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SI. DETAILS OF SPECIFIC HEAT ANALYSIS

The total specific heat Cp in NaCaNi2F7 is a superposition of lattice, nuclear, and mag-

netic contributions. In order to isolated the magnetic component both lattice and nuclear

contributions must be estimated and subtracted from the total specific heat.
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Figure S1: Total specific heat of NaCaNi2F7. a, Determination of the phonon con-

tribution. The specific heat of the non-magnetic iso-structural compound NaCaZn2F7 is

shown. Solid line is the lattice contribution to Cp for NaCaNi2F7 estimated by scaling the

data for NaCaZn2F7 by the relative Debye temperatures of the two compounds. The inset

shows details of the low temperature region. b, Nuclear and low temperature magnetic

contribution.

We first estimated the lattice contribution using a non magnetic iso-structural analog

NaCaZn2F7. The total specific heat of both NaCaNi2F7 and NaCaZn2F7, measured between

100 mK and 270 K, are shown in figure S1 a. To model the temperature dependent lattice

contributions to Cp in NaCaNi2F7, we scale the specific heat of NaCaZn2F7 by the relative
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Debye temperatures of the two compounds which in turn is estimated as follows,

Θ3
NaCaZn2F7

Θ3
NaCaNi2F7

=

(
mNa +mCa + 2mNi + 7mF

mNa +mCa + 2mZn + 7mF

)3/2

, (S1)

The rescaled phonon specific heat is then given by

CNaCaNi2F7(T ) =
Θ3

NaCaZn2F7

Θ3
NaCaNi2F7

· CNaCaZn2F7

(
T

ΘNaCaZn2F7

ΘNaCaNi2F7

· TNaCaZn2F7

)
. (S2)

The estimated lattice contribution shown as a solid line in figure S1 a was subtracted

from Cp to isolate the nuclear and magnetic contributions Cn + Cm shown in figure S1 b.

The phonon subtracted low temperature specific heat was then fit between T = 100 mK

and T = 2.1 K using the sum of a nuclear contribution Cn =α/T 2 and power law magnetic

contribution Cm=AT γ, yielding α=1.24(5)×10−4 JK/mol, A=6.9(3)×10−2, and γ=2.2(1).

The magnetic specific heat with phonon and nuclear contributions subtracted is shown in

figure 1a of the main text.

SII. SELF CONSISTENT GAUSSIAN APPROXIMATION

In the main text, we obtained parameters of the effective spin Hamiltonian by fitting the

energy integrated neutron scattering data to the static structure factor calculated using a

self-consistent Gaussian approximation (SCGA).The exchange parameters included in our

model Hamiltonian are shown in figure S2.

In this approximation, one relaxes the constraint on the length of individual classical spins

and uses the Lagrangian multiplier λ to maintain the global average
∑

µ〈S
µ
i S

µ
i 〉 = 1. The

spin configurations are weighted by Boltzmann factor e−βH. We take four FCC sublattices

(English letter) with three spin components (Greek letter) to form a 12-vector Sµa (q) in the

reciprocal space, the corresponding interaction matrix is,

βH =
1

2

∑
q

∑
µν

{β[Jµνab 2 cos(q · (ra − rb)) + J
(2)
NNN(q)δµν ] + λδabδµν}Sµa (q)Sνb (−q), (S3)

where q is the momentum transfer, Jµνab are the nearest neighbor interactions expressed in

global coordinates and A
(2)
ab is the next nearest neighbor Heisenberg interaction matrix as in

Ref. 1. The relaxed constraint now reads,

1 =
1

4N

∑
q∈BZ

∑
α

1

βεα(q) + λ
, (S4)
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Figure S2: Exchange interactions in the pyrochlore lattice. Only the magnetic Ni

sites are shown.

which is solved to obtain λ. Then the spin correlator Gµν
ab is calculated as,

Gµν
ab ≡ 〈S

µ
a (−q)Sνb (q)〉 =

∑
α

[ψα]†a,µ[ψα]b,ν

βεα(q) + λ
, (S5)

where εα(q) and ψα are the eigenvalue and the corresponding eigenvector of the interaction

matrix. We sum over the sublattice indices
∑

abG
µν
ab to get a tensor with components

denoting the spatial directions. The non-polarized neutron cross-section is a sum of all the

above correlators with consideration of the appropriate polarization factor,

I (q)=r20

∣∣∣g
2
f(q)

