Table of Contents

1.	Mechanosynthesis and identification of c-PFPF A and B
	Figure S2. Flash chromatogram of the crude mixture after the reaction of ball grinding for 3 hours of Pro-Phe-Pro-Phe HCl with TBTU and DIPEA and washing with water
	Figure S3. HPLC chromatograms of of separated cyclic tetrapeptides c(Pro-Phe-Pro-Phe). a) c(Pro-Phe-Pro-Phe) and b) c(Pro-Phe-Pro-D-Phe)
	Figure S4. Total ion chromatograms (TIC) and ESI(+)-MS spectra of separated cyclic tetrapeptides c(Pro-Phe-Pro-Phe). a) c(Pro-Phe-Pro-Phe) and b) c(Pro-Phe-Pro-D-Phe).
2.	Structural data from scXRD
	Table S1 : Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters (Å ² ×10 ³) for c(Pro-Phe-Pro-Phe) and c(Pro-Phe-Pro-D-Phe) , respectively. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij}
	Table S3: Bond Lengths in Å for c(Pro-Phe-Pro-Phe) and c(Pro-Phe-Pro-D-Phe), respectively.5Table S4: Bond Angles in for c(Pro-Phe-Pro-Phe) and c(Pro-Phe-Pro-D-Phe), respectively.5Table S5: Torsion Angles in for c(Pro-Phe-Pro-Phe) and c(Pro-Phe-Pro-D-Phe), respectively.6Table S6: Hydrogen Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters (Å ² ×10 ³) for c(Pro-Phe-Pro-Phe) and c(Pro-Phe-Pro-D-Phe) (sample A) and (b) c(Pro-Phe-Pro-D-Phe) (sample B). The views along the <i>b</i> -axis are shown above and approxe and the provise are shown above and approxe and the provise are shown above and approxe.
3.	Theoretical Calculations and ECD Spectroscopy
	Table S7. Relative conformers energies with population at 298 K for sample A after DFT calculations at the B3LYP/6-311+G(d,p)/PCM(H ₂ O) level of theory
4.	Molecular dynamics on the base of 1D and 2D NMR spectroscopy
	Table S9. cPEPF sample heteriochiral B 10
	Figure S7. NMR TOCSY ¹ H- ¹ H spectrum of cPFPF-B in DMSO-d6 (Heterochiral)
	Figure S8. NMR spectra HSQC ¹ H- ¹⁵ N (a) and HSQC ¹ H- ¹³ C (b) of cPFPF-B in CD ₃ CN (Heterochiral)11
	Figure S10. NMR NOESY ¹ H- ¹ H spectrum of cPFPF-B, CD ₃ CN (Heterochiral). 13
	Table S10. NMR chemical shifts of cPFPF sample homochiral A. 13
	Figure S11-14. NMR HSQC 'H- ¹ °N (a) and HSQC 'H- ¹ °C (b) spectra of cPFPF-A, CD ₃ CN (Homochiral). Prefix S means form of peptide A with 2-fold symmetry and prefix U means unsymmetrical form of A
	Figure 15. 600 MHz ¹ H NMR spectra of N-H region of sample A and sample B dissolved in chloroform-d
	Figure S16. Crystal structure of histone deacetylase 8 in complex with trapoxin A

1. Mechanosynthesis and identification of c-PFPF A and B

Figure S1. UPLC-ESI(+)-MS chromatograms of Pro-Phe-Pro-Phe-HCI with TBTU and DIPEA after 3h of milling and washed with water. a) total ion chromatogram (TIC), b) extracted ion chromatogram (XIC) of monoisotopic peak of cyclic tetrapeptide cPro-Phe-Pro-Phe (*m*/*z* 489.2502).

Figure S2. Flash chromatogram of the crude mixture after the reaction of ball grinding for 3 hours of Pro-Phe-Pro-Phe·HCI with TBTU and DIPEA and washing with water.

Figure S3. HPLC chromatograms of of separated cyclic tetrapeptides c(Pro-Phe-Pro-Phe). a) c(Pro-Phe-Pro-Phe) and b) c(Pro-Phe-Pro-*D*-Phe).

Figure S4. Total ion chromatograms (TIC) and ESI(+)-MS spectra of separated cyclic tetrapeptides c(Pro-Phe-Pro-Phe). a) c(Pro-Phe-Pro-Phe) and b) c(Pro-Phe-Pro-D-Phe).

