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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The paper reports the occurrence of the progressive dysbiosis, characterized by reduced alpha 

diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment, occurring in the oral, 

lung, and gut compartments in a large cohort of mechanically ventilated patients with acute 

respiratory failure. Despite the fact that chronic obstructive pulmonary disease, immunosuppression, 

and antibiotic exposure shaped dysbiosis, the unsupervised clusters of lung microbiota diversity and 

composition independently predicted survival, transcending clinical predictors. The authors conclude 

that insights into the dynamics of the microbiome during critical illness highlight the potential for 

microbiota-targeted interventions in precision medicine. 

 

Comments 

The paper is of high quality but many of the reported analyses lack an adequate comparison method 

since microbiome data obtained with high throughput sequencing are intrinsically compositional. 

The type and the quality of sequencing together with data normalization applied to each type of 

sequencing should be better detailed. The use of the limma package with clr normalization is highly 

appreciated but more details and/or source code for the regression model and at least a detailed 

workflow of your “custom Mothur-based pipeline” are appreciated. Attention should also be paid, in 

my opinion, to the method of estimating the Shannon index of each sample and its use. The Shannon 

index appears to be evaluated without applying any data normalization strategy and using all 

available readings in each sample. Therefore, the index evaluated with this procedure reflects the 

richness and uniformity of the microbial composition influenced by the sequencing depth of the 

sample. The use of the estimated index as described above, although it may be adequate for 

comparing groups obtained by DMM clustering (i.e. in Figure 3), could be misleading if used to 

compare diversity between groups as in Figure 1. In order to properly compare microbial diversity 

between groups, a data normalization strategy that takes sequencing depth into account should be 

considered, and the Shannon index of each sample should be estimated on the normalized data. This 

reviewer suggests using diversity index estimation procedures based on the intended purpose, i.e., 

comparing the compositional diversity or comparing clusters obtained considering all reads in each 

sample. Also the database and corresponding version on which taxonomy was evaluated should be 

explicitly indicated (supposed to be greengenes from some reference but please detail information) 

together to the classifier used. 

 

Specific points 

Some point of the “Supplementary Table 1 - The STORMS checklist” should be revised as requested 

below and text should be congruently adapted. 



Line 56-67 – Abstract: Sequencing methods that define the strategy used for metagenomic 

classification are not indicated in the abstract while the STORMS checklist 1.2 state “yes”. Please 

update one of the two documents. If sequencing is inserted in the abstract, please specify the two 

types of sequencing: High-throughput (Illumina) and metagenome (nanopore). 

 

STORM check list 3.6 - page 21: samples dropout should be further detailed. In particular, any 

dropout of the sequenced samples should be described. Please, specify exclusions due to eventual 

low number of reads as required by https://www.stormsmicrobiome.org/figures/. 

 

Line 137: “In an initial quality control step, we demonstrated robust detection of bacterial 16S reads 

in oral, lung and gut samples in the UPMC-ARF cohort compared to negative controls (Figure S1A-B).” 

Line 516: “For microbial community profiling, we included samples that produced >300 high quality 

microbial reads for both 16S-Seq and Nanopore sequencing.” 

Figure S1: “A-B: Clinical samples from critically ill patients and healthy controls he had much higher 

sequencing yield (high quality reads from Illumina MiSeq 16S rRNA gene sequencing) and markedly 

different bacterial composition (as shown in Principal Coordinates Analysis) compared to negative 

controls or PCR positive samples.” 

The text and figures caption should clearly describe which types of sequencing were used and if 

nanopore sequencing results are also included in the figure. 

Figure S1A shows boxplots of the number of “high quality” reads from 16S Miseq Illumina. Being 

sequencing from high throughput compositional, the number of obtained reads, is “irrelevant, and 

contains only information on the precision of the estimate” (Gloor et al. 2017 

https://doi.org/10.3389/fmicb.2017.02224 ). To make a robust comparison between groups, further 

information on the quality of 16S sequencing is needed since a low number of reads could be due to 

an inadequate sequencing depth even for samples with high microbial load. On the other hand, a 

high number of reads could be due to high PCR sample amplification even for samples with low 

microbial load. In particular, this reviewer suggests replacing the boxplots of the number of reads 

with the Shannon index rarefaction curves (at sequence variant or OTU level) of both clinical and 

control samples in order to assess whether a sequencing depth of 300 is enough to reach the plateau 

for all samples. In such a case, estimates of feature proportions will produce reliable Shannon 

estimate also for those samples with only 300 reads. Otherwise, a criterion will be available for 

removing samples that does not have enough reads for assuring a reliable feature proportion 

estimates. Also a Beta rarefaction analysis as reported by Cameron et al. 2021 at 

https://doi.org/10.1038/s41598-021-01636-1 could help to evaluate if samples with small 

sequencing depth affects PCoA samples ordering. 

Please, specify the metric on which PCoA is evaluated and highlight which normalization has been 

applied to the data (see Lin 2020 in https://doi.org/10.1038/s41522-020-00160-w). In fact, if PCoA is 

applied to diversity metrics evaluated on the taxa abundance in each sample without applying 

further normalization, the compositional diversity is heavily influenced by the different sequencing 



depth between samples. Furthermore, describe the p value indicated in Figure S1 B (and D) since it is 

unclear which hypothesis it refers to. Also, the correction of p value should be defined since multiple 

comparisons are evaluated. 

Please, specify the taxonomic level at which diversity indexes are evaluated (genus or sequence 

variants or OTU or something else). 

In the method section some details should be given on the definition of “high quality reads” (i.e. 

number of average erroneous base per strand or per amplicon, minimum quality score per base, ….). 

Line 143: “Samples from critically ill patients had significantly lower alpha diversity (Shannon index) 

in each compartment compared to corresponding healthy control samples. Alpha diversity further 

declined in all three body compartments across longitudinal samples (Figure 1A). Similarly, baseline 

ICU samples had markedly significant differences in beta diversity from healthy controls (Figure 1B)” 

Line 516: “For microbial community profiling, we included samples that produced >300 high quality 

microbial reads for both 16S-Seq and Nanopore sequencing. We performed alpha diversity (Shannon 

index) calculations for each available sample, and then conducted between group comparisons of 

alpha diversity with non-parametric tests to draw inferences on systematic differences of alpha 

diversity between groups as a measure of relative community fitness. We conducted beta diversity 

analyses (Manhattan distances, analyzed via permutation analysis of variance and visualized via 

principal coordinates analyses) with the R vegan and mia packages.” 

In order to properly compare alpha and beta indexes among groups, the type of normalization data, 

if any, should be described for each type of sequencing; whether all the data have an adequate 

number of reads that allow a reliable estimate of microbial composition should also be given, since 

the Illumina 16S sequencing is a non-quantitative method. As noted above, rarefaction curves of the 

Shannon index on each sample vs sequencing depth help in clarifying. Please give more details on 

Figure 1B in the text or at least in the figure caption: what metric the figure refers to and if the 

Permanova p values refers to the test on diversity values or on their corresponding PCoA. Also 

correction of p value should be defined since multiple comparisons are evaluated. 

Line 146: “Taxonomic composition comparisons showed depletion of multiple commensal taxa in ICU 

samples, with significant enrichment for Staphylococcus in oral and lung samples, and Anaerococcus 

and Staphylococcus in gut samples (Figure 1C-D-E).” 

Please specify the two groups between which the logFC is evaluated. It can be argued from Figure 1-

A and labels in Figure 1-D that the two groups are all ICU patients and the healthy control but it 

seems it is not specified in the text or in the Figure legend. 

Line 151: “We then examined the compositional similarity (Bray-Curtis indices) between 

compartments to understand the relationship between the low biomass (lung) vs. high biomass (oral 

and gut) communities. We found higher similarity between oral-lung vs. gut-lung communities in the 

baseline and middle intervals (Figure 1G).” 

Figure 1G and its description are confusing. For each point time the figure axis reports the BC dis-

similarity while in the text is described the BC similarity. Please clarify. 



Assuming the correctness of the analysis shown in the figure, a BC dissimilarity index close to one 

indicates a high degree of diversity between the two groups in terms of quantitative composition. As 

such, the figure indicates that, for each time point, BC diversity between lung and gut is really high, 

close to 1, while BC diversity between oral and lung is lower. Authors should specify and describe the 

reason of the comparison of the average between oral-lung and gut-lung diversities or may be use 

the BC diversity of oral, lung and gut separately and mutually compare them. For a straightforward 

interpretation of the BC dissimilarity, the explanation of the data were normalized is recommended. 

Line 154: “Taxonomic comparisons between compartments revealed that no specific taxa were 

systematically different between oral and lung microbiota (Figure 1H),” 

The sentence should be reformulated since figure shows many feature above the significance 

threshold equal although with a corresponding logFC lower than 1.5. 

Data for differential abundance analysis in limma have been normalized with log-transform methods 

(clr). Please indicate whether rarefaction was also applied or whether the prevalence, in addition to 

the FC threshold, of feature was considered to significantly associate a feature to a group. Prevalence 

could help also in clarifying data reported in Figure S2. 

Line 170: “In both oral and lung communities, we found a progressive decline in the relative 171 

abundance of obligate anaerobes over time. There was, however, no corresponding change in the 

gut 172 composition of anaerobic (obligate or facultative) bacteria over time (Figure 2A-B).” 

The comparisons of feature relative abundance among groups also need to be carried out upon the 

explicit definition of the data normalization procedure. Being high-throughput sequenced data 

compositional in nature, traditional statistical tests cannot be applied to feature proportions unless 

properly normalized. This reviewer suggests to use clr as the normalization procedure for features 

relative abundance, as the authors have already done in Figure 1 C-D-E-H-I and as suggested by Gloor 

2017 in the reference cited above. The same comment applies to analyses described in Figure S2 and 

3. 

Line 496: “We processed derived 16S sequences with a custom Mothur-based pipeline and 

performed analyses at genus level.” Details of the custom pipeline should be given by describing the 

bioinformatics workflow and/or making available the pipeline code. 

Line 570: “To develop these models in each compartment (oral, lung and gut), we used probabilistic 

graphical modeling (PGM) by considering the 50 most abundant taxa in each compartment along 

with the Shannon Index.” Please, indicate explicitly what type of abundance was used (absolute, 

relative, clr, …) in the MLR model equation. 

Line 662: PRJNA726955 is not available on NCBI. Please check. 

Line 666: “Primary code and de-identified data for replication of analyses will be available on the 

github repository (https://github.com/MicrobiomeALIR/MultiCompartmentMicrobiome) upon 

acceptable of the manuscript for Publication." A confidential link to the reviewer for review purposes 

would be greatly appreciated and would speed up the review process. 



