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SUMMARY
Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diversemalignant and benign tumors. Refine-
ment of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic
targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs
compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberra-
tions in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1.
Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC sub-
type-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differ-
entiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC
from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential
therapeutic targets in non-ccRCC.
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INTRODUCTION

World Health Organization (WHO) 2022 lists 20 different renal cell

carcinoma (RCC) subtypes, of which 7 are defined by specific

molecular aberrations.1 Non-clear cell RCC (ccRCC) accounts

for �20% of RCCs and encompasses a variety of rare subtypes

largely defined by histopathologic features,1–3 collectively

referred to here as non-ccRCCs. Among non-ccRCC tumors,

papillary RCC (pRCC) (10%–15%) and chromophobe RCC

(chRCC) (3%–5%) are relatively common, while the other sub-

types are much rarer. Several rare renal tumors with benign clin-

ical courses show morphological overlap with malignant coun-

terparts.4,5 We have previously discovered several biomarkers

to aid in differential diagnosis of many RCC subtypes6–9; howev-

er, diagnosis in limited biopsy samples settings remains chal-

lenging.10,11 In addition, biomarkers to identify patients at high

risk of disease relapse within each RCC subtype who will benefit

from increased surveillance and adjuvant therapy is another un-

met clinical need.12 Our recent ccRCC study13 nominated bio-

markers associated with features of worse prognosis, such as

genome instability (GI). Similar markers for non-ccRCC tumors

remain to be identified. Similarly, while immune checkpoint and

angiogenesis inhibitors are treatment options in metastatic

ccRCC,14–16 immune infiltration and tumor vascularity vary

widely among non-ccRCC tumors, necessitating further evalua-

tion of markers of responsiveness.

To address the knowledge gaps in non-ccRCC differential di-

agnoses, prognoses, and therapeutic avenues, as part of the

Clinical Proteomic Tumor Analysis Consortium (CPTAC), we per-

formed integrated proteogenomic multi-omic analysis of non-

ccRCC and ccRCC tumors. Besides the few studies detailing ge-

nomics,17–19 transcriptomics,17,19 and proteomics20–23 of rare

RCCs, multi-omic profiling is largely unavailable. Here, we report

multi-omic analysis of 48 non-ccRCC cases (non-ccRCC cohort)

along with the reported ccRCC (n = 103) discovery cohort sam-

ples.24 This integrative pan-RCC analysis identified shared and

subtype-specific proteogenomic, glycoproteomic, metabolic

features across RCC subtypes, nominated various diagnostic

biomarkers, and provided validation for selected candidates.

Single-nucleus RNA sequencing (snRNA-seq) analysis captured

transcriptomic heterogeneity of tumor subclusters and helped

predict cell-of-origin. Combined, the data from this study pro-

vide a rich resource for identifying diagnostic biomarkers, dis-

ease mechanisms, and potentially new therapeutic targets for

non-ccRCC subtypes.

RESULTS

Specimens and multi-omics data types
We performed multi-omics data analysis of 48 non-ccRCC and

103 ccRCC tumors and 101 normal adjacent tissues (NATs) (22

and 79 from non-ccRCC and ccRCC patients, respectively) (Fig-

ure S1A; Table S1). Multi-omics data available from common

sample aliquots25 include whole-genome sequencing, whole-

exome sequencing, DNA methylation profiling, and RNA-seq

for all 151 tumor samples, and RNA-seq data for 89 NATs

(ccRCC n = 71; non-ccRCC n = 18) (Figure S1A). snRNA-seq

data were generated for eight non-ccRCC tumors.
2 Cell Reports Medicine 5, 101547, May 21, 2024
Histopathological subtyping information and signature molec-

ular aberrations such as copy number variation patterns, so-

matic/germlinemutations,marker gene expression, and gene fu-

sions were collectively assessed to arrive at tumor-molecular

annotation (Figure 1A; Table S1).26 Based on the WHO 2018

renal tumor histological classification (available at data freeze),

the analysis cohort comprises 103 ccRCC, 15 renal oncocyto-

mas (ROs), 13 pRCC (8 of them with type 1 features; WHO

2018), 3 chRCC, 2 angiomyolipoma (AML), 2 eosinophilic solid

and cystic RCC (ESCRCC), 1 Birt-Hogg-Dube syndrome-associ-

ated renal cell carcinoma, 1mixed epithelial and stromal tumor of

the kidney, 1 MTOR mutated RCC, 1 translocation RCC (TRCC),

and 8 tumors where genomics aberrations patterns did not

concur with histological classification were annotated as molec-

ularly divergent to histology (MDTH) (Figure 1A; Table S1).

The sample cohorts have comparable demographic and clin-

ical composition except for a higher proportion of female pa-

tients in non-ccRCC compared with ccRCC cohorts (p =

0.036) (Figure S1B). The multi-omics dataset can be queried

using the interactive ProTrack website http://ccrcc-conf.

cptac-data-view.org (Figure S1B).27 We identified a total of

12,299 proteins, 9,396 phosphorylated proteins, and 1,035 gly-

coproteins, of which 9,528 proteins, 6,465 phosphorylated pro-

teins, and 639 glycoproteins were quantified in more than

half of all samples. Principal-component analysis (PCA) of

global proteome, phosphoproteome, and glycoproteome data

showed clear separation between different tumor subtypes

and normal samples in two-dimensional space (Figure S1C).

Known mutation consequences on kinase protein expression

and phosphorylation are consistent with previous findings18,28

(Figures S1D, S3B, and S3C).

Subtype-specific proteogenomic signatures
Different subtypes of non-ccRCC tumors displayed recurrent

genomic aberrations distinct from ccRCC (Figure 1A). Notable

non-ccRCC subtype-specific events include: the signature chro-

mosomal losses and TP53mutations in chRCC (3/3 cases), chr7/

17 gain (8/13 cases), and MET mutations (3/13 cases) in pRCC,

TSC gene mutations in ESCRCC (2/2 cases) and AML tumors

(2/2 cases), and the TFE3 gene fusion in a TRCC case. Consis-

tent with previous classification of RO molecular subtypes,18

RO type 1 was enriched with CCND1 gene rearrangement with

a diploid genome, and type 2 was marked by one copy loss of

chromosome 1 (chr1), and RO cases that did not show either

of these molecular features were categorized as the ‘‘RO

variant’’ subgroup.18 Gene set enrichment analysis (GSEA) re-

vealed several interesting pathway similarities and differences

among RCC subtypes (Figure 1B; Tables S2 andS3). For

instance, immune/inflammatory response concepts, including

allograft rejection, inflammatory response, interferon alpha/

gamma pathways, were significantly upregulated, especially at

the protein levels, in both pRCC and ccRCC. In contrast, glycol-

ysis, hypoxia, and epithelial-to-mesenchymal transition (EMT)

were significantly enriched in the ccRCC proteome but showed

a negative enrichment trend in pRCC and RO. Interestingly,

oxidative phosphorylation showed significant positive enrich-

ment in RO but was down in pRCC and ccRCC as expected

(Figures 1A and 1B).18,22,24,29

http://ccrcc-conf.cptac-data-view.org/
http://ccrcc-conf.cptac-data-view.org/
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Next, the status of tumor-immune infiltration was assessed

through immune deconvolution followed by clustering analysis

(STAR Methods; Figure 1A). In addition to four previously

described ccRCC clusters,24 three non-ccRCC clusters were

identified: one myeloid-lymphoid high non-ccRCC cluster, a

myeloid-high cluster containing most pRCC samples, and an im-

mune-absent cluster comprising all oncocytic tumors (Figure 1A).

Overall, the extent of immune infiltration was lower in non-

ccRCC than in ccRCC (Figure 1C). High weighted genome insta-

bility (wGII) containing cases were observed among non-ccRCC

(�37%), ccRCC (�23%) in the CPTAC, and non-ccRCC (�20%)

and ccRCC (21%) in the TCGA cohorts (Figures 1D–1F). Interest-

ingly, myeloid-lymphoid high non-ccRCC tumors showed high

immune infiltration and high wGII (Figures 1A and S1E).

Proteogenomics of high-wGII samples
Integrative analysis of RNA, protein, and phosphorylation site

level expression data performed using automatic relevance

determination non-negative matrix factorization (ARD-NMF)30

defined six multi-omics clusters. Among these, most pRCC tu-

mors clustered in ARD-NMF-0, oncocytic tumors (RO, chRCC)

in ARD-NMF-3, ccRCC samples were distributed in ARD-NMF-

1 and -5, while the NATs populated ARD-NMF-2 and ARD-

NMF-4 (Figure 1A; Table S2). The smaller ARD-NMF-1 is associ-

ated with DNA hypermethylation Methyl1 group, higher-grade

ccRCC,13 and worse prognosis, while the larger ARD-NMF-5

ccRCC cluster is enriched (p < 0.05, chi-square test) in low-

grade ccRCC tumors. Next, as DNA hypermethylation sub-

groups have been associated with worse survival,17,19 we per-

formed consensus clustering with DNA methylation data and

identified five different methylation clusters. Methyl3 and

Methyl5 were largely subtype specific and contained ccRCC

and all oncocytic tumors, respectively. Interestingly, Methyl1

was enriched with ccRCC samples with high wGII, BAP1 mu-

tants, and a subset of non-ccRCC samples with high wGII and

high ploidy mostly from the MDTH category (Figures 1E

and S1E).

We next compared the mRNA and protein differential expres-

sion (DE) between high-wGII (n = 9) versus low-wGII (n = 15) non-

ccRCC samples including pRCCs, TRCC, ESCRCC, MTOR

mutated, and MDTH (Figure 1G; Table S4). A collection of prom-

inent wGII markers was concordantly identified including the
Figure 1. Proteogenomic biomarkers of copy number-based genome

(A) Proteogenomic aberration landscape of ccRCC and non-ccRCC. Top panel: h

protein automatic relevance determination in non-negative matrix factorization (

events. Bottompanel: heatmaps show the top 10 differentially expressed genes an

features (log2 fold change) from selected pathways.

(B) Differentially enriched pathways (RNA and protein) among the various RCC s

(C) Predicted immune composition for ccRCC and non-ccRCC.

(D) Heatmap of absolute copy number variation (CNV) deduced from CNVEX ou

subtype, wGII annotations tracks provided (left).

(E) Distribution of BAP1 mutation, wGII, immune subtype, tumor classes, and NM

BAP1 mutation, high wGII, myeloid-lymphoid high immune subtype, and NMF cl

(F) Subtype composition among low- and high-wGII tumors, in TCGA (left) andCPT

high-wGII samples.

(G) Comparison of significance levels (signed –log10 p value) between protein (x

non-ccRCC samples. Significantly upregulated genes are labeled and colored. T

(H) Overlap between TCGA and CPTAC high-wGII mRNA expression gene mark
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mitochondrial proline biosynthetic pathway enzyme PYCR1,

associated with cancer cell survival, invasion, and progression

across multiple cancer types.31–33 PYCR1 was confirmed to be

upregulated in high-wGII samples based on RNA in situ hybridi-

zation (RNA-ISH) (Figure S1F). In addition, the RNA binding pro-

tein and N6-methyladenosine reader IGF2BP3 showed a signif-

icantly higher mRNA expression in non-ccRCC high-wGII

samples (Figure 1G), and upregulation trend noted in protein

expression was validated by immunohistochemistry (IHC) (Fig-

ure S1G). Importantly, high IGF2BP3 RNA expression was noted

in high-wGII samples across CPTAC and TCGA datasets (Fig-

ure 1H). IGF2BP3 has been associated with worse survival in

several cancer types,34 but has not been previously associated

with high wGII. In general, minimal overlap of high wGII associ-

ated differentially expressed genes and proteins was noted be-

tween ccRCC and non-ccRCC, but Hallmark pathways associ-

ated with high-wGII cases included cell-cycle/proliferation

concepts (e.g., enrichment of E2F targets, G2-M checkpoint),

as well as immune- and inflammation-related concepts, EMT,

hypoxia, and glycolysis (Figure S1H). Notably, the MDTH non-

ccRCC tumors that are largely genome unstable (6/7) tend to

be both hypermethylated (4/7) and immune infiltrated (6/7).

Non-ccRCC snRNA-seq reveals intra-tumor
transcriptomic heterogeneity and low immune
infiltration
To investigate cellular level associations in non-ccRCCs,

snRNA-seq data for 8 samples (9,673 single-nuclei transcrip-

tomes [median 10,592 nuclei/sample]), were analyzed along

with 3 ccRCC samples from our companion study13 (Table S5).

Dimensionality reduction analysis post downsampling (2,000

nuclei/sample) showed distinct immune, endothelial, and stro-

mal cell clusters irrespective of the patient of origin (Figures 2A

and S2A), while the tumor epithelia formed patient-specific clus-

ters (Figure 2B). Most non-ccRCC samples had higher tumor cell

fractions, implying higher tumor content and lower immune infil-

tration17 compared with ccRCC (Figures S2A–S2C) except for

the two high immune fraction AML cases. ROs and chRCC

were closer in space, while pRCC, ESCRCC, and TRCC were

more distinctly positioned.

Multiple tumor subclusters in AML samples revealing intra-tu-

mor transcriptomic heterogeneity were associated with different
instability in renal cell carcinoma

isto-molecular annotations condensed as tracks (*excluded sample). RNA and

ARD-NMF) classification. Middle panel: non-ccRCC display distinct recurrent

d proteins enriched in annotated biological processes. Top 20 protein and RNA

ubtypes.

tput for non-ccRCC (top) and ccRCC (bottom) sorted by ploidy. Ploidy, RCC

F clustering in five methylation subgroups. Significant enrichment (p < 0.01) of

uster1 hyper-methylated group.

AC (right) non-ccRCC (upper), and ccRCC (lower) cohorts. Bold black borders,

axis) and mRNA (y axis) under high to low-wGII comparison within a subset of

he inset shows the global correlation between the changes.

ers in non-ccRCC (left) and ccRCC (right).
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Figure 2. Tumor transcriptomic heterogeneity, immune infiltration status, and tumor cell-of-origin by snRNA-seq

(A) UMAP of snRNA-seq data from eight non-ccRCC tumors. Nuclei are colored by RCC subtypes for tumor cells (left) and cell types (right).

(B) First three principal components of six tumors (AML excluded) colored by tumor types.

(C) Probabilities of cell-of-origin are predicted by a random forest classifier for different tumor subclusters for RCC subtypes. Classifier was trained on Lake et al.35

benign renal epithelial cell snRNA-seq data.

(D) Averaged abundance of DE protein (top) and mRNA (bottom) markers from each RCC subtype versus NATs among the epithelial cell types identified from

normal kidney scRNA-seq data.36
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constituent tumor cell types, presumably a result of trans-differ-

entiation from a common cell of origin37 (Figure S2D). AML tumor

compartment comprises an admixture of cells that are histolog-

ically andmolecularly similar to vascular (angio-), smoothmuscle

(myo-), and fat (lipo-) lineages.38 Finally, among the ROs, RO

type 1 showed multiple tumor subclusters, including one entirely

associated with the S-phase of the cell cycle, indicating higher

tumor proliferation rates (Figure S2E). Among other tumors

analyzed, all tumor clusters from a given sample showed corre-

sponding mRNA expression changes associated with clonal

copy number events such as chr7 and 17 gains (pRCC) and

chr1 loss (type 2 RO) (Figure S2F).