2. Structural data from scXRD

	c(l	Pro-Phe-Pro	o-Phe)			c(P	ro-Phe-Pro	- <i>□</i> -Phe)	
Atom	x	у	z	U _{eq}	Atom	x	У	z	U _{eq}
N1	5582.2(13)	6376(4)	1285.4(9)	14.8(4)	N1	4878.3(18)	5951(5)	3761.4(12)	18.7(5)
C2	6058.1(15)	4203(5)	1751.7(11)	14.0(4)	C2	4331(2)	3750(6)	3299.4(14)	19.0(6)
C3	6101.0(15)	4276(5)	2630.1(11)	14.3(4)	C3	4070(2)	3840(6)	2432.4(15)	18.1(6)
04	6176.9(12)	2236(3)	2974.3(9)	19.5(4)	04	3937.9(16)	1769(4)	2103.1(11)	23.2(5)
C5	7209.2(16)	4174(5)	1617.1(12)	19.3(5)	C5	3222(2)	3600(6)	3471.6(15)	23.5(6)
C6	7407.3(17)	6948(5)	1443.9(12)	20.7(5)	C6	3031(2)	6336(7)	3683.2(16)	25.1(7)
C7	6367.4(17)	7734(5)	930.5(12)	18.0(5)	C7	4162(2)	7136(6)	4162.3(15)	21.7(6)
N8	6098.5(13)	6532(4)	2982.5(10)	14.3(4)	N8	3939.0(18)	6095(5)	2074.3(13)	17.9(5)
C9	6279.6(16)	6735(5)	3831.3(11)	15.3(5)	C9	3527(2)	6262(6)	1242.4(14)	19.7(6)
C10	5452.1(17)	8372(5)	4121.9(11)	17.2(5)	C10	4240(2)	7928(6)	895.7(15)	20.8(6)
011	5727.4(13)	9914(3)	4648.8(9)	23.1(4)	011	3815.2(17)	9529(4)	410.7(11)	27.3(5)
C12	7376.7(17)	7856(5)	4166.7(12)	20.0(5)	C12	2357(2)	7305(6)	982.2(16)	24.4(6)
C13	8295.6(16)	6388(5)	3980.5(12)	19.3(5)	C13	1520(2)	5666(6)	1183.3(15)	22.6(6)
C14	8632.9(18)	4134(5)	4362.9(12)	23.0(5)	C14	1089(2)	6393(7)	1759.7(16)	28.0(7)
C15	8870.5(19)	7355(5)	3456.1(13)	24.2(5)	C15	1114(2)	3476(7)	774.0(16)	26.7(7)
C16	9533(2)	2898(6)	4237.1(15)	31.7(6)	C16	278(3)	4950(7)	1917.1(19)	34.1(8)
C17	9769(2)	6117(6)	3328.5(16)	34.3(7)	C17	295(3)	2043(7)	926.7(18)	32.5(8)
C18	10103.4(19)	3905(7)	3720.0(17)	36.2(7)	C18	-124(3)	2785(8)	1498(2)	35.1(8)
N19	4418.9(14)	8041(4)	3801.0(10)	16.6(4)	N19	5324.8(18)	7498(5)	1098.3(12)	20.5(5)
C20	3950.1(16)	5964(5)	3299.8(12)	15.2(5)	C20	5953(2)	5589(6)	1622.1(15)	20.2(6)
C21	3879.9(15)	6584(4)	2435.1(11)	13.7(4)	C21	6210(2)	6454(6)	2444.4(15)	18.9(6)
022	3822.5(11)	8754(3)	2181.1(8)	17.8(4)	O22	6269.5(15)	8710(4)	2630.8(11)	24.2(5)
C23	2819.9(17)	5815(5)	3464.0(12)	19.3(5)	C23	7034(2)	5463(6)	1418.1(16)	24.7(7)

Table S1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **c(Pro-Phe-Pro-Phe)** and **c(Pro-Phe-Pro-***D***-Phe)**, respectively. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

	c(Pro-Phe-Pro	o-Phe)			c(P	ro-Phe-Pro	- <i>D</i> -Phe)	
Atom	x	у	z	U _{eq}	Atom	x	У	z	U _{eq}
C24	2586.9(17)	8584(5)	3636.0(12)	21.2(5)	C24	7161(2)	8199(6)	1158.9(17)	27.4(7)
C25	3632.2(17)	9436(5)	4137.8(12)	19.0(5)	C25	5994(2)	8959(7)	722.0(16)	24.6(6)
N26	3867.9(14)	4509(4)	1983.9(10)	14.4(4)	N26	6419.5(19)	4536(6)	2954.2(14)	20.3(5)
C27	3742.8(15)	4729(4)	1140.6(11)	14.4(5)	C27	6823(2)	5134(7)	3758.8(16)	24.4(7)
C28	4553.9(16)	6550(5)	907.3(11)	15.7(5)	C28	5968(2)	6237(6)	4099.8(15)	20.7(6)
O29	4284.9(12)	8087(3)	377.8(8)	20.9(4)	O29	6318.5(16)	7555(5)	4670.1(11)	27.1(5)
C30	2625.3(16)	5588(5)	753.3(12)	17.5(5)	C30	7482(2)	2936(7)	4207.4(16)	27.6(7)
C31	1758.9(16)	3870(5)	907.8(11)	17.1(5)	C31	8559(2)	2665(7)	4030.5(16)	26.7(7)
C32	1158.5(17)	4521(6)	1457.5(12)	23.4(5)	C32	8698(2)	800(7)	3542.1(18)	31.3(7)
C33	1508.8(17)	1648(5)	484.4(13)	20.2(5)	C33	9416(3)	4306(7)	4358.8(18)	34.6(8)
C34	328.8(19)	2990(6)	1570.7(15)	29.6(6)	C34	9698(3)	522(8)	3399(2)	40.9(9)
C35	678.1(18)	122(5)	593.6(14)	25.2(5)	C35	10394(3)	4074(9)	4206.4(19)	42.1(9)
C36	86.7(18)	795(6)	1139.8(16)	29.8(6)	C36	10551(3)	2196(9)	3735(2)	43.8(10)

