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Fig. 2. Visualization results on Synpase. MORSE yields more accurate predictions,
especially for small regions.
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Fig. 3. Visualization results on MP-MRI. MORSE outputs more accurate segmentation
results, especially for boundaries.
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Fig. 4. Visualization of sampled point location. As is shown, IAR significantly improves
the segmentation quality.

A Theoretical Analysis

In this section, we theoretically analyze the expressiveness of MORSE, and
demonstrate the approximation power of INR features combined with MLPs.
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We first introduce the kernel method which is commonly used in analyzing neu-
ral networks. We define the kernel function : Rd⇥Rd ! R, which is a symmetric
function measuring the similarity between two vectors in Rd. Kernel functions are
used to approximate unknown functions from data. Specifically, given a training
dataset {xi,yi}ni=1 where yi = µ(xi) for some unknown function µ(·), an estimate
µ̂ can be constructed using kernel function as µ̂(x) =

P
n

i=1(K
�1Y)i(xi,x) ,

where K is the n⇥ n matrix with Ki,j = (xi,xj), and Y = [y1, · · · ,yn]>.
The kernel method is related to MLPs through a kernel function called

Neural Tangent Kernel [8]. For an MLP ⇧✓ with trainable parameters ✓, it
has been shown that, under certain conditions, the model ⇧✓ trained with
stochastic gradient descent will converge to the estimate generated by the kernel
method through Neural Tangent Kernel, which is defined as NTK(xi,xj) =

E✓⇠N

D
@⇧✓(xi)

@✓
,
@⇧✓(xj)

@✓

E
. Importantly, for xi, xj on the unit sphere, NTK is an

inner product kernel, i.e.,

NTK(xi,xj) = kNTK(xi · xj), (5)

for some function kNTK.
With the kernel function explained, we now show how positional encoding

helps with expressiveness. By construction, the positional encoding maps pixel
coordinates into sinusoidal vectors. This is closely related to random Fourier
features which are provably able to approximate the family of shift-invariant
kernel functions [24]. Specifically, a kernel function  is shift-invariant if for any
x1, x2 2 Rd, it holds that (x1,x2) = (x1 � x2) with a slight abuse of notation.
In other words, the value of (x1,x2) only depends on the di↵erence x1 � x2. It
is clear that shift-invariance is an ideal property in imaging tasks.

To understand how the Fourier features generated by positional encoding can
approximate shift-invariant kernel, we rewrite positional encoding (Eqn. 3) as:

 (x) = [sin(2⇡w1 · x), · · · , sin(2⇡wL · x), cos(2⇡w1 · x), · · · , cos(2⇡wL · x)],

where x = (x̃, ỹ) , and wi = [wi, vi] for i = 1, · · · , L. Given any shift-invariant
kernel (x1,x2) = (x1 � x2), we define a distribution P over w as P(w) =
1
2⇡

R
e
�2⇡iw>x

(x)dx, which is the Fourier transform of the kernel . Suppose
that w1, · · · ,wL are i.i.d. samples from P. Then it holds that [24]:

Pr


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where �2
P = EP(w>w). The above result indicates that with high probability,

any shift-invariant kernel function can be approximated with Fourier features.
Therefore, this demonstrates the expressive power of INR features.

Finally, we show that  (·) combined with the MLP ⇧✓ forms a shift-invariant
kernel. We define the positional encoding kernel pe as pe(x1,x2) =  (x1)> (x2).

It can be shown that pe(x1,x2) =
P

L

j=1 cos(2⇡wj · (x1�x2)) [28], which is shift-
invariant. Combining with Eqn. 5, our positional encoding combined followed
by MLP approximately equals to kNTK(pe(x1 � x2)), which is a shift-invariant
kernel. This demonstrates the expressiveness of MORSE.
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