Tumor single-cell transcriptome data have been employed to

predict cell-of-origin of tumors, using a random forest model

trained on benign nephronal epithelial cell types.36 We per-

formed similar analysis using snRNA-seq datasets from various

RCC subtypes and the publicly available benign human kidney

samples35 (Figure 2C; STAR Methods). Interestingly, TRCC,

ESCRCC, and pRCC showed highest origin-probability to the
proximal tubule 2 (PT2) population, a rare cell type that is equiv-

alent to the PT-B population (designated from single-cell RNA-

seq data) that we previously demonstrated to contain stem-like

marker gene expression36 (Figure 2D). In contrast, the ROs

and chRCC consistently showed highest probability to the

intercalated-A (IC-A) population, suggesting a distal nephron

origin (Figure 2D). Among the AML tumor compartments, we

noted similarities between tumor subclusters to mesenchymal

vSMC cells and endothelial cells as expected (Figure 2C). Similar

results were obtained when bulk tumor RNA-seq data were

analyzed with single-cell data from benign kidney (Figure S2G).

Finally, to bridge the single-cell and snRNA-seq-based predic-

tions, we demonstrated that the PT2 and cluster 29 populations

of PT cells published by Lake et al.35 were equivalent to the pre-

viously identified PT_B and PT_C rare stem-like populations, and

we nominated PT2/PT_B cells as the cell-of-origin for several

RCC subtypes (Figure S2H). Our analysis supports IC-A as puta-

tive cell-of-origin for oncocytomas. Furthermore, we identified

the top 100 proteogenomic DE markers in each RCC subtype
Cell Reports Medicine 5, 101547, May 21, 2024 5
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Figure 3. Phosphoproteomic changes in non-ccRCC and genome-unstable tumors

(A) DE kinases across major subtypes. Colors represent protein abundance fold change between tumor subtype and NATs. Highlighted kinases are significantly

differentially expressed in certain tumor subtypes (adjusted p < 0.01, abs(log2 fc) > 1). CD8+, CD8 positive; CD8–, CD8 negative; MID, metabolic immune-desert;

VEGF, VEGF immune-desert. Drug discovery stages (for kinases) from the drug repurposing hub39 indicated.

(B) Subtype-specific upregulated kinases. Top to bottom: FLT1 in ccRCC, MET in pRCC type 1, KIT in oncocytic tumors, and MYLK in AML.

(C) Pathways enriched among the differentially regulated phosphorylation sites across subtypes. Black borders, pathways with FDR < 20%.

(legend continued on next page)
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(Figure S2I; Table S3) and noted their distinct enrichment among

benign nephron cell types (Figure 2D), for example MAPRE3 in

RO and PIGR in pRCC, which are described in later sections.

Phosphoproteomic signatures of RCC subtypes and GI
tumors
Phosphoproteomics can reveal potentially targetable kinase

signaling pathways in tumors. First, as expected we observed

enrichment of vascular endothelial growth factor receptor FLT1

in ccRCC,24 receptor tyrosine kinases MET and KIT (CD117) in

pRCC and chRCC/RO, respectively, and serine threonine kinase

MYLK in AML (Figures 3A and 3B; Table S6). In addition, we

discovered higher expression of CDK18, NEK6, and PNCK in

ccRCC, and BAZ1B and TNIK in pRCC type 1. While LATS1,

PRKCD, PRKAG2, and STK39 were common between RO and

chRCC, DAPK2, MAPK13, MAP3K1, SYK, DDR1, EIF2AK4,

PAK4, and PTK2B were specific to chRCC. Therapeutic inhibi-

tion of many of these kinases are currently being evaluated in

clinical and preclinical settings (Figure 3A).

Next, to assess phosphorylation changes in subtype-enriched

kinases, we compared phospho data and highlighted selected

phosphosite changes across the RCC subtypes (Figure S3A;

Table S6). For example, phosphorylation of S645 and T507 in

the protein kinase C, delta type (PRKCD) is significantly elevated

in RO and chRCC compared with pRCCs and ccRCCs (Fig-

ure S3A). PRKCD phosphorylation, necessary to prime protein

kinase maturation,40,41 is associated with PLC-PKC signaling

in leptin stimulation,42 which is significantly enriched in RO tu-

mors (Figures 3C and S3A). Leptin regulates the PI3K-AKT

pathway, signaling through the JAK-STAT axis43 (Figures 3C

and S3A). On the other hand, the IL-2 pathway was uniquely up-

regulated in RO type 2, with high phosphorylation intensity noted

in BAD and STAT1 (Figure S3A). Other immune-related pathways

including IL-33, TSLP, and T and B cell receptors were generally

highly phosphorylated in different immune subtypes of ccRCC

and in pRCC, consistent with the snRNA-seq-based observation

of higher immune content in ccRCC and pRCC (Figure S2B).

We also explored phosphorylation changes associated with

GI, comparing kinase-substrate co-regulation in high- versus

low-wGII non-ccRCC samples (STAR Methods; FDR < 0.05, ab-

s(kinase log2 fc) > 0.05, abs(substrate site log2 fc) > 0.5)).

Remarkably, cyclin-dependent kinases (CDK1, CDK2) were the

most enriched in wGII-high samples (Figures 3D, 3E, and S3D).

CDK1 and 2 are critical regulators of multiple steps in cell-cycle

and DNA synthesis,44 thus closely linked to genomic stabil-

ity.45,46 Significantly upregulated CDK1 substrates include E2F

targets such as RRM2, MCM4, DUT, RFC1, PAICS, NASP, and

HMGA1, which regulate DNA replication and chromosome sta-

bility47 (Figure 3E). Phosphorylation of RB1 T356 by CDK2 (and
(D) Kinases that are enriched with down- or upregulated phosphorylation in high

labeled.

(E) Significantly co-regulated kinase-substrate pairs in high-wGII tumors (FDR < 0

circles represent kinases and substrate proteins, respectively, and arrows point fro

fold change between high- and low-wGII non-ccRCC. Border color around circles

and low-wGII non-ccRCC. Size of nodes and thickness of colored arrows are pro

and substrate proteins.

(F) Protein 3D structure of CDK2. Highlighted residues are significantly upregula
CDK4/6)48,49 promotes E2F activity50 as well as apoptosis in

response to replication stress and DNA damage.51 Interestingly,

CDK2 can also be phosphorylated at Y15 by LYN kinase.52

CLUMPS-PTM analysis used to identify phosphorylation clus-

ters in protein 3D structure53 revealed three phosphorylation

sites in CDK2 (T14, Y15, and T160) forming a phosphorylation

hotspot (Figure 3F). Phosphorylation of Y15 and T160 have

opposing effects on CDK2 function, Y15 is inhibitory and T160

activating, both events noted together previously in ovarian

high-grade serous cancer.54 Furthermore, increased phosphor-

ylation of CDK2 Y15 is associated with cell-cycle exit in response

to replication stress,55,56 altogether supporting mechanistic links

with genomic instability.46,56

RCC glycoproteome reflects tumor immune infiltration
and angiogenesis
Protein glycosylation is linked with cancer development and pro-

gression,57,58 as well as tumor microenvironment (TME).59 To

explore RCC glycobiology and its implications on TMEs, we

analyzed two different glycoproteomics60 datasets generated

independently for this cohort. First, 41 non-ccRCC and 19 NAT

samples were enriched for N-glycopeptides,61 analyzed by

MSFragger-Glyco search pipeline62,63 (STAR Methods). Sec-

ond, phosphorylation enrichment via immobilized metal affinity

chromatography, co-enriched with a substantial number of gly-

copeptides, particularly sialoglycopeptides,64 were analyzed

similarly. Our N-linked glycoproteomics pipeline identified

12,503 intact glycopeptides (IGPs) with glycans (glycoforms)

from 1,035 glycoproteins in glyco-enriched samples and

29,850 glycoforms from 1,591 glycoproteins in the phospho-en-

riched samples, respectively, with an overlap of 521 glycopro-

teins (Figure 4A; Table S7).

Based on glycan monosaccharide composition, IGPs were

classified into five categories: oligomannose, sialylated, fucosy-

lated, fuco-sialylated, and neutral moieties.65 In glyco-enriched

samples, the IGPs were mainly attached to oligomannose gly-

cans, followed by sialylated glycans (Figure 4B), while in phos-

pho-enriched samples IGPs were largely sialylated (Figure S4A)

as expected.64 Due to sample number constraints, we focused

on RO, pRCC, and ccRCC samples. In the glyco-enriched da-

taset, glycopeptides attached with oligomannose glycans ac-

counted for a large number of the tumor versus normal DE

events in both RO and pRCC (Figure 4C). Differential glycosyl-

ation abundance positively correlated with corresponding pro-

tein abundance changes, but discordant events were also

noted (Figures S4B and S4C). Integration with kidney scRNA-

seq data36 (STAR Methods) revealed a significant fraction

of the dysregulated glycoproteins contributed by the TME.

For example, we observed more upregulated immune
compared with low-wGII non-ccRCC. Kinases with enrichment p % 0.05 are

.05, abs(log2fc of kinase) > 0.05, abs(log2fc of substrates >0.5)). Diamonds and

m former to latter. Diamonds filled with color represent protein abundance log2

represents average phosphorylation intensity log2 fold changes between high-

portional to the number of significant phosphorylation events between kinases

ted phosphorylation clusters identified by CLUMPS-PTM.
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compartment changes in pRCC (�30%) compared with RO

(�5%) (Figures 4D and S4D). Interestingly, only RO samples

showed higher fractions of upregulated markers of intercalated

cells, a cell type we propose as cell-of-origin for RO. These ob-

servations are also consistent with GSEA (Figure 4E). Similar

trends of immune infiltration were seen in the phospho-en-

riched dataset as well for the RO and pRCC samples (Fig-

ure S4E). In addition, significant differences between ccRCC

immune subtypes were also observed (Figure S4E). As differen-

tial glycosylation of key targets has been associated with

altered immune and endothelial cell functions,59 we looked at

selected glycoprotein markers in TME cell types (Figures 4F

and S4F). Specifically, RO showed upregulation of IGPs of

known marker PLCG2,66 as well as ADGRF5 from epithelial/tu-

mor, VWF, POSTN, and STAT5 from endothelial, and CTSD

from the immune compartments. On the other hand, pRCC

showed upregulation of TFPI2, FSTL1, FAS, and PIGR in the

epithelial/tumor, C1QTNF3 and GRN in the endothelial, and

ITGAX, HLA-DQA1, IL4I1, and CTSC in the immune compart-

ments. We also observed differential glycosylations not specific

to any cell type, for example involving the cancer stem cell

marker CD4467 in ccRCC and pRCC (Figure 4F). Protein

expression of selected markers in different cell types was

corroborated by Human Protein Atlas IHC data68 (Figure 4G).

Next, evaluating the expression of glycosylation enzymes

associated with glycosylation alterations, we noted high levels

of glycotransferases (e.g., MGAT1, FUT11) and low levels of gly-

cohydrolases (e.g., GLB1, FUCA1, FUCA2, HEXA, HEXB) in

ccRCC versus NATs and other RCC subtypes, at both RNA

and protein levels69 (Figure S4G). Meanwhile, RO showed upre-

gulated expression of MAN2A1 and ST3GAL1, while pRCC

showed higher expression of glycotransferase FUT870,71

(Figures 4H, 4I, S2B, and S4H). Consistent with FUT8 overex-

pression, N-glycoproteomics profiling data showed upregulated

glycosylation of its putative targets71,72 including CTSC, FSTL1,

and LGALS3BP20,73,74 (Figures 4J and S4I), and MET (Fig-

ure S4J), the oncogenic driver of pRCC type 1 classification75

and a crucial regulator of EMT.76 c-MET (encoded byMET) activ-

ity is regulated by N-glycosylation.77–80 Upregulation of c-MET

glycosylation in pRCC type 1 samples was further localized to

MET_N785, recently reported to be largely core-fucosylated81

(Figure S4K). Interestingly, L1CAM, which is a FUT8 target and

mediator of cancer progression in melanoma,71 showed down-

regulation in this case, suggesting an alternate mechanism in

RCCs (Figures 4F and S4F).
Figure 4. RCC glycoproteome reflects tumor immune infiltration and a

(A) Glycoprotein overlap between glyco searches on glyco-enriched samples (gl

(B) Distribution of various glycoforms found in the glyco-enriched samples.

(C) Distribution of differentially expressed glycoforms.

(D) DE glycoproteins (left) and proteins (right) in glyco-enriched samples and their

scRNA-seq data.36

(E) Cell-type enrichment analysis for glycoproteins markers in oncocytoma (left)

(F) DE cell-type-specific glycoprotein markers in glyco-enriched samples. Asteri

(G) Selected glycoprotein marker expression was validated using data from the

(H) FUT8 protein expression across different RCC subtypes and NATs.

(I) FUT8 RNA expression among different cell types identified in type 1 pRCC (C

(J) Expression of putative FUT8 glycoprotein targets in pRCC by GSEA.

(K) DE glycoproteins (unnormalized data) between high- versus low-wGII non-cc
Finally, comparing the glycosylation patterns in high- versus

low-wGII tumors, immune marker glycoproteins such as GZMA

(cytotoxic T cells), FCGR1A, PTPRC (lymphocyte), and CD163

(macrophage), endothelial glycoproteins such as POSTN,

ITRIP, ANO6, CD74, CD14, and STAB, stromal markers such

as FBN, FBLN2, ITGA5, and COL1A1, and other markers

MERTK and FH were enriched in high-wGII tumors (Figure 4K).

This supports increased TME cell involvement in high-wGII sam-

ples. GZMA is proposed to promote colorectal cancer develop-

ment.82 MERTK is a receptor tyrosine kinase aberrantly ex-

pressed in several malignancies and represents a novel target

for cancer therapeutics.83 GSEA also revealed that glycosylation

upregulated in high-wGII samples is involved in EMT hallmark

(Table S7), similar to our observation in global proteomics and

transcriptomics data (Figure S1H).

RCC subtypes metabolome delineates tumor growth
dynamics
RCCs are known to exhibit a wide array of mutation-driven

metabolic defects.84 ccRCCs displaying increased glycolysis

and decreased oxidative phosphorylation (Warburg effect)

have been associated with high grade, high stage, and low sur-

vival.85 To explore tumorigenic metabolic reprogramming86

in non-ccRCCs, we profiled 253 metabolites across 28

non-ccRCC tumors and 7 NATs (Figure S1A; Table S8). The

quantified metabolites include organic acids and derivatives

(68), nucleosides, nucleotides, and analogs (48), organic oxy-

gen compounds (42), and other intermediates of major meta-

bolic pathways such as organoheterocyclic compounds, lipids,

and benzenoids (Figures 5A and S5A). Differential metabolomic

characteristics across RCC subtypes and AML samples were

resolved by PCA (Figure 5B), including 65, 136, and 97 differen-

tial compounds significantly enriched in pRCC type 1, AML,

and ROs, respectively, compared with NATs (R 2-fold change

and q % 0.05) (Figure S5B). Next, analysis of differentially ex-

pressed metabolic enzymes identified metabolic pathways per-

turbed across RCC subtypes. For example, ccRCC and pRCC

type 1 tumors shared some common pathway enrichments

compared with ccRCC and ROs (Figure 5C). Specifically, pu-

rine nucleotide de novo biosynthesis and TCA cycle were

depleted in both ccRCC and pRCC type 1 but were enriched

in ROs. Pentose phosphate pathway and dermatan sulfate

degradation were potentially upregulated in pRCC type 1 but

not in other tumor types. Pyrimidine deoxyribonucleoside

salvage pathway and glycolysis were active in both AML and
ngiogenesis

yco enrichment) and phospho-enriched samples (phospho enrichment).

cell type annotation, delineated by cell-type-specific expression from previous

and pRCC (right) in glyco-enriched samples.

sks indicate significant adjusted q value <0.05) marker expressions.