Table S2: Anisotropic Displacement Parameters (×10⁴) for **c(Pro-Phe-Pro-Phe)** and **c(Pro-Phe-Pro-D-Phe)**, respectively. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

		c(P	ro-Phe-Pr	ro-Phe)			c(Pro-Phe-Pro- <i>D</i> -Phe)						
Atom	U 11	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂	Atom	U 11	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N1	19.9(8)	9.7(11)	15.5(7)	1.1(7)	5.4(6)	-2.8(7)	N1	22.9(10)	14.9(14)	19.8(10)	-2.2(10)	8.7(9)	1.3(10)
C2	18.1(9)	8.2(12)	16.3(9)	-0.2(9)	4.6(7)	-0.3(8)	C2	22.7(12)	14.0(16)	21.6(12)	0.7(12)	8.5(10)	-0.7(11)
C3	14.7(8)	10.5(13)	17.6(9)	-1.0(9)	3.0(7)	0.2(8)	C3	18.1(11)	12.9(16)	25.8(13)	0.1(12)	10.5(10)	0.1(11)
04	28.8(8)	8.8(10)	20.0(7)	1.9(6)	3.0(6)	0.4(7)	04	32.0(10)	13.0(12)	25.2(10)	-1.1(8)	10.0(8)	-0.1(9)
C5	17.6(9)	19.9(14)	21.1(9)	-0.9(10)	5.8(7)	0.7(9)	C5	23.5(13)	25.1(19)	25.3(13)	3.5(13)	12.5(10)	-1.5(12)
C6	21.4(10)	21.4(15)	20.1(10)	-1.1(10)	6.0(8)	-5.8(10)	C6	24.9(13)	27.4(19)	26.6(14)	0.4(13)	13.3(11)	1.8(13)
C7	24.7(10)	13.1(14)	17.7(9)	-1.2(9)	8.1(8)	-3.9(9)	C7	29.2(13)	16.4(18)	23.3(13)	-1.1(12)	13.7(11)	3.1(12)
N8	19.2(8)	10.7(11)	12.9(8)	2.2(8)	3.4(6)	-0.2(7)	N8	22.0(10)	12.5(15)	20.5(11)	-2.8(10)	8.4(9)	-1.1(10)
C9	21.8(10)	9.4(13)	14.1(9)	-0.9(8)	2.4(7)	0.3(9)	C9	26.5(13)	15.3(17)	17.9(12)	-0.6(11)	7.6(10)	-1.8(12)
C10	24.6(10)	13.3(14)	13.4(9)	0.4(8)	3.4(7)	0.0(9)	C10	30.0(13)	15.3(17)	19.0(12)	-2.2(11)	10.6(11)	-1.4(12)
011	30.2(8)	19.1(11)	19.5(7)	-6.2(7)	3.8(6)	-0.4(7)	011	33.5(11)	25.5(14)	24.9(10)	7.5(9)	12.1(8)	3.4(9)
C12	22.7(10)	15.6(14)	19.7(10)	-3.4(9)	-0.4(8)	-1.6(9)	C12	26.3(13)	20.0(18)	26.0(14)	4.9(13)	6.5(11)	0.0(12)
C13	20.7(10)	15.6(14)	18.9(9)	-3.7(9)	-2.5(8)	-3.7(9)	C13	20.5(12)	20.9(18)	24.3(13)	4.8(12)	3.6(10)	3.3(12)
C14	27.1(11)	16.4(14)	22.4(10)	-2.4(10)	-2.0(8)	-3.7(10)	C14	30.5(14)	25.9(19)	26.5(14)	-2.9(13)	7.2(12)	0.5(14)
C15	27.7(11)	18.5(15)	24.9(11)	-2.8(10)	1.8(9)	-4.1(10)	C15	29.9(14)	23.1(19)	26.7(13)	2.9(13)	7.8(11)	3.6(13)
C16	30.1(12)	20.5(16)	38.4(13)	-6.1(11)	-7.6(10)	3.4(11)	C16	34.0(16)	34(2)	39.9(17)	1.8(15)	19.5(14)	4.0(15)
C17	28.7(12)	36(2)	40.5(14)	-10.2(13)	13.1(11)	-8.4(12)	C17	30.9(15)	24(2)	37.1(17)	-2.3(15)	2.7(13)	-3.9(13)
C18	22.1(11)	32.6(19)	52.7(15)	-14.4(15)	5.0(10)	0.5(12)	C18	27.7(14)	31(2)	49.7(19)	7.0(17)	16.1(14)	-0.4(14)
N19	23.3(9)	11.6(11)	15.3(8)	-1.2(7)	5.0(6)	1.3(8)	N19	26.3(11)	16.1(14)	21.8(11)	1.4(10)	11.4(9)	-2.9(10)
C20	19.8(9)	8.7(13)	17.6(9)	0.0(8)	5.0(7)	0.7(8)	C20	24.5(13)	14.6(16)	24.2(13)	-0.1(12)	11.4(11)	-1.2(11)
C21	14.3(9)	8.9(13)	17.7(9)	-1.1(9)	2.6(7)	-0.8(8)	C21	16.7(11)	17.0(18)	25.1(13)	-1.7(12)	9.4(10)	-1.2(11)
022	23.9(7)	10.8(10)	18.5(7)	0.3(7)	4.0(5)	0.2(6)	022	26.4(10)	18.9(13)	28.8(10)	-2.9(9)	10.5(8)	-1.7(9)
C23	20.4(10)	19.7(15)	18.8(9)	1.8(9)	6.6(8)	-0.6(9)	C23	26.2(14)	24.9(19)	27.7(14)	-4.4(13)	15.0(12)	-1.9(13)
C24	24.6(10)	19.4(15)	21.2(10)	1.6(10)	8.4(8)	4.8(10)	C24	33.1(15)	24(2)	31.3(15)	-3.2(13)	18.7(12)	-6.9(13)
C25	27.4(11)	12.4(14)	18.8(9)	-0.9(9)	8.2(8)	4.6(10)	C25	33.2(14)	19.3(18)	27.3(13)	0.2(13)	17.9(11)	-5.5(13)
N26	19.4(8)	8.2(12)	16.0(8)	2.9(8)	4.3(6)	-0.9(7)	N26	24.6(11)	14.9(16)	22.2(12)	-3.3(10)	8.1(9)	-0.4(10)
C27	18.7(9)	9.8(13)	14.3(9)	0.0(8)	2.6(7)	-0.1(9)	C27	22.8(13)	29.7(19)	20.9(13)	-2.8(12)	6.8(11)	1.6(12)
C28	23.4(10)	10.1(13)	14.1(9)	-0.3(9)	5.1(7)	0.7(9)	C28	26.0(13)	16.9(17)	20.2(13)	4.0(12)	8.4(10)	1.3(12)
O29	25.5(7)	16.9(10)	19.7(7)	6.2(7)	3.2(6)	-0.6(7)	O29	29.8(10)	27.8(14)	23.8(10)	-7.2(9)	8.3(8)	-1.3(9)
C30	19.5(10)	13.7(13)	18.0(9)	2.5(9)	1.0(8)	0.4(9)	C30	30.0(14)	27(2)	26.4(14)	3.3(13)	9.5(12)	0.8(13)
C31	18.3(9)	13.2(13)	18.0(9)	3.4(9)	-0.4(7)	1.5(9)	C31	26.1(13)	26.7(19)	25.4(14)	2.9(13)	5.2(11)	4.2(13)
C32	25.2(10)	22.1(16)	22.4(10)	-0.5(10)	3.6(8)	1.6(10)	C32	31.8(15)	28(2)	34.4(16)	-0.7(14)	10.8(12)	-7.1(14)
C33	21.1(10)	15.4(14)	22.3(9)	1.2(9)	-0.1(8)	3.3(9)	C33	36.9(16)	32(2)	33.7(16)	-1.9(15)	9.2(13)	-4.4(15)
C34	26.3(11)	32.8(18)	32.0(12)	5.1(11)	10.9(9)	0.3(11)	C34	51(2)	34(2)	46.7(19)	-3.9(17)	28.4(17)	2.8(17)
C35	24.8(11)	13.2(15)	34.3(12)	-0.1(10)	-2.1(9)	-0.2(10)	C35	36.0(17)	50(3)	39.5(18)	1.7(19)	10.0(14)	-12.6(18)
C36	22.2(11)	23.1(16)	43.3(14)	7.6(12)	4.7(10)	-4.6(11)	C36	26.9(15)	65(3)	46.4(19)	13(2)	21.3(14)	1.2(17)