On a final note, it would be quite helpful if the authors precisely define which genera are included in 

the classification of bacterial genera into true respiratory pathogens, or oral commensals, or “other” 

category. For instance, what is the biological meaning of having plausible respiratory pathogens 

expanded in the gut at the baseline? Who were those? Likewise, how the authors interpret the 

abundance of the gut commensal C. albicans in the lung? Is it a respiratory pathogen? If so, how? 

Obligate anaerobes progressively declined in both oral and lung communities but not in the gut. 

Please, indicate here some of the relevant genera (among obligate anaerobes, facultative anaerobes, 

aerobes and microaerophiles), it will facilitate the comprehension. Likewise, specify the anaerobe 

abundance in patients with COPD and what the increased pathogen abundance refers to in all three 

compartments. The fact that receipt of anaerobic spectrum antibiotics was associated with a 

progressive decrease in obligate anaerobe abundance, without significant effects on pathogen 

abundance, does it mean that facultative bacteria were spared? How do you explain the the gut-

origin taxa enrichment in the lung samples without overt oropharyngeal colonization with such taxa? 

 

 

Reviewer #2 (Remarks to the Author): 

 

Kitsios et al. present a longitudinal multicenter cohort study investigating dynamic changes in the 

oral, lung, and gut microbiota in hospitalized critically ill patients and the impact of these changes on 

pertinent clinical outcomes. This is an important study that further advances our understanding of 

the prognostic relevance of microbiota signatures in critically ill patients. 

 

The investigators astutely point out that most microbiota studies involving critically ill patients are 

limited by statistical models that incorporate only a single microbial signature at a fixed sampling 

timepoint. 

 

They found that dysbiotic signatures emerged in all three body compartments (lung, gut, and oral 

cavity), predominantly characterized by a decrease in alpha diversity, a depletion of obligate 

anaerobe bacteria, and increased enrichment in more traditionally pathogenic taxa. In addition, they 

used DMM and bacterial-fungal SNF clustering methods to identify microbial signatures in the lungs 

(e.g., low diversity in the case of DMM clusters, high pathogen abundance in the case of bacterial-

fungal SNF clusters) that were associated with worse survival. 

 

Overall, this is a well-conducted study that addresses several novel questions. Strengths of this study 

include its large patient sample size (with a vast number of oral, LRT, and gut samples), its use of 

both derivation and validation cohorts, its use of longitudinally collected samples, and its use of 

methods that extend beyond 16S rRNA gene sequencing (which is limited solely to bacterial 

taxonomy). The manuscript contains a substantial amount of data but is concisely and clearly written. 



 

Major comments: 

1. The derivation cohort was more than 90% white/Caucasian, which may limit generalizability, 

although their findings were validated in more racially diverse cohorts (72-76% white). Nonetheless, 

this should be highlighted as a limitation. 

2. I was surprised to see a lack of taxonomic differences between the oral and lung microbiota 

(Figure 1H). To clarify, was this looking collectively at all oral and LRT samples? Is it possible that 

differences might emerge if you stratify by sample collection timepoint? Do the investigators think 

there would have been differences if they were comparing oral samples to BAL samples rather than 

to tracheal aspirates? 

3. Did the authors perform any type of contamination analysis? They very clearly demonstrate low 

biomass in their control samples. However, there is no designation of which individual ASVs/genera 

potentially represent contaminants. This is due mainly to the fact that microbes were clustered 

according to their oxygen requirement and pathogenicity (two classification schemes with clinical 

relevance in one prior study of patients with aspiration pneumonia) rather than genera. 

4. Can the authors provide a figure demonstrating what happens to bacterial load in all three 

compartments over time? 

5. Was there any consideration given to presenting these data with stratification according to genera 

rather than oxygen requirement and pathogenicity designations? What was the basis for these 

groupings? They only provide a single citation justifying this approach. 

6. What were the major taxonomic differences between DMM and weighted SNF clusters? This 

should be more clearly stated. 

7. In Figure 4, are the predictors used in the survival analyses DMM and SNF designations at any 

collection timepoint? Or does this only constitute the first sampling timepoint? If it is any sampling 

timepoint, the study loses its ability in part to look at how dynamic changes affect survival, which is 

really what drives home the novelty of this investigation. They point out that there was very little 

shift between DMM clusters based on the timing of sample collection. Then again, they also point 

out how the number of samples dwindled in later sample collection timepoints. Nonetheless, these 

analyses could be modeled using joint modeling of longitudinal and time-to-event data (see 

Henderson et al., Biostatistics 2000) with reporting of association strength estimates. 

8. The authors clearly state that use of endotracheal aspirate samples to represent the lung 

microbiota as opposed to reference standard BAL is a limitation of their study. They should comment 

more on how their findings might have differed if they used BAL samples. 

9. The authors point out a lack of association between inflammatory sub-phenotypes and DMM 

microbiota clusters. Regarding the lungs, multiple studies to date have shown that the lower airway 

microbiota affects lower airway immune tone in both diseased and healthy individuals. Do they 

investigators have any insight as to why no association was noted in their cohort? Is this because of 

their use of tracheal aspirates rather than BAL? 



 

Minor comments: 

1. A number of abbreviations are used in Figure S1 that are not clearly or accessibly defined. 

2. As part of their supplement, the authors should specify which specific taxa/genera were placed 

into the oxygen requirement and pathogenicity categories. 

3. The authors might consider regressing bacterial burden against the clinical covariates studied in 

other linear regression models. 

4. How was “immunosuppression” defined in regression models? 

5. I might consider adding grid lines to the images in Figure S4 to ease readability. 

 

 

 



 

 

 
Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine 

3459 Fifth Avenue, NW628 
Pittsburgh, PA 15213 
Phone: 412-692-2210 
Fax:  412-692-2260 

Georgios Kitsios, MD, PhD  
Assistant Professor of Medicine 

         Pittsburgh, March 25, 2024 
 

To Reviewers 1 and 2:  
 
We are deeply thankful for your thorough assessment and insightful feedback on our 
manuscript. Your input has helped us to further improve the quality of our manuscript. In 
this major revision, we address all criticisms and provide a detailed point-by-point review 
to all criticisms, along with the corresponding edits made to the manuscript.  
 
We would like to point out that we implemented all transformation and filtering analyses 
proposed by Reviewer 1, with provision of primary code and de-identified data which 
improved the clarity and interpretability of our findings. We also implemented all 
additional analyses recommended by Reviewer 2, including joint modeling for 
assessment of longitudinal microbiota changes and impact on patient outcomes.  
While our overall conclusions remain similar to our original submission, we have 
obtained further insights into our dataset, with important findings highlighted in the main 
manuscript and provision of extensive data and display items in the Supplement.  
 
All authors have read and approved this submitted manuscript, which is not currently 
under consideration for publication in any other journal.  
 
We hope that you will consider our manuscript of appropriate quality, rigor and 
importance for publication in Nature Communications.  
 
Sincerely, 
 
 
 
 
Georgios D. Kitsios, MD, PhD 
Assistant Professor of Medicine 
Division of Pulmonary, Allergy, Sleep and Critical Care Medicine 
University of Pittsburgh Medical Center 
Address: UPMC Montefiore Hospital, NW628,  
3459 Fifth Avenue, Pittsburgh, PA 15213 
Email: kitsiosg@upmc.edu 



 

Responses to Reviewer Comments 
 
 
Reviewer #1 (Remarks to the Author): 
 
The paper reports the occurrence of the progressive dysbiosis, characterized by reduced alpha 
diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment, occurring in the oral, 
lung, and gut compartments in a large cohort of mechanically ventilated patients with acute respiratory 
failure. Despite the fact that chronic obstructive pulmonary disease, immunosuppression, and 
antibiotic exposure shaped dysbiosis, the unsupervised clusters of lung microbiota diversity and 
composition independently predicted survival, transcending clinical predictors. The authors conclude 
that insights into the dynamics of the microbiome during critical illness highlight the potential for 
microbiota-targeted interventions in precision medicine. 
 
Comments 
The paper is of high quality but many of the reported analyses lack an adequate comparison method 
since microbiome data obtained with high throughput sequencing are intrinsically compositional. The 
type and the quality of sequencing together with data normalization applied to each type of sequencing 
should be better detailed. The use of the limma package with clr normalization is highly appreciated 
but more details and/or source code for the regression model and at least a detailed workflow of your 
“custom Mothur-based pipeline” are appreciated. Attention should also be paid, in my opinion, to the 
method of estimating the Shannon index of each sample and its use. The Shannon index appears to be 
evaluated without applying any data normalization strategy and using all available readings in each 
sample. Therefore, the index evaluated with this procedure reflects the richness and uniformity of the 
microbial composition influenced by the sequencing depth of the sample. The use of the estimated 
index as described above, although it may be adequate for comparing groups obtained by DMM 
clustering (i.e. in Figure 3), could be misleading if used to compare diversity between groups as in 
Figure 1. In order to properly compare microbial diversity between groups, a data normalization 
strategy that takes sequencing depth into account should be considered, and the Shannon index of 
each sample should be estimated on the normalized data. This reviewer suggests using diversity index 
estimation procedures based on the intended purpose, i.e., comparing the compositional diversity or 
comparing clusters obtained considering all reads in each sample. Also the database and 
corresponding version on which taxonomy was evaluated should be explicitly indicated (supposed to 
be greengenes from some reference but please detail information) together to the classifier used. 
Response: Thank you for this very positive assessment and thorough review of our manuscript. In this revision, 
we provide further details with regards to all analytical steps taken for generating our findings, and address all 
your suggestions below in full detail.  
 
With regards to the custom Mothur-based pipeline, we provide the link to the github source code, beyond 
citations to previous work from our group utilizing this workflow.  
 
“We processed derived 16S sequences with a custom Mothur-based pipeline (v1.44.1) as previously described 
(available at 
https://github.com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_Clust_Gen_Pipeline).” 
 
We provide detailed responses for the specific comments on Shannon diversity estimation and data 
normalization strategies in our responses that follow.  
 
Per the Reviewer’s strong recommendations, we have applied rarefaction prior to diversity analyses (alpha and 
beta), and provide all details in our responses below.  
We specify the rarefaction parameters and results with the following sections in Methods, Results and new 
Figure S1:  
 

https://github.com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_Clust_Gen_Pipeline


 

“We considered clinical samples that generated ≥1,000 quality 16S-Seq reads and performed rarefaction at 
1,000 reads to control for uneven sequencing depth between samples in estimation of diversity indices: alpha 
diversity by Shannon index (Figure S1), and beta diversity by Bray-Curtis similarity index in centered-log ratio 
(CLR) transformed abundances.” 
 