Human Protein Atlas. Scale bars, 50 mm.

3N-00439) snRNA-seq data.

RCC.
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ROs. High levels of ACACA, ACACB enzymes, and phosphoric

acid in AML indicate increased fatty acid biosynthesis (Figures

S5C and S5D).

Several enzymes in the oxidative (e.g., G6PD) as well as non-

oxidative (e.g., TALDO1, TKT) phases of pentose phosphate

pathway was highly expressed in pRCC type 1 (Figures 5D,

S5C, and S5D), associated with increased demand for ribonu-

cleotides in the rapidly proliferating cancer cells.66 In renal

ROs,66 these enzymes are not differentially expressed, likely rep-

resenting a metabolic barrier to progression. Indeed, ROs

showed an accumulation of pyruvate, a product of glycolysis

(Figures 5D, S5C, and S5D). Furthermore, low levels of TCA cycle

enzymes such as succinate dehydrogenase (SDHB, SDHC,

SDHD) and FH are seen in pRCC type 1,87 in contrast to high

levels of FH, IDH3, and CS seen in ROs. These metabolomic ob-

servations are consistent with previously noted high numbers of

defective mitochondria (with high abundance of mitochondrial

protein) in ROs.21,88,89

Finally, we compared the metabolomic profile of 4 high-wGII

versus 10 low-wGII non-ccRCC samples and identified 6 com-

pounds significantly upregulated and 5 downregulated in the

high-wGII group (Figures 5E and 5F). High levels of proline and

NADH, coupled with high PYCR1 expression (Figure S1G), indi-

cated higher proline biosynthesis, which might support

cancer cell proliferation and survival in oxygen-limiting condi-

tions.81 On the other hand, genome-stable samples showed

high expression of saccharic acid, glucosamine, and 8-hydroxy-

quinoline, of which the derivatives are known to have anticancer

effects.

Papillary RCC biomarkers and proteogenomics of
activating MET mutations
Malignant pRCCs75 accounting for 15% of all RCCs are histo-

morphologically and genetically heterogeneous tumors that

currently lack specific diagnostic biomarkers. Importantly, a

subset of pRCCs show overlapping morphology with mucinous

tubular and spindle cell carcinoma (MTSCC), a rare benign

tumor90 confounding clinical care decisions. To delineate

pRCC-specific biomarkers using our multi-omics data, we iden-

tified a number of pRCC type 1-specific candidates significantly

upregulated (n = 176, log2 fc > 1, q < 0.05) and downregulated

(n = 108, log2 fc < �1, q < 0.05) (Figure 6A; Table S9). Top

pRCC-specific candidates included sclerostin domain-contain-

ing protein1 (SOSTDC1)91 and polymeric immunoglobulin recep-

tor (PIGR), further validated in the pan-RCCRNA-seq data from a

combined cohort of TCGA plus MCTP (n = 1,000) (Figures 6B,

S6A, and S6B). Comparing MTSCC (n = 18) and pRCC (n = 8)

proteomics data from Xu et al.23 we noted both PIGR and

SOSTDC1 proteins highly upregulated in pRCC compared with

MTSCC (Figure 6C), and we validated these findings by IHC

and RNA-ISH (Figures 6D and 6E). SOSTDC1 as a biomarker

for pRCC has not been studied previously. PIGR has been listed

as pRCC-specific in Jorge et al.’s DE analysis,20 corroborated by

our observations.

Next we explored the proteogenomic impact of activating mu-

tations in the MET kinase domain frequently observed in type 1

pRCC. Two type 1 pRCC samples with hotspot mutations in

the MET kinase domain (Asp1246Asn and Met1268Thr) (Fig-
ure 6F), compared against type 1 pRCC cases with wild-type

MET (n = 5), revealed upregulated phosphoserine/threonine

and phosphotyrosine events, including several known MET sub-

strates such as GAB1 Y689 (Figure S6C). In addition to known

MET substrates, enrichment analysis with PTM-SEA identified

signaling pathways enriched with upregulated phosphorylation

sites, such as EGFR, PI3K-AKT, and MAPK (Figure 6G). The

intracellular signaling cascades activated by MET include the

PI3K-AKT, RAC1-cell division control protein CDC42, RAP1,

and RAS-MAPK pathways. Cooperative signaling between

MET and EGFR has been observed during kidney develop-

ment,92 and aberrant cross-signalling in renal cancer noted to

have major implications for therapy.93

chr7 gain is common in type 1 pRCC and occurs in some

ccRCCs. Increased abundance of chr7 genes is notably

observed on RNA level (Figures S6D and S6E). As both chr7/

17 gains tend to co-occur in pRCC, we also saw increased

chr17 gene expression in non-ccRCC tumors, which was not

observed in ccRCC (Figures 6H and S6F). Pathway enrichment

analysis revealed upregulation in EMT, angiogenesis and

KRAS signaling, and downregulation in adipogenesis and fatty

acid metabolism in both ccRCC and non-ccRCC tumors with

chr7 gain (Figure S6G). In addition, papillary lineage tumors ex-

hibiting chr7 gain show elevated phosphorylation activities asso-

ciated with several chr7 kinases, including HIPK2, CDK13, MET,

CDK6, and BRAF (Figure S6H).

Regulons and differential diagnosis biomarkers in
oncocytic tumors
Current IHC clinical markers for chRCC17,94 and RO95,96 include

KRT7, CD117 (c-kit), epithelial mesenchymal antigen, parvalbu-

min, S100A, and kidney-specific cadherins. Instances of patchy

staining and pattern overlap with chRCC17,94,97 are limitations,

as in clinical diagnostic criteria, patchy KRT7 expression usually

supports RO, while strong uniform staining is usually supportive

of chRCC.

KRT7 was higher in chRCC (both RNA and protein levels),

markers such as KIT and FOXI1 were equally expressed in

ROs and chRCC, while CCND1 overexpression was specific to

fusion-positive RO (Figure S7A). We next employed SCENIC

tool,98,99 which examines transcriptional modules or regulons

(coexpression of a given transcription factor and its target genes)

to characterize differences among the different tumor and

benign tissues (Figure S7B). The transcription factor FOXI1 is

specifically expressed in intercalated cells and tumors such as

chRCC and ROs.8,100 Regulons shared between chRCC and

RO include the lineage-specific transcription factors FOXI1 and

DMRT2, and DMRT2 is a known target of FOXI1. We also identi-

fied several regulons that were enriched only in chRCC, such as

ZBTB7A, SMARCB1, E4F1, and FOXJ2, among others (Fig-

ure S7B) that were not previously associated with this disease.

We next performed RNA and protein DE analysis between three

chRCC and 15 ROs profiled in this study to identify diagnostic

biomarkers (Figure 7A). Compared with two publicly available

datasets, the CPTAC proteomic dataset had a better coverage

of FOXI1 and DMRT2 where both transcription factor proteins

and most of their gene targets (such as ATPV0D2,

HEPACAM2, DMRT2, etc.) showed differential expression in
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Figure 6. Proteogenomic biomarkers that distinguish pRCC from MTSCC

(A) Significantly differential events (abs(log2fc) > 2 and q < 0.05) in protein expression (x axis) and RNA expression (y axis) between pRCC type 1 and other tumors.

(B) Specificity of pRCC type 1 protein markers PIGR and SOSTDC1.

(C) Expression of pRCC type 1 protein markers PIGR and SOSTDC1 in the proteomics data from Xu et al.23 (PXD027972).

(D) H&E, protein IHC, and RNA-ISH images (top to bottom) of biomarker PIGR in normal kidney tissue, pRCC, MTSCC tumors (upper panels from left to right) and

SOSTDC1 in chRCC, pRCC, and MTSCC (lower panels from left to right).

(E) RNA-ISH comparative scores of PIGR and SOSTDC1 in different tumor types. Red points represent external University of Michigan samples.

(F) Location of missense mutations in MET across TCGA cohorts are colored on the MET protein domain diagram.

(G) PTM-SEA analysis shows pathways such as EGFR are significantly enriched with increased phosphorylation in MET mutant pRCC samples.

(H) Enrichment in chromosomes 7 and 17 gene sets are tested with protein expression difference between chromosome 7 gain and no gain non-ccRCC sample

groups.
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Figure 7. Proteogenomic biomarkers that distinguish oncocytomas (RO) from chRCC

(A) DE proteins (x axis) andmRNA (y axis) between RO and chRCC. Indicated genes have p < 0.01 in both dimensions, and candidates in red (MAPRE3, ADGRF5,

GPNMB) were subsequently validated as RO- and chRCC-specific biomarkers, respectively.

(B) chRCC marker GPNMB (left) and RO biomarkers ADGRF5 and MAPRE3 protein abundance in different subtypes.

(C) Overlap between DE proteins identified in this study (CPTAC) and the publicly available PXD007633 dataset in RO (left) and PXD019123 chRCC dataset (right).

Genes in red are associated with FOX1 and DMRT2.

(D) Immunohistochemistry validation of nominated markers seen in representative tumor sections. Corresponding H&E staining images are shown alongside.
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tumor versus normal comparisons, as expected (Figure 7A;

Table S10).66,96

DE analysis (Figure 7A) discovered candidates such as micro-

tubule-associated protein RP/EB family member 3, adhesion G

protein-coupled receptor F5 (MAPRE3, ADGRF5, specific to

RO) and glycoprotein nonmetastatic melanoma protein B

(GPNMB upregulated in chRCC) (Figures 7B, 7C, and S7C).

We validated our findings in independent publicly available

mass spectrometry-based proteomics data for RO (n = 6,

PXD007633) and chRCC (n = 9, PXD019123) (Figure 7C). Using

IHC, we next independently confirmed and validated biomarker

specificity including CCND1 protein overexpression in gene

fusion-positive ROs, MAPRE3, and ADGRF5 (also identified in

the glycoproteomics analysis) expression in all RO subtypes

(Figure 7D) and GPNMB in chRCC. While CCND1 and FOXI1

were enriched in the nuclei, GPNMB showed a homogeneous

and moderate/strong expression within the cytoplasmic

compartment of the chRCC tumor cells, and MAPRE3 protein

showed a predominant membranous expression pattern in RO.

ADGRF5, also called GPR116, is an adhesion G protein-coupled

receptor, and an emerging role in cancers for this family of pro-

teins is being investigated.101 Furthermore, we observed THSD4

upregulation in RO type 1, but downregulation in RO type 2

compared with NAT (Figure S7D), future validation of this marker

might enable rapid distinction between the two subtypes.

DISCUSSION

NGS and global proteomics data generated by CPTAC provide a

high-quality data resource that can be explored further to derive

novel biomarkers and gain deeper insights into disease biology.

Motivated by the specific clinical need of biomarkers specific to

rare subtypes of renal cell carcinoma, we carried out multi-omics

analyses to identify protein/mRNA biomarkers to distinguish

benign ROs from chRCC (MAPRE3, ADGRF5, GPNMB), pRCC

from MTSCC (SOSTDC1, PIGR), and tumors with high wGII

(PYCR1, IGF2BP3). A number of these markers were validated

by IHC and RNA-ISH, supporting further evaluation in indepen-

dent cohorts to facilitate development of renal cancer biomarker

panels for clinical use.

A number of single-cell studies in renal cancers have mainly

characterized ccRCC focusing on immune infiltration,102–104

immunotherapy resistance,105 and cell-of-origin,36,106 while

non-ccRCC tumors largely remain uncharacterized. Here, we

analyzed snRNA-seq data from eight non-ccRCC samples

covering all oncocytoma subtypes. Our analysis highlights

intra-tumor transcriptomic heterogeneity and a wide variation

in the degree of immune infiltration among non-ccRCC sub-

types, wherein malignancies such as pRCC and AML showed

higher levels of immune infiltration compared with chRCC,

ROs, TRCC, and others (Figure S2A). We also identified several

cell-type-specific markers representing putative cell-of-origin

that could be further characterized for expansion of diagnostic

panels.

Some non-ccRCC tumors have been previously profiled pro-

teomically,23,66,96 but the landscape of their PTMs remains un-

characterized. Here, we examined two different PTM profiles,

namely protein phosphorylations and glycosylations from non-
14 Cell Reports Medicine 5, 101547, May 21, 2024
ccRCC and ccRCC samples. Besides identifying known kinase

expression patterns and therapeutic targets in RCC subtypes

such as FLT1 (ccRCC), KIT (chRCC and RO), and MET (pRCC

type 1), we have identified several additional subtype-enriched

kinases, with some among them being evaluated for their thera-

peutic utility in preclinical and clinical settings. Additional char-

acterization studies of these potential kinase targets to evaluate

their therapeutic utility is warranted. Our integrative phosphopro-

teomics analysis on tumors with GI besides identifying important

biomarkers for early detection of this molecular subset, clarifies

signaling cascades that might drive this molecular disease sub-

set. We show significantly increased cyclin-dependent kinase

activities in GI tumors, which suggests increased proliferation

(taken together with pathways found enriched at whole-protein

and RNA abundance) and decreased MTOR activity in these tu-

mors. The latter observation now provides a reason, at least in

part, on why MTOR inhibitors such as everolimus show poor

response in metastatic RCC.

To explore RCC glycobiology and its implication on TMEs, we

analyzed both phospho-glyco (containedmore sialylated events)

and glyco-enriched (had more oligomannose IGPs) data. Using

cell type gene expression annotation from previous single-cell

data, we inferred TME contribution within the differentially ex-

pressed glycoproteins. Larger impact of TME was noted in

both ccRCC and pRCC compared with ROs, revalidating the

biology of these tumors. Further core-fucosylation characteriza-

tion using the glyco data generated here, might deepen our un-

derstanding of tumor and immune microenvironment in pRCC.

Finally, differential glycosylation events noted on proteins poten-

tially contributed by the TME compartment in higher wGII non-

ccRCC support higher immune infiltration.

Genomic drivers of RCC are linked to dysregulated meta-

bolism.107 Interesting similarities and differences observed

among kidney tumor subtypes include the depletion of purine

nucleotide de novo biosynthesis and TCA cycle intermediates

in ccRCC and pRCC type 1 tumors, and, in contrast, their enrich-

ment in ROs. Enrichment of the pentose phosphate pathway and

dermatan sulfate degradation in pRCC type 1, oncometabolite

SAICAR in ROs, and proline and NADH, coupled with high

PYCR1 expression in non-ccRCC tumors with high wGII warrant

further investigations.

In conclusion, proteogenomic analysis provided insights

into a variety of non-ccRCC subtypes, identifying histologically

specific diagnostic biomarkers, markers of GI, and revealed

the interconnectedness between the omic layers. While sin-

gle-nucleus analysis highlighted the potential intra-tumor

heterogeneity and differences in putative cell-of-origin within

non-ccRCC subtypes. Fundamentally, this study provides a

comprehensive proteogenomic data resource to enable

further in-depth exploration of the biology of these rare kidney

tumors.

Limitations of the study
This study evaluates a wide range of non-ccRCC subtypes with

an extensive array of multi-omic analyses but has its limitations.

The specific tissue procurement protocols necessary to facili-

tate high-quality protein-based multi-omics limited this study

to prospective sample recruitment, thereby limiting the number
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of tumors analyzed. Lack of samples representing other non-

ccRCC subtypes such as FH-deficient RCC, clear cell pRCC,

among others, due to nonavailability of those rare subtypes is

another limitation. Some subtypes are represented by one or

two samples, and do not account for any heterogeneity within

these subtypes. However, currently there is little or no high-

quality multi-omics data available for most of these tumor sub-

types, therefore observations presented here can represent a

foundation for further, targeted analyses of specific features.

