on following criteria: with Benjamini-Hochberg adjusted p-value 

< 0.05 and absolute value of Log2 Fold change > 1. The analysis of fusion transcripts 

was performed using three different algorithms namely Arriba21 v2.1.0, 

FusionCatcher22 v1.33 and Star-fusion23 v1.6.0. The TRUST424 v1.0.5.1 algorithm for 

immune repertoire reconstruction from bulk RNA-seq data was used to determine the 

most abundant Immunoglobulin heavy and light chains. Corresponding abundance of 

the transcripts in TPM were estimated from Salmon counts and pairwise comparison 

of IG  was performed in EMM samples. Finally, data were visualized using the R and 

Inkscape tool for vector graphics. 

Single cell transcriptomic data analysis 

Single cell RNA-seq (scRNAseq) data from EMM tumors from five patients were 

processed using 10x Genomics Cell Ranger25 7.1.0. EMM tumor sample EMM09 was 

sequenced twice in separate batches and was merged for downstream analyses. The 

raw reads were aligned to human reference genome GRCh38 followed by filtering and 

barcode counting. The filtered feature barcode matrix was then processed with the R 

package Seurat R toolkit26. In addition to the conventional filtering of low-quality cells 



 

 

or empty droplets with Seurat we used SoupX27 tool for removing ambient RNA 

contamination. Furthermore, DoubletFinder28 algorithm was integrated for detecting 

doublets. The count data was then log-normalized and 2,000 highly variable features 

were identified. Principal component analysis was performed on scaled data with 

previously determined variable features. The first 15 components were selected for 

dimensional reduction and then clustering was performed. The differentially expressed 

genes in each cluster were identified with the seurat function FindAllMarkers and the 

canonical markers were used to match the clusters to known immune cell types. 

Additionally, the algorithm SingleR29 together with the celldex package was used for 

automated annotation of the identified clusters. The major clusters of EMM cells from 

each sample were identified manually with the identified set of markers and the other 

immune cell types were identified utilizing SingleR with Novershtern hematopoietic 

data30 and Monaco Immune data31 references from celldex. 

 

Flow cytometric analysis of EMM tumor microenvironment 

Flow cytometry of basic immune cell subsets from EMM tumor cell suspensions 

was performed with the Euroflow lymphoproliferative disorder screening tube panel32. 

The material was processed according to Euroflow standard operating protocols for 

sample preparation33. Stained samples were acquired on a BD Canto II equipped with 

405 nm, 488 nm, and 633 nm lasers. Data were analyzed by Infinicyt software version 

2.0. Gating was performed on events free of debris and doublets. T cells were defined 

as CD3+ CD19- CD45+ SSClow with further subdivision to CD4+ or CD8+ subsets. 

NK cells were gated as CD3- CD19- CD56+/dim CD45+ SSClow. 

 

Survival analysis  

Survival analysis of Multiple Myeloma Research Foundation CoMMpass study  

(NCT01454297) (“CoMMpass”, N=699, IA20) data was performed using univariate 

and  multivariate Cox models and a multivariate Fine-Gray model to evaluate the risk 

of EMM. ‘MMRF_CoMMpass_IA20_PER_PATIENT.tsv’, 



 

 

‘MMRF_CoMMpass_IA20_PER_PATIENT_VIS-IT.tsv’ and 

‘MMRF_CoMMpass_IA20_STAND_ALONE_SURVIVAL.tsv’ from clinical datafiles 

was used to obtain clinical and survival characteristics of patients measured at the first 

visit. Furthermore ‘Somatic Mutation Files - SNV and INDEL 

MMRF_CoMMpass_IA20_combined_vcfmerger2_All_ 

Canonical_NS_Variants_Gene_Mutation_Counts.tsv’ and ‘SeqFISH 

Files_MMRF_CoMMpass_IA20_exome_gatk_cna_seqFISH.tsv’ files were used to 

identify somatic mutations and chromosomal aberrations of patients respectively. The 