“We calculated alpha diversity with the Shannon index following rarefaction at 1,000 reads, with 100 random 
subsamplings to obtain average Shannon index for each available sample. Rarefaction curves showed that all 
clinical samples had reached plateau for calculation of Shannon index by 1,000 reads (Figure S1). We applied 
rarefaction to allow for between sample type comparisons because sequencing depth and yield varied between 
sample types.” 
 
With regards to the taxonomy database and classifier used, we clarify the specifics in our revised Online 
Methods section:  
 
For 16S-Seq:  
“Sequence taxonomic classifications were performed with the Ribosomal Database Project’s (RDP) naïve 
Bayesian classifier with the SILVA 16S rRNA database (v138).” 
 
For ITS-Seq:  
“Chimeras were removed and the Unite database was utilized to classify reads into amplicon sequence 
variants (ASVs) using the naïve Bayesian classifier method, defined at the species level.”  
 
For Nanopore:  
“We analyzed microbial metagenomic sequences with the EPI2ME platform (ONT) and the “What’s In My Pot” 
[WIMP] workflow to quantify abundance of microbial species.” 
 
For Illumina NovaSeq metagenomics sequencing (MGH validation cohort only) 
“Taxonomic profiles were generated using the bioBakery 3 shotgun metagenome workflow 3.0.0, the details of 
which have previously been described. Briefly, human reads were filtered using KneadData 0.10.0 and 
species-level taxonomic profiles generated using MetaPhlAn 3.0.0.” 
 
 
Specific points 
R1C1: Some point of the “Supplementary Table 1 - The STORMS checklist” should be revised as 
requested below and text should be congruently adapted. 
Response: Thank you, we revised the STORMS checklist accordingly.   
 
 
 
R1C2: Line 56-67 – Abstract: Sequencing methods that define the strategy used for metagenomic 
classification are not indicated in the abstract while the STORMS checklist 1.2 state “yes”. Please 
update one of the two documents. If sequencing is inserted in the abstract, please specify the two 
types of sequencing: High-throughput (Illumina) and metagenome (nanopore). 
Response: Thank you for pointing this out. We added the following sentence in the Abstract to illustrate the use 
of different sequencing techniques in our study.  
 
“Employing advanced DNA sequencing technologies, including Illumina amplicon sequencing (utilizing 16S 
and ITS rRNA genes for bacteria and fungi, respectively, in all sample types) and Nanopore metagenomics for 
lung microbiota, we observed progressive dysbiosis in all three body compartments.” 
 
R1C3: STORM check list 3.6 - page 21: samples dropout should be further detailed. In particular, any 
dropout of the sequenced samples should be described. Please, specify exclusions due to eventual 
low number of reads as required by https://www.stormsmicrobiome.org/figures/. 
Response: We provide details on the sample dropout in the revised Methods section:  

https://urldefense.com/v3/__https:/www.stormsmicrobiome.org/figures/.__;!!NHLzug!KKDyl0RHasoRHInnAUdl8WzdiakLZ8G177WSBNl4TtCLHhKJe5J8pYZXzZ7mzh9WmPOJbrMs3XsisopSlunutEJjOOxI$


 

 
“In the UPMC-ARF cohort, we considered 1520 unique clinical samples (593 oral swabs, 578 ETA/BALF [lung], 
and 349 stool or soiled rectal swabs [gut]). Filtering at 1,000 reads resulted in elimination of 112 clinical 
samples (24 oral swabs, 77 lung samples, and 11 gut samples). We performed 16S-Seq analyses at the genus 
level, which were filtered for singletons and low abundance taxa (i.e. those with relative abundance <0.0001 in 
<5% of samples), resulting in a final set of 214 unique genera for analyses.” 
 
 
 
R1C4: Line 137: “In an initial quality control step, we demonstrated robust detection of bacterial 16S 
reads in oral, lung and gut samples in the UPMC-ARF cohort compared to negative controls (Figure 
S1A-B).” 
Line 516: “For microbial community profiling, we included samples that produced >300 high quality 
microbial reads for both 16S-Seq and Nanopore sequencing.” 
Figure S1: “A-B: Clinical samples from critically ill patients and healthy controls he had much higher 
sequencing yield (high quality reads from Illumina MiSeq 16S rRNA gene sequencing) and markedly 
different bacterial composition (as shown in Principal Coordinates Analysis) compared to negative 
controls or PCR positive samples.” 
The text and figures caption should clearly describe which types of sequencing were used and if 
nanopore sequencing results are also included in the figure. 
Response: We apologize for any confusion in which sequencing approach was used for our analyses. We 
now clarify which methodology (16S-Seq; ITS-Seq; Nanopore Metagenomics) was used in each section of the 
results.  
In the revised Results, we added the following sentences:  
 
“By Illumina MiSeq 16S-Seq, we analyzed a total of 2557 clinical samples among all three cohorts and healthy 
controls, as well as 233 experimental control samples obtained either during patient sampling at the bedside or 
during sample processing in the laboratory.”  
 
“Beyond 16S-Seq, Illumina MiSeq Fungal ITS-Seq showed that >50% of communities in all three 
compartments were dominated by C. albicans (defined as >50% relative abundance), with a progressive 
decline in fungal Shannon index in oral and lung communities during follow-up. Nanopore DNA metagenomics 
of lung samples provided similar bacterial representations to 16S-Seq analyses and confirmed high abundance 
of C.albicans detected by ITS-Seq.” 
 
All Figure legends explicitly state the sequencing methodology used to generate the displayed results. 
 
 
R1C5: Figure S1A shows boxplots of the number of “high quality” reads from 16S Miseq Illumina. 
Being sequencing from high throughput compositional, the number of obtained reads, is “irrelevant, 
and contains only information on the precision of the estimate” (Gloor et al. 
2017 https://doi.org/10.3389/fmicb.2017.02224 ). To make a robust comparison between groups, further 
information on the quality of 16S sequencing is needed since a low number of reads could be due to 
an inadequate sequencing depth even for samples with high microbial load. On the other hand, a high 
number of reads could be due to high PCR sample amplification even for samples with low microbial 
load. In particular, this reviewer suggests replacing the boxplots of the number of reads with the 
Shannon index rarefaction curves (at sequence variant or OTU level) of both clinical and control 
samples in order to assess whether a sequencing depth of 300 is enough to reach the plateau for all 
samples. In such a case, estimates of feature proportions will produce reliable Shannon estimate also 
for those samples with only 300 reads. Otherwise, a criterion will be available for removing samples 
that does not have enough reads for assuring a reliable feature proportion estimates. Also a Beta 
rarefaction analysis as reported by Cameron et al. 2021 at https://doi.org/10.1038/s41598-021-01636-
1 could help to evaluate if samples with small sequencing depth affects PcoA samples ordering. 

https://urldefense.com/v3/__https:/doi.org/10.3389/fmicb.2017.02224__;!!NHLzug!KKDyl0RHasoRHInnAUdl8WzdiakLZ8G177WSBNl4TtCLHhKJe5J8pYZXzZ7mzh9WmPOJbrMs3XsisopSlunutOA0MczW$
https://urldefense.com/v3/__https:/doi.org/10.1038/s41598-021-01636-1__;!!NHLzug!KKDyl0RHasoRHInnAUdl8WzdiakLZ8G177WSBNl4TtCLHhKJe5J8pYZXzZ7mzh9WmPOJbrMs3XsisopSlunutLSi440O$
https://urldefense.com/v3/__https:/doi.org/10.1038/s41598-021-01636-1__;!!NHLzug!KKDyl0RHasoRHInnAUdl8WzdiakLZ8G177WSBNl4TtCLHhKJe5J8pYZXzZ7mzh9WmPOJbrMs3XsisopSlunutLSi440O$


 

Response: Thank you for this very helpful comment. In response to your suggestions, we provide the detailed 
rarefaction curves that illustrate the selection of a minimum threshold of 1,000 reads for the clinical samples 
analyzed. We provide a new supplemental Figure with all the details on rarefaction and PCoA plotting.  
 
 
“Figure S1: Quality control steps for clinical and experimental control samples by Illumina MiSeq 16S 
rRNA gene sequencing. A. Clinical samples from ICU patients and healthy control subjects had much higher 
16S-Seq yield of high-quality reads compared to experimental and procedure negative controls. Red dashed 
line at 1,000 reads. B. Shannon index (alpha diversity) rarefaction curves by sequencing depth for the clinical 
samples from ICU patients (oral, lung, and gut), illustrating that all samples reached plateau of Shannon 
indices at the cut-off of 1,000 reads used in analyses. C. Clinical samples had markedly different bacterial 
composition based on Centered-Log-Ratio (CLR)-transformed abundances of bacterial genera, shown as 
Bray-Curtis indices in Principal Coordinates Analysis (PCoA) compared to negative controls or PCR positive 
samples (Zymo Mock community controls), and analyzed by permutational analysis of variance (Permanova). 
D. Top taxa detected in negative control samples, indicating possible contamination. Overall, such taxa were 
detected at very low levels (mean number of reads <100). E-F. Quality control examination for gut samples. 
Unsoiled rectal swabs (i.e. not visibly coated by stool) had markedly lower bacterial burden (examined by 
qPCR of 16S rRNA gene) and differential composition compared to soiled rectal swabs or stool samples, and 
therefore, unsoiled rectal swabs were excluded from further analysis as they may not provide sufficient 
representation of gut microbiota.  

.”  



 

 
 

We also added the following text in Methods to justify the use of rarefaction for diversity parameter estimation, 
as per the Reviewer’s suggestion, and provide citations to the papers suggested by the Reviewer, as well as to 
the recent publication by Patrick Schloss on the advantages of rarefaction (PMID: 38054712).  

 
“We calculated alpha diversity with the Shannon index following rarefaction at 1,000 reads, with 100 random 
subsamplings to obtain average Shannon index for each available sample. Rarefaction curves showed that all 
clinical samples had reached plateau for calculation of Shannon index by 1,000 reads (Figure S1). We applied 
rarefaction to allow for between sample type comparisons because sequencing depth and yield varied between 
sample types. We conducted between group comparisons of alpha diversity with non-parametric tests to draw 
inferences on systematic differences of alpha diversity between groups as a measure of relative community 
fitness.1 We conducted beta diversity analyses (Bray-Curtis indices) on centered log-ratio (CLR) transformed 
abundances, analyzed via permutation analysis of variance (Permanova) and visualized via principal 
coordinates analyses with the R vegan and mia packages.” 
 

https://sciwheel.com/work/citation?ids=2910596&pre=&suf=&sa=0&dbf=0


 

 
 
R1C6: Please, specify the metric on which PCoA is evaluated and highlight which normalization has 
been applied to the data (see Lin 2020 in https://doi.org/10.1038/s41522-020-00160-w). In fact, if PCoA is 
applied to diversity metrics evaluated on the taxa abundance in each sample without applying further 
normalization, the compositional diversity is heavily influenced by the different sequencing depth 
between samples. Furthermore, describe the p value indicated in Figure S1 B (and D) since it is unclear 
which hypothesis it refers to. Also, the correction of p value should be defined since multiple 
comparisons are evaluated. 
Response: Thank you. We clarify that we performed PCoA plots on Bray-Curtis indices from CLR transformed 
abundances. The p-values are from Permanova tests (adonis function). We report globally adjusted p-value for 
the number of Permanova tests performed and reported per the Bonferroni corrected method.  
 