This future work will be essential for confirming and refining

this study’s observations, which serve as an initial stepping

stone for a deeper understanding of the complexity of non-

ccRCCs.
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Antibodies

Goat Polyclonal IgG Human Osteoactivin/

GPNMB antibody

R&D Systems Catalog: AF2550,

RRID: AB_416615

Rabbit Polyclonal IgG Human MAPRE3 antibody Atlas Antibodies Catalog: HPA009263

RRID: AB_1078716

Mouse Monoclonal IgG Human FOXI1 antibody Origene Technologies Catalog: TA800146

RRID: AB_2625262

Rabbit Monoclonal IgG Human Cyclin D1 Cell Marque Catalog: 241R-18

RRID: AB_1158233

Mouse Monoclonal IgG Human PIGR antibody Santa Cruz Catalog: SC-374343, RRID: AB_10989564

Rabbit Polyclonal IgG Human PYCR1 antibody Cell Signaling Technology Catalog: 47935

Rabbit Polyclonal IgG Human AKT antibody Cell Signaling Technology Catalog: 9272

Rabbit Polyclonal IgG Human Phospho-AKT

(Ser473) Antibody

Cell Signaling Technology Catalog: 9271

Rabbit Polyclonal IgG Human p44/42 MAPK

(Erk1/2) Antibody

Cell Signaling Technology Catalog: 9102

Rabbit Monoclonal IgG Human

Phospho-p44/42 MAPK

(Erk1/2) (Thr202/Tyr204) antibody

Cell Signaling Technology Catalog: 4376

Rabbit Polyclonal IgG Human Vinculin Antibody Cell Signaling Technology Catalog: 4650

Biological samples

Primary tumor and normal adjacent

tissue samples

See experimental model and

study participant details

See Table S1

Critical commercial assays

Discovery CC1 Roche-Ventana Medical System Catalog: 950-500

Discovery CC2 Roche-Ventana Medical System Catalog: 950-123

OptiView Universal DAB Detection Kit Roche-Ventana Medical System Catalog: 760-700

UltraView Universal DAB Detection Kit Roche-Ventana Medical System Catalog: 760-500

Discovery mRNA DAB Detection RUO Roche-Ventana Medical System Catalog: 760-224

RNAscope� 2.5 HD Reagent Kit -BROWN Advanced Cell Diagnostics, Inc Catalog: 322300

RNAscope� VS Universal HRP Reagent Kit Advanced Cell Diagnostics, Inc Catalog: 323200

RNAscope Target Probe - Hs-PIGR Advanced Cell Diagnostics, Inc Catalog: 472681

RNAscope Target Probe - Hs-PYCR1 Advanced Cell Diagnostics, Inc Catalog: 509259

RNAscope Target Probe - Hs-SOSTDC1 Advanced Cell Diagnostics, Inc Catalog: 469929

RNAscope PositiveProbe - Hs-PPIB Advanced Cell Diagnostics, Inc Catalog: 313901/313909

RNAscope Negative Probe – DapB Advanced Cell Diagnostics, Inc Catalog: 310043/312039

Rabbit Polyclonal IgG Human IGF2BP3 Proteintech Catalog: 14642-1-AP, RRID: AB_2122782

Rabbit Polyclonal IgG Human ADGRF5 (GPR116) Proteintech Catalog: 14047-1-AP, RRID: AB_2113095

Deposited data

CPTAC non-ccRCC clinical data and

proteomic data

This manuscript https://pdc.cancer.gov/

CPTAC ccRCC genomic, transcriptomic,

and snRNA-seq data

This manuscript https://portal.gdc.cancer.gov/projects/CPTAC-3

CPTAC non-ccRCC pathology and

radiology images

This manuscript https://portal.imaging.datacommons.cancer.gov/
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TCGA KIRC Cancer Genome Atlas

Research Network108
https://portal.gdc.cancer.gov/

TCGA KIRP Cancer Genome Atlas

Research Network75
https://portal.gdc.cancer.gov/

Software and algorithms

CNVEX https://github.com/mctp/cnvex

R v4.1 R Development Core Team https://www.R-project.org

Python Python Software Foundation https://www.python.org/

Philosopher da Veiga Leprevost et al.109 https://philosopher.nesvilab.org/

MSFragger Kong et al.110 https://msfragger.nesvilab.org/

PTM-Shepherd Geiszler et al.111 https://ptmshepherd.nesvilab.org/

TMT-Integrator Djomehri et al.112 https://github.com/Nesvilab/TMT-Integrator

ARD-NMF Tan et al.30 https://github.com/getzlab/getzlab-SignatureAnalyzer

CancerSubtypes Xu et al.113 https://www.bioconductor.org/packages/release/

bioc/html/CancerSubtypes.html

Limma Ritchie et al.90 https://bioconductor.org/packages/release/

bioc/html/limma.html

PTM-SEA Krug et al.114 https://github.com/broadinstitute/ssGSEA2.0

KSA-2D Han et al.115 https://github.com/ginnyintifa/KSA2D

CLUMPS-PTM Geffen et al.53 https://github.com/getzlab/CLUMPS-PTM

IMPaLA Kamburov et al.116 http://impala.molgen.mpg.de/

ClusterProfiler Yu et al.117 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

pySCENIC Van de Sande et al.118 https://github.com/aertslab/pySCENIC

BayesDeBulk Petralia et al.119 http://www.bayesdebulk.com/

DreamAI Ma et al.120 https://github.com/WangLab-MSSM/DreamAI

OmniPathR D Turei et al.99,121 https://www.bioconductor.org/packages/release/

bioc/html/OmnipathR.html

Survival Therneau et al.122 https://cran.r-project.org/web/packages/

survival/index.html
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alexey

Nesvizhskii, nesvi@med.umich.edu.

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Clinical data and raw proteomic data reported in this paper can be accessed via the CPTAC Data Portal at: https://cptac-data-

portal.georgetown.edu/cptac. Genomic, transcriptomic, and snRNA seq data files can be accessed via Genomic Data Com-

mons (GDC) at: https://portal.gdc.cancer.gov/projects/CPTAC-3. Proteomic data files can be accessed via Proteomic Data

Commons (PDC) at: https://pdc.cancer.gov/with following accession codes: PDC000464, PDC000465, and PDC000466. Pro-

cessed data used in this publication can be found in the CPTAC PDC. An interactive ProTrack web portal30 is also provided to

visualize multi-omics data in interactive heatmap and boxplot visualizations, as well reviewing histological images, exploring

the cohort with a sample dashboard, and reviewing quality control results for ccRCC and non-ccRCC data (http://ccrcc-

conf.cptac-data-view.org/).

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this work paper is available from the STARMethods upon

request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human subjects
A total of 151 participants were included in this study.Institutional review boards at each Tissue Source Site (TSS) reviewed protocols

and consent documentation, in adherence to Clinical Proteomic Tumor Analysis Consortium (CPTAC) guidelines.

Clinical data annotation
Clinical data were obtained from TSS and aggregated by the CPTAC Biospecimen Core Resource (BCR, at the Pathology and Bio-

repository Core of Van Andel Research Institute (Grand Rapids, MI)). Data forms were stored as Microsoft Excel files (.xls). Clinical

data can be accessed and downloaded from the CPTAC Data Portal. Demographics of patients can be viewd at ProTrack (http://

ccrcc-conf.cptac-data-view.org/). Patients with any prior history of other malignancies within twelve months or any systemic treat-

ment (chemotherapy, radiotherapy, or immune-related therapy) were excluded from this study.

METHOD DETAILS

Sample processing
The CPTAC BCRmanufactured and distributed biospecimen kits to the TSS located in the US, and Europe. Each kit contains a set of

pre-manufactured labels for unique tracking of every specimen respective to TSS location, disease, and sample type, used to track

the specimens through the BCR to theCPTAC proteomic and genomic characterization centers. Tissue specimens averaging 200mg

were snap-frozen by the TSS within a 30 min cold ischemic time (CIT) (CIT average = 15 min) and an adjacent segment was formalin-

fixed paraffin embedded (FFPE) andH&E stained by the TSS for quality assessment tomeet theCPTA tissue requirements. Routinely,

several tissue segments for each case were collected. Tissues were flash-frozen in liquid nitrogen (LN2) and then transferred to a

liquid nitrogen freezer for storage until approval for shipment to the BCR. Specimens were shipped using a cryoport that maintained

an average temperature of under �140�C to the BCR with a time and temperature tracker to monitor the shipment. Receipt of spec-

imens at the BCR included a physical inspection and review of the time and temperature tracker data for specimen integrity, followed

by barcode entry into a biospecimen tracking database.

Specimens were again placed in LN2 storage until further processing. Acceptable non-ccRCC tumor tissue segments were deter-

mined by TSS pathologists based on the percent viable tumor nuclei (>80%), total cellularity (>50%), and necrosis (<20%). Segments

received at the BCR were verified by BCR and Leidos Biomedical Research (LBR) pathologists and the percent of the total area of

tumor in the segment was also documented. Additionally, disease-specific working group pathology experts reviewed the

morphology to clarify or standardize specific disease classifications and correlation to the proteomic and genomic data. The cryo-

pulverized specimen was divided into aliquots for DNA (30 mg) and RNA (30 mg) isolation and proteomics (50 mg) for molecular

characterization. Nucleic acids were isolated and stored at �80�C until further processing and distribution; cryopulverized protein

material was returned to the LN2 freezer until distribution. Shipment of the cryopulverized segments used cryoports for distribution

to the proteomic characterization centers and shipment of the nucleic acids used dry ice shippers for distribution to the genomic

characterization centers; a shipment manifest accompanied all distributions for the receipt and integrity inspection of the specimens

at the destination.

Sample cohort details
In this study, we performed proteogenomics profiling of 194 tumor andNAT samples from the discovery cohort27 (110 tumors profiled

with proteomics andRNA-seq, 84NATs profiledwith proteomics and 73NATs profiledwith RNA-seq), 4 samples from confirmatory13

(2 tumors and 2 NATs profiled with both proteomics and RNA-seq) and 56 samples from non-ccRCC cohorts (39 tumors profiled with

proteins and RNA-seq, 17NATs profiledwith proteomics and 14NATs profiledwith RNA-seq).Within the 110 tumor samples from the

discovery ccRCC cohort,27 103 were confirmed ccRCC and 7 were non-ccRCC.

Across all three cohorts, we profiled 103 ccRCC tumor samples (all from the discovery cohort) and 48 non-ccRCC tumor samples

(7 samples from the discovery cohort, 2 samples from the confirmatory cohort, 39 from the non-ccRCC cohort). Within the 48 non-

ccRCC samples, we counted 15 ROs (3 RO type 1, 8 RO type 2, 4 RO variant), 13 papillary RCC (pRCC, 8 pRCC with the previous

defined type 1 features (pRCC-1) and 5 without (pRCC-2)), 3 chromophobe RCC (chRCC), 2 angiomyolipoma (AML), 2 eosinophilic

solid and cystic RCC (ESCRCC), 1 Birt-Hogg-Dube syndrome-associated renal cell carcinoma (BHD), 1 mixed epithelial and stromal

tumor of the kidney (MEST), 1 MTOR mutated RCC, 1 translocation RCC (TRCC), 8 molecularly divergent to histology RCC (MDTH),

and 1 plasmacytoid urothelial carcinoma (PUC). The following three samples were excluded from all downstream analysis: 2 NAT

samples (C3N-00314-N and C3N-01524-N) that were found to be contaminated with tumor tissue and 1 PUC sample (C3L-

02212-T) which is not a renal cell carcinoma. One tumor (C3N-02204-T) indicatedwith asterix in Figure 1A is excluded from thewGIIa-

nalysis since genomics data was not fully available at the time of data freeze.

Immunohistochemistry (IHC)
Immunohistochemistry (IHC) was performed on 4-micron formalin-fixed, paraffin-embedded (FFPE) tissue sections. The Ventana

Benchmark XT staining platform with Discovery CCI and CC2 (Ventana cat#950-500 and 950-123) were used for antigen
e3 Cell Reports Medicine 5, 101547, May 21, 2024
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retrieval. The immune complexes were developed with either the ultraView or optiView Universal DAB (diaminobenzidine tetra-

hydrochloride) Detection Kit (Ventana cat#760-500 and cat#760-700). he details of the panel of primary antibodies utilized is as

follows: polymeric immunoglobulin receptor (PIGR/Anti-SC; Santa Cruz, mouse monoclonal, catalog no. SC-374343), cyclin D1

(CCND1; Cell Marque, rabbit monoclonal, catalog no. 241R-18), transmembrane glycoprotein NMB (GPNMB, R&D systems,

goat polyclonal, catalog no. AF2550), microtubule-associated protein RP/EB family member-3 (MAPRE3, Atlas antibodies, rab-

bit polyclonal, catalog no. HPA009263), and forkhead boxI1 (FOXI1, Origene antibodies, mouse monoclonal, catalog no.

TA800146). Brown pigmentation within the subcellular component (cytoplasmic and or membranous for PIGR, GPNMB,

MAPRE3 and nuclear for FOXI1 and CCND1) were taken as positive expressions. In addition for PIGR the presence and intensity

of cytoplasmic staining were scored where the percentage of PIGR positive neoplastic cells and the staining intensity (none, 0;

weak, 1; moderate, 2; strong, 3) were recorded for each tumor as described previously.8 Appropriate positive and negative con-

trol tissue were run in each assay batch.

RNA in situ hybridization (RNA-ISH)
RNA-ISH was performed using the RNAscope 2.5 HD Brown kit (Advanced Cell Diagnostics, Newark, CA) and target probes against

PIGR (472681 Hs-PIGR targeting NM_002644.3, 2-903nt), PYCR1 (509259 Hs-PYCR1 targeting NM_001282281.1, 64-1770nt), and

SOSTDC1 469929 Hs-SOSTDC1 targeting NM_015464.2, 2-938nt) according to the manufacturer’s instructions. RNA quality was

evaluated in each case utilizing a positive and a negative control probe against human housekeeping gene Peptidylprolyl Isomerase

B (PPIB) (313901 for manual and 313909 for Ventana automated system) and bacillus bacterial gene DapB (310043 for manual and

312039 for Ventana automated system) respectively. The assay was run

according to the protocol previously described.6,9

Stained slides were evaluated under a light microscope at3100 and3200magnification for RNA-ISH signals in neoplastic cells by

multiple study investigators. Each RNA molecule in this assay’s result is represented as a punctate brown dot. The expression level

was evaluated according to the RNAscope scoring criteria: score 0 = no staining or <1 dot per 10 cells; score 1 = 1–3 dots per cell,

score 2 = 4–9 dots per cell, and no or very few dot clusters; score 3 = 10–15 dots per cell and <10% dots in clusters; score 4 =

>15 dots per cell and >10% dots in clusters. The H-score was calculated for each examined tissue section as the sum of the per-

centage of cells with score 0–4 [(A% 3 0) + (B% 3 1) + (C% 3 2) + (D% 3 3) + (E% 3 4), A + B + C + D + E = 100], using previously

published scoring criteria.6,9

Sample processing for genomic DNA and total RNA extraction
Our study sampled a single site of the primary tumor from surgical resections, due to the internal requirement to process a minimum

of 125mgof tumor issue and 50mgof adjacent normal tissue. DNA andRNAwere extracted from tumor and blood normal specimens

in a co-isolation protocol using Qiagen’s QIAsymphony DNA Mini Kit and QIAsymphony RNA Kit. Genomic DNA was also isolated

from peripheral blood (3–5 mL) to serve as matched normal reference material. The Qubit dsDNA BR Assay Kit was used with the

Qubit 2.0 Fluorometer to determine the concentration of dsDNA in an aqueous solution. Any sample that passed quality control

and produced enough DNA yield to go through various genomic assays was sent for genomic characterization. RNA quality was

quantified using both the NanoDrop 8000 and quality assessed using Agilent Bioanalyzer. A sample that passed RNA quality control

and had a minimum RIN (RNA integrity number) score of 7 was subjected to RNA sequencing. Identity match for germline, normal

adjacent tissue, and tumor tissue was assayed at the BCR using the Illumina Infinium QC array. This beadchip contains 15,949

markers designed to prioritize sample tracking, quality control, and stratification.

