Cell Reports Medicine, Volume 5

Supplemental information

Monocyte bioenergetics:

An immunometabolic perspective in metabolic

dysfunction-associated steatohepatitis

Moris Sangineto, Martina Ciarnelli, Tommaso Colangelo, Archana Moola, Vidyasagar Naik Bukke, Loren Duda, Rosanna Villani, Antonino Romano, Stefania Giandomenico, Hina Kanwal, and Gaetano Serviddio

Monocyte bioenergetics: an immunometabolic perspective in metabolic dysfunction-associated steatohepatitis

Moris Sangineto^{1#*}, Martina Ciarnelli¹, Tommaso Colangelo^{2,3}, Archana Moola¹, Vidyasagar Naik Bukke¹, Loren Duda⁴, Rosanna Villani¹, Antonino Romano¹, Stefania Giandomenico¹, Hina Kanwal¹, Gaetano Serviddio¹

1 C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy

2 Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy

3 Cancer Cell Signalling Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy

4 Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy

#Corresponding author: Moris Sangineto, C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy Email: moris.sangineto@unifg.it

*Lead contact: Moris Sangineto, C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy

Email: moris.sangineto@unifg.it

Determined by qPCR (n= 3 per group) using PrimePCRTM array "Mitochondria Energy Metabolism Plus" (Bio-Rad Laboratories Inc).

Data are expressed in mean \pm SEM; *p<0.05; **p<0.01; ***p<0.001, ****p<0.0001 according to two-tailed Stuent's T test. Genes are listed in supplementary table 2.

Figure S2. LPS induces expression of ETC subunits in healthy monocytes. Related to Figure 2 and Figure 4. Determined by qPCR (n=3 per group).

(A) Relative mRNA expression of ETC subunits ctrl and MASH Mo +/- DMM (10 mM) for 4 h (n= 4 per group), determined by qPCR.

(B) Relative mRNA expression of mitochondrial biogenesis markers (*Pgc1-\alpha* and *Tfam*) in ctrl and MASH Mo +/-DMM (10 mM) for 4 h (n= 4 per group), determined by qPCR.

Data are expressed in mean \pm SEM; *p<0.05; **p<0.01; ***p<0.001, ****p<0.0001 according to one-Way ANOVA followed by post hoc analysis (Bonferroni test). DMM, dimethyl malonate; Mo, monocytes; ETC, electrion transport chain; PGC-1 α , Peroxisome-proliferator-activated receptor-gamma coactivator-1 α ; TFAM, Transcription factor A, mitochondrial.

Figure S4. The monocyte-macrophage UMAP based on expression of *Mafb*, *Ly6c2*, *Fcgr1* and *Adgre1*. Related to Figure 6.

UMAP was generated from PCA and data processing of public scRNA-seq dataset (GSE156057) using 24-weeks western diet fed mouse.

Figure S5. Higher expression of energy pathways in monocyte-derived macrophages compared to normal Kupffer cells in MASH. Related to Figure 6.

(A) Expression of Kupffer cell markers (*Clec4f, Timd4* and *Cd163*) and LAM markers (*Spp1, Gpnmb* and *Trem2*) in macrophagic populations isolated from murine MASH livers. (B) Hierarchical clustering and heatmap analyses of 89

genes included in Mitochondrial Energy Metabolism (MEM) pathway. (C) Volcano plot representing MEM_DEGs in KN-RM vs KC-H and Ly6c^{high} vs KC-H with a p value<0.05 and FC>1.5. (D) Hierarchical clustering and heatmap analyses of 20 genes included in Glycolysis (GLY) pathway. (E) Volcano plot representing GLY_DEGs in KN-RM vs KC-H and Ly6c^{high} vs KC-H with a p value<0.05 and FC>1.5. Normalized RNAseq data for different myeloid cell populations in NASH were used from GEO database (GSE128337). Differences were detected with two-tailed Student's T test.

