Supplemental Information

Title: Identification and validation of a blood-based diagnostic lipidomic signature of pediatric inflammatory bowel disease

Author(s): Samira Salihovic¹, Niklas Nyström², Charlotte Bache-Wiig Mathisen³, Robert Kruse⁴, Christine Olbjørn⁵, Svend Andersen⁶, Alexandra J Noble^{7,8}, Maria Dorn-Rasmussen^{9,10}, Igor Bazov¹, Gøri Perminow¹¹, Randi Opheim³, Trond Espen Detlie¹², Gert Huppertz-Hauss¹³, Charlotte R H Hedin^{14,15}, Marie Carlson¹⁶, Lena Öhman¹⁷, Maria K Magnusson¹⁷, Åsa V Keita¹⁸, Johan D Söderholm¹⁸, Mauro D'Amato^{19,20,21}, Matej Orešič^{1,22}, Vibeke Wewer^{9,10}, Jack Satsangi^{7,8}, Carl Mårten Lindqvist¹, Johan Burisch^{10,23}, Holm H Uhlig^{7,8,24}, Dirk Repsilber¹, Tuulia Hyötyläinen^{25*}, Marte Lie Hoivik^{3*}, Jonas Halfvarson^{26*} ***Shared senior authors**

Author affiliations: ¹School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; ²Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; ³Department of Gastroenterology, Oslo University Hospital, Oslo, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway; ⁴Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; ⁵Department of Pediatrics and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway; ⁶Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway: ⁷Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; ⁸Biomedical Research Center, University of Oxford, Oxford, United Kingdom; ⁹Department of Paediatric and Adolescence Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; ¹⁰Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark. ¹¹Department of Pediatric Medicine, Oslo University Hospital, Oslo, Norway; ¹²Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway; ¹³Department of Gastroenterology, Telemark Hospital Trust, Skien, Norway; ¹⁴Karolinska Institutet, Department of Medicine Solna, Stockholm, Sweden; ¹⁵Karolinska University Hospital, Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden; ¹⁶Department of Medical Sciences, Uppsala University, Uppsala, Sweden; ¹⁷Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; ¹⁸Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; ¹⁹IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; ²⁰Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain; ²¹Department of Medicine & Surgery, LUM University, Casamassima, Italy; ²²Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; ²³Gastrounit, medical division, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark: ²⁴Department of Paediatrics, University of Oxford, Oxford, United Kingdom; ²⁵School of Science and Technology, Örebro University, Örebro, Sweden; ²⁶Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden

*Correspondence:

Jonas Halfvarson, Professor, Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden. Phone: +46 19 303000, +46 738 082361 Email: jonas.halfvarson@regionorebrolan.se

Inventory of Supporting Information

Table of Contents Supplemental Method	Page 2
Distribution of LacCer(d18:1/16:0) and PC(18:0p/22:6) in serum vs plasma	Page 3
Supplementary Tables	· ·
Table S1	Page 4
Table S2	Page 5
Table S3	Page 6
Supplementary Figures	-
Figure S1	Page 7

Distribution of LacCer(d18:1/16:0) and PC(18:0p/22:6) in serum vs plasma

Paired serum and plasma samples from healthy volunteers (N=5) were analyzed to compare LacCer(d18:1/16:0) and PC(18:0p/22:6) concentrations using the described methodology. Results revealed no significant differences between serum and plasma concentrations for both LacCer(d18:1/16:0) (369 ng/mL in serum vs 339 ng/mL in plasma, P = 0.13) and PC(18:0p/22:6) (223 ng/mL in serum vs 218 ng/mL in plasma, P = 0.72). These findings indicate no significant differences between paired plasma and serum concentrations.

Table S1. Discovery cohort (N=94) modelling specifics and validation cohort performance of evaluated machine learning algorithms on 169 lipids with and without prior feature selection for diagnostic prediction of pediatric IBD *vs* symptomatic controls.

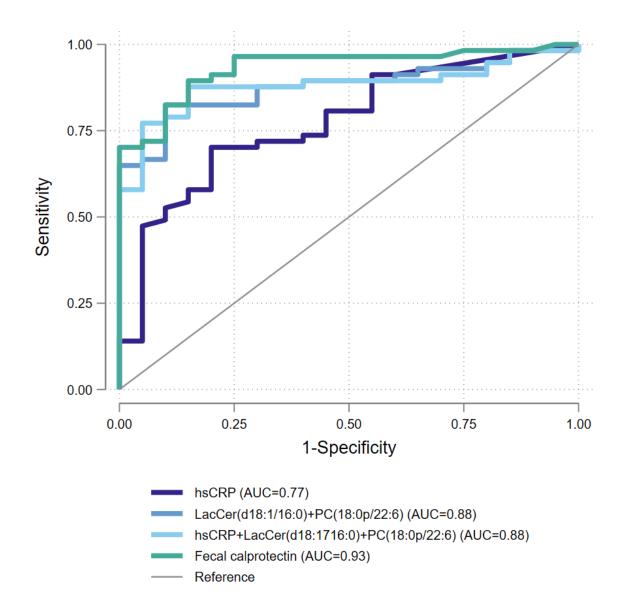
Algorithm method	R	Hyperparameters tuned	Averaged AUC of	Averaged AUC of
	package		models on all lipids	models following
			(95% CI)	Boruta selection
				of lipids (95% CI)
Penalized regularized	glmnet	mixture and penalty	0.76 (0.73-0.79)	0.81 (0.79-0.84)
logistic regressions (LR)				
Random forests (RF)	ranger	number of variables	0.81 (0.78-0.83)	0.78 (0.76-0.81)
		included in each random		
		tree and minimum n for		
		split		
XGBoosted trees (XG)	xgboost	number of variables	0.76 (0.72-0.79)	0.78 (0.75-0.81)
		included in each tree,		
		tree depth, loss		
		reduction, learning rate,		
		and minimum n for split		
Neural network (NN)	nnet	number of hidden layers	0.76 (0.73-0.79)	0.79 (0.76-0.82)
		and penalty		
Naïve Bayes (NB)	klaR	smoothness and laplace	0.63 (0.60-0.66)	0.70 (0.67-0.74)
LightGBM	bonsai	number of variables	0.79 (0.76-0.82)	0.75 (0.72-0.78)
		included in each tree,		
		tree depth, loss reduction		
		and learn rate		
Radial basis support	discrim	cost and sigma	0.70 (0.66-0.73)	0.74 (0.71-0.77)
vector machine (SVM)				
Stacked model of LR, RF	stacks	Individually for LR, RF	0.79 (0.79-0.82)	0.82 (0.79-0.84)
and NN (ST)		and NN as above		