Preparation of libraries for cluster amplification and WGS sequencing
An aliquot of genomic DNA (350 ng in 50 mL) was used as the input into DNA fragmentation (aka shearing). Shearing was performed

acoustically using a Covaris focused-ultrasonicator, targeting 385bp fragments. Following fragmentation, additional size selection

was performed using an SPRI cleanup. Library preparation was performed using a commercially available kit provided by KAPA

Biosystems (KAPA Hyper Prep without amplification module) and with palindromic forked adapters with unique 8-base index se-

quences embedded within the adapter (purchased from IDT). Following sample preparation, libraries were quantified using quan-

titative PCR (kit purchased from KAPA Biosystems), with probes specific to the ends of the adapters. This assay was automated

using Agilent’s Bravo liquid handling platform. Based on qPCR quantification, libraries were normalized to 1.7 nM and pooled into

24-plexes.

Cluster amplification and sequencing (HiSeq X)
Sample pools were combined with HiSeq X Cluster Amp Reagents EPX1, EPX2, and EPX3 into single wells on a strip tube using the

Hamilton Starlet Liquid Handling system. Cluster amplification of the templates was performed according to the manufacturer’s pro-

tocol (Illumina) with the Illumina cBot. Flow cells were sequenced to a minimum of 15x on HiSeq X utilizing sequencing-by-synthesis

kits to produce 151bp paired-end reads. Output from Illumina softwarewas processed by the Picard data processing pipeline to yield

BAMs containing demultiplexed, aggregated, aligned reads. All sample information tracking was performed by automated LIMS

messaging.
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Whole exome sequencing library construction
Library construction was performed as described in Fisher et al.,123 with the following modifications: initial genomic DNA input into

shearing was reduced from 3 mg to 20–250 ng in 50 mL of solution. For adapter ligation, Illumina paired-end adapters were replaced

with palindromic forked adapters, purchased from Integrated DNA Technologies, with unique dual-indexed molecular barcode se-

quences to facilitate downstream pooling. Kapa HyperPrep reagents in 96- reaction kit format was used for end repair/A-tailing,

adapter ligation, and library enrichment PCR. In addition, during the post-enrichment SPRI cleanup, elution volume was reduced

to 30 mL to maximize library concentration, and a vortexing step was added to maximize the amount of template eluted.

In-solution hybrid selection
After library construction, libraries were pooled into groups of up to 96 samples. Hybridization and capture were performed using the

relevant components of Illumina’s Nextera ExomeKit and following themanufacturer’s suggested protocol, with the following excep-

tions. First, all libraries within a library construction plate were pooled prior to hybridization. Second, the Midi plate from Illumina’s

Nextera ExomeKit was replacedwith a skirted PCRplate to facilitate automation. All hybridization and capture stepswere automated

on the Agilent Bravo liquid handling system.

Preparation of libraries for cluster amplification and sequencing
After post-capture enrichment, library pools were quantified using qPCR (automated assay on the Agilent Bravo) using a kit pur-

chased from KAPA Biosystems with probes specific to the ends of the adapters. Based on qPCR quantification, libraries were

normalized to 2 nM.

Cluster amplification and sequencing
Cluster amplification of DNA libraries was performed according to the manufacturer’s protocol (Illumina) using exclusion amplifica-

tion chemistry and flowcells. Flowcells were sequenced utilizing sequencing-by-synthesis chemistry. The flow cells were then

analyzed using RTA v.2.7.3 or later. Each pool of whole-exome libraries was sequenced on paired 76 cycle runs with two 8 cycle

index reads across the number of lanes needed to meet coverage for all libraries in the pool. Pooled libraries were run on HiSeq

4000 paired-end runs to achieve a minimum of 150x on target coverage per each sample library. The raw Illumina sequence data

were demultiplexed and converted to fastq files; adapter and low-quality sequences were trimmed. The raw reads were mapped

to the hg38 human reference genome, and the validated BAMs were used for downstream analysis and variant calling.

Quality assurance and quality control of RNA analytes
All RNA analytes were assayed for RNA integrity, concentration, and fragment size. Samples for total RNA-seq were quantified on a

TapeStation system (Agilent, Inc. Santa Clara, CA). Samples with RINs >8.0 were considered high quality.

Total RNA-seq library construction
Total RNA-seq library construction was performed from the RNA samples using the TruSeq Stranded RNA Sample Preparation Kit

and bar-coded with individual tags following the manufacturer’s instructions (Illumina, Inc. San Diego, CA). Libraries were prepared

on an Agilent Bravo Automated Liquid Handling System. Quality control was performed at every step and the libraries were quantified

using the TapeStation system.

Total RNA sequencing
Indexed libraries were prepared and run on HiSeq 4000 paired-end 75 base pairs to generate a minimum of 120 million reads per

sample library with a target of greater than 90% mapped reads. Typically, these were pools of four samples. The raw Illumina

sequence data were demultiplexed and converted to FASTQ files, and adapter and low-quality sequences were quantified. Samples

were then assessed for quality by mapping reads to the hg38 human genome reference, estimating the total number of reads that

mapped, amount of RNAmapping to coding regions, amount of rRNA in sample, number of genes expressed, and relative expression

of housekeeping genes. Samples passing this QA/QCwere then clustered with other expression data from similar and distinct tumor

types to confirm expected expression patterns. Atypical samples were then SNP typed from the RNA data to confirm the source an-

alyte. FASTQ files of all reads were then uploaded to the GDC repository.

Single-nuclei RNA library preparation and sequencing
About 20–30mg of cryopulverized powder from ccRCC specimens was resuspended in Lysis buffer (10mMTris-HCl (pH 7.4); 10mM

NaCl; 3 mMMgCl2; and 0.1% NP-40). This suspension was pipetted gently 6–8 times, incubated on ice for 30 s, and pipetted again

4-6 times. The lysate containing free nuclei was filtered through a 40 mm cell strainer. We washed the filter with 1 mL Wash and Re-

suspension buffer (1X PBS +2% BSA +0.2 U/mL RNase inhibitor) and combined the flow through with the original filtrate. After 6-min

centrifugation at 500 x g and 4�C, the nuclei pellet was resuspended in 500 mL of Wash and Resuspension buffer. After staining by

DRAQ5, the nuclei were further purified by Fluorescence-Activated Cell Sorting (FACS). FACS-purified nuclei were centrifuged again

and resuspended in a small volume (about 30 mL). After counting and microscopic inspection of nuclei quality, the nuclei preparation

was diluted to about 1,000 nuclei/mL.
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About 20,000 nuclei were used for single-nuclei RNA sequencing (snRNA seq) by the 10XChromiumplatform.We loaded the single

nuclei onto a Chromium Chip B Single Cell Kit, 48 rxns (10x Genomics, PN-1000073), and processed them through the Chromium

Controller to generate GEMs (Gel Beads in Emulsion). We then prepared the sequencing libraries with the Chromium Single Cell 30

GEM, Library & Gel Bead Kit v3, 16 rxns (10x Genomics, PN 1000075) following the manufacturer’s protocol. Sequencing was per-

formed on an Illumina NovaSeq 6000 S4 flow cell. The libraries were pooled and sequenced using the XP workflow according to the

manufacturer’s protocol with a 283 83 98bp sequencing recipe. The resulting sequencing files were available as FASTQs per sam-

ple after demultiplexing.

Illumina Infinium methylationEPIC beadchip array
TheMethylationEPIC array uses an 8-sample version of the Illumina Beadchip capturing >850,000 DNAmethylation sites per sample.

250 ng of DNA was used for the bisulfite conversation using InfiniumMethylationEPIC BeadChip Kit. The EPIC array includes sample

plating, bisulfite conversion, and methylation array processing. After scanning, the data was processed through an automated ge-

notype calling pipeline. Data generated consisted of raw idats and a sample sheet.

Sample processing for protein extraction and tryptic digestion
All samples for the current study were prospectively collected as described above and processed for mass spectrometric (MS)

analysis at Johns Hopkins University. Tissue lysis and downstream sample preparation for global proteomic, phosphoproteomic

and glycoproteomic analysis were carried out as previously described.24,25,124 Each of cryopulverized renal tumor tissues or

NATs were homogenized separately in an appropriate volume of lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris, pH 8.0, 1 mM

EDTA, 2 mg/mL aprotinin, 10 mg/mL leupeptin, 1 mM PMSF, 10 mMNaF, Phosphatase Inhibitor Cocktail 2 and Phosphatase Inhibitor

Cocktail 3 [1:100 dilution], and 20 mM PUGNAc) by repeated vortexing.

Proteins in the lysates were clarified by centrifugation at 20,000 x g for 10 min at 4C, and protein concentrations were determined

by BCA assay (Pierce). The proteins were diluted to a final concentration of 8mg/mL with a lysis buffer for the downstream reduction,

alkylation and digestion. 1.2 mg of protein was reduced with 5 mM dithiothreitol (DTT) for 1 h at 37 C and subsequently alkylated with

10mM iodoacetamide for 45min at RT (room temperature) in the dark. Samples were then diluted by 1:4 with 50mMTris-HCl (pH 8.0)

and subjected to proteolytic digestion with LysC (Wako Chemicals, at 1:50 enzyme-to-substrate weight ratio for 2 h incubation at RT)

followed by the addition of sequencing-grade modified trypsin (Promega, at a 1:50 enzyme-to-substrate weight ratio for overnight

incubation at RT). The digested samples were then acidified with 50% formic acid (FA, Fisher Chemicals) to pH < 3. Tryptic peptides

were desalted on reversed-phase C18 SPE columns (Waters) and dried using a Speed-Vac (Thermo Scientific).

TMT labeling of peptides
Tandem-mass-tag (TMT) quantitation utilizes reporter ion intensities to determine protein abundance and facilitate quantitative pro-

teomic analysis.125 The samples from the discovery cohort were labeled with TMT-10plex as described in the ccRCC discovery pa-

per,24 while the samples from the non-ccRCC cohort were labeled with TMT-11plex reagents (Thermo Fisher Scientific). 70 non-

ccRCC samples were co-randomized to 7 TMT 11-plex sets. The sample-to-TMT channel mapping is available in the PDC portal

(https://proteomic.datacommons.cancer.gov/). 300ug desalted peptides from each non-ccRCC and NAT sample were dissolved

in 120 mL of 100 mM HEPES, pH 8.5 solution. 5mg TMT reagent was dissolved in 500 mL of anhydrous acetonitrile, and 45 mL of

each TMT reagent was added to the corresponding aliquot of peptides. After 1 h incubation at RT, the reaction was quenched by

incubation with 5% hydroxylamine at RT for 15 min. The reference sample used in the ccRCC discovery cohort study24 was included

in all TMT 11-plexes as a reference channel in the non-ccRCC cohort study, labeled with the TMT-131 reagent. Following labeling,

peptides were mixed according to the sample-to-TMT channel mapping, concentrated and desalted on reversed-phase C18 SPE

columns (Waters), and dried using a Speed-Vac (Thermo Scientific).

Peptide fractionation by basic reversed-phase liquid chromatography
To reduce the likelihood of peptides co-isolating and co-fragmenting in these highly complex samples, we employed extensive, high-

resolution fractionation via basic reversed-phase liquid chromatography (bRPLC). The desalted and dried peptides from each TMT

set were reconstituted in 900mL of 5mMammonium formate (pH 10) and 2%acetonitrile (ACN) and loaded onto a 4.6mm3 250mm

RP Zorbax 300 A Extend-C18 column with 3.5 mm size beads (Agilent). Peptides were separated at a flow-rate of 1 mL/min using an

Agilent 1200 Series HPLC instrument with Solvent A (2%ACN, 5mM ammonium formate, pH 10) and a non-linear gradient of Solvent

B (90% ACN, 5 mM ammonium formate, pH 10) as follows: 0% Solvent B (7 min), 0%–16% Solvent B (6 min), 16%–40% Solvent B

(60min), 40%–44%Solvent B (4min), 44%–60%Solvent B (5min), and holding at 60%Solvent B for 14min. Collected fractions were

concatenated into 24 fractions by combining four fractions that are 24 fractions apart as described previously25; a 5% aliquot of each

of the 24 fractions was used for global proteomic analysis, dried in a Speed-Vac, and resuspended in 3%ACN/0.1% formic acid prior

to ESI-LC-MS/MS analysis. The remaining sample was utilized for phosphopeptide enrichment.

Enrichment of phosphopeptides by Fe-IMAC
The remaining 95% of the sample was further concatenated into 12 fractions before being subjected to phosphopeptide enrichment

using immobilized metal affinity chromatography (IMAC) as previously described.25 In brief, Ni-NTA agarose beads (Qiagen) were
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conditioned and incubated with 10mM FeCl3 to prepare Fe3+-NTA agarose beads. Dried peptides from each fraction were recon-

stituted in 80% ACN/0.1% trifluoroacetic acid and incubated with 10 mL of the Fe3+-IMAC beads for 30 min. Samples were then

centrifuged at 1000*g for 1min to collect the beads coupled with phophopeptides, and the supernatant containing unbound peptides

was removed for the subsequent glycopeptides enrichment (Cao, PDA paper, cell, 2021). The beads were resuspended with 80%

ACN/0.1% trifluoroacetic acid and then transferred onto equilibrated C-18 Stage Tips. Tips were washed twice with 80% ACN/

0.1% trifluoroacetic acid followed by 1% formic acid.

The flowthroughs were collected and combined with the supernatants for subsequent glycopeptides enrichments. Phosphopep-

tides were eluted from the Fe3+-IMAC beads onto the C-18 Stage Tips with 70 mL of 500 mM dibasic potassium phosphate, pH 7.0

three times. C-18 Stage Tips were then washed twice with 1% formic acid to remove salts, followed by elution of the phosphopep-

tides from the C-18 Stage Tipswith 50%ACN/0.1% formic acid twice. Eluted phosphopeptides were dried down and resuspended in

3% ACN/0.1% formic acid prior to ESI-LC-MS/MS analysis.

Enrichment of intact glycopeptides by MAX columns
All unbound peptides from phosphopeptide enrichment were desalted on reversed phase C18 SPE column (Waters). The glycopep-

tides were enriched with OASIS MAX solid-phase extraction (Waters). The MAX cartridge was conditioned with 33 1 mL ACN, then

33 1mL of 100mM triethylammonium acetate buffer, followed by 33 1mL of water, and finally 33 1mL of 95%ACN (1% TFA). The

peptides were loaded twice. The cartridge was washed with 43 1 mL of 95% ACN (1% TFA) to remove non-glycosylated peptides.

The glycopeptide fraction was eluted with 50%ACN (0.1%TFA), dried down, and reconstituted in 3%ACN, 0.1%FA prior to ESI-LC-

MS/MS analysis.

