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Supplemental Figure 1. Metadata of integrated dataset and visualization of integrated

dataset following batch correction, Related to Figure 1 and STAR Methods.

A. Pie chart of composition of integrated scRNA-seq data by original study.

B. Pie chart of composition of integrated scRNA-seq data by clinical subtype. The proportion of
clinical subtypes within this integrated dataset is close to real-life clinical subtype
distributions.

C. Bar plot showing number of patients per age group. Most of the original datasets stayed
within a sole age group, whereas the integrated dataset includes a much broader age range.

D. UMAP visualization of integrated dataset following batch correction, grouped by source
dataset.

E. UMAP visualization of integrated dataset following batch correction, grouped by capture
technology.

F. UMAP visualization of integrated dataset following batch correction, grouped by clinical
subtype. This shows lineage drives clustering of non-epithelial populations, while epithelial
populations cluster by clinical subtype. This matches the observed subtype clustering seen
in other datasets.

G. PCA plot of first 2 PCs for all cells in the integrated dataset following batch correction,
labeled by original source dataset. No cluster is driven by a single study, thus confirming
there is no batch effect due to different studies.

H. PCA plot of first 2 PCs for all cells in the integrated dataset following batch correction,
labeled by technology. No cluster is driven by a single technology, thus confirming there is
no batch effect due to differing technologies.

I. PCA plot of first 2 PCs for all cells in the integrated dataset following batch correction,
labeled by clinical subtype.

J. Violin plots of mean PC loadings across top 20 PCs for the integrated dataset following
batch correction, stratified by source dataset.

K. Violin plots of mean PC loadings across top 20 PCs for the integrated dataset following
batch correction, stratified by capture technology.

L. Violin plots of mean PC loadings across top 20 PCs for the integrated dataset following
batch correction, stratified by clinical subtype.
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Supplemental Figure 2. Visualization of combined original source datasets prior to batch

correction, Related to Figure 1 and STAR Methods.

A. UMARP visualization of combined original source datasets prior to batch correction, grouped
by source dataset.

B. UMAP visualization of combined original source datasets prior to batch correction, grouped
by capture technology.

C. UMAP visualization of combined original source datasets prior to batch correction, grouped
by clinical subtype.

D. PCA plot of first 2 PCs for combined original source datasets prior to batch correction,
labeled by source dataset.

E. PCA plot of first 2 PCs for combined original source datasets prior to batch correction,
labeled by capture technology.

F. PCA plot of first 2 PCs for combined original source datasets prior to batch correction,
labeled by clinical subtype.

G. Violin plots of mean PC loadings across top 20 PCs for combined original source datasets
prior to batch correction, stratified by source dataset.

H. Violin plots of mean PC loadings across top 20 PCs for combined original source datasets
prior to batch correction, stratified by capture technology.

I.  Violin plots of mean PC loadings across top 20 PCs for combined original source datasets
prior to batch correction, stratified by clinical subtype.
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Supplemental Figure 3. Classification of epithelial cells as cancer versus normal using

CNV profile analysis, Related to Figure 1 and STAR Methods.

A. Scatter plot showing classification of epithelial cells in the integrated dataset as cancer
(malignant) versus normal (non-malignant) on inferCNV signal (x-axis) and CNV correlation
(y-axis). Thresholds shown in red dashed lines. CNV signal reflects the extend of CNVs,
while CNV correlation reflects the similarity between the cellular CNV pattern and that of
other cells from the same tumor. Cells assigned as cancer (malignant) are shown in blue,
while the rest are shown in red.

B. UMAP visualization of all epithelial cells in the integrated dataset, grouped by classification

as cancer (malignant) versus normal (non-malignant). Cancer cells are shown in blue, while

normal cells are shown in red. Unassigned cells are shown as NAs and are colored grey.
C. Scatter plot showing classification of epithelial cells in the Bassez et al. dataset as cancer
(malignant) versus normal (non-malignant) on inferCNV signal (x-axis) and CNV correlation
(y-axis).
D. UMAP visualization of all epithelial cells in the Bassez et al. dataset, grouped by
classification as cancer (malignant) versus normal (non-malignant). Cancer cells are shown
in blue, while normal cells are shown in red.
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Supplemental Figure 4. Unsupervised clustering of NK cells and analysis of NK cell

subsets, Related to Figure 1.

A. UMARP visualization of all NK cells in the integrated dataset, grouped by source dataset.
UMAP visualization of all epithelial cells in the integrated dataset, grouped by patient. UMAP
visualization of all epithelial cells in the integrated dataset, grouped by capture technology.