We added the following text in the Methods section:  
 
“We conducted beta diversity analyses (Bray-Curtis indices) on centered log-ratio (CLR) transformed 
abundances, analyzed via permutation analysis of variance (Permanova) and visualized via principal 
coordinates analyses with the R vegan and mia packages. We adjusted all reported p-values from Permanova 
tests for multiple testing with a conservative Bonferroni correction.” 
 
 
 
R1C7: Please, specify the taxonomic level at which diversity indexes are evaluated (genus or sequence 
variants or OTU or something else). 
Response: We performed all 16S analyses at genus level, whereas for ITS-Seq, Illumina NovaSeq 
metagenomics and Nanopore metagenomics we analyzed data at species level.  
 
We added the following text in the Methods section:  
“We performed 16S-Seq analyses at the genus level, which were filtered for singletons and low abundance 
taxa (i.e. those with relative abundance <0.0001 in <5% of samples), resulting in a final set of 214 unique 
genera for analyses. We analyzed ITS-Seq at species level for fungi, and Nanopore metagenomics at species 
level for DNA reads of bacteria, fungi and viruses.” 
 
 
R1C8: In the method section some details should be given on the definition of “high quality reads” (i.e. 
number of average erroneous base per strand or per amplicon, minimum quality score per base, ….). 
Response: We added the following text in the Methods section for the definition of quality reads for each 
sequencing technology.  
 
For 16S-Seq:  
 
“We processed derived 16S sequences with a custom Mothur-based pipeline (v1.44.1) as previously described 
(available at 
https://github.com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_Clust_Gen_Pipeline). In brief, 
we deconvoluted sequences from the Illumina MiSeq and processed them through an in-house sequence 
quality control pipeline, which includes dust low complexity filtering, quality value (QV<25) trimming, and 
trimming of primers used for 16S rRNA gene amplification, and minimum read length filtering. Trimmed reads 
shorter than 75bp or those with less than 95% of the bases above a QV of 25 were discarded. Forward and 
reversed paired reads were merged into contigs, and processed for 16S rRNA gene sequence clustering and 
annotation pipeline.” 
 
For Nanopore Metagenomics:  

https://urldefense.com/v3/__https:/doi.org/10.1038/s41522-020-00160-w__;!!NHLzug!KKDyl0RHasoRHInnAUdl8WzdiakLZ8G177WSBNl4TtCLHhKJe5J8pYZXzZ7mzh9WmPOJbrMs3XsisopSlunutHg-tEMJ$
https://github.com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_Clust_Gen_Pipeline


 

“We analyzed microbial metagenomic sequences with the EPI2ME platform (ONT) and the “What’s In My Pot” 
[WIMP] workflow to quantify abundance of microbial species.45 We filtered FASTQ files with a mean quality (q-
score) below a minimum threshold of 7.” 
 
 
R1C9: Line 143: “Samples from critically ill patients had significantly lower alpha diversity (Shannon 
index) in each compartment compared to corresponding healthy control samples. Alpha diversity 
further declined in all three body compartments across longitudinal samples (Figure 1A). Similarly, 
baseline ICU samples had markedly significant differences in beta diversity from healthy controls 
(Figure 1B)” 
Line 516: “For microbial community profiling, we included samples that produced >300 high quality 
microbial reads for both 16S-Seq and Nanopore sequencing. We performed alpha diversity (Shannon 
index) calculations for each available sample, and then conducted between group comparisons of 
alpha diversity with non-parametric tests to draw inferences on systematic differences of alpha 
diversity between groups as a measure of relative community fitness. We conducted beta diversity 
analyses (Manhattan distances, analyzed via permutation analysis of variance and visualized via 
principal coordinates analyses) with the R vegan and mia packages.” 
In order to properly compare alpha and beta indexes among groups, the type of normalization data, if 
any, should be described for each type of sequencing; whether all the data have an adequate number 
of reads that allow a reliable estimate of microbial composition should also be given, since the Illumina 
16S sequencing is a non-quantitative method. As noted above, rarefaction curves of the Shannon 
index on each sample vs sequencing depth help in clarifying. Please give more details on Figure 1B in 
the text or at least in the figure caption: what metric the figure refers to and if the Permanova p values 
refers to the test on diversity values or on their corresponding PCoA. Also correction of p value should 
be defined since multiple comparisons are evaluated. 
Response: Thank you. Per your suggestion, we have now implemented rarefaction prior to diversity 
calculations. 
 
We also provide citation to recent literature in the field supporting the use of rarefaction for diversity index 
calculations.  
 
We have revised Figure 1 and now present the diversity indices that were obtained following rarefaction, as 
detailed in our revised Methods.  
We provide a detailed caption for Figure 1 that explains which metrics are presented in each panel and which 
comparison they represent. To facilitate interpretation, we have broken Figure 1 in a top set of panels (A-C) 
that provides intra-compartment comparisons between ICU patients and healthy controls, and a bottom set of 
panels (D-F) with inter-compartment comparisons among ICU patients.  
 
“Figure 1. Intra- and inter-compartment comparisons of microbiota profiles by Illumina 16S-Seq reveal 
features of dysbiosis in all three body compartments in critically ill patients. Panels A-C: Intra-
compartment comparisons between ICU patients and healthy controls. A. Samples from critically ill 
patients had significantly lower alpha diversity (Shannon index obtained post-rarefication with random 
subsampling of reads in samples with ≥1,000 16S rRNA gene reads) compared to corresponding healthy 
control samples in each compartment (p<0.001), with further decline of Shannon index over time in longitudinal 
samples in critically ill patients (p<0.001). B. Baseline samples from critically ill patients had markedly 
significant differences in beta diversity (Bray-Curtis indices in centered-log ratio transformed [CLR] 
abundances following random subsampling of reads in samples with ≥ 1,000 reads) compared to healthy 
controls (visualized with Principal Coordinates Analysis [PCoA] and statistically compared with permutational 
analysis of variance [permanova] p-values <0.001, adjusted for multiple comparisons with the Bonferroni 
method). C. Taxonomic composition comparisons with the limma package showed high effect sizes and 
significance thresholds (threshold of log2-fold-change [logFC] of CLR-transformed abundances >1.5; 
Benjamini-Hochberg adjusted p-value<0.05) showed depletion for multiple commensal taxa in critically ill 
patients samples, with significant enrichment for Staphylococcus in oral and lung samples, and Anaerococcus 
and Staphylococcus in gut samples (significant taxa shown in red in the volcano plots). Panels D-F: Inter-

https://sciwheel.com/work/citation?ids=4562189&pre=&suf=&sa=0&dbf=0


 

compartment comparisons among ICU patients. D: Lung samples had lower bacterial burden compared to 
oral and gut samples by 16S rRNA gene qPCR (all p<0.001). E. PCoA plot of beta-diversity shows 
compositional similarity for the oral and lung compartments, which were compositionally dissimilar to gut 
samples (permanova p<0.001). F. Taxonomic comparisons between compartments revealed that no specific 
taxa were systematically different between oral and lung microbiota above the threshold of logFC≥1.5, 
whereas in gut-lung comparisons, lung communities were enriched for typical respiratory commensals (e.g. 
Rothia, Veillonella, Streptococcus) and gut communities for gut commensals (e.g. Bacteroides, 
Lachnoclostridium, Lachnospiraceae).” 

 
 

 
 
 
We also edited the corresponding section of Results accordingly:  

“Following these quality-control steps, we first performed intra-compartment comparisons of samples 
from critically ill patients from the UPMC-ARF cohort to healthy control samples. At baseline, critically-ill 
patients had significantly lower alpha diversity in each compartment compared to corresponding healthy control 
samples. Despite the low Shannon index at baseline for ICU patients, their Shannon index further declined in 
all three body compartments in longitudinal samples (Figure 1A). Similarly, baseline ICU samples had 
markedly significant differences in beta diversity from healthy controls (Figure 1B). By taxonomic comparisons 
of CLR-transformed abundances within each compartment at baseline, ICU patient samples showed depletion 



 

of multiple commensal taxa, with significant enrichment for Staphylococcus in oral and lung samples, and 
Anaerococcus and Staphylococcus in gut samples (Figure 1C).  

We then performed inter-compartment comparisons among ICU samples. Bacterial load quantification 
by 16S qPCR confirmed that the LRT (lungs) had significantly lower biomass compared to URT (oral) and 
gastrointestinal tract (stool or soiled rectal swabs, Figure 1D). By beta-diversity comparisons (Bray-Curtis 
indices), oral and lung communities had high compositional similarity, whereas gut samples were 
compositionally different compared to oral and lung microbiota (Figure 1E). Taxonomic comparisons of CLR-
transformed abundances between compartments revealed that no specific taxa were systematically different 
between oral and lung microbiota (Figure 1H), whereas in gut-lung comparisons, lung communities were 
enriched for typical respiratory commensals (e.g. Rothia, Veillonella, Streptococcus) and gut communities for 
gut commensals (e.g. Bacteroides, Lachnoclostridium, Lachnospiraceae_uncl) (Figure 1F).” 

“ 
 
 
 
R1C10: Line 146: “Taxonomic composition comparisons showed depletion of multiple commensal taxa 
in ICU samples, with significant enrichment for Staphylococcus in oral and lung samples, and 
Anaerococcus and Staphylococcus in gut samples (Figure 1C-D-E).” 
Please specify the two groups between which the logFC is evaluated. It can be argued from Figure 1-A 
and labels in Figure 1-D that the two groups are all ICU patients and the healthy control but it seems it 
is not specified in the text or in the Figure legend. 
Response: Please also refer to our response to R1C9 above. We improved the clarity of presentation of Figure 
1 with annotations of enrichment/depletion in each group, and now specify in the legend the groups being 
compared.  
 
“C. Taxonomic composition comparisons with the limma package showed high effect sizes and significance 
thresholds (threshold of log2-fold-change [logFC] of CLR-transformed abundances >1.5; Benjamini-Hochberg 
adjusted p-value<0.05), revealing depletion for multiple commensal taxa in critically ill patients samples, with 
significant enrichment for Staphylococcus in oral and lung samples, and Anaerococcus and Staphylococcus in 
gut samples (significant taxa shown in red in the volcano plots).” 
 
