Association of Longitudinal Pet Ownership with Wheezing in 3-Year-Old Children

Using the Distributed Lag Model: The Japan Environment and Children's Study

Web Appendix

Appendix 1. Details of JECS data analysis.

Web Tables

	Questionnaire	Category / Additional information		
Variables	timing			
Previous delivery	at study	Vos. no		
	enrollment	105, 110		
Weeks of pregnancy at	. 1 1	premature birth (22-36 weeks),		
delivery	at delivery	full-term birth (37-41 weeks), others		
Planned/emergent	. 1 1	Yes, no		
cesarean delivery	at delivery			
Weight at birth	at delivery	$< 2,500 \text{ g}, \ge 2,500 \text{ g}$		
Child's sex at birth	at delivery	male, female		
Annual household				
income	mid-pregnancy	$< 4, \geq 4 - 6, \geq 6$ million JPY		
Frequency of cleaning		average throughout the year;		
the living room floor	mid-pregnancy	categorized as every day, once a week and more,		
with a vacuum cleaner		less than once a week		
Frequency of cleaning		average throughout the year;		
the bedroom floor	mid-pregnancy	categorized as every day, once a week and more,		
with a vacuum cleaner		less than once a week		
Family members'	1 month old	No one smoked (no smoking),		
smoking after the baby	i monui oid	Somebody smoked but not in the presence of the baby		

Table. A1: Variables used for covariates.

	(smoking in the absence of babies),
	Somebody smoked in the presence of the baby (smoking in
	the presence of the baby)
at study enrollment	Has the mother ever been diagnosed with bronchial asthma
	by a physician from birth to the time of study enrollment?
	(yes, no)
3 years old	Names of currently managed regions (organizations)
	(Hokkaido, Miyagi, Fukushima, Chiba, Kanagawa, Koshin
	(Yamanashi , Shinshu), Toyama, Aichi, Kyoto (Kyoto ,
	Doshisha), Osaka, Hyogo, Tottori, Kochi, Fukuoka
	(Occupational and Environmental Health, Kyushu), South
	Kyushu/Okinawa (Kumamoto , Miyazaki , Ryukyu)
	at study enrollment 3 years old

Table. A2: Changes in pet keeping.

		6 months old pet keeping			1.5 years old pet keeping		
		Yes	No		Yes	No	
		people	people	Sum	people	people	Sum
Mid Pregnancy	Yes	8,364	937	9,301	6,847	2,454	9,301
pet keeping	No	2,763	52,775	55,538	1,252	54,286	55,538
	Sum			64,839			64,839
6 months old	Yes				7,316	3,811	11,127
pet keeping	No				783	52,929	53,712
	Sum						64,839

Web Figures

Figure. A1 : Distribution of questionnaire response time.

The x-axis indicates the number of months before the 3-year-old questionnaire.

Appendix 2. Details of Simulation Experiment.

Box-and-whisker plots of the estimation results by simulation experiment for each scenario and each model are shown in Figures B1-B3 for each of the three time points at t=36, 42, and 48, for each value of γ . The box plots show that the Single Model has a large bias in the estimation and that the Multi Model captures the true values on average, but the variability of the estimates is larger than in the other models when the correlation

between exposures is large.

Web Tables

Time	Range of time point	Probability distribution of time point
point	distribution t _{ki}	
t _{li}	$4 \ \leq \ t_{li} \ \leq \ 9$	$p(t_{1i} = 4) = 0.10, p(t_{1i} = 5) = 0.15, p(t_{1i} = 6) = 0.45,$
		$p(t_{1i} = 7) = 0.15, p(t_{1i} = 8) = 0.10, p(t_{1i} = 9) = 0.05$
t _{2i}	$10 \ \leq \ t_{2i} \ \leq \ 15$	$p(t_{2i} = 10) = 0.10, p(t_{2i} = 11) = 0.15, p(t_{2i} = 12) = 0.45,$
		$p(t_{2i} = 13) = 0.15, p(t_{2i} = 14) = 0.10, p(t_{2i} = 15) = 0.05$
t _{3i}	$16 \ \leq \ t_{3i} \ \leq \ 21$	$p(t_{3i} = 16) = 0.10, p(t_{3i} = 17) = 0.15, p(t_{3i} = 18) = 0.45,$
		$p(t_{3i} = 19) = 0.15, p(t_{3i} = 20) = 0.10, p(t_{3i} = 21) = 0.05$
t _{4i}	$22 \leq t_{4i} \leq 27$	$p(t_{4i} = 22) = 0.10, p(t_{4i} = 23) = 0.15, p(t_{4i} = 24) = 0.45,$
		$p(t_{4i} = 25) = 0.15, p(t_{4i} = 26) = 0.10, p(t_{4i} = 27) = 0.05$
t _{5i}	$28 \ \leq \ t_{5i} \ \leq \ 33$	$p(t_{5i} = 28) = 0.10, p(t_{5i} = 29) = 0.15, p(t_{5i} = 30) = 0.45,$
		$p(t_{5i} = 31) = 0.15, p(t_{5i} = 32) = 0.10, p(t_{5i} = 33) = 0.05$
t _{6i}	$34 \leq t_{6i} \leq 39$	$p(t_{6i} = 34) = 0.10, p(t_{6i} = 35) = 0.15, p(t_{6i} = 36) = 0.45,$
		$p(t_{6i} = 37) = 0.15, p(t_{6i} = 38) = 0.10, p(t_{6i} = 39) = 0.05$
t _{7i}	$40 \ \leq \ t_{7i} \ \leq \ 45$	$p(t_{7i} = 40) = 0.10, p(t_{7i} = 41) = 0.15, p(t_{7i} = 42) = 0.45,$
		$p(t_{7i} = 43) = 0.15, p(t_{7i} = 44) = 0.10, p(t_{7i} = 45) = 0.05$
t _{8i}	$46 \leq t_{8i} \leq 51$	$p(t_{8i} = 46) = 0.10, p(t_{8i} = 47) = 0.15, p(t_{8i} = 48) = 0.45,$