∣∣∣2∑
µν

(δµν − q̂µq̂ν) 〈Sµa (−q)Sνb (q)〉, (S6)

where r0 = 0.539 × 10−12 cm is the magnetic scattering length, f(q) is the magnetic form

factor for Ni2+,2 and g is the isotropic g-factor, q̂µ, q̂ν denote unit vectors. To determine

the non-spin-flip component of the polarized cross-section we apply a global rotation to

Gµν
ab to obtain only the components along the guide field direction which was vertical, or

perpendicular to the scattering plane. The spin-flip cross-section was then obtained by

subtracting the non-spin-flip component from the total magnetic cross-section.

S4



A. Model fitting

The magnetic Hamiltonian was determined through a global χ2 minimization of equa-

tion S6 to the energy integrated neutron intensity. We parameterized the 3×3 interaction

matrix Jµν by four independent terms: J1, J2, J3, and J4,
3 and include an isotropic next

nearest neighbour Heisenberg exchange JNNN . The dipole approximation for the magnetic

form factor and g = 2.284 was used, and we allowed for a small constant background term

in the fit. For the vertically focusing neutron spectrometers employed in our measurements

the out-of-plane momentum resolution is extremely broad and can qualitatively influence

interpretation of the data, even for very diffuse features. We have included the effects of

a finite instrumental resolution only along momentum transfers perpendicular to the scat-

tering plane through convolution of of equation S6 with a one-dimensional Gaussian kernel.

Optimal parameters were determined utilizing both a basin hopping global minimization

routine, and a brute force grid search. Surfaces of χ2 from the brute force grid search are

shown in figure S3.
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Figure S3: Goodness of fit parameters for SCGA analysis. Surfaces of χ2 obtained

from brute force optimization of the SCGA model with the measured energy integrated

neutron intensity at T =1.8 K and with fixed J1 =J2 = 3.2.
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The global minimization constrains J1 = J2 and the overall sign of these terms. How-

ever, we cannot uniquely constrain the magnitude of J1 using the SCGA alone because this

parameter only adjusts an overall intensity scale factor that is correlated with temperature.

To provide an initial estimate for J1, we use a mean field prediction for the Curie-Weiss tem-

perature which for J1 =J2 >> (J3, J4) is θCW ≈−6S(S+1)J1/3. The measured Curie-Weiss

temperature of θCW =−129 K gives J1 = 3.0 meV. This was used as a starting parameter

to be optimized in the fit along with the other exchange terms, which were initialized with

aribtrarily small values. Statistical error bars on the optimized parameters were determined

using the bootstrap method, with 100 bootstrap cycles.

Classical Monte Carlo simulations provide a further check. The as determined exchange

parameters were input into our Monte Carlo simulations and the results of these simulations

compared with the magnetic specific heat as shown in figure 1 (a) of the main text and with

the measured static structure factor shown in figure S4.

SIII. CLASSICAL MONTE CARLO SIMULATIONS

Classical Monte Carlo (MC) calculations were performed on the pyrochlore lattice, its

four FCC sublattices with origins at r0 = (1/8, 1/8, 1/8), r1 = (1/8,−1/8,−1/8), r2 =

(−1/8, 1/8,−1/8) and r3 = (−1/8,−1/8, 1/8), in units of lattice constant a. We consider

cubic cells of linear dimension L, a unit cell is made of 16 sites, and thus we work with N =

16L3 lattice sites. Periodic boundary conditions are employed. Disorder, when applicable,

was introduced only to the dominant interaction, i.e. the nearest-neighbor Heisenberg term

J = J1 = J2, by assigning to a bond the interaction strength chosen randomly and uniformly

from the box distribution [J − δ, J + δ] with δ = 0.19 meV. For L = 8, with 8192 sites, 50

such disorder realizations were used. The case of L = 3, with 432 sites, was also checked

using 100 disorder realizations and the conclusions are almost identical.