	c(Pro-Phe-P	ro-Phe)		c(Pro-Phe-Pr	o <i>-D</i> -Phe)
Atom	Atom	Length [Å]	Atom	Atom	Length [Å]
N1	C2	1.469(3)	N1	C2	1.477(4)
N1	C7	1.480(3)	N1	C7	1.483(3)
N1	C28	1.364(3)	N1	C28	1.357(3)
C2	C3	1.533(3)	C2	C3	1.535(3)
C2	C5	1.555(3)	C2	C5	1.554(3)
C3	O4	1.228(3)	C3	O4	1.229(4)
C3	N8	1.341(3)	C3	N8	1.338(4)
C5	C6	1.527(4)	C5	C6	1.523(5)
C6	C7	1.517(3)	C6	C7	1.512(4)
N8	C9	1.465(2)	N8	C9	1.469(3)
C9	C10	1.541(3)	C9	C10	1.539(4)
C9	C12	1.540(3)	C9	C12	1.533(4)
C10	011	1.229(3)	C10	011	1.226(3)
C10	N19	1.352(3)	C10	N19	1.348(4)
C12	C13	1.509(3)	C12	C13	1.508(4)
C13	C14	1.391(4)	C13	C14	1.395(4)
C13	C15	1.393(3)	C13	C15	1.384(5)
C14	C16	1.391(4)	C14	C16	1.387(5)
C15	C17	1.391(4)	C15	C17	1.389(5)
C16	C18	1.387(4)	C16	C18	1.380(5)
C17	C18	1.378(5)	C17	C18	1.380(5)
N19	C20	1.458(3)	N19	C20	1.452(4)
N19	C25	1.474(3)	N19	C25	1.474(3)
C20	C23	1.549(3)	C20	C23	1.549(4)
C21	022	1.225(3)	C21	022	1.225(4)
C21	N26	1.349(3)	C21	N26	1.346(4)
C23	C24	1.533(4)	C23	C24	1.533(5)
C24	C25	1.524(3)	C24	C25	1.523(4)
N26	C27	1.462(2)	N26	C27	1.452(4)
C27	C28	1.538(3)	C27	C28	1.536(4)
C27	C30	1.536(3)	C27	C30	1.516(4)
C28	O29	1.229(3)	C28	O29	1.225(4)
C30	C31	1.508(3)	C30	C31	1.523(4)
C31	C32	1.399(3)	C31	C32	1.378(5)
C31	C33	1.390(3)	C31	C33	1.382(5)
C32	C34	1.389(4)	C32	C34	1.396(4)
C33	C35	1.387(3)	C33	C35	1.375(5)
C34	C36	1.383(4)	C34	C36	1.392(6)
C35	C36	1.389(4)	C35	C36	1.368(6)

Table S3: Bond Lengths in Å for c(Pro-Phe-Pro-Phe) and c(Pro-Phe-Pro-D-Phe), respectively.