ESI-LC-MS/MS for global proteome, phosphoproteome, and glycoproteome analysis
The TMT-labeled global proteome, phosphoproteome, and glycoproteome fractions were analyzed using Orbitrap Fusion Lumos

mass spectrometer (Thermo Scientific). Approximately 0.8 mg of peptides were separated on an in-house packed 28 cm 3

75mmdiameter C18 column (1.9mmReprosil-Pur C18-AQ beads (Dr. Maisch GmbH); Picofrit 10mmopening (NewObjective)) lined

up with an Easy nLC 1200 UHPLC system (Thermo Scientific). The column was heated to 50�C using a column heater (Phoenix-ST).

The flow rate was set at 200 nL/min. Buffer A and B were 3% ACN (0.1% FA) and 90% ACN (0.1% FA), respectively. The peptides

were separated with a 6%–30% B gradient in 84 min. Peptides were eluted from the column and nanosprayed directly into the mass

spectrometer. The mass spectrometer was operated in a data-dependent mode.

Parameters for global proteomic and phosphoproteomic samples were set as follows: MS1 resolution - 60,000, mass range – 350

to 1800 m/z, RF Lens – 30%, AGC Target – 4.0e5, Max injection time – 50 ms, charge state include – 2–6, dynamic exclusion – 45 s.

The cycle time was set to 2 s, and within this 2 s the most abundant ions per scan were selected for MS/MS in the orbitrap. MS2

resolution – 50,000, high-energy collision dissociation activation energy (HCD) – 34, isolation width (m/z) – 0.7, AGC Target –

2.0e5, Max injection time – 100 ms. Parameters for glycoproteomic samples were set as follows: MS1 resolution - 60,000, mass

range – 500 to 2000m/z, RF Lens – 30%, AGC Target – 5.0e5, Max injection time – 50ms, charge state include – 2–6, dynamic exclu-

sion – 45 s. The cycle timewas set to 2 s, andwithin this 2 s themost abundant ions per scanwere selected for MS/MS in the orbitrap.

MS2 resolution – 50,000, high-energy collision dissociation activation energy (HCD) – 35, isolation width (m/z) – 0.7, AGC Target –

1.0e5, Max injection time – 100 ms.

Metabolomic acquisition
To extract metabolites, a solution consisting of 80% (v/v) mass spectrometry-grade methanol and 20% (v/v) mass spectrometry-

grade water were used to extract the metabolites from the tissue samples as described previously.126–128 The metabolite samples

then underwent speed vacuum processing to evaporate the methanol and lyophilization to remove the water. The dried metabolites

were re-suspended in a solution consisting of 50% (v/v) acetonitrile and 50% (v/v)mass spectrometry-gradewater before data acqui-

sition. Data acquisition was performed using a Vanquish ultra-performance liquid chromatography (UPLC) system and a Thermo Sci-

entific Q Exactive Plus Orbitrap Mass Spectrometer.

The samples were kept at 4�C inside the Vanquish UPLC auto-sampler. The injection volume for each sample was 2 mL. A Discov-

ery HSF5 reverse phase HPLC column (Sigma) kept at 35�C with a guard column was used for reverse-phase chromatography. The

mobile aqueous phasewasmass spectrometry-grade water containing 0.1% formic acid, while themobile organic phasewas aceto-

nitrile containing 0.1% formic acid. Mass calibration was performed prior to data acquisition to ensure the sensitivity and accuracy of

the system. The total run time for each samplewas 15min, for which 11minwas used for data acquisition. Full MSdata were acquired

to quantify the metabolites while Full MS/ddMS2 data were also acquired to identify the metabolites based on fragmentation

matching.

QUANTIFICATION AND STATISTICAL ANALYSIS

Somatic mutation calling
WES reads were aligned FASTQ files to the GRCh38 references, including alternate haplotypes. Variant calling was performed using

VarDict (germline & somatic) and Strelka2 (somatic). Variant callers were run with default settings, but custom filters were applied.
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Strelka was used to generate the primary somatic call-set. Variants called by Strelka had to be either (FILTER = = ’’PASS’’) ormeet the

following threshold criteria: allele frequency in the tumor >0.05, allele frequency in the normal <0.01, at least five variant reads, depth

in normal >50, Somatic Evidence Score (EVS) > 90th percentile of overall EVS distribution. These calls were supplemented by variants

called confidently (FILTER = = ’’PASS’’ and manual review) by VarDict129 in genes recurrently mutated in ccRCC: VHL, PBRM1,

BAP1, SETD2, KDM5C, PTEN, MTOR, TP53, PIK3CA, ARID1A, STAG2, KDM6A, KMT2C, KMT2D. This strategy improved sensitivity

in ccRCC-mutated genes without sacrificing the accuracy of variant calls genome wide.

Gene fusion
Detection of gene fusions was performed using the CODAC algorithm as previously described.130,131 Briefly, CODAC implements

detection of genic and intergenic gene fusions based on both split- and discordant-reads as detected through chimeric read align-

ment using STAR.132 To maximize sensitivity, STAR is run separately using optimized settings in single-end and paired-endmode for

overlapping and non-overlapping read pairs, respectively. The resulting alignments are merged, resulting in candidate fusion junc-

tions identified from the STAR alignments are evaluated based on alignment properties to identify false-positive calls, including incor-

rectmappings, reference errors/differences, non-genetic sources, such as circRNAs. The resulting call-set is further filtered against a

manually-curated database of recurrent artifacts. STAR settings:

–alignIntronMax 150000 \

–alignMatesGapMax 150000 \

–chimSegmentMin 10 \

–chimJunctionOverhangMin 1 \

–chimScoreSeparation 0 \

–chimScoreJunctionNonGTAG 0 \

–chimScoreDropMax 1000 \

–chimScoreMin 1 \

Copy number estimation
Copy-number analysis was performed jointly leveraging both whole-genome sequencing (WGS) and whole-exome sequencing data

of the tumor and germline DNA. To perform the analysis, we used CNVEX (https://github.com/mctp/cnvex), a comprehensive copy

number analysis tool that has been used previously in our ccRCC studies.24,36 CNVEX uses whole-genome aligned reads to estimate

coverage within fixed genomic intervals and whole exome variant calls to compute B-allele frequencies (BAFs) at variant positions

(called by Sentieon DNAscope algorithm). Coverages were computed in 10kb bins, and the resulting log coverage ratios between

tumor and normal samples were adjusted for GC bias using weighted LOESS smoothing across mappable and non-blacklisted

genomic intervals within the GC range 0.3–0.7, with a span of 0.5 (the target and configuration files are provided with CNVEX).

The adjusted log coverage ratios (LR) and BAFs were jointly segmented by a custom algorithm based on Circular Binary Segmen-

tation (CBS). Alternative probabilistic algorithms were implemented in CNVEX, including algorithms based on recursive binary seg-

mentation (RBS), as implemented in the R-package jointseg.133 For the CBS-based algorithm, first LR and mirrored BAF were inde-

pendently segmented using CBS (parameters alpha = 0.01, trim = 0.025) and all candidate breakpoints were collected. The resulting

segmentation track was iteratively ‘‘pruned’’ by merging segments that had similar LR and BAFs, short lengths, were rich in black-

listed regions, and had a high coverage variation in coverage among whole cohort germline samples. For the RBS- and DP-based

algorithms, joint-break-points were ‘‘pruned’’ using a statistical model selection method (https://hal.inria.fr/inria-00071847). For the

final set of CNV segments, we chose the CBS-based results as they did not require specifying a prior number of expected segments

(K) per chromosome arm, were robust to unequal variances between the LR and BAF tracks and provided empirically the best fit to

the underlying data. The resulting segmented copy-number profiles were then subject to the joint inference of tumor purity and ploidy

and absolute copy number state, implemented in CNVEX, which is most similar to the mathematical formalism of ABSOLUTE134,178

and PureCN135 (http://bioconductor.org/packages/PureCN/).

Briefly, the algorithm inputs the observed log-ratios (of 10kb bins) and BAFs of individual SNPs. LRs and BAFs are assigned to their

joint segments and their likelihood is determined given a particular purity, ploidy, absolute segment copy number, and the number of

minor alleles. To identify candidate combinations with a high likelihood, we followed a multi-step optimization procedure that in-

cludes grid-search (across purity-ploidy combinations), greedy optimization of absolute copy numbers, and maximum-likelihood in-

ferences of minor allele counts. Following optimization, CNVEX ranks candidate solutions. Because the copy-number inference

problem can have multiple equally likely solutions, further biological insights are necessary to choose the most parsimonious result.

The solutions have been reviewed by independent analysts following a set of guidelines. Solutions implying whole genome duplica-

tion must be supported by at least one large segment that cannot be explained by a low-ploidy solution, inferred purity must be

consistent with the variant-allele-frequencies of somatic mutations, and large homozygous segments are not allowed.

In parallel, we used BIC-seq2,136 a read-depth-based CNV calling algorithm to detect somatic copy number variation (CNVs) from

the WGS data of tumors. Briefly, BIC-seq2 divides genomic regions into disjoint bins and counts uniquely aligned reads in each bin.

Then, it combines neighboring bins into genomic segments with similar copy numbers iteratively based on Bayesian Information

Criteria (BIC), a statistical criterion measuring both the fitness and complexity of a statistical model. We used paired-sample CNV

calling that takes a pair of samples as input and detects genomic regions with different copy numbers between the two samples.
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We used a bin size of �100 bp and a lambda of 3 (a smoothing parameter for CNV segmentation). We recommend calling segments

as copy gain or loss when their log2 copy ratios were larger than 0.2 or smaller than �0.2, respectively (according to the BIC-seq

publication).

RNA-seq data processing
Transcriptomic data were analyzed as described previously,130 using the Clinical RNA-seq Pipeline (CRISP) (https://github.com/

mcieslik-mctp/crisp-build) of TPO. Briefly, raw sequencing data were trimmed, merged using BBMap, and aligned to GRCh38 using

STAR.132 The resulting BAM files were analyzed for expression using feature counts against a transcriptomic reference based on

Gencode 34. The resulting gene-level counts for protein-coding genes were transformed into FPKMs using edgeR.137

snRNA-seq data processing
Read alignment and quantificationwere conductedwith Cell Ranger (v3.1.0) and pre-mRNA reference genome created based on 10X

pre-built reference genome (GRCh38). Specifically, for each sample, we obtained the unfiltered feature-barcode matrix per sample

by passing the demultiplexed FASTQs to Cell Ranger v3.1.0 ‘count’ command using default parameters, and a customized pre-

mRNA GRCh38 genome reference was built to capture both exonic and intronic reads. The customized genome reference modified

the transcript annotation from the 10x Genomics pre-built human genome ref. 3.0.0 (GRCh38 and Ensembl 93). Starting with unfil-

tered count matrix, non-empty barcodes were identified with DropletUtils138,139 correction for potential background RNA contami-

nation was performed with SoupX.140 Cells with outlier numbers of total UMIs/genes and mitochondrial gene fraction were identified

using scatter and discarded. For total UMI/genes, values were 3 median-absolute-deviations or MADs higher or lower from median

were considered outliers; for mitochondrial fractions, values were 3 MADs higher than median were considered outliers. Subse-

quently, mitochondrial genes were removed from the entire count matrix as they probably represented contamination from cyto-

plasm during nuclei preparation.

Identification and quantification of global proteome and phosphoproteome
Raw mass spectrometry files were converted into open mzML format using the msconvert utility of the Proteowizard software suite,

and analyzed using FragPipe computational platform (https://fragpipe.nesvilab.org/) using the TMT11-bridge workflow where the

common ccRCC pool sample was used as bridge to link the two cohort. (the 11th channel was removed later in the discovery cohort).

MS/MS spectra were searched using the database search tool MSFragger v3.4110 against a harmonized Homo sapiens

GENCODE34 protein sequence database appended with an equal number of decoy sequences. Whole cell lysate MS/MS spectra

were searched using a precursor-ion mass tolerance of 20 ppm and allowing C12/C13 isotope errors �1/0/1/2/3. Mass calibration

and parameter optimization were enabled. Cysteine carbamidomethylation (+57.0215) and lysine TMT labeling (+229.1629) were

specified as fixed modifications, and methionine oxidation (+15.9949), N-terminal protein acetylation (+42.0106), and TMT labeling

of peptide N terminus and serine residues were specified as variable modifications.

For the analysis of phosphopeptide enriched data, the set of variable modifications also included phosphorylation (+79.9663) of

serine, threonine, and tyrosine residues. The searchwas restricted to tryptic peptides, allowing up to twomissed cleavage sites. Pep-

tide to spectrum matches (PSMs) were further processed using Percolator141 to compute the posterior error probability, which was

then converted to posterior probability of correct identification for each PSM. The resulting files from Percolator were converted to

pep.xml format, and with the phosphopeptide-enriched dataset, pep.xml files were additionally processed using PTMProphet142 to

localize the phosphorylation sites. The resulting files were then processed together to assemble peptides into proteins (protein infer-

ence) using ProteinProphet143 run via the Philosopher toolkit v4.0.1109 to create a combined set of high confidence protein groups.

The combined prot.xml file and the individual PSM lists for each TMT experiment were further processed using the Philosopher filter

command as follows.

Each peptide was assigned either as a unique peptide to a particular protein group or assigned as a razor peptide to a single protein

group that had the most peptide evidence. The protein groups assembled by Percolator were filtered to 1% protein-level False Dis-

covery Rate (FDR) using the target-decoy strategy and the best peptide approach (allowing both unique and razor peptides). The

PSM lists were filtered using a sequential FDR strategy, keeping only those PSMs that passed 1% PSM-level FDR filter and mapped

to proteins that also passed the global 1% protein-level FDR filter. In addition, for all PSMs corresponding to a TMT-labeled peptide,

reporter ion intensities were extracted from theMS/MS scans (using 0.002 Dawindow) using Philosopher and the precursor ion purity

scores were calculated using the intensity of the sequenced precursor ion and that of other interfering ions observed in MS1 data

(within a 0.7 Da isolation window). The PSM output files were further processed using TMT-Integrator v3.2.0 to generate summary

reports at the gene-level and modification-site level.

TMT-Integrator112(https://github.com/Nesvilab/TMT-Integrator) used the PSM tables generated by the Philosopher pipeline as

described above as input and created integrated reports with quantification across all samples. First, PSMs were filtered to remove

all entries that did not pass at least one of the quality filters, such as PSMs with (a) no TMT label; (b) precursor-ion purity less than

50%; (c) summed reporter ion intensity (across all channels) in the lower 5% percentile of all PSMs in the corresponding PSM.tsv file

(2.5% for phosphopeptide enriched data); (d) peptides without phosphorylation (for phosphopeptide enriched data). In the case of

redundant PSMs (i.e., multiple PSMs in the sameMS run sample corresponding to the same peptide ion), only the single PSMwith the

highest summed TMT intensity was retained for subsequent analysis. Both unique and razor peptides were used for quantification,
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while PSMs mapping to common external contaminant proteins (that were included in the searched protein sequence database)

were excluded.

Next, for each PSM the intensity in each TMT channel was converted into a log2-based ratio to the reference channel. The

PSMs were grouped to the gene level, and the gene ratios were computed as the median of the corresponding PSM ratios after

outlier removal. Ratios were then converted back to absolute intensity in each sample by using the reference gene intensity esti-

mated, using the sum of all MS2 reporter ions from all corresponding PSMs. To generate peptide-level and site-level tables, addi-

tional post-processing was applied to generate all non-conflicting phosphosite configurations using a strategy similar to that

described in Huang et al.144 In doing so, confidently localized sites were defined as sites with PTMProphet localization probability

of 0.75 or higher. The same peptide sequences but with different site configurations, i.e., different site localization configurations

or peptides with unlocalized sites, were retained as separate entries in the site-level tables. In the peptide-level tables, different

site-level configurations were combined into a single peptide-level index, grouping PSMs with all site configurations together if

they corresponded to the same peptide sequence. The tutorial describing all steps of the analysis, including specific input param-

eter files, command-line option, and all software tools necessary to replicate the results are available at https://github.com/

Nesvilab.