Table. B1: Time point settings used in the simulation experiments.

		$p(t_{8i} = 49) = 0.15, p(t_{8i} = 50) = 0.10, p(t_{8i} = 51) = 0.05$
to;	t_{0} : $52 \leq t_{0i} \leq 57$	$p(t_{9i} = 52) = 0.10, p(t_{9i} = 53) = 0.15, p(t_{9i} = 54) = 0.45,$
	$p(t_{9i} = 55) = 0.15, p(t_{9i} = 56) = 0.10, p(t_{9i} = 57) = 0.05$	
t _{10i}	$58 \leq t_{10i} \leq 63$	$p(t_{10i} = 58) = 0.10, p(t_{10i} = 59) = 0.15, p(t_{10i} = 60) = 0.45,$
		$p(t_{10i} = 61) = 0.15, p(t_{10i} = 62) = 0.10, p(t_{10i} = 63) = 0.05$

Web Figures

Figure. B1: Mean exposure effects by DLM per scenario and correlation coefficient (γ).

The gray dotted line: the true value. The black line: the DLM average. The gray line: reference line for $\beta=0$. Scenarios 1, 2, and 3 in order from left to right. Upper panel $\gamma=0$, middle panel $\gamma=0.975$, lower panel $\gamma=0.9999$.

Figure. B2: Distribution of point estimates of exposure effects for scenarios 1-3 (γ =0).

Box-and-whisker plots for time=36,42,48 from left to right. Within each time, from left to right: Single model,

Multi model, DLM. Scenarios 1, 2, and 3 from top to bottom.

Figure. B3: Distribution of point estimates of exposure effects for scenarios 1-3 (γ=0.975).
Box-and-whisker plots for time=36,42,48 from left to right. Within each time, from left to right: Single model, Multi model, DLM. Scenarios 1, 2, and 3 from top to bottom.

Figure. B4: Distribution of point estimates of exposure effects for scenarios 1-3 (γ =0.9999).

Box-and-whisker plots for time=36,42,48 from left to right. Within each time, from left to right: Single model,

Multi model, DLM. Scenarios 1, 2, and 3 from top to bottom.

Appendix 3. Members of the JECS Group as of 2022:

Michihiro Kamijima (principal investigator, Nagoya City University, Nagoya, Japan), Shin Yamazaki (National Institute for Environmental Studies, Tsukuba, Japan), Yukihiro Ohya (National Center for Child Health and Development, Tokyo, Japan), Reiko Kishi (Hokkaido University, Sapporo, Japan), Nobuo Yaegashi (Tohoku University, Sendai, Japan), Koichi Hashimoto (Fukushima Medical University, Fukushima, Japan), Chisato Mori (Chiba University, Chiba, Japan), Shuichi Ito (Yokohama City University, Yokohama, Japan), Zentaro Yamagata (University of Yamanashi, Chuo, Japan), Hidekuni Inadera (University of Toyama, Toyama, Japan), Takeo Nakayama (Kyoto University, Kyoto, Japan), Tomotaka Sobue (Osaka University, Suita, Japan), Masayuki Shima (Hyogo Medical University, Nishinomiya, Japan), Hiroshige Nakamura (Tottori University, Yonago, Japan), Narufumi Suganuma (Kochi University, Nankoku, Japan), Koichi Kusuhara (University of Occupational and Environmental Health, Kitakyushu, Japan), and Takahiko Katoh (Kumamoto University, Kumamoto, Japan).