Seidman JS et al¹ firstly identified that KC of healthy livers (KC-H) are substituted during MASH by a macrophagic diversity including KC-NASH (KC-N), and different Mo-MØ: Kupffer-niche recruited macrophages (KN-RM), Ly6Chigh and Ly6clow recruited macrophages (RM). KC-N are TIM4+ cells, derived from KC progenitors and with transcriptional characteristics near to normal KC-H. KN-RM are TIM4- negative cells, derived from Mo, though transcriptionally more similar to KC-N. KN-RM constitute the 37% of macrophages in MASH model, but their number increases during weeks, occupying a niche within liver sinusoids similar to KC-H and KC-N niche. On the contrary, the Ly6Chigh/low RM are transcriptionally divergent from KN-RM and occupy niche around large vessels. In particular, Ly6chigh RM express several genes common with circulating Mo (Ly6Chigh blood)¹. Here, we analysed the public repository of RNA-seq data deposited by Seidman JS et al in order to assess differences in terms of energy metabolism pathways. As expected, Mo-MØ expressed lower or no KC markers (i.e. Clec-4f, Timd4 and Cd163) (Supplementary Figure 5A). However, all NASH macrophages, KC-N included, expressed LAM markers (i.e., Trem2, Gpnmb and Spp1) (Supplementary Figure 5A), highlighting that some contamination existed in the flow cytometry method. Analysing the mitochondrial energy metabolism (MEM) pathway we found that MASH macrophages, and especially Mo-MØ presented an upregulated profile compared to normal KC-H, and very similar to the circulating Mo (Supplementary Figure 5B). Of interest, KC-N, which constitute the TIM4+ cells during MASH, present a profile intermediate between KC-H and KN-RM (Supplementary Figure 5B). While, for unknown reason only the Ly6Clow RM showed a strong downregulation of MEM pathway (Supplementary Figure 5B). However, Ly6C^{low} RM represent only the 6% of whole macrophages, with a potential role in tissue repairing mechanisms, while other authors attributed these cells to patrolling monocytes. The volcano plots, showing MEM DEGs of the two most representative Mo-MØ populations (KN-RM vs KC-H, and Ly6chigh RM vs KC-H) highlighted a prominent upregulated profile in comparison with normal KC-H. Out of 89 genes composing the MEM pathway, KN-RM had 19 DEGs (18 upregulated and 1 downregulated), while Ly6chigh RM had 9 DEGs (8 upregulated and 1 downregulated (Supplementary Figure 5C). In accordance with this, the glycolytic pathway was prominently enhanced in MASH macrophages (Supplementary Figure 5d). As shown by volcano-plot 4 genes out of 20 were significantly up-regulated in KN-RM and 7 genes in Ly6C^{high} RM compared to KC-H (Supplementary Figure 5E). Collectively these results underline the enhancement of MEM and glycolysis pathways in recruited macrophages compared to normal resident macrophages during MASH.

Figure S6. DMM does not affect hepatocyte lipid accumulation. Related to Figure 7.

HepG2 cells were exposed to 8% intralipid (Baxter) to induce the steatotic condition and simultaneously treated with DMM (10 mM and 20 mM) for 48 h. A. Pictures of HepG2 stained with Oil Red O to visualize lipid droplets. B. Quantification of optical density of A by FiJi (ImageJ) software. C. Lipid quantification by measurement of Oil Red O absorbance at 500nm.

Figure S7. (A) Percentage of CD14+ cells in total PBMCs and fractions obtained after monocyte isolation with EasySepTM Human CD14 Positive Selection Kit II (Stemcell Technologies, Grenoble, France). Related to Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5. Determined by FACS analysis on three different isolations.
(B) Cell vitality of ctrl Mo and MASH Mo after 4 hours exposure to increasing concentrations of DMM (dimethyl malonate). Related to Figure 5.

Cell vitality was determined with trypan blue staining and living cell count with TC10TM Automated Cell Counter (Bio Rad Laboratories Inc, Segrate (MI), Italy).

Full name	Gene ID		
Arrestin domain containing 3	ARRDC3		
Ankyrin repeat and SOCS box containing 1	ASB1		
ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle	ATP5A1		
ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide	ATP5B		
ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide	ATP5C1		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1	ATP5F1		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9)	ATP5G1		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9)	ATP5G2		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C3 (subunit 9)	ATP5G3		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d	ATP5H		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit E	ATP5I		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6	ATP5J		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2	ATP5J2		
ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G	ATP5L		
ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit	ATP5O		
Cytochrome c oxidase subunit IV isoform 1	COX4I1		
Cytochrome c oxidase subunit Va	COX5A		
Cytochrome c oxidase subunit Vb	COX5B		
Cytochrome c oxidase subunit VIa polypeptide 1	COX6A1		
Cytochrome c oxidase subunit VIa polypeptide 2	COX6A2		
Cytochrome c oxidase subunit VIb polypeptide 1 (ubiquitous)	COX6B1		
Cytochrome c oxidase subunit Vic	COX6C		
Cytochrome c oxidase subunit VIIa polypeptide 2 (liver)	COX7A2		
Cytochrome c oxidase subunit VIIa polypeptide 2 like	COX7A2L		
Cytochrome c oxidase subunit VIIb	COX7B		
Cytochrome c oxidase subunit VIIIA (ubiquitous)	COX8A		
Cytochrome b-561 domain containing 1	CYB561D1		
Cytochrome c-1	CYC1		
DnaJ (Hsp40) homolog, subfamily B, member 1	DNAJB1		
Endothelin 1	EDN1		
Growth arrest and DNA-damage-inducible, beta	GADD45B		
Heat shock 70kDa protein 1A	HSPA1A		
Heat shock 70kDa protein 1B	HSPA1B		
Low density lipoprotein receptor-related protein 5-like	LRP5L		
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa	NDUFA1		
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42kDa	NDUFA10		
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 11, 14.7kDa			