Table S4: Bond Angles in for c(Pro-Phe-Pro-Phe) and c(Pro-Phe-Pro-D-Phe), respectively.

	c(Pr	o-Phe-Pro-Phe	e)		c(Pro-F	Phe-Pro- <i>D</i> -Phe)
Atom	Atom	Atom	Angle [°]	Atom	Atom	Atom	Angle [°]
C28	N1	C2	125.52(18)	C28	N1	C2	126.5(2)
C28	N1	C7	116.57(17)	C28	N1	C7	115.8(2)
C2	N1	C7	111.49(17)	C2	N1	C7	110.8(2)
C3	N8	C9	121.32(19)	C3	N8	C9	121.4(3)
C21	N26	C27	121.1(2)	C21	N26	C27	119.3(3)
C20	N19	C25	112.39(17)	C20	N19	C25	112.7(2)
C10	N19	C20	127.11(18)	C10	N19	C20	128.1(2)
C10	N19	C25	118.23(18)	C10	N19	C25	119.0(2)
O29	C28	N1	120.7(2)	O29	C28	N1	121.1(2)
O29	C28	C27	120.63(18)	O29	C28	C27	116.3(2)

	c(Pı	ro-Phe-Pro-Phe	e)	с(Pro-Phe-Pro- <i>D</i> -Phe)					
Atom	Atom	Atom	Angle [°]	Atom	Atom	Atom	Angle [°]		
N1	C28	C27	118.61(18)	N1	C28	C27	122.4(2)		
O22	C21	N26	123.43(18)	O22	C21	N26	122.6(3)		
O22	C21	C20	123.03(19)	O22	C21	C20	122.9(3)		
N26	C21	C20	113.5(2)	N26	C21	C20	114.5(3)		
O4	C3	N8	123.84(18)	O4	C3	N8	123.7(2)		
O4	C3	C2	117.2(2)	O4	C3	C2	116.3(3)		
N8	C3	C2	118.9(2)	N8	C3	C2	119.9(3)		
C32	C31	C30	120.9(2)	C32	C31	C30	121.0(3)		
C33	C31	C30	120.70(19)	C33	C31	C30	120.2(3)		
C33	C31	C32	118.3(2)	C33	C31	C32	118.8(3)		
N19	C20	C21	111.75(18)	N19	C20	C21	111.6(2)		
N19	C20	C23	102.61(17)	N19	C20	C23	103.0(2)		
C21	C20	C23	109.03(16)	C21	C20	C23	108.5(2)		
N1	C2	C3	117.84(18)	N1	C2	C3	119.6(2)		
N1	C2	C5	103.23(17)	N1	C2	C5	103.0(2)		
C3	C2	C5	108.26(16)	C3	C2	C5	107.1(2)		
N1	C7	C6	102.66(17)	N1	C7	C6	102.9(2)		
O11	C10	N19	120.66(19)	O11	C10	N19	120.6(3)		
O11	C10	C9	120.36(19)	O11	C10	C9	120.2(2)		
N19	C10	C9	118.96(19)	N19	C10	C9	119.1(3)		
C31	C30	C27	114.24(19)	C31	C30	C27	110.2(2)		
N26	C27	C28	112.23(16)	N26	C27	C28	115.1(2)		
N26	C27	C30	111.88(16)	N26	C27	C30	111.2(3)		
C30	C27	C28	109.24(18)	C30	C27	C28	114.2(2)		
C15	C13	C12	120.4(2)	C15	C13	C12	120.9(3)		
C14	C13	C12	121.1(2)	C14	C13	C12	120.8(3)		
C14	C13	C15	118.3(2)	C14	C13	C15	118.2(3)		
C34	C32	C31	120.6(2)	C34	C32	C31	120.6(3)		
N19	C25	C24	102.99(18)	N19	C25	C24	103.7(2)		
C6	C5	C2	103.04(19)	C6	C5	C2	103.6(2)		
C35	C33	C31	121.2(2)	C35	C33	C31	120.7(3)		
N8	C9	C10	113.58(17)	N8	C9	C10	113.6(2)		
N8	C9	C12	111.22(16)	N8	C9	C12	110.8(2)		
C12	C9	C10	107.87(18)	C12	C9	C10	108.6(2)		
C13	C12	C9	115.20(19)	C13	C12	C9	115.2(2)		
C7	C6	C5	102.46(19)	C7	C6	C5	102.1(2)		
C24	C23	C20	102.68(19)	C24	C23	C20	103.0(2)		
C17	C15	C13	120.7(3)	C17	C15	C13	121.2(3)		
C16	C14	C13	120.9(2)	C16	C14	C13	120.7(3)		
C25	C24	C23	101.98(19)	C25	C24	C23	103.2(2)		
C36	C34	C32	120.2(2)	C36	C34	C32	119.6(3)		
C34	C36	C35	119.8(2)	C34	C36	C35	119.2(3)		
C33	C35	C36	119.9(2)	C33	C35	C36	121.0(3)		
C18	C16	C14	119.9(3)	C18	C16	C14	120.3(3)		
C17	C18	C16	119.7(2)	C17	C18	C16	119.6(3)		
C18	C17	C15	120.3(3)	C18	C17	C15	120.0(3)		
Table S5 [.] T	orsion Anale	s in for c(Pro	-Phe-Pro-Phe) and c	(Pro-Phe-Pro	- D-Phe) rest	pectively	. ,		