 
R1C11: Line 151: “We then examined the compositional similarity (Bray-Curtis indices) between 
compartments to understand the relationship between the low biomass (lung) vs. high biomass (oral 
and gut) communities. We found higher similarity between oral-lung vs. gut-lung communities in the 
baseline and middle intervals (Figure 1G).” 
Figure 1G and its description are confusing. For each point time the figure axis reports the BC dis-
similarity while in the text is described the BC similarity. Please clarify. 
Assuming the correctness of the analysis shown in the figure, a BC dissimilarity index close to one 
indicates a high degree of diversity between the two groups in terms of quantitative composition. As 
such, the figure indicates that, for each time point, BC diversity between lung and gut is really high, 
close to 1, while BC diversity between oral and lung is lower. Authors should specify and describe the 
reason of the comparison of the average between oral-lung and gut-lung diversities or may be use the 
BC diversity of oral, lung and gut separately and mutually compare them. For a straightforward 
interpretation of the BC dissimilarity, the explanation of the data were normalized is recommended. 
Response: We understand that the previous depiction of BC indices between compartments did not have a 
straightforward interpretation. We adopted your suggestion and now demonstrate a PCoA plot and a 
permanova analysis with these inter-compartment comparisons among ICU patients. We clarify that the PCoA 
plots represent normalized data (post-rarefaction and CLR-transformed).  
 
“B. Baseline samples from critically ill patients had markedly significant differences in beta diversity (Bray-
Curtis indices in centered-log ratio transformed [CLR] abundances following random subsampling of reads in 
samples with ≥ 1,000 reads) compared to healthy controls (visualized with Principal Coordinates Analysis 
[PCoA] and statistically compared with permutational analysis of variance [permanova] p-values <0.001, 



 

adjusted for multiple comparisons with the Bonferroni method). … E. PCoA plot of beta-diversity shows 
compositional similarity for the oral and lung compartments, which were compositionally dissimilar to gut 
samples (permanova p<0.001). 
 
The corresponding section of Results now reads: 
“We then performed inter-compartment comparisons among ICU samples. Bacterial load quantification by 16S 
qPCR confirmed that the LRT (lungs) had significantly lower biomass compared to URT (oral) and 
gastrointestinal tract (stool or soiled rectal swabs, Figure 1D). By beta-diversity comparisons (Bray-Curtis 
indices), oral and lung communities had high compositional similarity, whereas gut samples were 
compositionally different compared to oral and lung microbiota (Figure 1E).” 
 
 
 
R1C12: Line 154: “Taxonomic comparisons between compartments revealed that no specific taxa were 
systematically different between oral and lung microbiota (Figure 1H),” 
The sentence should be reformulated since figure shows many feature above the significance 
threshold equal although with a corresponding logFC lower than 1.5. 
Data for differential abundance analysis in limma have been normalized with log-transform methods 
(clr). Please indicate whether rarefaction was also applied or whether the prevalence, in addition to the 
FC threshold, of feature was considered to significantly associate a feature to a group. Prevalence 
could help also in clarifying data reported in Figure S2. 
 
Response: We modified the legend of Figure 1 to the following to clarify that no differentially abundant taxa 
exceeded the threshold of logFC 1.5, hence none were annotated in the oral vs. lung comparison.  
 
“C. Taxonomic composition comparisons with the limma package showed high effect sizes and significance 
thresholds (threshold of log2-fold-change [logFC] of CLR-transformed abundances >1.5; Benjamini-Hochberg 
adjusted p-value<0.05) showed depletion for multiple commensal taxa in critically ill patients samples, with 
significant enrichment for Staphylococcus in oral and lung samples, and Anaerococcus and Staphylococcus in 
gut samples (significant taxa shown in red in the volcano plots) … F. Taxonomic comparisons between 
compartments revealed that no specific taxa were systematically different between oral and lung microbiota 
above the threshold of logFC≥1.5, whereas in gut-lung comparisons, lung communities were enriched for 
typical respiratory commensals (e.g. Rothia, Veillonella, Streptococcus) and gut communities for gut 
commensals (e.g. Bacteroides, Lachnoclostridium, Lachnospiraceae).” 

 
We did not perform any differential abundance comparisons in former Figure S2 (analysis for enrichment of 
oral and lung communities with gut-origin bacteria), therefore we did not apply any logFC thresholds.  
 
 
 
R1C13: Line 170: “In both oral and lung communities, we found a progressive decline in the relative 
171 abundance of obligate anaerobes over time. There was, however, no corresponding change in the 
gut 172 composition of anaerobic (obligate or facultative) bacteria over time (Figure 2A-B).” 
The comparisons of feature relative abundance among groups also need to be carried out upon the 
explicit definition of the data normalization procedure. Being high-throughput sequenced data 
compositional in nature, traditional statistical tests cannot be applied to feature proportions unless 
properly normalized. This reviewer suggests to use clr as the normalization procedure for features 
relative abundance, as the authors have already done in Figure 1 C-D-E-H-I and as suggested by Gloor 
2017 in the reference cited above. The same comment applies to analyses described in Figure S2 and 
3. 
Response: This is a very helpful suggestion. We revised our analyses for the abundance of different categories 
of bacterial taxa (by oxygen requirement or plausible pathogenicity) and conducted pairwise comparisons on 
CLR transformed abundances. As also per the suggestion of R1C6, we adjusted our p-values with the 
Bonferroni method for multiple comparisons.  



 

Please note that for display purposes and interpretability of abundance taxa, we maintained the representation 
of Figure 2 as relative abundance barplot and boxplots. However, we explain clearly in the Figure legend that 
the p-values represent comparisons of CLR-transformed abundances and that they are adjusted for multiple 
comparisons.  
 
The revised Figure 2 legend now reads:  
 
 
“Figure 2: Longitudinal analysis of bacterial composition showed a progressive loss of obligate 
anaerobes in oral and lung communities as well as enrichment for recognized respiratory pathogens in 
all three compartments. Top Panels (A-B): Relative abundance barplots for oral, lung and gut samples with 
classification of bacterial genera by oxygen requirement into obligate anaerobes (anaerobes), aerobes, 
facultative anaerobes, microaerophiles, genera of variable oxygen requirement and unclassifiable. 
Comparisons of centered-log ratio (CLR) transformed relative abundances for the three main categories of 
bacteria (obligate anaerobes, aerobes and facultative anaerobes) by follow-up interval (baseline, middle and 
late). Data in boxplots (B) are represented as individual values of untransformed relative abundances with 
median values and interquartile range depicted by the boxplots with comparisons between intervals by non-
parametric Wilcoxon tests, with p-values adjusted for multiple comparisons by the Bonferroni method. Bottom 
Panels (C-D): Relative abundance barplots for oral, lung and gut (F) samples with classification of bacterial 
genera by plausible pathogenicity into oral commensals, recognized respiratory pathogens and “other” 
category. Comparisons of CLR-transformed relative abundances for these categories of bacteria by follow-up 
interval (baseline, middle and late) in boxplots (D), with p-values adjusted for multiple comparisons.” 
 

 
 
We also edited the corresponding section in the main results: 
“In both oral and lung communities, we found a progressive decline in the CLR-transformed abundance of 
obligate anaerobes over time”.  



 

 
We also want to highlight that we performed longitudinal analyses with mixed linear regression models (per the 
suggestion of Reviewer 2, see R2C7 regarding joint modeling) and regressed CLR-transformed abundance of 
anaerobes or pathogens in models with random patient intercepts. We added the following text in the Results 
section as well as a new Figure 4 to illustrate the results of this analysis (see our response to R2C7 for more 
details).  
 
“Beyond these cross-sectional comparisons of dysbiosis features, we sought to understand the impact of 
longitudinal changes on patient survival. To that end, we employed joint modeling, a powerful approach that 
combines longitudinal and survival analysis models. We examined longitudinal quantitative exposures of 
dysbiosis features (Shannon index, bacterial load, anaerobe and pathogen abundance - details in Methods) in 
mixed linear regression models in each compartment, and then assessed the impact of longitudinal changes 
on 60-day survival. Mixed linear regression models demonstrated a progressive decline of Shannon index in all 
three compartments, with progressive depletion of anaerobes and enrichment for pathogens in the oral and 
lung compartments (Figure 4). By Cox proportional hazards models adjusted for age, baseline Shannon index 
and anaerobe or pathogen abundance in the oral and lung compartments were significantly associated with 
60-day survival. Integration of longitudinal and survival analyses with joint modeling showed borderline 
significant effects for pathogen abundance in the oral compartment and anaerobe abundance in the lung 
compartment.” 
 
 
R1C14: Line 496: “We processed derived 16S sequences with a custom Mothur-based pipeline and 
performed analyses at genus level.” Details of the custom pipeline should be given by describing the 
bioinformatics workflow and/or making available the pipeline code. 
Response: We now provide further details of the analytical approach in the Methods.  
Code for the custom Mothur pipeline is available here:  
https://github.com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_Clust_Gen_Pipeline 
 
Code for the statistical analyses for this project is provided here  
https://github.com/MicrobiomeALIR/MultiCompartmentMicrobiome 
 
“We processed derived 16S sequences with a custom Mothur-based pipeline (v1.44.1) as previously described 
(available at 
https://github.com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_Clust_Gen_Pipeline). In brief, 
we deconvoluted sequences from the Illumina MiSeq and processed them through an in-house sequence 
quality control pipeline, which includes dust low complexity filtering, quality value (QV<25) trimming, and 
trimming of primers used for 16S rRNA gene amplification, and minimum read length filtering. Trimmed reads 
shorter than 75bp or those with less than 95% of the bases above a QV of 25 were discarded. Forward and 
reversed paired reads were merged into contigs, and processed for 16S rRNA gene sequence clustering and 
annotation pipeline. Sequence taxonomic classifications were performed with the Ribosomal Database 
Project’s (RDP) naïve Bayesian classifier with the SILVA 16S rRNA database (v138).” 
 
 
 
 
R1C15: Line 570: “To develop these models in each compartment (oral, lung and gut), we used 
probabilistic graphical modeling (PGM) by considering the 50 most abundant taxa in each 
compartment along with the Shannon Index.” Please, indicate explicitly what type of abundance was 
used (absolute, relative, clr, …) in the MLR model equation. 
Response: We utilized clr transformed abundances in the MLR equation. We clarify that in the revised Methods 
section.  
 

https://github.com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_Clust_Gen_Pipeline
https://urldefense.com/v3/__https:/github.com/MicrobiomeALIR/MultiCompartmentMicrobiome__;!!NHLzug!KKDyl0RHasoRHInnAUdl8WzdiakLZ8G177WSBNl4TtCLHhKJe5J8pYZXzZ7mzh9WmPOJbrMs3XsisopSlunutNI_6jBc$
https://github.com/MedicineAndTheMicrobiome/AnalysisTools/tree/master/16S_Clust_Gen_Pipeline


 

“To develop these models in each compartment (oral, lung and gut), we used probabilistic graphical modeling 
(PGM) by considering the 50 most abundant taxa (expressed by CLR-transformed relative abundance) in each 
compartment along with the Shannon Index”.  
 