B. Silhouette scores for clustering of NK cells at various resolutions (0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 1.0). Mean silhouette score is shown as a red dashed line. Maximum mean silhouette
score was observed at resolution 0.1 (2 clusters), and second highest mean silhouette score
was observed at resolution 0.3 (6 clusters).

C. Feature plots showing expression of NK subset markers across all NK cells in our integrated
dataset. Feature plots showing expression of functional NK cell genes across all NK cells in
our integrated dataset.

D. MA plots showing differentially expressed genes between individual NK cell subsets and all
other NK cell subset types (Bonferroni adjusted p-value < 0.05).

E. Gene set enrichment of the differentially expressed genes by each NK cell subset.
Significantly enriched gene sets from the MSigDB HALLMARK collection are shown
(Benjamini-Hochberg adjusted p-value < 0.05).
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Supplemental Figure 5. rNK signature development and analysis, Related to Figure 1.

A

Heatmap showing z-scores for the variance-stabilized transformed expression of
differentially expressed genes between healthy NK cells and tumor-promoting NK cells from
previous study.

Bubble heatmap showing expression of upregulated and downregulated human rNK
orthologs for each major NK cell subset.

Boxplot showing the expression level of the rNK signature by clinical subtype, stratified by
age. No significant difference was found between subtypes (Kruskal-Wallis p > 0.05).
Boxplot showing the Pearson correlations of rNK signature gene expression in
reprogrammed NK (rNK) cells compared to non-rNK cells versus rNK cells compared to rNK
cells, stratified by age. Pearson correlations between rNK cells and rNK cells are higher
than those between rNK cells and non-rNK cells for both age strata (two-sided Wilcoxon
test, ****p-value < 0.0001).

. Scatterplot showing the Pearson correlation between age at initial diagnosis and survival

across TCGA samples (p-value > 0.01).

. Kaplan-Meier plots evaluating the influence of rNK cell gene signature expression on

survival outcomes in TCGA patients with relatively high fraction of NK cells, stratified by age.
For patients 245yo, high rNK cell gene signature expression is associated with worse
survival outcomes (log-rank test, p-value < 0.05).

Boxplot showing heterogeneity calculated as 1 — ROGUE score for NK cells in each sample
by breast cancer clinical subtype (*p-value < 0.05).
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Supplemental Figure 6. Differential gene expression and gene set enrichment analyses

for each ERBB2 and TACSTD2 population, Related to Figure 2.

A. UMARP visualization of all epithelial cells in the integrated dataset, grouped by patient.
Consistent with other tumor type and breast tumor datasets, epithelial cells appear to cluster
by patient.

B. UMAP visualization of all epithelial cells in the integrated dataset, grouped by capture
technology.

C. UMAP visualization of all epithelial cells in the integrated dataset, grouped by source
dataset.

D. Boxplot showing % ERBB2+ cells by clinical subtype across samples in the integrated
dataset. As anticipated, % ERBB2+ cells were significantly enriched in HER2+ samples
compared to HR+ and TNBC samples (Kruskal-Wallis p < 0.05, with post-hoc Dunn test p-
values shown).

E. Scatterplot showing the Pearson correlation between HER2+ protein expression and ERBB2
MRNA expression across TCGA samples (p < 0.0001).

F. Gene set enrichment of the differentially expressed genes by ERBB2", ERBB2"*°, and
ERBB2"° cells. Significantly enriched gene sets from the MSigDB HALLMARK collection are
shown (Benjamini-Hochberg adjusted p-value < 0.05).

G. Gene set enrichment of the differentially expressed genes by TACSTD2", TACSTD2V*¢,
and TACSTD2" cells. Significantly enriched gene sets from the MSigDB HALLMARK
collection are shown (Benjamini-Hochberg adjusted p-value < 0.05).

H. MA plot showing differentially expressed genes between ERBB2" vs. ERBB2Y* and
ERBB2"° cells (Bonferroni adjusted p-value < 0.05).

I.  MA plot showing differentially expressed genes between ERBB2"° vs. ERBB2" and
ERBB2V*? cells (Bonferroni adjusted p-value < 0.05).

J. MA plot showing differentially expressed genes between TACSTD2"*vs. TACSTD2"" and
TACSTD2" cells (Bonferroni adjusted p-value < 0.05).

K. MA plot showing differentially expressed genes between TACSTD2"°vs. TACSTD2" and
TACSTD2"* cells (Bonferroni adjusted p-value < 0.05).