Quantification of intact glycopeptides and glycosite localization
Raw files of the glyco-enriched samples and phospho-enriched sampleswere searched for N-linked glycopeptides viaMSFragger110

(version 3.3) and Philosopher109 (version 4.0). Parameters were as described for whole proteome search, except as follows. C12/C13

isotope errors of 0/1/2 were allowed, and methionine oxidation (+15.99491) was the only specified variable modification for glyco-

enriched samples. Phosphorylation of serine, threonine, and tyrosine (+79.96633) was specified for phospho-enriched samples.

‘‘Nglycan’’ search mode was used, restricting glycosylation sites to the consensus sequon N-X-S/T, where X is any residue other

than proline. A customized human N-glycan database which contained 252 compositions.144 Diagnostic ion filtering for glycopeptide

spectra was enabled with a minimum intensity threshold of 10% and the following list of oxonium ions considered: 204.086646,

186.076086, 168.065526, 366.139466, 144.0656, 138.055, 512.197375, 292.1026925, 274.0921325, 657.2349, 243.026426,

405.079246, 485.045576, 308.09761. Glycan Y ions of 203.07937 and 406.15874 were included in search, along with a remainder

mass of 203.07937 on peptide b and y ions (‘‘b�/y�’’ ions). PSMs were further processed with PeptideProphet,145 using the

extended mass model with a mass width of 4000, as described in Polasky et al.62 Protein inference, FDR filtering, and reporter

ion intensity extraction were accomplished as in the whole proteome search.

Glycan assignment and glycan-specific FDR filtering was subsequently performed in PTM-Shepherd as previously described.63

Briefly, possible glycan compositions given the observed delta mass recorded byMSFragger were scored using the glycan fragment

ions observed in the spectrum and filtered to 1% FDR by comparison to spectrum-based decoy glycans. Default settings were used

except for consideration of a single ammonium adduct on possible glycan compositions. PTM-Shepherd assigned glycan compo-

sitions and confidence scores were written back to the PSM tables. The PSM output files were then processed with TMT-

Integrator112 v3.1.2 to generate summary reports at the gene, protein, peptide, site, and ‘‘multi-mass’’ levels from glycopeptide

spectra. Multi-mass refers to the combination of glycan and site, i.e., each distinct glycan identified at a given site generates a sepa-

rate entry. The PSM filtering and summarization process was the same as for whole proteome searches, with the exception of re-

stricting the PSMs considered to those of glycopeptides and using the MSFragger-reported localization of the glycosite within iden-

tified peptides rather than PTMProphet.

Identification and quantification of metabolomic data
Acquired data were analyzed first using Thermo Scientific Compound Discoverer software. The chromatographic peaks were in-

tegrated to obtain raw intensities of metabolites. Compounds with definite peaks and names in the software were selected. The

data were then filtered based on the following criteria: m/z Cloud score greater than 60 (good fragmentation matching with com-

pounds in the m/z Cloud database) or mass list match (mass lists include common pathways such as glycolysis, pentose phos-

phate pathway, hexosamine, and sialic acid pathway, purine and pyrimidine synthesis, and amino acid metabolism) and intensity

>10000. Thermo Scientific TraceFinder software was then used to quantify compounds in common pathways not found using

Compound Discoverer where the retention time (RT) was determined using Freestyle software based on mass accuracy and frag-

mentation match. The data from Thermo Scientific Compound Discoverer and TraceFinder software were combined to generate

the final list of compounds.

Proteomic data normalization and imputation
With the output from FragPipe, TMT-Integrator reports, we first filter out contaminated genes and samples, map ENSEMBL ID to

gene symbols, and remove duplicated genes and samples by using the average quantification. For global proteomics and phospho-

proteomics data, we performed data imputation to support some downstream analysis such as NMF clustering. Genes with missing

valuesmore than 50% are filtered out. Separately in the discovery cohort and non-ccRCC cohort, we correct the batch effect caused

by potential uneven TMT plexing with Combat after imputing missing values in the remaining genes with KNN. Then we join the two

datasets together using normal samples as control. We replace imputed values with NA and run DreamAI imputation with default

parameter setting.
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PTM proteomics data normalization
With TMT-Integrator’s ratio reports on global proteome and PTM (phosphorylation and glycosylation (protein level)) datasets, we

build a simple linear regression model with all the samples’ global protein ratio as predictor and their respective PTM ratio data

as response. After the model is fitted, the residual values are taken as normalized PTM intensity.

Principal component analysis
We performed PCA on 150 tumor samples including (103 ccRCC, 15 RO, 13 pRCC, 3 chRCC, 2 AML, 2 ESCRCC, 1 BHD, 1 MEST, 1

MTORmutated RCC, 1 TRCC, 7MDTH) and 101 normal adjacent (NAT) samples to illustrate the gene expression (RNA-seq, 89 NAT),

global proteomic, phosphoproteomic, glycoproteomic difference between tumor and NAT samples. Due to sample availability, in

metabolomics data analysis, only 28 tumors (8 RO, 8 pRCC, 2 AML, 1 chRCC, 1 ESCRCC, 1 BHD, 1 MEST, 1 MTOR mutated

RCC and 5 unRCC) and 7 NATs went through PCA (Figure S1D). R function prcomp was employed to calculate loadings on each

principal component. R function fviz from library ‘‘factoextra’’ was employed to visualize the results in 2D, ellipse of subtype groups

were added with specifying parameter addEllipses = T and ellipse.level = 0.5.

Tumor versus normal and between-subtypes Differential expression/proteomic analysis
TMT-based global proteomics data without missing value filtering were used to perform differential proteome analysis between tu-

mor and normal samples, as well as between different subtypes. R package limma90 was used to fit a linear regression model

between sample groups for proteomics data in log2 scale. Tumor purity adjustment is achieved differently in different types of com-

parisons. In tumor subtype comparisons, tumor purity is added as a co-variable in the regressionmodel. In tumor versus normal com-

parisons, tumor purity is the only variable in the regression model, as tumor purity for normal tissues is zero. After model fitting, the

regression coefficient is the fold change in log2 scale between comparison groups (mean difference between two groups) and the p

value and q value associated with the moderated t statistic (p.mod and q.mod) calculated with the ebayes function are the resultant

significance measurement. RNA differential expression analysis was done similarly as proteomic analysis on TPM normalized data.

Nonnegative Matrix Factorization (NMF) clustering and Heatmap Analysis.

Filtered RNA (TPM) data based on raw read counts, imputed global proteomics ratio data, and imputed phosphoproteomics ratio

data were supplied to SignatureAnalyzer (https://github.com/getzlab/SignatureAnalyzer) to perform automatic relevance determina-

tion (ARD) NMF clustering.30 Clustering results with immune deconvolution result, mutation information, copy number variations are

visualized with heatmaps through R library ComplexHeatmap146 (Figure 1A).

Immune deconvolution
To estimate the fraction of different cell types in the tissue microenvironment, we performed a multi-omic based deconvolution inte-

grating global proteomic and RNA-seq data via BayesDebulk.119 Only samples with both gene expression and global proteomic

measurements were considered. Protein abundance was imputed as described above before being inputted to BayesDebulk. To

perform the deconvolution, BayesDeBulk requires a list of cell-type specific markers for each cell type. For immune cells, such

list was derived from the LM22 signature matrix147 in a similar fashion as in Petralia et al.119 For this analysis, an aggregated version

of the LM22 signature matrix was utilized. Specifically, we averaged the LM22 values mapping to different types of CD4 T Cells (e.g.,

Memory T Cells, Naive T Cells) to create a gene signature for CD4 T Cells. The same strategy was utilized for Dendritic cells, Natural

Killers cells, Mast Cells and B Cells. For each pair of cell types, we considered a marker to be upregulated in the first cell type

compared to the other cell type, if the corresponding value of the LM22 matrix for the first cell type was greater than 1,000 and 5

times the value of the other cell type. For Endothelial-PLVAP, Endothelial-ACKR1, Pericytes and vSMC, we used marker signatures

from a previous ccRCC single-cell RNA-seq study.36 To derive these signatures, differential expression between different single-cell

clusters was performed and only markers significant at 10% FDR and a log fold change greater than 1 were considered as cell-type

specific markers.

Finally, we considered Macrophage A and Macrophage B signatures from Zhang et al.36 As common markers for Macrophage A

and B we used C1QA, C1QB, C1QC,MS4A6A, LYZ, TYROBP, FCGR2A, FCER1G, AIF1, CD14, CD68; as markers specific of Mac-

rophages A we considered: CXCL8, CXCL2, CCL4, CCL3, CCL4L2, CXCL3, CCL3L3, CCL20, NFKB1, IL1B; while for Macrophage B

the following cell-type specific markers were considered: CTSL, LGMN, ASAH1, LIPA, CTSD, LAMP1. BayesDeBulk was estimated

via 10,000 Monte Carlo Markov Chain (MCMC) iterations. Cell-type fractions were estimated as the mean across MCMC iterations

after discarding a burn-in of 1,000 iterations. Once estimated, cell-type fractions for each patient were standardized to sum to the

total fraction of immune/stromal cells in the tissue microenvironment. The total fraction of immune/stromal cells was computed as

one minus the tissue purity inferred from gene expression data. The estimation of the purity was performed via TSNet.148

Immune/methylation subtype clustering
Immune deconvolution results and methylation data were subjected to a consensus clustering algorithm to identify subtypes within

tumors. Percentages of immune cells calculated by BayesDebulk were used for immune subtyping. For methylation subtyping, beta

values from the methylation array harmonization workflow based on SeSAMe149 were downloaded from CPTAC DCC and GDC. To

avoid methylation probes of ccRCC from overrepresentation, top 4000most variable probes with less than 50%missing values were

selected independently for ccRCC-Discovery cohort and non-ccRCC cohort. Selected probes were then combined with remaining
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missing values imputed by the mean of the corresponding probe. Consensus clustering was performed via CancerSubtypes113 with

following parameters: maxK = 10, reps = 1000, pItem = 0.8, pFeature = 1, clusterAlg = "km", distance = "euclidean". Numbers of

clusters were chosen based on the delta area plot of the consensus CDF.

High versus low wGII groups determination
To measure overall instability, we used an already published measure of Weighted Genome Instability Index (wGII).150 WGII was

measured as the proportion of each chromosome which has a different copy number compared to the baseline copy number of

the sample. Then the average of scores for each chromosome was calculated, weighted by the length of the chromosome such

that each chromosome has the same contribution to the overall instability score.

To validate our results, wGII were also calculated for TCGA kidney cohorts (KIRC, KIRP, KICH). All the required information

regarding the segmentation, absolute copy numbers and purity values were acquired through TCGA PanCanAtlas GDC portal.151

The cutoff of high or low wGII grouping was determined by finding the cutoff that minimizes the p-value of survival differences of

the two groups using a cox-regression modeling (cutoff = 0.32), using the TCGA-KIRP cohort. In practice, to make sure each group

has enough samples, we used the cutoff of 0.3 which yields a more balanced populated grouping, but still a significant p-value.

Dimension reduction in single nucleus RNA-seq and cell type assignment
Following data processing all the sample libraries passed various QC measures including floating RNA contamination that was esti-

mated by SOUPX median 6% (range 1.2–17%). Data from 79,673 nuclei from 8 samples (median 10,592) were used in integrative

analysis with previously published snRNA-seq data from benign kidney samples. Cell type annotations were rendered by examining

biomarker expression patterns identified based on previous single cell RNA-seq and single nucleus RNA-seq data.35,36

Downstream analyseswere performedwith Seurat152 v4.1. Filtered countmatrix was normalized to 10000UMI per cell and natural-

log transformed, top 2000 highly variable genes (HVGs) were identified by modeling the mean-variance relationship, PCA was then

performed on scaled and centered matrix (including HVGs only); finally cells were projected into a 2-D map with UMAP153 using the

first 30 PCs. Clusters were identified using the Louvain clustering algorithm (resolution = 0.5) on a shared nearest neighbor graph.

Expression of known tumor markers (FOXI1 and LINC01187 for chRCC and oncocytoma,8 TRIM63 for TRCC,6 ITGB8 for

pRCC,154 PAX8 for ESCRCC,155 PECAM1 and ENG for endothelial cells, ACTA2 and RGS5 for SMC, PTPRC for immune cells,

FABP4 and PLN1 for adipocytes) were used to annotate cell clusters. Since AMLs consist of blood vessels, smooth muscle cells,

and adipocytes, cells expressing markers of SMC, endothelial cells and adipocytes were considered ‘‘Tumor’’ for AML libraries. An-

notations of non-tumor cells were complemented by prediction using a published snRNA-seq dataset of human normal kidney35 as

reference. Re-clustering of all tumor cells with resolution = 0.2 was done for each sample to identify tumor subclusters. Cell cycle

phase was assigned based on scoring of expression of G2/M and S phase markers.156

To visualize clustering patterns of cell types from all RCC subtypes, a subset of 2000 cells of each library were randomly selected

and pooled together. Downstream analyses from normalization to dimension reduction (UMAP) followed the same procedure as for

individual libraries. To show similarity and dissimilarity among tumor cells of different subtypes, tumor cells of all libraries except

AMLs were pooled and PCA was performed on top 500 highly variable genes.

Cell-of-origin prediction and bulk data projection
Putative cell-of-origin of each profiled RCC subtype was inferred following previously published procedure.36 A random forest model

was trainedwitha snRNA-seqdataset of normal kidneyepithelial cells (onlyHVGswereused; 300cellswere randomly selected for over-

represented clusters tominimize bias due to unbalanced sample sizes). Themodel was then applied to snRNA-seq data of RCC tumor

cells to predict their closest normal cell types (putative COO). In addition, prediction based on bulk RNA-seq data of ccRCC and rare

RCCs of this study was performed by first applying rank-based inverse normal transformation. Random forest classifier was then built

on transformed sn data of normal kidney epithelial cells; transformed bulk data of RCCs were then used to predict putative COO.

Proteogenomic signature of RCC subtypes
To identify subtype-specific markers, differentially expression (DE) analysis was performed for each of the rare RCC subtypes pro-

filed by RNA-seq and proteomics. For RNA-seq, the input data is voom-transformed data with associated precision weights.156 For

proteomic data, the input was normalized and log2 transformed data. Input data was fit into linear models with limma,157 and con-

trasts were constructed to compare each subtype with the average of all other subtypes. Top 100 upregulated genes ranked by p

value were selected for each subtype (for RNA, additional filter of logFC>2, adjusted p value < 0.01 were applied) as the signature

gene set. To visualize expression of the gene sets as ‘‘metagenes’’, Z score was calculated for each gene of each gene set and

the average was used to make the heatmap.