 
 
R1C16: Line 662: PRJNA726955 is not available on NCBI. Please check. 
Response: We apologize for any confusion. The Bioproject PRJNA726955 is available on NCBI as shown in 
the screenshot below.  

 
 
 
 
R1C17: Line 666: “Primary code and de-identified data for replication of analyses will be available on 
the github repository (https://github.com/MicrobiomeALIR/MultiCompartmentMicrobiome) upon 
acceptable of the manuscript for Publication." A confidential link to the reviewer for review purposes 
would be greatly appreciated and would speed up the review process. 
Response: We provide link to our code here:  
https://github.com/MicrobiomeALIR/MultiCompartmentMicrobiome 
 
 
 
R1C18: On a final note, it would be quite helpful if the authors precisely define which genera are 
included in the classification of bacterial genera into true respiratory pathogens, or oral commensals, 
or “other” category. For instance, what is the biological meaning of having plausible respiratory 
pathogens expanded in the gut at the baseline? Who were those? Likewise, how the authors interpret 
the abundance of the gut commensal C. albicans in the lung? Is it a respiratory pathogen? If so, how? 
Obligate anaerobes progressively declined in both oral and lung communities but not in the gut. 
Please, indicate here some of the relevant genera (among obligate anaerobes, facultative anaerobes, 
aerobes and microaerophiles), it will facilitate the comprehension. Likewise, specify the anaerobe 
abundance in patients with COPD and what the increased pathogen abundance refers to in all three 
compartments. The fact that receipt of anaerobic spectrum antibiotics was associated with a 
progressive decrease in obligate anaerobe abundance, without significant effects on pathogen 
abundance, does it mean that facultative bacteria were spared? How do you explain the the gut-origin 
taxa enrichment in the lung samples without overt oropharyngeal colonization with such taxa? 

https://urldefense.com/v3/__https:/github.com/MicrobiomeALIR/MultiCompartmentMicrobiome__;!!NHLzug!KKDyl0RHasoRHInnAUdl8WzdiakLZ8G177WSBNl4TtCLHhKJe5J8pYZXzZ7mzh9WmPOJbrMs3XsisopSlunutNI_6jBc$
https://urldefense.com/v3/__https:/github.com/MicrobiomeALIR/MultiCompartmentMicrobiome__;!!NHLzug!KKDyl0RHasoRHInnAUdl8WzdiakLZ8G177WSBNl4TtCLHhKJe5J8pYZXzZ7mzh9WmPOJbrMs3XsisopSlunutNI_6jBc$


 

Response: We provide further details on classifications of the genera assigned to oxygen requirements and 
plausible pathogenicity categories, with new supplemental tables.  
In a new Figure S4, we provide the top 15 abundant taxa in each compartment with examples of the top 
abundant obligate anaerobes and respiratory pathogens (categories for which most analyses were conducted) 
to help facilitate comprehension of these categories, as per the Reviewer’s suggestion.  
 
“Figure S3: Top 15 representative taxa in each body compartment (oral, lung and gut). Each taxon is 
shown by barplots representing the mean relative abundance with the associated standard errors. Members of 
these top taxa classified as obligate anaerobes (middle panels) or as respiratory pathogens (right panels). The 
bottom panel displays the longitudinal measurement of bacterial load by 16S qPCR in each compartment.”  
 

 
With regards to the insightful questions posed by the Reviewer regarding interpretation of our findings, we 
added the following text in the Discussion section:  
 
“However, we did observe a small subset of patients who had enrichment for gut-origin commensal or 
pathogenic organisms in their LRT. Such enrichment could not be fully accounted for by URT colonization with 
similar taxa. These patients with gut-origin bacteria enrichment in their lungs (8.3%) had much worse survival 



 

than the rest of the cohort. This subset of patients may have experienced gut-to-lung bacterial translocation. To 
further investigate the possibility of gut-to-lung translocation, it would be beneficial to have wider availability of 
BAL samples to investigate the alveolar spaces more closely. Our non-invasive ETA samples showed that 
such translocation, if present, affects a small subset of patients at least within the first week of IMV. Therefore, 
efforts focused on preventing lung dysbiosis and pathogen colonization will need to consider primarily the 
URT-to-LRT ecosystem and secondarily, the possibility of gut-to-lung translocation.”  

“Integration of fungal sequencing data further enhanced our view of the microbial communities, revealing 
patients who had enrichment for C.albicans and experienced worse outcome. Presence of C.albicans in the 
LRT may not signify clinical pneumonia by conventional criteria, yet may represent a state of dysbiosis with 
potential adverse effects from C.albicans on host epithelial integrity and immune response.” 

We provide detailed new Tables S2 and S3 with our operational classifications of genera by oxygen 
requirements and plausible pathogenicity.  
 
 
Reviewer #2 (Remarks to the Author): 
 
Kitsios et al. present a longitudinal multicenter cohort study investigating dynamic changes in the oral, 
lung, and gut microbiota in hospitalized critically ill patients and the impact of these changes on 
pertinent clinical outcomes. This is an important study that further advances our understanding of the 
prognostic relevance of microbiota signatures in critically ill patients. 
 
The investigators astutely point out that most microbiota studies involving critically ill patients are 
limited by statistical models that incorporate only a single microbial signature at a fixed sampling 
timepoint. 
 
They found that dysbiotic signatures emerged in all three body compartments (lung, gut, and oral 
cavity), predominantly characterized by a decrease in alpha diversity, a depletion of obligate anaerobe 
bacteria, and increased enrichment in more traditionally pathogenic taxa. In addition, they used DMM 
and bacterial-fungal SNF clustering methods to identify microbial signatures in the lungs (e.g., low 
diversity in the case of DMM clusters, high pathogen abundance in the case of bacterial-fungal SNF 
clusters) that were associated with worse survival. 
 
Overall, this is a well-conducted study that addresses several novel questions. Strengths of this study 
include its large patient sample size (with a vast number of oral, LRT, and gut samples), its use of both 
derivation and validation cohorts, its use of longitudinally collected samples, and its use of methods 
that extend beyond 16S rRNA gene sequencing (which is limited solely to bacterial taxonomy). The 
manuscript contains a substantial amount of data but is concisely and clearly written. 
Response: Thank you for your very balanced, positive and detailed assessment of our manuscript.  
 
 
Major comments: 
R2C1. The derivation cohort was more than 90% white/Caucasian, which may limit generalizability, 
although their findings were validated in more racially diverse cohorts (72-76% white). Nonetheless, 
this should be highlighted as a limitation. 
Response: We agree with this comment, and added the following limitation in the Discussion section:  
“Our derivation cohort had limited racial/ethnic diversity consistent with the demographics of the catchment 
populations for our ICUs; therefore our results require independent validation in more diverse patient 
populations.” 
 
 
R2C2. I was surprised to see a lack of taxonomic differences between the oral and lung microbiota 



 

(Figure 1H). To clarify, was this looking collectively at all oral and LRT samples? Is it possible that 
differences might emerge if you stratify by sample collection timepoint? Do the investigators think 
there would have been differences if they were comparing oral samples to BAL samples rather than to 
tracheal aspirates? 
Response: We used a conservative threshold of logFC≥1.5 in our taxonomic composition comparisons. There 
were multiple taxa with statistically significant differences (adjusted p<0.05, n=90) that did not exceed this 
stringent threshold, as we wanted to focus on abundant taxa with large effect sizes. We did not detect more 
significant deviation of oral-lung microbiota by sample collection timepoint. We added the following statement 
in the Discussion:  
 
“However, we may have missed important microbiota variability closer to the alveolar space, including 
potentially stronger deviation from URT microbiota, higher signal of gut-to-lung microbiota translocation, as well 
as better delineation of longitudinal host-response biomarkers in BAL fluid.” 
 
 
R2C3. Did the authors perform any type of contamination analysis? They very clearly demonstrate low 
biomass in their control samples. However, there is no designation of which individual ASVs/genera 
potentially represent contaminants. This is due mainly to the fact that microbes were clustered 
according to their oxygen requirement and pathogenicity (two classification schemes with clinical 
relevance in one prior study of patients with aspiration pneumonia) rather than genera. 
Response: We have included a new panel in Figure S1 that illustrates the most commonly detected taxa in 
negative control samples, indicative of contamination. We agree with the Reviewer that negative controls had a 
reassuringly low signal of bacterial DNA detection. We did not perform any further filtering for taxa detected in 
negative controls.  
 
“D. Top taxa detected in negative control samples, indicating possible contamination. Overall, such taxa were 
detected at very low levels (mean number of reads <100).” 
 

 
We added the following text in the Methods:  
“Examination of taxonomic composition of negative control samples revealed very low numbers of reads for 
commonly detected taxa (mean <100 reads, Figure S1) and we did not filter any taxa from clinical samples.”   
 
 
 
R2C4. Can the authors provide a figure demonstrating what happens to bacterial load in all three 
compartments over time? 
Response: We added a panel in new Figure S4 with these data.  
 



 

“Figure S4: Top 15 representative taxa in each body compartment (oral, lung and gut). Each taxon is 
shown by barplots representing the mean relative abundance with the associated standard errors. Members of 
these top taxa classified as obligate anaerobes (middle panels) or as respiratory pathogens (right panels). The 
bottom panel displays the longitudinal measurement of bacterial load by 16S qPCR in each compartment.”  
  
We have also conducted longitudinal modeling of bacterial load by 16S qPCR and provide these results in a 
new Figure 4 (as part of the joint modeling analysis).  

 
 
Additionally, we conducted a new analysis with mixed linear regression models to examine the impact of 
antibiotics and steroids on longitudinal bacterial load in the three compartments (as quantified by 16S qPCR). 
We found significant effects of different antibiotic scores for the oral and gut bacterial load. We report these 
results in the revised Table S4.  
 
“Table S4: Mixed linear regression models for the examination of the effects of antibiotics and steroids 
on features of dysbiosis in samples from all three compartments. We examined the antibiotic exposure 
coded in three different ways: i) anaerobic coverage, ii) a numerical scale that included duration, timing and 
type, and iii) the Narrow Antibiotic Treatment (NAT) score. Each effect was adjusted for the study day from 
enrollment. The p-values of the mixed effects models with random patient intercepts are shown for each 
endpoint (columns) and significant values are highlighted in bold.”  
 