Discovery cohort training and validation cohort testing procedure:

The discovery cohort was partitioned into training (75%) and internal testing (25%) sets. The variables of the training set were either used as a full set of all 169 lipids or reduced by Boruta selection with a cut-off of 0.01 (boruta package in R). Each set of data was standardized, and bagged tree model imputation of missing data (recipe package in R) and class balancing with Adaptive Synthetic Algorithm minority over-sampling technique (themis package in R) was performed on the training set. Tuning was performed with a Latin Hypercube search approach with internal validation on 15 bootstraps of the training data with classification performance evaluation scored as AUC on the discovery cohort testing set. Optimal hyperparameters were used in the final models and performance was assessed with the validation cohort data. This procedure was repeated iteratively 10 times as randomized nested cross-validation with random partitioning of the discovery cohort to training and testing set at each iteration to estimate the robustness of predictions with regards to random effects of discovery cohort partitioning. Area under the receiver operating curves (AUCs) averaged over nests are presented in the table.

Table S2. Youden index, sensitivity, specificity, positive likelihood ratio (LR), and negative LR of a signature of hsCRP, LacCer(d18:1/16:0) and PC(18:0p/22:6), and fecal calprotectin in predicting pediatric IBD in the validation cohort among children and adolescents who provided fecal samples (N=77).

Evaluated model	Youden Index (J)	Sensitivity	Specificity	LR(+)	LR(-)
		(%)	(%)		
hsCRP	0.50	70.2	75.0	2.8	0.4
PC(18:0p/22:6) and LacCer(d18:1/16:0)	0.73	82.5	90.0	8.2	0.2
Fecal calprotectin	0.75	82.5	90.0	8.2	0.2


Abbreviations: hsCRP, high sensitivity C-reactive protein; LR(+), likelihood ratio for positive test result; LR(-), likelihood ratio for a negative test result

	IE	Symptomotio	
	Crohn's disease	Ulcerative colitis	Symptomatic controls*
Ν	110	54	99
Median age, years (IQR 1-3)	14 (11-16)	14 (13-16)	10 (6-14)
Males, n (%)	61 (55)	27 (50)	55 (56)
Location of CD, n (%)			
L1 (terminal ileum)	11 (10)		
L2 (colon)	27 (25)		
L3 (ileocolon)	35 (32)		
L4 A* (upper GI)	0 (0)		
L4 B** (upper GI)	2 (2)		
Lx (unknown)	35 (32)		
Behavior of CD, n (%)			
B1 (non-stricturing, non- penetrating)	76 (69)		
B2 (stricturing)	6 (5)		
B3 (penetrating)	9 (8)		
Bx (unknown)	12 (11)		
p (perianal disease)	7 (6)		
Extent of UC, n (%)			
E1 (proctitis)		10 (19)	
E2 (left sided)		10 (19)	
E3 (extensive)		9 (17)	
E4 (pancolitis)		13 (24)	
Ex (unknown)		12 (22)	

Table S3. Demographics and clinical characteristics of the pediatric confirmation cohort.

*Out of 99 symptomatic controls, 30 were diagnosed with celiac disease.

Abbreviations: IBD, inflammatory bowel disease; CD, Crohn's disease; UC, ulcerative colitis; GI, gastrointestinal.

Figure S1. Receiver operating curve (ROC) for diagnostic prediction of pediatric IBD among the 77 out of 117 children that provided fecal samples in the validation cohort using logistic regression. Model performance and validity measures were as follows: Area under the curve (AUC) for hsCRP was 0.77 (95% CI 0.65-0.89), AUC for the top two validated molecular lipid species LacCer(d18:1/16:0) and PC(18:0p/22:6) was 0.88 (95% CI 0.80-0.95), AUC for high-sensitivity C-reactive protein (hsCRP) in combination with the two top validated lipids was 0.88 (95% CI 0.80-0.95), and finally the AUC for fecal calprotectin was 0.93 (95% CI 0.88-0.99).