dataset was filtered to contain only patients with valid profiling of chromosomal 

aberrations and mutations. Additional filters were applied to exclude patients with LDH 

measurements and ISS stage classification unavailable at baseline. Patients with 

single or multiple plasmacytomas at any visits were identified from the variable 

‘ST_NUMBEROFPLASM’ of ‘MMRF_CoMMpass_IA20_PER_PATIENT_VISIT.tsv’ 

dataset and was used as the indicator of EMM disease. Days until EMM occurrence 

or survival were estimated from variables ‘VISITDY’ and ‘ttcos’. Patients with KRAS 

gene mutated were identified from the dataset of somatic mutations filtered for Gene 

"ENSG00000133703". High-risk CAs defined as gain/amp1q21, del 13q14 and 

del17p13 with a threshold of 20% for positive detection by Seq-FISH were considered 

for the analysis. Univariate and multivariate Cox models and multivariate Fine-Gray 

mode was used to assess the impact of age(<= 65 vs > 65), ISS, LDH level, del 13q14, 

del 17p13, mutation in KRAS gene, gain/amp 1q21 or a combination of KRAS mutation 

and gain/amp 1q21 on the occurrence of EMM. We used p=0.05 as a threshold for 

significance in all analyses. We performed all computations and visualization using 

R(v4.0.3) and survival(v3.2.11), survminer(v0.4.9), lubridate(v1.7.10), readxl(v1.3.1), 

and tidyverse(v1.3.1) packages.  
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Supplementary figures 

 

 

Supplementary Figure 1: Comparison of basic characteristics of EMM and RRMM 
cohorts: (A) M-protein levels; (B) FLC levels; (C) BMPCs measured by cytology;  (D) 
BMPCs measured by flow cytometry. Abbreviations: EMM_dg: EMM patients at 
diagnosis; EMM: EMM patients at the time of relapse with EMM; RRMM_dg: 
relapse/refractory patients at diagnosis; RRMM: relapse/refractory patients at relapse. 
Statistical significance was inferred using nonparametric Mann-Whitney U test.  

 



 

 

 
Supplementary Figure 2: Most frequently amplified oncogenes and frequently 
deleted tumor suppressor genes (TSGs) and CD38 in EMM cells. Paired NDMM and 
EMM samples are grouped together. Patients that underwent anti-CD38 treatment are 
highlighted by green color. 
 

 
Supplementary Figure 3: All mutations in the KRAS gene detected in EMM samples.  
Larger dot indicates a mutation detected in two different samples. 
 
 
 
 
 
 



 

 

 
 

 
Supplementary Figure 4: Relative contribution of different mutational signatures to 
the overall mutational burden detected by mmsig software (details are described in 
Supp. Methods). Patients that underwent ASCT are highlighted by red color.  
  



 

 

 
 

 
Supplementary Figure 5: Pathway enrichment analysis based on comparison of 14 
EMM and 14 unrelated RRMM samples. Red and blue colors depict pathways that are 
up-regulated and down-regulated in EMM, respectively.  
 
 
 
 



 

 

 
Supplementary Figure 6: Level of expression of HLA-B/C genes represented as A) 
TPM; Rank among all expressed genes based on TPM visualized as B) a boxplot and 
C) a bar plot. Statistical significance was evaluated using Mann-Whitney U test. 
 
 
 
 
 



 

 

 
Supplementary Figure 7: CD4+ T cells, CD8+ T cells and NK cells detected in 
comparable proportions by (A) scRNA-seq and (B) flow cytometry (available for 4/5 
patients).  
 
 

 
Supplementary Figure 8: Loss of expression of typical markers CD38 (left; EMM09) 
and CD138 (right; EMM13) of EMM tumor cells of selected patients. These results are 
congruent with observations form bulk RNA (sample with low expression of CD38 is 
highlighted in the Fig. 5 with a black cross) and flow cytometry analyses. 
 