For comparison to the energy integrated inelastic neutron scattering data at 1.8 K, we

performed classical MC simulations at the same temperature with single spin continuous

moves with 2× 106 samples per spin. An additional 105 samples per per spin were also used

for equilibration. The simulated specific heat (for sizes from L = 3 to 10) directly aligns
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Figure S4: Static structure factor for high symmetry scattering planes from

experiment and theory for NaCaNi2F7. NSF and SF are non spin flip and spin flip

polarized neutron scattering cross-sections respectively. a, Experimental data. b, Result

of self-consistent Gaussian approximation (SCGA) fit to experimental data. c, Classical

Monte Carlo simulations used to verify the validity of parameters exctracted from the SCGA

analysis.

with the measured magnetic specific heat and is presented in Fig. 1 of the main text. The

inelastic structure factor for L = 8 is presented in Fig. S4 and serves as a cross-check for

the SCGA and the Hamiltonian parameters obtained from it.

We also used classical MC in conjunction with parallel tempering moves to obtain the

ground, or other low energy, states of the system with and without disorder present. The

resulting energy-optimized spin configurations were used to obtain global correlations as
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measured by the elastic neutron cross-section and local correlations in the form of two-

component order parameters on tetrahedra explained below. The parallel tempering scheme

is known to overcome several energy barriers, even in glassy systems and when run sufficiently

long can find the ground state. We have employed a unique version of parallel tempering

discussed below.

In the parallel tempering scheme, several “replicas” or parallel runs are carried out at

sufficiently closely spaced temperatures. Here, we have chosen these temperatures with

geometric spacing. The replica number Nr is given by,5

Nr =
√
N ln

(Tmax
Tmin

)
(S7)

with Tmin and Tmax the minimum and maximum temperatures used. We took Tmin = 0.01K

and Tmax = 1 K and for L = 8 chose Nr = 400 replicas. A standard single spin move

Metropolis algorithm is carried out at each temperature in addition to allowing a replica

swap move - configurations at neighboring temperatures are allowed to exchange with a

probability in accordance with detailed balance. We allow for replica swap moves after N

single site moves. At the end of the MC run with 108 moves, the final spin configurations

at the 100 lowest temperatures (0.01 K to 0.03 K for L = 8) are used as starting points

for additional iterative minimization. The latter method has been used in other studies

to determine detailed ground state phase diagrams of extended Heisenberg models on the

pyrochlore lattice.6

In the iterative minimization scheme, each spin experiences the effective field of all the

other spins on the lattice. We choose spins at random, and use this local field to determine

its optimal direction (the chosen spin wants to anti-align with the local field to minimize the

total energy). We typically take the new spin direction to be a combination of the previous

spin direction and the optimal direction dictated by the local field.

Once we obtain these low energy configurations, we consider each “building block” of the

pyrochlore, say the “up” tetrahedra. For each such tetrahedron, we wish to characterize

if the four spins, labeled as S0,S1,S2,S3, are collinear, coplanar, canted, etc. Instead of

directly looking at the real space spin directions, we systematically classify the local order

parameter following Ref. 7. This procedure is meaningful under the assumption that all
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spin configurations which correspond to low-energy local minima in the energy landscape

have similar distributions of local order parameters. We have assumed that nature mimics

this minima-finding process, and using this correspondence have disorder and configuration-

averaged structure factors obtained from individual low-energy spin configurations without

any additional weighting. This latter procedure gives us an estimate of the elastic neutron

scattering cross-section shown in Fig. 1c of the main text. It is important to note that this

correspondence is limited by the complete absence of quantum effects in our analysis.

As long as the spin configurations approximately lie within the constrained manifold of

Stot =S0+S1+S2+S3 = 0, which is the case for the Heisenberg model on the pyrochlore lat-

tice, or with sufficiently small deviations, a convenient way of defining local order parameters

is,7

f1 =
(S0 + S1)(S2 + S3)− 2S0 · S1 − 2S2 · S3√

12
(S8)

f2 =
S1 · S3 + S0 · S2 − S0 · S3 − S1 · S2

2
(S9)

For L = 8, data from all 2048 up tetrahedra for 50 different runs/disorder realizations is

histogrammed. The f1 − f2 triangle shows the possibilities of local spin configurations, the

vertices correspond to collinear spin configurations, and the midpoints of the triangle edges

correspond to pairwise collinear but mutually perpendicular spin configurations. Our results

have been shown in Fig. 1e of the main text.

Finally, in Fig. S5, we show the histogram of (Stot)
2 for the Heisenberg and fitted

anisotropic models with and without bond disorder. As expected, the Heisenberg only

model has no configurations which violate the zero spin constraint, adding disorder and

small anisotropies increases the violations, but in all cases the deviations from zero are quite

small.
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