		c(Pro-	Phe-Pro-Phe)	с(Pro-Phe-Pro- <i>D</i> -Phe)						
Α	В	С	D	Angle [°]	Α	В	С	D	Angle [°]		
022	C21	C20	N19	-26.5(3)	O22	C21	C20	N19	-26.2(3)		
O22	C21	C20	C23	86.2(2)	O22	C21	C20	C23	86.6(3)		
O29	C28	C27	N26	-137.0(2)	O29	C28	C27	N26	-155.3(3)		
O29	C28	C27	C30	-12.3(3)	O29	C28	C27	C30	74.1(4)		
O4	C3	C2	N1	157.54(19)	O4	C3	C2	N1	158.2(2)		
O4	C3	C2	C5	-85.9(2)	04	C3	C2	C5	-85.3(3)		

		c(Pro-	Phe-Pro-Ph	ne)	с(Pro-Phe-Pro- <i>D</i> -Phe)						
Α	В	С	D	Angle [°]	Α	В	С	D	Angle [°]		
011	C10	C9	N8	-136.6(2)	011	C10	C9	N8	-133.3(3)		
O11	C10	C9	C12	-12.8(3)	O11	C10	C9	C12	-9.5(4)		
N1	C28	C27	N26	44.8(3)	N1	C28	C27	N26	19.6(4)		
N1	C28	C27	C30	169.53(19)	N1	C28	C27	C30	-110.9(3)		
N1	C2	C5	C6	27.40(19)	N1	C2	C5	C6	26.5(3)		
N1	C7	C6	C5	37.8(2)	N1	C7	C6	C5	38.9(3)		
N8	C3	C2	N1	-25.2(3)	N8	C3	C2	N1	-25.5(3)		
N8	C3	C2	C5	91.4(2)	N8	C3	C2	C5	91.0(3)		
N8	C9	C12	C13	-58.4(3)	N8	C9	C12	C13	-62.8(3)		
N26	C21	C20	N19	154.66(17)	N26	C21	C20	N19	156.9(2)		
N26	C21	C20	C23	-92.6(2)	N26	C21	C20	C23	-90.3(3)		
N19	C20	C23	C24	31.9(2)	N19	C20	C23	C24	31.4(3)		
N19	C10	C9	N8	44.9(3)	N19	C10	C9	N8	50.7(4)		
N19	C10	C9	C12	168.70(19)	N19	C10	C9	C12	174.5(2)		
N19	C25	C24	C23	35.0(2)	N19	C25	C24	C23	30.2(3)		
C28	N1	C2	C3	-93.9(2)	C28	N1	C2	C3	-94.1(3)		
C28	N1	C2	C5	146.8(2)	C28	N1	C2	C5	147.3(3)		
C28	N1	C7	C6	-174.90(19)	C28	N1	C7	C6	-176.2(3)		
C21	N26	C27	C28	53.4(2)	C21	N26	C27	C28	74.1(3)		
C21	N26	C27	C30	-69.8(2)	C21	N26	C27	C30	-153.9(2)		
C21	C20	C23	C24	-86.7(2)	C21	C20	C23	C24	-87.0(3)		
C3	N8	C9	C10	-130.5(2)	C3	N8	C9	C10	-129.4(3)		
C3	N8	C9	C12	107.6(2)	C3	N8	C9	C12	108.0(3)		
C3	C2	C5	C6	-98.2(2)	C3	C2	C5	C6	-100.5(3)		
C31	C30	C27	N26	-57.9(3)	C31	C30	C27	N26	69.8(3)		
C31	C30	C27	C28	177.20(17)	C31	C30	C27	C28	-157.7(3)		
C31	C32	C34	C36	0.0(4)	C31	C32	C34	C36	-2.0(5)		
C31	C33	C35	C36	-0.6(3)	C31	C33	C35	C36	-0.9(6)		
C20	N19	C10	O11	-165.9(2)	C20	N19	C10	O11	-175.9(3)		
C20	N19	C10	C9	12.5(3)	C20	N19	C10	C9	0.1(4)		
C20	N19	C25	C24	-15.6(2)	C20	N19	C25	C24	-10.7(3)		
C20	C23	C24	C25	-41.65(19)	C20	C23	C24	C25	-38.3(3)		
C2	N1	C28	O29	-160.9(2)	C2	N1	C28	O29	-153.2(3)		
C2	N1	C28	C27	17.3(3)	C2	N1	C28	C27	32.1(4)		
C2	N1	C7	C6	-21.4(2)	C2	N1	C7	C6	-23.2(3)		
C2	C5	C6	C7	-40.62(19)	C2	C5	C6	C7	-40.7(3)		
C7	N1	C28	O29	-11.6(3)	C7	N1	C28	O29	-5.1(4)		
C7	N1	C28	C27	166.60(18)	C7	N1	C28	C27	-179.8(3)		
C7	N1	C2	C3	115.41(19)	C7	N1	C2	C3	116.5(3)		
C7	N1	C2	C5	-3.8(2)	C7	N1	C2	C5	-2.1(3)		
C10	N19	C20	C21	-91.2(2)	C10	N19	C20	C21	-81.5(3)		
C10	N19	C20	C23	152.1(2)	C10	N19	C20	C23	162.3(3)		
C10	N19	C25	C24	-179.8(2)	C10	N19	C25	C24	173.4(3)		
C10	C9	C12	C13	176.43(18)	C10	C9	C12	C13	171.8(2)		
C30	C31	C32	C34	176.9(2)	C30	C31	C32	C34	-178.3(3)		
C30	C31	C33	C35	-176.6(2)	C30	C31	C33	C35	179.7(3)		
C27	N26	C21	O22	-2.4(3)	C27	N26	C21	O22	-5.4(4)		
C27	N26	C21	C20	176.46(16)	C27	N26	C21	C20	171.5(2)		
C13	C15	C17	C18	0.1(4)	C13	C15	C17	C18	-0.4(5)		
C13	C14	C16	C18	-0.5(4)	C13	C14	C16	C18	-0.8(5)		
C32	C31	C30	C27	101.8(2)	C32	C31	C30	C27	-101.7(4)		
C32	C31	C33	C35	0.8(3)	C32	C31	C33	C35	-0.5(5)		
C32	C34	C36	C35	0.2(4)	C32	C34	C36	C35	0.6(6)		
C25	N19	C20	C21	106.38(19)	C25	N19	C20	C21	103.1(3)		
C25	N19	C20	C23	-10.3(2)	C25	N19	C20	C23	-13.1(3)		
C25	N19	C10	011	-4.4(3)	C25	N19	C10	011	-0.7(4)		