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa	NDUFA2
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3, 9kDa	NDUFA3
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4, 9kDa	NDUFA4
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa	NDUFA5
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 6, 14kDa	NDUFA6
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19kDa	NDUFA8
NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa	NDUFAB1
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa	NDUFB10
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8kDa	NDUFB2
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa	NDUFB3
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa	NDUFB4
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16kDa	NDUFB5
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6, 17kDa	NDUFB6
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7, 18kDa	NDUFB7
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8, 19kDa	NDUFB8
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa	NDUFB9
NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1, 6kDa	NDUFC1
NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2, 14.5kDa	NDUFC2
NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase)	NDUFS1
NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase)	NDUFS2
NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase)	NDUFS3
NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q reductase)	NDUFS4
NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-coenzyme Q reductase)	NDUFS5
NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q reductase)	NDUFS6
NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase)	NDUFS7
NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa (NADH-coenzyme Q reductase)	NDUFS8
NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa	NDUFV1
NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa	NDUFV2
NADH dehydrogenase (ubiquinone) flavoprotein 3, 10kDa	NDUFV3
Pyrophosphatase (inorganic) 1	PPA1
Succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	SDHA
Succinate dehydrogenase complex, subunit B, iron sulfur (Ip)	SDHB
Succinate dehydrogenase complex, subunit C, integral membrane protein, 15kDa	SDHC
Succinate dehydrogenase complex, subunit D, integral membrane protein	SDHD
Solute carrier family 25 (mitochondrial carrier phosphate carrier), member 25	SLC25A25
Ubiquinol-cytochrome c reductase, complex III subunit XI	UQCR11
Ubiquinol-cytochrome c reductase core protein I	UQCRC1
Ubiquinol-cytochrome c reductase core protein II	UQCRC2
Ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1	UQCRFS1
Ubiquinol-cytochrome c reductase hinge protein	UQCRH
Ubiquinol-cytochrome c reductase, complex III subunit VII, 9.5kDa	UQCRQ

Table S1. List of genes from PrimePCRTM array "Mitochondria Energy Metabolism Plus" (Bio-Rad Laboratories Inc, Segrate (MI), Italy). Related to Figure 4.

Variable	N (%)
Male	16 (61.5)
Hypertension	10 (38.5)
Diabetes Mellitus	20 (77)
Dyslipidaemia	12 (45)
	Mean ± SD
Age	60.24 ± 9.78
BMI	30.89 ± 5.34
AST (U/L)	51.76 ± 21.32
ALT (U/L)	60.20 ± 26.99
γ-GT (U/L)	108.25 ± 200.63
Alkaline phosphatase (U/L)	97.12 ± 45.22
Total cholesterol (mg/dL)	164.25 ± 39.43
HDL (mg/dL)	41.32 ± 13.15
LDL (mg/dL)	99.25 ± 23.99
Triglycerides (mg/dL)	135.24 ± 57.27
Glucose (mg/dL)	127.66 ± 59.72
HbA1c (%)	6.23 ± 1.21
Haemoglobin (g/dL)	13.01 ± 2.51
Leukocytes (x10 ₃ /uL)	5.42 ± 2.48
Lymphocytes (%)	28.95 ± 9.12
Monocytes (%)	7.54 ± 2.34
Platelets (x10 ₃ /uL)	135.95 ± 86.18

 Table S2. Baseline characteristics of patients. Related to Figure 1, Figure 2, Figure 3 and Figure 4.