Gene set/Pathway enrichment analysis
To visualize the pathway enriched across different RCC subtypes, differential expression analysis was first performed to identify dif-

ferential expressed RNAs and proteins, respectively. Then, gene set enrichment analysis was performed to identify enriched con-

cepts. GSEA for RNA and proteomics data were performed through the ClusterProfiler R package.158 The annotation of concepts

are fetched from REATCOME,159 MSigDB160 and KEGG.161
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Phosphorylation site level enrichment analysis
Based on the results of differential expression analysis with phosphorylation sites intensity data between each tumor subtype and

normal samples, we performed phosphosite-specific signature enrichment analysis114 (PTM-SEA) to identify dysregulated phos-

phorylation-driven pathways. To adequately account for both magnitude and variance of measured phosphosite abundance, we

use t.mod,moderated t statistic resulting from the ebayes function as ranking for PTM-SEA.We queried the PTM signature database

(PTMsigDB) v1.9.0 downloaded from http://prot-shiny-vm.broadinstitute.org:3838/ptmsigdb-app/using the Uniprot ID plus residue

location as identifier. We call the functions of PTM-SEA available on GitHub (https://github.com/broadinstitute/ssGSEA2.0) within R.

The following parameters were used to run PTM-SEA; weight: 1, statistic: ‘‘area.under.RES’’, output.score.type: ‘‘NES’’, nperm:

1000, min.overlap: 5, correl.type: ‘‘z.score’’

The sign of the normalized enrichment score (NES) calculated for each signature corresponds to the sign of the tumor-normal log

fold change. p-values for each signature were derived from 1,000 random permutations and further adjusted for multiple hypothesis

testing using the method proposed by Benjamini & and Hochberg (Benjamini and Hochberg, 1995). Due to limited sample size, sig-

natures with a lenient FDR threshold 0.2 were considered to be differential. Pathway signatures that are significant in at least one of

the 9 comparisons are displayed in the bubble plot (Figure 3C). Kinase signatures are plotted in pseudo volcano plots in high vs. low

wGII non-ccRCC tumor comparison (Figure 3D) and chromosome 7 gain vs. no gain non-ccRCC (pRCC, TRCC and ESCRCC) com-

parison (Figure S6g).

Metabolic pathway enrichment analysis with metabolites and enzymes
Upregulated and downregulated metabolites and proteins (q value < 0.05, absolute value of log2 fold change >1) in ccRCC, pRCC

type-1, AML, RO type2 combined with RO variants compared to normal samples are sent to IMPaLA116 (http://impala.molgen.mpg.

de/) for pathway over-representation analysis separately. KEGG ID is the metabolite identifier and gene symbol is the protein iden-

tifier. We focused on HumanCyc metabolic pathways162 (https://humancyc.org/) from the analysis results (Figure 4C).

Transcription factor regulon identification
pySCENIC (https://pyscenic.readthedocs.io/en/latest/) and R package SCENIC (version 1.1.2) were used for transcription factor reg-

ulon identification. Input of this analysis are our raw bulk RNA-Seq data and the raw proteomedata.We used an in-house constructed

pipeline via combining GRNBoost2 from pySCENIC algorithms and RSCENIC algorithmswith default parameters. To predict the reg-

ulons, we used human v9 motif collection, as well as both hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather and

hg38__refseq-r80__500bp_u-p_and_100bp_down_tss.mc9nr.feather databases from the cisTarget (https://resources.aertslab.

org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc9nr/gene_based/). The resulting AUC scores matrix was used for

downstream analysis(Heatmap and RSS plot)

Kinase-substrate co-regulation analysis
Kinase and residue level substrate relationships were collected from OmniPath99 (OmniPath:: Intra- & intercellular signaling

knowledge (omnipathdb.org)) using R package OmnipathR121 for comprehensive coverage. Keeping only ‘‘phosphorylation’’ mod-

ifications, we get 40,122 kinase-substrate pairs. After mapping the proteome data to kinases and the phosphoproteome data to sub-

strates (with site level resolution), we gathered 9,932 kinase-substrate pairs for joint differential analysis. We derive two-dimensional

Z score vectors for both kinase ( ) and substrate ( ):

Using lmFit and eBayes function from the limma package, we regress kinase protein abundance/phosphorylation site intensity

data separately against sample grouping (low wGII or high wGII) with tumor purity adjusted as a covariate. The resultant statistic

is assigned as the Z score for kinase and substrate respectively. We model the distribution of all Z scores derived from all the ki-

nase-substrate pairs as a mixture of pairs which are up- or down-regulated between conditions (e.g., high or low wGII) and pairs

which are non-differentially regulated. Assuming the Z scores of the differentially regulated proteins follow an empirical distribution

and the Z scores of the non-differentially regulated proteins follow an empirical null distribution, we can write the observed distribu-

tion for Z score as:

fðZÞ = p0f0ðZÞ+p1f1ðZÞ
where are the proportion of the non-differentially and differentially regulated pairs in the data.We have p0 +p1 = 1. To estimate the

distribution of the non-differentially regulated pairs, we simulate the null distribution of Z scores by randomly permuting themeasure-

ments of the two conditions for 200 times. Following this mixture deconvolution, we calculate the posterior probability of being differ-

entially regulated for each protein with the following equation:

p1ðZÞ = 1 � p0f0ðZÞ=fðZÞ
is estimated by taking the ratio of densities at:

Z00 = <Zk = 0; Zs = 0>

p0 = fðZ00Þ = f0ðZ00Þ
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The local false discovery rate (fdr) is computed as:

fdrðZÞ = p0f0ðZÞ=fðZÞ
Throughout this modeling, we only used the proteins and phosphosites with missing data in fewer than 6 samples for construction

of reliable Z score. The R implementation of KSA2D115 can be found in https://www.github.com/ginnyintifa/KSA2D.

pRCC MTSCC specific marker validation with external data (Figures 7C and 7D)

Protein expression of a pRCCandMTSCCcohort was fetched from the previous publication.23 Differential expression analysis was

performed in the same way as described in the Differential Expression Analysis section. One outliner MTSCC sample was removed

due to absence of canonical copy number loss events of chr1 chr6, and chr9.

Survival analysis
The R package survival122 was used to perform survival analysis. The Kaplan-Meier curve of overall survival was used to compare the

prognosis among subtypes (function survfit). The standard multivariate Cox-proportional hazard modeling (function coxph) was

applied to calculate hazard ratio between categories of interest (e.g., high or low expression of certain gene, methylation groups,

wGII groups). Age, gender, race, tumor stage and tumor purity were adjusted as the model covariates. Log rank test was used to

test the differential survival outcomes between categorical variables.
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Figure S1. Characterization of renal cell carcinoma proteogenomic aberration landscape reveals 
association between survival and copy number-based genome instability, and wGII biomarkers 
validation, Related to Figure 1 
A. Sample availability of bulk experiments included in this study. 
B. ProTrack modules include Sample Dashboard, Histology Viewer, Proteomic QC, Two-gene 
Correlation, Interactive Heatmap and Expression Boxplots. 
C. PCA plots show distribution of samples with regard to PC1 (x axis) and PC2 (y axis) in global 
proteome, phosphoproteome, RNA, metabolome and glyco-enriched glycoproteome, stratified by tumor/normal 
condition and ccRCC/non-ccRCC cohorts, colored by TMT plexes. PTM data are represented by the site-level 
aggregation. 
D. Boxplots show protein expression between mutated and wild type groups for kinases TSC1, TSC2, 
MTOR, FLCN and CCND1. P-values were calculated using Wilcoxon rank sum test. 
E. Scatter plot shows ploidy plotted against wGII for non-ccRCC samples. P-values were calculated for 
Pearson correlation coefficient. 
F. PYCR1 RNA-ISH staining in 2 high wGII non-ccRCC cases and 1 low wGII non-ccRCC case. 
G. IGF2BP3 IHC staining in 2 high wGII non-ccRCC cases and 1 low wGII non-ccRCC case. 
 



 
 
 
 
 
 
 
 
 



Figure S2. Delineation of tumor transcriptomic heterogeneity, immune infiltration status and tumor cell 
of origin by single nuclei RNAsequencing, Related to Figure 2 
A. Stacked bar plot shows the cell type composition of the different samples. Non-ccRCC tumors (except 
AML) showed higher tumor purity and lower immune infiltration, while in comparison 3 ccRCC samples 
(C3L−00606−01, C3N−00148−03, C3N−00149−02; described in the companion ccRCC study) and the 2 AML 
showed higher levels of immune infiltration. 
B. Two-dimensional UMAP visualization of snRNA-seq data for each of the 8 tumors, colored by 
clusters. 
C. Two-dimensional UMAP visualization of snRNA-seq data for 3 ccRCC samples from the discovery 
cohort, colored by cell types. 
D. Two-dimensional UMAP visualization of snRNA-seq data for each of the 8 tumors, colored by tumor 
subclusters. 
E. Two-dimensional UMAP visualization of snRNA-seq data for the RO type-1 tumor, colored by cell 
cycle classification predicted based on expression of phase specific markers. 
F. Box plots display fold change (log2 scale) of snRNA-seq expression of genes located in selected 
chromosomal arms between tumor subcluster and other cells of the pRCC type-1 sample (top) and the RO type2 
sample (bottom) 
G. Radar plot shows the probability of cell-of-origin predicted by random forest classifier for different 
tumor subclusters for each of the RCC subtypes using bulk RNAseq data. 
H. Heatmap shows overlaps of renal epithelial cell types identified in Lake et al. (snRNA-seq) and Zhang 
et al. (scRNA-seq). Color scale indicates enrichment of cell markers identified from Zhang et al dataset in Lake 
et al. data set. 
I. Heatmap shows scores of subtype-specific gene signatures derived from top 50 most upregulated 
transcripts for each tumor subtype. 



 
 
 
 
 
 
 
 
 
 



Figure S3. Phosphoproteomic changes in non ccRCC tumors, Related to Figure 3 
A. Boxplots show phosphorylation intensity of the indicated phosphosites stratified by tumor subtypes. 
Color box on the top indicates signaling pathways the phosphorylation belongs to. 
B. Boxplots show different levels of phosphosites of intermediates in mTOR pathway including 
DEPTOR_S265, RPTOR_S863, EIF4EBP1_T70 and EIF4EBP1_S85 between different mTOR pathway genes 
mutation status (TSC1, TSC2, FLCN, or mTOR mutations). P-values were calculated using Wilcoxon rank sum 
test. 
C. Volcano plot shows differentially regulated phosphorylation sites between CCND1 mutated and wild 
type RO samples. Known CCND1 mutation related sites are highlighted in red. RB1 phosphorylation is 
downstream of CCND1. 
D. Heatmap shows the log2 fold change of kinases between samples with high and low wGII in ccRCC 
and non-ccRCC. Significantly differentially expressed kinases (p-values less than 0.05 using Limma) are 
labeled. Color of the dots represents the drug discovery stage of kinases. 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 



Figure S4. RCC glycoproteome reflects tumor immune infiltration and angiogenesis, Related to Figure 4 
A. Bar plot shows distribution of glycoforms found in phospho-enriched samples. 
B. Scatter plots show glycosylation change versus its corresponding protein (fold change, glyco). 
Right:RO. Left: pRCC. 
C. Glycosylation changes versus its corresponding protein (signed p-value, glyco). Right: RO. Left: 
pRCC. 
D. Volcano plots show differential expressed glycoproteins in RO (left) and pRCC (right). Colored by 
cell-type specific expression from previous single cell RNAseq data. 
E. Stacked bar plots summarize differentially expressed cell type specific glycoproteins (left) and proteins 
(right) in phospho-enriched samples. 
F. Heatmap of differentially expressed cell type specific glycoprotein markers in phospho-enriched 
samples. * denotes the marker expression difference is significant (adjusted q-value < 0.05 using Limma). 
G. Protein (left) and RNA (right) expression of glycosylation enzymes in kidney tumors. The expression is 
converted into z-score across all samples. 
H. FUT8 RNA expression across kidney cancers in combined TCGA and in house MCTP cohort. 
I. Volcano plot for glycosylation changes of putative FUT8 targets in pRCC type-1. Red dots are putative 
FUT8 target proteins collected from previous studies. 
J. MET glycosylation in glyco-enriched samples. 
K. MET_N785 glycosylation in glyco-enriched samples 



 
 
 
 
 
 
 
 
 
 



Figure S5. Metabolomic aberrations across RCC subtypes, Related to Figure 5 
A. Barplot shows the top 10 metabolic pathways with the most number of compounds identified. 
B. Volcano plots show upregulated compounds in pRCC type-1 (left), AML (middle) and ROs (right), 
with compounds of different categories colored. Only uniquely DE compounds are labeled and marked with 
solid circles. 
C. Metabolograms depicting select metabolic pathways to show the coordinated regulation of compounds 
(metabolites abundance; within green border) and the corresponding enzymes (proteins abundance; within 
orange border) in pRCC type-1 (outer circle), AML (middle circle) and ROs (inner circle). Color represents 
abundance fold change in log2 scale between respective tumor class and NATs. 
D. Boxplots compare fold changes of metabolites (M), proteins (P) and mRNAs (R) across tumor subtypes 
within each pathway. Ordered the same as panel C. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 



Figure S6. Identification and validation of proteogenomic biomarkers that distinguish papillary RCC 
from mucinous tubular spindle cell carcinoma (MTSCC), Related to Figure 6 
A. Boxplots highlight nominated pRCC type-1 mRNA markers PIGR and SOSTDC1. 
B. Boxplots present the differential mRNA abundance of PIGR and SOSTDC1 across RCC subtypes 
among an inhouse (MCTP) and TCGA combined cohort. Asterisks mark p-value less than 0.0001 between 
pRCC-1, pRCC-2 and other subtypes (upper), or between pRCC-1 and all the other subtypes (lower). P-values 
were calculated using Wilcoxon rank sum test. 
C. Volcano plot shows significant, differentially (abs(log2fc)>0.5 and p value < 0.05) regulated 
phosphorylation sites between missense MET mutated (n = 2) and wild type MET (n = 5) pRCC tumors. 
Phosphorylation sites on potential MET substrate proteins are highlighted and labeled. 
D. Violin plots show distribution of gene expression fold changes between chr7 gain and no gain samples 
separately derived from ccRCC and non-ccRCC subgroups. P-values were calculated using Wilcoxon rank sum 
test. 
E. Scatter plot shows the signed log2 fold change of genes’s protein expression (x axis), RNA expression 
(y axis) derived from DE analysis comparing chromosome 7 gain with no gain samples in ccRCC (upper panel) 
and non-ccRCC (lower panel) subgroups. Genes on chromosome 7 are represented with solid black circles. 
F. Enrichment in chromosome 7 and chromosome 17 gene sets are tested with RNA expression difference 
between chromosome 7 gain samples and no gain samples in ccRCC groups. P values were from GSEA. 
G. Hallmark pathway enrichment analysis based on expression fold changes between chromosome 7 gain 
and no gain samples stratified by ccRCC and non-ccRCC subgroups with RNA expression data. Asterisk 
denotes p values less than 0.05 from GSEA. 
H. Kinases with enriched upregulated phosphorylation (red) and downregulated phosphorylation (blue) in 
Chr 7 gain samples compared to Chr7 no gain samples. Chr7 kinases are colored and labeled with black. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S7. Identification and validation of proteogenomic biomarkers that distinguish Oncocytomas (RO) 
from Chromophobe RCC (chRCC), Related to Figure 7 
A. Boxplots show the protein abundance (top) and RNA expression (bottom) of known biomarkers of RO 
and chRCC across different kidney tumors. 
B. PyScenic analysis identifies transcriptional modules commonly enriched in RO and chRCCs (left), and 
those specifically enriched in chRCCs (right). 
C. Boxplots show the chRCC specific marker GPNMB (left) and RO specific biomarker ADGRF5 and 
MAPRE3 RNA expression in different tumor subtypes. 
D. Boxplots show the differential protein abundance (top) and RNA expression (bottom) (between RO 
type-1 from RO type-2) of THSD4 across different kidney tumors. P-values were calculated using Wilcoxon 
rank sum test. 
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