		c(Pro-	Phe-Pro-Ph	ne)		(c(Pro-Phe	-Pro- <i>D</i> -Phe)
Α	В	С	D	Angle [°]	Α	В	С	D	Angle [°]
C25	N19	C10	C9	174.03(19)	C25	N19	C10	C9	175.3(2)
C33	C31	C30	C27	-80.8(2)	C33	C31	C30	C27	78.1(4)
C33	C31	C32	C34	-0.5(3)	C33	C31	C32	C34	1.9(5)
C9	N8	C3	O4	5.3(3)	C9	N8	C3	O4	5.5(4)
C9	N8	C3	C2	-171.75(16)	C9	N8	C3	C2	-170.6(2)
C12	C13	C15	C17	174.8(2)	C12	C13	C15	C17	-176.1(3)
C12	C13	C14	C16	-174.6(2)	C12	C13	C14	C16	176.6(3)
C15	C13	C12	C9	108.4(2)	C15	C13	C12	C9	-77.2(3)
C15	C13	C14	C16	1.2(3)	C15	C13	C14	C16	0.2(4)
C14	C13	C12	C9	-75.9(3)	C14	C13	C12	C9	-77.2(3)
C14	C13	C15	C17	-1.1(3)	C14	C13	C15	C17	0.4(4)
C14	C16	C18	C17	-0.5(4)	C14	C16	C18	C17	0.8(5)
C34	C36	C35	C33	0.1(4)	C34	C36	C35	C33	0.8(6)
C16	C18	C17	C15	0.7(4)	C16	C18	C17	C15	-0.2(5)

Table S6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **c(Pro-Phe-Pro-Phe)** and **c(Pro-Phe-Pro-***D***-Phe)**, respectively. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

	c(F	Pro-Phe-Pro-Ph	ie)			c(Pr	o-Phe-Pro- <i>D</i> -P	he)	
Atom	x	У	z	U _{eq}	Atom	x	У	z	U _{eq}
H2	5692.11	2614.66	1532.34	17	H2	4760.1	2166.1	3494.81	23
H5A	7709.5	3580.39	2086.58	23	H5A	2630.25	3026.26	3019.45	28
H5B	7272.24	3071.87	1172.45	23	H5B	3268.04	2414.52	3897.58	28
H6A	7563.38	7967.82	1926.89	25	H6A	2761.57	7427.01	3226.55	30
H6B	7998.06	7118.97	1166.89	25	H6B	2504.78	6400.72	3977.73	30
H7A	6265.5	9593.29	944.53	22	H7A	4237.41	9020.71	4178.57	26
H7B	6327.2	7193.67	385.56	22	H7B	4329.71	6475.84	4687.2	26
H8	6030(20)	7950(60)	2741(16)	17(7)	H8	4060(20)	7500(70)	2304(17)	18(8)
H9	6252.25	4988.43	4047.95	18	H9	3512.84	4493.15	1034.03	24
H12A	7402.38	9606.28	3967.26	24	H12A	2355.88	9018.44	1209.47	29
H12B	7464.2	7963.92	4738.87	24	H12B	2129.78	7521.83	423.93	29
H14	8242.72	3428.08	4714.96	28	H14	1353.25	7891.37	2047.32	34
H15	8646.21	8876.9	3182.6	29	H15	1400.64	2943.51	381.67	32
H16	9757.48	1365.98	4505.07	38	H16	-2.05	5455.53	2315.16	41
H17	10154.2	6799.21	2969.7	41	H17	23.78	551.11	637.53	39
H18	10721.93	3073.49	3636.02	43	H18	-685.45	1811.25	1602.65	42
H20	4343.01	4344.62	3445.58	18	H20	5571.48	3897.55	1540.49	24
H23A	2311.8	5171.33	3005.93	23	H23A	7654.33	4986.54	1865.54	30
H23B	2797.33	4712.52	3916.42	23	H23B	6981.75	4218.82	1004.99	30
H24A	2406.8	9594.25	3152.03	25	H24A	7468.47	9341.94	1599.13	33
H24B	2003.98	8709.88	3922.24	25	H24B	7637.37	8244.11	827.61	33
H25A	3727.8	11291.8	4100.61	23	H25A	5883.44	10821.82	760.27	30
H25B	3676.8	8968.93	4689.36	23	H25B	5815.2	8483.33	179.6	30
H26	3878(18)	3010(60)	2164(14)	11(6)	H26	6370(20)	3050(70)	2831(16)	10(8)
H27	3860.84	3010.73	932.56	17	H27	7362.72	6545.28	3799.64	29
H30A	2505.88	7313.45	940.04	21	H30A	7058.43	1330.2	4076.05	33
H30B	2579.98	5690.37	184.78	21	H30B	7628.1	3251.14	4757.45	33
H32	1319.76	6024.28	1756.1	28	H32	8109.11	-307.69	3300.45	38
H33	1914.24	1166.93	113.67	24	H33	9327.77	5608.73	4693.44	41
H34	-73.54	3451.2	1945.36	36	H34	9796.12	-801.18	3073.87	49
H35	513.78	-1381.6	295.5	30	H35	10969.89	5235.18	4431.94	50
H36	-481.87	-247.94	1217.02	36	H36	11232.45	2036.72	3638.56	53