% ERBB2+ cells % TACSTD2+ cells

% TACSTD2+ cells

Supplemental Figure 7

All Subtypes HER2+ HR+ TNBC
p-value = 0.015 p-value = 0.036 ~ -
p-value = 0.22
100 [ 100- . = 100- 1 100- —_—
. P p-value = 0.39 P P
8 38 8
75 ;s ;s .
N N N
ja) ja) a
50 5 50 5 50 5 50
g g g
25 s * s P s
ES £ ES
0 0 0 0
NO N1-3 NO N1-3 NO N1-3 NO N1-3
Nodal Status Nodal Status Nodal Status Nodal Status®
All Subtypes HER2+ HR+ TNBC
100} p-value = 0.41 100§ p-value = 0.79 100 1004
H ® » 2
754 8 75 8 75 3 751
& & &
50{ . . 3 50 3 50 8 50
74 o o - =
x ® pvalue = 1 il p-value = 0.89
25 * R 25§ R 25 ﬁ ® 25 o *
. — . . — , == =
NO N1-3 NO N1-3 NO N1-3 NO N1-3
Nodal Status Nodal Status Nodal Status Nodal Status
Karaayvaz et al. Qian et al. Wu et al. (2021) Xu et al.
p-value = 0.19
100 p-value = 0.4 100 100 1 100
2 2 2
3 -value = 0.048 3 3
75 * ;s pvale 0% 7S o5
N N N
o o o
50 'g 50 'g 50 'é 50
° 3 3 <3
25 < > * < > < >
0 0 0 0
NO N1-3 N1-3

NO N1-3
Nodal Status

NO N1-3
Nodal Status

Nodal Status

Nodal Status



Supplemental Figure 7. Analysis of clinical features and associations across samples in
the integrated dataset, Related to Figure 2.

A

B.

C.

Boxplots showing the proportion of TACSTD2-expressing cells per sample by nodal status,
split by clinical subtype (two-sided Wilcoxon test p-value as shown).

Boxplots showing the proportion of ERBB2-expressing cells per sample by nodal status,
split by clinical subtype (two-sided Wilcoxon test p-value as shown).

Boxplots showing the proportion of TACSTD2-expressing cells per sample by nodal status,
split by original source dataset (two-sided Wilcoxon test p-value as shown). The combined
result was not a statistically significant finding, though it does trend toward significance
(Fisher’'s combined probability test, X = 11.227, p = 0.08).
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Supplemental Figure 8. Generation of the 10 gene elements of cancer epithelial cell
heterogeneity and exploration in breast cancer cell lines, Related to Figure 3.

A

B.

Metrics used to select the number of clusters (10) for consensus clustering of signatures of
cancer epithelial cell ITTH.

Spherical k-means (skmeans) consensus clustering of the Jaccard similarities between
signatures of cancer epithelial cell ITTH, showing the probability (p1-p10) of each generated
signature of being assigned to one of 10 classes. Silhouette scores are shown for each
class or GE.

Heatmap of average z-scored expression of each of the 10 GEs across cancer epithelial
cells in each sample in our integrated dataset.

Heatmap of the absolute number of curated predicted receptor-ligand pairs between cancer
epithelial cells by GE and interacting immune and stromal cells.

Heatmap of average z-scored expression of each of the 10 GEs across human breast
cancer cell lines. Cell lines are annotated by molecular subtype (luminal, basal A, basal B,
HER2-amplified).

. Cytotoxicity of NK-92 cells against BT-474, MDA-MB-436, and K562 cell lines, assessed by

% DAPI+ cells at 24 hr timepoint. BT-474 highly expressed NK-resistance GEs (GE1 and
GEG6), while MDA-MB-436 has low expression of NK-resistance GEs. Cytotoxicity was
significantly reduced for the BT-474 cell line compared to the MDA-MB-436 cell line (3
biological replications; Benjamini-Hochberg adjusted, ***p-value < 0.001, ****p-value <
0.0001).

Scatterplots showing Spearman correlations of expression of GEs with limited predicted
interactions with NK cells (all but GE1 and GE6) and sensitivity to NK cell killing across
human breast cancer cell lines (Benjamini-Hochberg adjusted p-values > 0.05).
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Supplemental Figure 9. Predicted GE-immune interactions and spatial analysis of the 10
gene elements, Related to Figure 4.

A. Heatmap showing the proportion of spatial tumor sample spots within a sample that contain
each of the GEs and immune or stromal cell populations.

B. For a representative sample, UCell signature scores of each GE overlaid onto spatial tumor
sample spots with >10% presence of cancer epithelial cells.
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