S.No.	Gene	Forward primer	Reverse primer	Source
1	Human β-actin	GGCATCGTGATGGACTCC	GCTGGAAGGTGGACAG	Invitrogen
			CGA	
2	Human IL-1β	GGCTGCTCTGGGATTCTCTT	TCGTGCACATAAGCCTC	Invitrogen
			GTT	
3	Human TNF-α	GTCCTCTTCAAGGGCCAAGG	CTCACAGGGCAATGAT	Invitrogen
			CCCA	
4	Human PGC-1α	TGCATGAGTGTGTGTGCTCTGT	CAGCACACTCGATGTC	Invitrogen
			ACTC	
5	Human TFAM	TGATTCACCGCAGGAAAAGC	CGAGTTTCGTCCTCTTT	Invitrogen
			AGCA	
6	Mouse β-actin	TATAAAACCCGGCGGCGCA	TCATCCATGGCGAACTG	Invitrogen
			GTG	
7	Mouse IL-1β	TGCCACCTTTTGACAGTGATG	TGATGTGCTGCTGCGAG	Invitrogen
			ATT	
8	Mouse TNF-α	ACTGAACTTCGGGGGTGATCG	CCACTTGGTGGTTTGTG	Invitrogen
			AGTG	
10	Mouse CD-163	GGTGCTGGATCTCCTGGTTG	CAGGAGCGTTAGTGAC	Invitrogen
			AGCA	
11	Mouse MCP1	CACTCACCTGCTGCTACTCA	GCTTGGTGACAAAAAC	Invitrogen
			TACAGC	
12	Human NDUFA1	predesigned	predesigned	Sigma-
				Aldrich
13	Human NDUFA8	Predesigned	Predesigned	Sigma-
				Aldrich
14	Human SDHB	Predesigned	Predesigned	Sigma-
				Aldrich
15	Human COX4I1	Predesigned	Predesigned	Sigma-
				Aldrich
16	Human COX5B	Predesigned	Predesigned	Sigma-
				Aldrich
17	Human ATP5G2	Predesigned	Predesigned	Sigma-
				Aldrich
18	Mouse CCR2	Predesigned	Predesigned	Bio-Rad
				Laboratories
19	Mouse CX3CR1	Predesigned	Predesigned	Bio-Rad
				Laboratories
20	Mouse GPNMB	Predesigned	Predesigned	Bio-Rad
				Laboratories
21	Mouse CLEC4F	Predesigned	Predesigned	Bio-Rad
				Laboratories

S.No.	Gene	Forward primer	Reverse primer	Source
1	Human β-actin	GGCATCGTGATGGACTCC	GCTGGAAGGTGGACAG	Invitrogen
			CGA	
2	Human IL-1β	GGCTGCTCTGGGATTCTCTT	TCGTGCACATAAGCCTC	Invitrogen
			GTT	
3	Human TNF-α	GTCCTCTTCAAGGGCCAAGG	CTCACAGGGCAATGAT	Invitrogen
			CCCA	
4	Human PGC-1a	TGCATGAGTGTGTGTGCTCTGT	CAGCACACTCGATGTC	Invitrogen
			ACTC	
5	Human TFAM	TGATTCACCGCAGGAAAAGC	CGAGTTTCGTCCTCTTT	Invitrogen
			AGCA	
6	Mouse β-actin	TATAAAACCCGGCGGCGCA	TCATCCATGGCGAACTG	Invitrogen
			GTG	
7	Mouse IL-1β	TGCCACCTTTTGACAGTGATG	TGATGTGCTGCTGCGAG	Invitrogen
			ATT	
8	Mouse TNF-a	ACTGAACTTCGGGGGTGATCG	CCACTTGGTGGTTTGTG	Invitrogen
			AGTG	
22	Mouse TIMD4	Predesigned	Predesigned	Bio-Rad
				Laboratories
23	Mouse TREM2	Predesigned	Predesigned	Bio-Rad
				Laboratories
24	Mouse SPP1	predesigned	Predesigned	Bio-Rad
				Laboratories

 Table S3. Primer sequences used in this study. Related to Figure 1, Figure 2, Figure 4, Figure 5 and Figure 7.

Reference List

 Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ, Bennett H, Bruni CM, Ouyang Z, Li RZ, Sun X, et al. Niche-Specific Reprogramming of Epigenetic Landscapes Drives Myeloid Cell Diversity in Nonalcoholic Steatohepatitis. Immunity 2020;52:1057-1074 e7.10.1016/j.immuni.2020.04.001