Supporting Information

Highly Effective Inactivation of SARS-CoV-2 by Conjugated Polymers and Oligomers

Florencia A. Monge^{†‡}, Pradeepkumar Jagadesan[&], Virginie Bondu[#], Patrick L. Donabedian^{†%}, Linnea Ista^{†§*}, Eva Y. Chi^{†§*}, Kirk S. Schanze^{&*}, David G Whitten^{†¶§*}, Alison M. Kell^{#*}

[†]Center for Biomedical Engineering, University of New Mexico

[‡]Biomedical Engineering Graduate Program, University of New Mexico

[&]amp;Department of Chemistry; University of Texas at San Antonio

[%]Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico

[§]Department of Chemical and Biological Engineering, University of New Mexico

[¶]Department of Chemistry and Chemical Biology, University of New Mexico

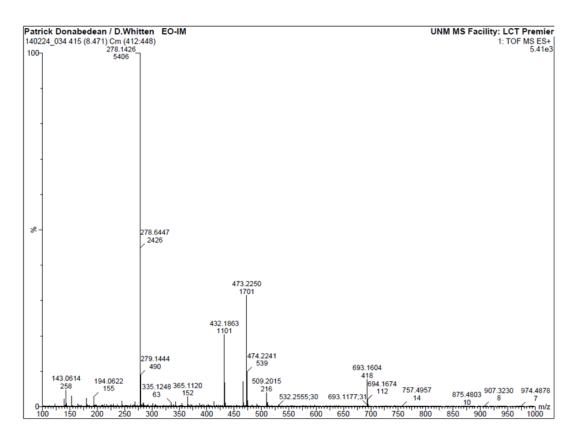
^{*}Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine

^{*}Corresponding Author emails: whitten@unm.edu, AMKell@salud.unm.edu, evachi@unm.edu, lkista@unm.edu, kista@unm.edu, <

Materials

All starting materials and reagents were obtained from commercial sources (Sigma-Aldrich, Fisher Scientific) and used without further purification. All reactions were performed under a nitrogen atmosphere, unless stated otherwise. Compounds 1, 2, 3b, poly-4 and poly-5 were synthesized by following the literature procedure. 1-5

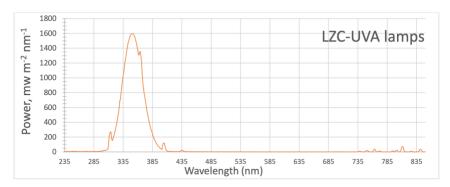
Characterization Methods

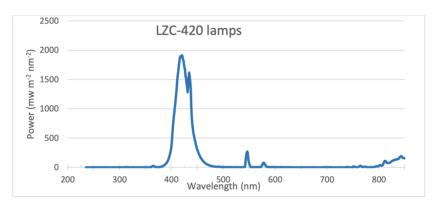

UV-Visible spectra for all the samples were recorded at a concentration of $10 \,\mu g/mL$ in water using the PerkinElmer Lambda 35 UV-Vis spectrophotometer.

1,4-bis((4-(3-bromopropoxy)phenyl)ethynyl)benzene (3c).

To a degassed solution of **3a** (300 mg, 2.378 mmol) and **3b** (1.62 g, 4.756 mmol) in 60 mL CH₂Cl₂ and 20 mL diisopropyl amine, Pd(PPh₃)₂Cl₂ (167 mg, 0.238 mmol), CuI (90 mg, 0.476 mmol) were added. The mixture was refluxed for 12 h. The product was separated between saturated aq.NH₄Cl and CH₂Cl₂, and washed with D.I. water. The CH₂Cl₂ layer was dried over anhydrous Na₂SO₄ and distilled off the solvent under reduced pressure. The crude product was passed through a silica gel column using hexane/DCM as the mobile phase to isolate **3c** as a pale white solid. Yield: 710 mg (76 %).

3,3'-((((1,4-phenylenebis(ethyne-2,1-diyl))bis(4,1-phenylene))bis(oxy))bis(propane-3,1-diyl))bis(1-methyl-1*H*-imidazol-3-ium) bromide (3).


To a solution of **3c** (500 mg, 0.905 mmol) in 30 mL CH₃CN, 1-methylimidazole (164 mg, 2 mmol, 2.2 eq.) was added and refluxed for 12 h. The precipitated solid product was filtered and was washed with cold CH₃CN. The product was dried under high vacuum to remove any trace amount of solvent. Yield: 600 mg (93 %). HRMS (**3**²⁺ ion calculated 278.1413, found 278.1427).


Figure S-1. High resolution mass spectrum of oligomer 3.

Photolysis Light Sources

Samples were exposed to light for the indicated periods using using a Luzchem photoreactor (Luzchem.com) equipped with either near-UV or visible light sources. The spectral distribution of the light from the two sources is shown below.

Figure S-2. Spectral distribution for LZC-UVA lamps used for near-UV irradiation of samples. The irradiance at the sample with this light source is 6.7 mW-cm⁻².

Figure S-3. Spectral distribution for LZC-420 lamps used for visible irradiation of samples. Visible region irradiance at the sample with this light source is 6.7 mW-cm⁻².

References

- 1. Tan, C.; Pinto, M. R.; Schanze, K. S. Photophysics, aggregation and amplified quenching of a water-soluble poly(phenylene ethynylene), *Chem. Commun.* **2002**, 446–447.
- 2. Zhang, L.; Lou, X.; Yu, Y.; Qin, J.; Li, Z. A New Disubstituted Polyacetylene Bearing Pyridine Moieties: Convenient Synthesis and Sensitive Chemosensor toward Sulfide Anion with High Selectivity, *Macromolecules* **2011**, 44, 5186–5193.
- 3. Donabedian, P. L.; Pham, T. K.; Whitten, D. G.; Chi, E. Y. Oligo(p-phenyleneethynylene) Electrolytes: A Novel Molecular Scaffold for Optical Tracking of Amyloids, *ACS Chem. Neurosci.* **2015**, *6*,1526-1535.
- 4. Zhao, X. Y.; Pinto, M. R.; Hardison, L. M.; Mwaura, J.; Muller, J.; Jiang, H.; Witker, D.; Kleiman, V. D.; Reynolds, J. R.; Schanze, K. S. Variable Band Gap Poly(arylene ethynylene) Conjugated Polyelectrolytes, *Macromolecules* **2006**, *39*, 6355-6366.
- Huang, Y.; Pappas, H. C.; Zhang, L.; Wang, S.; Cai, R.; Tan, W.; Wang, S.; Whitten, D. G.; Schanze, K. S. Selective Imaging and Inactivation of Bacteria over Mammalian Cells by Imidazolium-Substituted Polythiophene, *Chem. Mater.* 2017, 29, 6389-6395.