 

Variables Shannon 
index 

Bacterial 
load (16S 
qPCR) 

Obligate 
anaerobe 
abundance 

Respiratory 
Pathogen 
abundance 

Oral     
Anaerobic_spectrum 0.422 0.054 0.023 0.526 
Antibiotic_score 0.535 0.010 0.857 0.607 
NAT_score 0.248 0.006 0.262 0.075 
Steroids_score 0.499 0.793 0.542 0.116 
     
Lung     
Anaerobic_spectrum 0.645 0.147 0.037 0.756 
Antibiotic_score 0.605 0.841 0.578 0.842 
NAT_score 0.456 0.064 0.734 0.262 
Steroids_score 0.862 0.593 0.400 0.782 
     
Gut     
Anaerobic_spectrum 0.348 0.801 0.002 0.016 
Antibiotic_score 0.067 0.006 0.004 0.031 
NAT_score 0.590 0.883 0.008 0.040 
Steroids_score 0.671 0.437 0.083 0.218 

 

 
 
R2C5. Was there any consideration given to presenting these data with stratification according to 
genera rather than oxygen requirement and pathogenicity designations? What was the basis for these 
groupings? They only provide a single citation justifying this approach. 
Response: We provide further justification for our operational classifications of bacterial taxa by oxygen 
requirements and plausible pathogenicity. We provide citations to multiple related papers supporting the 
biological and clinical relevance of this classification scheme.  
 
“We then examined the discovered bacterial taxa at genus level and classified them by two different 
classification schemes with clinical relevance. First, we considered the oxygen requirements of each bacterial 
taxon, given the relevance of oxygen metabolism in critically ill patients on invasive mechanical ventilation who 
receive variable amounts of inspired oxygen. Recent research has investigated the impact of hyperoxia in LRT 
microbiota, as well as the association between anaerobic spectrum antibiotics with anaerobe bacteria 
abundance in the respiratory and gastrointestinal tract.” 
“Next, we classified organisms based on their plausible pathogenicity. Prior research has examined the 
associations between oral-origin bacteria in the LRT (i.e. lung commensals) with innate immunity and clinical 
outcome, as well as the importance of detecting highly abundant typical respiratory pathogens as causal 
factors of LRT infection in critically ill patients. We therefore utilized operational definitions of plausible 
pathogenicity of detected taxa as follows:” 
 
“We then sought to understand the longitudinal composition of microbial communities when classified into 
clinically relevant categories of bacterial taxa. Recent evidence implicates loss of commensal anaerobic 
bacteria from the gastrointestinal or respiratory tract with adverse outcome in critical illness. Therefore, we 
classified bacteria in terms of their oxygen requirements (obligate anaerobes, facultative anaerobes, aerobes, 
microaerophiles, variable or unclassifiable, details in Supplemental Tables). Additionally, we classified bacteria 
by plausible respiratory pathogenicity (oral commensals, recognized respiratory pathogens or other) due to 
their direct implications in prevalent or incident pneumonia in the ICU.” 
 
We elected to examine for global features of microbial communities rather than individual taxa abundance, 
because we wanted to derive generalizable and robust signatures of microbiota.  
 
We provide the classifications in new Tables S2 and S3. We used extensive literature searches to derive 
classifications for each genus by 16S, but recognize that these classifications are operational and subject to 



 

implicit assumptions about specific genera. We consider this framework reproducible, as our results can be 
subjected to sensitivity analyses for revised classification based on emergent evidence.  
 
 
R2C6. What were the major taxonomic differences between DMM and weighted SNF clusters? This 
should be more clearly stated. 
Response: We now show in graphical form (heatmaps) the major differences between the DMM clusters.  
 
“Figure S7: Heatmaps of relative abundance for the top 15 taxa in each compartment grouped by bacterial 
DMM clusters.” 
 

 
 
We elected to remove the SNF clusters due to the large amount of data and analyses added in the Revised 
manuscript, which would make interpretation of the SNF cluster results more challenging.  
 
 
 
R2C7. In Figure 4, are the predictors used in the survival analyses DMM and SNF designations at any 
collection timepoint? Or does this only constitute the first sampling timepoint? If it is any sampling 
timepoint, the study loses its ability in part to look at how dynamic changes affect survival, which is 
really what drives home the novelty of this investigation. They point out that there was very little shift 
between DMM clusters based on the timing of sample collection. Then again, they also point out how 
the number of samples dwindled in later sample collection timepoints. Nonetheless, these analyses 
could be modeled using joint modeling of longitudinal and time-to-event data (see Henderson et al., 
Biostatistics 2000) with reporting of association strength estimates. 
Response: Thank you for this very insightful comment. We have implemented joint modeling analyses per your 
suggestion, which offered further insights into our dataset.  
 
We first clarify that the survival analyses with the cluster assignments represent baseline cluster assignments. 
We consider such findings important as a baseline assessment of microbiota profiles can offer prognostication 
for patient-centered outcomes, independent of other clinical predictors. For prognostic purposes, a single 
baseline microbiome measurement is more practical and generalizable than longitudinal measurements.  
Motivated by your suggestion, we also performed a survival analysis by longitudinal classifications to lung 
DMM clusters, and added the following text in the Results.  
 
“Furthermore, by examining the longitudinal evolution of lung DMM clusters, patients who remained in the low 
diversity cluster from the baseline to the middle interval (“Low Diversity Persisters”, Figure 4) had significantly 



 

worse survival than other patients with available follow-up samples (age-adjusted HR=2.73 [1.19-6.42], 
p=0.02).” 
 
We concur with the Reviewer that insights into the dynamic evolution of the microbial communities and their 
impact on patient outcomes had been limited to date, and our dataset can answer some of these questions.  
 
We implemented joint modeling (mixed linear regression with random patient intercepts combined with cox-
proportional hazards model for 60-day survival, adjusted for age) with the joineR package in R. We constructed 
such models for the exposures of longitudinal change of Shannon index (rarefied), bacterial load (by 16S 
qPCR), Anaerobe abundance (CLR-transformed) and Pathogen abundance (CLR-transformed), separately in 
each body compartment (oral, lung and gut). Then, in graphical format we provide i) the beta-coefficients with 
95% confidence intervals for the longitudinal change of these microbiota variables during follow-up, ii) the age-
adjusted hazards ratios with 95% confidence intervals from Cox-proportional hazards models for the baseline 
values of each microbiota variable (Shannon, bacterial load, anaerobe and pathogen abundance) on 60-day 
survival, and iii) the joint-modeling adjusted beta-coefficient for the effect of each variable on survival. 
Importantly, we show that Shannon Index, Anaerobe and Pathogen Abundance in the lung compartments were 
prognostic as baseline variables, but their longitudinal change were not (with the exception of a borderline 
significant result for anaerobe abundance by joint modeling).  
 
We consider these results particularly important, and express our gratitude to the Reviewer for this very 
constructive criticisms. In that regard, we now present a new main Figure with the joint modeling analyses, and 
incorporate in that same Figure the previous survival analysis by DMM clusters.  
 
We added a new Figure 4:  
 
“Figure 4: Lung dysbiosis features and clusters predict 60-day survival. A-B: Forest plots of effect sizes 
(point estimates and 95% confidence intervals) for dysbiosis features (Shannon index, bacterial load, anaerobe 
and pathogen abundance) in three different models: i) mixed linear regression models with random patient 
intercepts for the longitudinal change of dysbiosis features during follow-up sampling, ii) the age-adjusted 
hazards ratios from Cox-proportional hazards models for the baseline values of each feature on 60-day 
survival, and iii) joint-modeling with adjusted beta-coefficient for the effect of each longitudinally-measured 
feature on survival. Joint modeling showed that pathogen abundance in the oral compartment and anaerobe 
abundance in the lung compartment had borderline statistically significant effects on 60-day survival. Joint-
models for bacterial load by qPCR did not converge due to low number of longitudinal measurements. C.  
Kaplan-Meier curves for 60-day survival from intubation stratified by oral (A), lung (B) and gut (C) bacterial 
DMM clusters. The Low-Diversity lung DMM cluster was independently predictive of worse survival (adjusted 
Hazard Ratio = 2.22 (1.0.7-4.63), p=0.03), following adjustment for age, sex, history of COPD, 
immunosuppression, severity of illness by sequential organ failure assessment (SOFA) scores and host-
response subphenotypes. Longitudinal analysis of lung DMM clusters showed that patients who remained in 
the low diversity cluster from the baseline to the middle interval (“Low Diversity Persisters”) had significantly 
worse survival than other patients with available follow-up samples (age-adjusted HR=2.73 [1.19-6.42], 
p=0.02).” 
 
 



 

 
 
We added the following writing in the Methods section:  
 
“In each body compartment (oral, lung, and gut), we examined for the impact of dynamic changes in microbiota 
features (rarefied Shannon Index, bacterial load by 16S qPCR, CLR-transformed Anaerobe abundance and 
CLR-transformed Pathogen abundance) on 60-day survival using joint modeling. The joint models combined a 
mixed linear regression model with random patient intercepts for measuring the longitudinal changes of each 
feature during sampling follow-up, and a Cox-proportional hazards model adjusted for age. Joint modeling 
offers the advantage of providing estimates of time-related associations with outcome and can handle 
informative censoring, which may have impacted our follow-up sample availability (e.g. in the case of patients 
with early mortality or patients with rapid clinical improvement and discharge from the ICU). We built joint 
models with the joineR package, and reported in graphical format: i) the beta-coefficients with 95% confidence 
intervals (CI, estimated via bootstrapping at 100 iterations) for the longitudinal change of the microbiota 
variables during follow-up from the mixed linear regression models, ii) the age-adjusted hazards ratios with 
95% confidence intervals from Cox-proportional hazards models for the baseline values of each microbiota 
variable on 60-day survival, and iii) the joint-modeling adjusted beta-coefficient for the effect of each variable 
on survival.” 
 
In the Results section, we added the following text:  
“Beyond these cross-sectional comparisons of dysbiosis features, we sought to understand the impact of 
longitudinal changes on patient survival. To that end, we employed joint modeling, a powerful approach that 
combines longitudinal and survival analysis models. We examined longitudinal quantitative exposures of 
dysbiosis features (Shannon index, bacterial load, anaerobe and pathogen abundance - details in Methods) in 
mixed linear regression models in each compartment, and then assessed the impact of longitudinal changes 
on 60-day survival. Mixed linear regression models demonstrated a progressive decline of Shannon index in all 
three compartments, with progressive depletion of anaerobes and enrichment for pathogens in the oral and 
lung compartments (Figure 4). By Cox proportional hazards models adjusted for age, baseline Shannon index 
and anaerobe or pathogen abundance in the oral and lung compartments were significantly associated with 



 

60-day survival. Integration of longitudinal and survival analyses with joint modeling showed borderline 
significant effects for pathogen abundance in the oral compartment and anaerobe abundance in the lung 
compartment. Nonetheless, baseline microbiota features had stronger effect sizes associated with survival.” 
 