Figure S5. A crystal packing diagram of (*a*) c(Pro-Phe-Pro-Phe) (sample A) and (*b*) c(Pro-Phe-Pro-*D*-Phe) (sample B). The views along the *b*-axis are shown above, while the views along the *a*-axis are shown below.

3. Theoretical Calculations and ECD Spectroscopy

Structure ID	Pop. [%]	∆E [kcal/mol]
3	39.68	0
1	21.46%	0.36
2	21.31%	0.37
5	8.21%	0.93
9	3.63%	1.41
X-Ray	3.14%	1.50
4	1.41%	1.98
7	0.52%	2.57
10	0.31%	2.87
8	0.28%	2.94
6	0.05%	3.99

Table S7. Relative conformers energies with population at 298 K for sample **A** after DFT calculations at the B3LYP/6- $311+G(d,p)/PCM(H_2O)$ level of theory.

Table S8. Relative conformers energies with population at 298 K for sample **B** after DFT calculations at the B3LYP/6 $311+G(d,p)/PCM(H_2O)$ level of theory.

Structure ID	Pop. [%]	∆E [kcal/mol]
X-Ray	51.64%	0
4	40.58%	0.14
1	5.14%	1.36
2	2.25%	1.86
3	0.32%	3.02

7	0.05%	4.12	
6	0.03%	4.51	
5	0.00%	6.76	

4. Molecular dynamics on the base of 2D NMR spectroscopy

Table S9. cPFPF sample heteriochiral B.

Figure S7. NMR TOCSY ¹H-¹H spectrum of cPFPF-B in DMSO-d6 (Heterochiral).

Figure S8. NMR spectra HSQC ¹H-¹⁵N (a) and HSQC ¹H-¹³C (b) of cPFPF-B in CD₃CN (Heterochiral).

Figure S9. NMR TOCSY ¹H-¹H spectrum of cPFPF-B, CD₃CN (Heterochiral).

|--|

								Atoms						
Amino acids	C _A	C _B	Cc	CD	H _A	H_{B1}	H _{B1/2}	H_{B2}	H _{C1}	H _{C2}	H_{D1}	H_{D2}	Ν	NH
U-xPro	62.37	31.41	21.61	47.70	4.056	1.905	-	1.239	1.676	1.541	3.503	3.420	-	-
U-yPro	58.40	30.72	21.03	47.45	3.938	1.974	-	1.658	1.953	1.885	3.603	3.427	-	-
S-1Pro	61.44	30.91	21.30	47.11	4.146	1.891	-	1.715	1.728	1.362	3.509	3.312	-	-
S-Phe	51.75	37.10	-	-	4.999	3.192	-	2.818	-	-	-	-	118.0	7.024
U-Phe	55.68	35.15	-	-	3.883	-	3.175	-	-	-	-	-	109.6	6.708
U-Phe	51.73	37.64	-	-	5.076	3.301	-	2.820	-	-	-	-	114.7	6.628

prefix S means form of peptide A with 2-fold symmetry and prefix U means unsymmetrical form of A

Figure S11. NMR HSQC ¹H-¹⁵N (a) and HSQC ¹H-¹³C (b) spectra of cPFPF-A, CD₃CN (Homochiral). Prefix S means form of peptide A with 2-fold symmetry and prefix U means unsymmetrical form of A.

Figure S12. NMR EXSY-NOESY ¹H-¹H with mixing 50 ms spectrum of cPFPF-A in CD₃CN (Homoochiral). Showed only EXSY signals.

Figure S14. NMR EXSY ¹H-¹H mix with mixing 50ms spectrum of cPFPF-A in CD₃CN (Homoochiral).

Figure S15. 600 MHz ¹H NMR spectra of N-H region of sample A (left) and sample B (right) dissolved in chloroform-d. The spectra were recorded between 243 and 293 K with 10 K increment.

Figure S16. Crystal structure of histone deacetylase 8 in complex with trapoxin A.