 
In the Discussion section, we added the following text: 
“Notably, we modeled the longitudinal change in dysbiosis features and its impact on survival with joint 
modeling. Joint modeling is a flexible approach that can mitigate some of the effects of informative censoring. 
The latter is particularly relevant for translational studies in the ICU, because patients who experienced early 
mortality or those who improved quickly and were discharged from the ICU could not contribute later follow-up 
samples. Our joint models revealed that baseline features in the lung compartment (Shannon index and 
anaerobe or pathogen abundance) were predictive of survival, whereas their longitudinal changes were not, 
except for marginal effects of anaerobe abundance. Such results may indicate that the communities formed by 
host-microbiota interactions early post-intubation are already representative of a LRT infection or dysbiosis 
state. Therefore, subsequent changes among those who remain intubated in the ICU may be less 
consequential for the overall outcome compared to their starting state. Nonetheless, longitudinal observations 
were limited by lower number of observations, which has likely limited the statistical statistical power of joint 
models, as indicated by the wide CI in effect estimates.” 
 
 
 
 
R2C8. The authors clearly state that use of endotracheal aspirate samples to represent the lung 
microbiota as opposed to reference standard BAL is a limitation of their study. They should comment 
more on how their findings might have differed if they used BAL samples. 
Response: We recognize this limitation and added the following text in the Discussion:  
 
“Recent research has shown the ability to derive robust microbiota signatures from ETA samples in patients on 
IMV.51 However, we may have missed important microbiota variability closer to the alveolar space, including 
potentially stronger deviation from URT microbiota, higher signal of gut-to-lung microbiota translocation, as well 
as better delineation of longitudinal host-response biomarkers in BAL fluid.18 In a limited comparison of two 
subjects with synchronous ETA-BAL sampling, we found that in a case of Achromobacter xylosidans 
pneumonia, both ETA and BAL sample showed community dominance (>90% relative abundance) by 
Achromobacter genera, whereas in a case of culture-negative pneumonia diagnosis, taxonomic concordance 
between ETA and BAL sample was more limited. These results are consistent with a previous comparison of 
ETA vs. mini-BAL metagenomics, in which case higher taxonomic concordance was seen for cases with 
culture-positive pneumonia. Thus, the reliability of ETA biospecimens for profiling airspace microbiota may be 
context dependent, and further research is needed with BAL biospecimens when available.” 
 
We also examined for taxonomic similarity between ETA and BAL samples in a limited comparison of 2 
subjects that had available samples of each type obtained at the same time. We added a new Figure S2 that 
illustrates this comparison. Due to small sample size, we did not perform any formal statistical testing but made 
observations on the dominant taxa by each sample type.  
 
“Figure S2: Taxonomic comparison of top 10 abundant taxa between Endotracheal Aspirate (ETA) and 
Bronchoalveolar Lavage (BAL) samples that were synchronously obtained from the same subject. For 
subject A, both ETA and BAL samples showed near complete community dominance by Achromobacter 
genera (>90%). Subject A was clinically diagnosed with Achromobacter xylosidans pneumonia based on BAL 
microbiologic cultures, consistent with 16S-Seq data by both ETA and BAL. For subject B that had higher 
alpha diversity than subject A, there was limited taxonomic concordance between ETA and BAL sample, with 
several different top abundant taxa between sample types (top abundant taxon Veillonella in the ETA sample 
vs. Gemmataceae taxa in the BAL sample). Subject B had no bacterial growth in clinical BAL cultures and was 
diagnosed as culture-negative pneumonia, a diagnosis that was not supported by 16S-Seq of ETA or BAL 
sample.” 

https://sciwheel.com/work/citation?ids=15807206&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14397743&pre=&suf=&sa=0&dbf=0


 

 

 
 
We added the following text in the Results section:  
“In a limited comparison of two subjects with available synchronous ETA and BAL samples, high compositional 
concordance was shown for one subject in whom LRT community dominance by Achromobacter was shown 
for both ETA and BAL analysis, whereas for the other subject, taxonomic overlap between ETA and BAL was 
more limited (Figure S2).”  
 
 
 
 
R2C9. The authors point out a lack of association between inflammatory sub-phenotypes and DMM 
microbiota clusters. Regarding the lungs, multiple studies to date have shown that the lower airway 
microbiota affects lower airway immune tone in both diseased and healthy individuals. Do they 
investigators have any insight as to why no association was noted in their cohort? Is this because of 
their use of tracheal aspirates rather than BAL? 
Response: Thank you for this opportunity to clarify our findings and improve presentation of out results. We 
recognize that due to the bulk of our analyses, many results have been only shown in the Supplementary 
material and in rather low resolution, therefore limiting the ability to be interpreted and synthesized 
appropriately. We aimed to improve the presentation of our display items in this revision and use more and 
larger supplemental figures.  
 
We would like to clarify that we did find significant associations between LRT (ETA) microbiota and host-
biomarkers, both in the UPMC-ARF and UPMC-COVID cohorts, consistent with our hypotheses and prior 
literature.  
 
We added the following text in the Results:  
“We found several significant correlations (Figure S9A-C), with typical pathogens correlating with ETA or 
plasma inflammatory biomarkers, such Klebsiella or Staphylococcus genera positively correlating with ETA 
fractalkine and Ang-2 levels, whereas Escherichia-Shigella abundance correlating with plasma TNFR1 and IL-
6 levels. Conversely, typical oral commensals (e.g. Rothia, Streptococcus, Prevotella etc.) were inversely 
correlated with plasma sTNFR1 or sRAGE.” 



 

 
“Patients assigned to the low diversity cluster at baseline had higher ETA levels of sTNFR1, as well as higher 
plasma Ang-2 compared to the high diversity cluster (p<0.05, Figure 5B). By individual taxa abundance, typical 
pathogen abundance was correlated with intensified ETA inflammation (e.g. Klebsiella correlated with higher 
levels of ETA sTNFR1 and IL-6), several oral commensals were correlated with higher ETA levels of sRAGE 
(such as Streptococcus, Rothia and Veillonella) potentially indicating higher degree of lung epithelial injury, 
whereas Prevotella abundance was inversely correlated with plasma levels of inflammatory and tissue injury 
biomarkers.” 
 
We now provide two new Figures for microbiota-biomarker associations in the UPMC-ARF cohort, and one 
new Figure for better illustration of microbiota-biomarker relationships in the UPMC-COVID cohort.  
 
“Figure S9. Microbiota correlate with host response biomarkers at both the lung compartment and at a 
systemic level. A-C: Heatmaps of correlations between the top 20 abundant taxa in the oral (A), lung (B) and 
gut (C) compartment with 10 host response biomarkers measured in plasma samples (top 10 rows) and 
endotracheal aspirate (ETA) supernatant samples (bottom 10 rows) in each heatmap. ETA biomarker values 
were adjusted for total protein concentration in each sample. Statistically significant correlations adjusted for 
multiple testing (Benjamini-Hochberg method) are shown with crosses (“+”) and the direction of the correlation 
is color coded. D: Comparisons of ETA and plasma biomarkers between bacterial DMM clusters. The low 
diversity bacterial DMM cluster (brown) had significantly higher levels of plasma sTNFR1, sRAGE and 
procalcitonin levels.” 

 

 
“Figure S12: Lung bacteria correlate with host response biomarkers at both the lung compartment and 
at a systemic level in patients with severe COVID-19. Heatmap of correlations between the top 20 abundant 
taxa in lung samples with 10 host response biomarkers measured in plasma samples (top 10 rows) and 
endotracheal aspirate (ETA) supernatant samples (bottom 10 rows) in each heatmap. ETA biomarker values 
were adjusted for total protein concentration in each sample. Statistically significant correlations adjusted for 
multiple testing (Benjamini-Hochberg method) are shown with crosses (“+”) and the direction of the correlation 
is color coded.” 



 

 

We recognize the caveat though that we had fewer datapoints with ETA than plasma biomarkers, and 
therefore the taxa-ETA biomarker correlations had smaller effective sample sizes.  
 
 
 
Minor comments: 
R2C10. A number of abbreviations are used in Figure S1 that are not clearly or accessibly defined. 
Response: All abbreviations are now clearly defined.  
 
R2C11. As part of their supplement, the authors should specify which specific taxa/genera were placed 
into the oxygen requirement and pathogenicity categories. 
Response: We added extensive tables with all taxa classifications (Tables S2 and S3) 
 
 
R2C12. The authors might consider regressing bacterial burden against the clinical covariates studied 
in other linear regression models. 
Response: We added these models in the new Figure 4, new Figure S6, as well the mixed linear regression 
models in Table S4.   
 
See for example the new Figure S6 that includes bacterial load as dependent variable in linear regression 
models.  
 
“Figure S6: Clinical variables associated with alpha diversity (Shannon Index), bacterial load (by 16S 
qPCR), obligate anaerobe and respiratory pathogen abundance in baseline samples from the three 
body compartments. Clinical variables are shown on the y-axis, and R2 of linear regression models for 
Shannon index (obtained post rarefaction), bacterial load, anaerobe abundance (CLR-transformed), and 
pathogen abundance (CLR-transformed)) are shown on the x-axis. Statistically significant associations 
(p<0.05) are shown with large bubbles and direction of association is color coded.”  
 



 

 



 

 
 
 
R2C13. How was “immunosuppression” defined in regression models? 
Response: We provide the definition of immunosuppression (categorical variable: yes/no) in the footnote of 
Table 1.  
“Immunosuppression was broadly defined as receipt of chronic steroids, alkylating agents, antimetabolites, 
biologics, calcineurin inhibitors, mycophenolate, active chemotherapy for cancer, or diagnosis of untreated 
immunodeficiency.” 
 
R2C14. I might consider adding grid lines to the images in Figure S4 to ease readability. 
Response: We added soft grid lines in these bubble plots. This Figure is now Figure S6 and available for 
review in our response to R2C12 above.  
 
 
 
 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I think that the authors have adequately addressed the comments made by this reviewer in the 

revised version of the manuscript. Therefore, I have no further comments. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The reviewers have thoughtfully responded to all of my comments. Any concerns that I initially raised 

that could be addressed were done so in a clear and succinct manner. Other concerns that could not 

be directly addressed are now clearly stated as limitations of their work. Overall, I was impressed by 

the thought and care the authors put into their revised submission. As stated previously, this is an 

important study that sheds light into the role of microbial dysbiosis on outcomes in critically ill 

patients. I find the manuscript acceptable for publication in its current form and have no further 

concerns. 
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