Supporting Information

CO₂ electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels

Jiaqi Feng^{1,2}, Limin Wu^{1,3}, Xinning Song^{1,3}, Libing Zhang^{1,3}, Shunhan Jia^{1,3}, Xiaodong Ma^{1,3}, Xingxing Tan^{1,3}, Xinchen Kang^{1,3}, Qinggong Zhu^{1,3}, Xiaofu Sun^{1,3}*, Buxing Han^{1,3,4}*

1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing
 102249, China

3. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

4. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
* To whom correspondence should be addressed. Email: sunxiaofu@iccas.ac.cn and hanbx@iccas.ac.cn

Supplementary Fig. S1 | SEM images of La-Cu₂O HS in (A) low and (B) high magnification.

Supplementary Fig. S2 | (A, B) TEM images and (C) HRTEM image of La-Cu₂O HS.

Supplementary Fig. S3 | Nitrogen adsorption-desorption isotherm of (A) La-Cu₂O HS, (B) La-Cu₂O SS, and (C) CuO_x HS. (D) The corresponding BJH pore size distribution of La-Cu₂O HS.

Supplementary Fig. S4 | XRD patterns of La-Cu₂O HS, La-Cu₂O SS, and CuO_x HS.

Supplementary Fig. S5 | (A) Cu 2p XPS profile, (B) Cu Auger LMM spectra, and (C) La 3d XPS profile of La-Cu₂O

HS.

Supplementary Fig. S6 | EDS mapping of La-Cu₂O HS. Yellow, green, and blue represent Cu, La, and O elements,

respectively. The results indicate that Cu, La, and O elements are uniformly distributed on La-Cu₂O HS.

Supplementary Fig. S7 | (A) SEM, (B, C) TEM, (D) HRTEM images, and (E) EDS mapping of La-Cu SS (yellow and

green represent Cu and La elements, respectively.).

Supplementary Fig. S8 | (A) SEM, (B) TEM, and (C) HRTEM images of Cu HS.

Supplementary Fig. S9 | La 3d XPS profile of (A) La-Cu HS, La-Cu SS, La₂O₃, La(OH)₃ and (B) Cu HS.

Supplementary Fig. S10 | Cu Auger LMM spectra of (A) La-Cu HS, (B) La-Cu SS, and (C) Cu HS.

Supplementary Fig. S11 | The optical photo of flow cell used for *in situ* XAS experiment.

Supplementary Fig. S12 | Fourier transform extended X-ray absorption fine structure spectra of La-Cu HS, La-Cu SS,

and Cu HS.

Supplementary Fig. S13 | (A) La L₃-edge XANES spectra and (B) FT EXAFS spectra of La-Cu HS, La-Cu SS, La(OH)₃ and La₂O₃.

Supplementary Fig. S14 | The K⁺ concentration distribution over surface of (A) solid sphere, (B) hollow sphere with channels, and within channels of (C) hollow sphere at -300 mA. The K⁺ concentration distribution over surface of (D) solid sphere, (E) hollow sphere with channels, and within channels of (F) hollow sphere at -500 mA.

Supplementary Fig. S15 | The negative charge distribution over solid sphere, hollow sphere with channels, and within channels of hollow sphere at (A) -300 mA, (B) -500 mA, (C) -700 mA, and (D) -900 mA.

Supplementary Fig. S16 | The XRD patterns of the electrode loaded with La-Cu HS after CO₂ reduction.

Supplementary Fig. S17 | The pH distribution in electrolyte near surface of (A) solid sphere, (B) hollow sphere with channels, and within (C) channel of hollow sphere at -300 mA. The pH distribution in electrolyte near surface of (D) solid sphere, (E) hollow sphere with channels, and within (F) channels of hollow sphere at -500 mA.

Supplementary Fig. S18 | The photograph of cell used for *in situ* SERS spectroscopy.

Supplementary Fig. S19 | The product distribution over (A) La-Cu HS, (B) La-Cu SS, and (C) Cu HS under different current densities. Values are means and error bars indicate s.d. (*n* = 3 replicates).

Supplementary Fig. S20 | The products distribution of La-Cu, Pr-Cu, Tb-Cu and Er-Cu at -900 mA cm⁻².

Supplementary Fig. S21 | (A) TEM image, (B) HRTEM image, and (C) XRD pattern of La-Cu HS with La/Cu ratio of 0.1.

Supplementary Fig. S22 | (A) TEM image, (B) HRTEM image, and (C) XRD pattern of La-Cu HS with La/Cu ratio of

0.2.

Supplementary Fig. S23 | (A) TEM image, (B) HRTEM image, and (C) XRD pattern of La-Cu HS with La/Cu ratio of

0.4.

Supplementary Fig. S24 | Product distribution of La-Cu HS with various La/Cu ratio at -900 mA cm⁻². Values are means

and error bars indicate s.d. (n = 3 replicates).

Supplementary Fig. S25 | The products FE of La-Cu HS in 0.05 M H_2SO_4 aqueous solution containing different KCl concentrations at -900 mA cm⁻². Values are means and error bars indicate s.d. (n = 3 replicates).

Supplementary Fig. S26 | C1 products and H2 FE of La-Cu HS under different CO2 gas flow rate at -900 mA cm⁻²

Supplementary Fig. S27 | (A) SEM image, (B) TEM image, and (C) XRD pattern of La-Cu HS after 40 h CO₂RR.

Supplementary Fig. S28 | EDS mapping of La-Cu HS after 40 h CO₂RR. Yellow and green represent Cu and La elements,

respectively. The results indicate that Cu and La elements are uniformly distributed on La-Cu HS.

Supplementary Fig. S29 | (A) Cu $2p_{3/2}$ XPS spectrum, (B) Cu Auger LMM spectrum, and (C) La 3d XPS profile of La-Cu HS after 40 h CO₂RR.

Supplementary Fig. S30 | The photograph and scheme of cell used for *in situ* ATR-SEIRAS spectroscopy.

Supplementary Fig. S31 | (A) *In-situ* Cu K-edge XANES spectra and (B) *in-situ* FT EXAFS spectra of La-Cu HS at different reaction time.

Supplementary Fig. S32 | Top and side view of (A) La-O-Cu (111) and (B) Cu (111) models.

Supplementary Fig. S33 | Top and side view of (A) 1La-Cu, (B) 2La-Cu, (C) 4La-Cu and (4) 6La-Cu models with H₂O and K⁺ species on surface. The bronze, green, red, white and purple balls represent Cu, La, O, H and K atoms, respectively.

Supplementary Fig. S34 | Top and side view of (A) 2*CO and (B) O*CCO over 1La-Cu model with H₂O and K⁺ species on surface. The bronze, green, red, black, white and purple balls represent Cu, La, O, C, H and K atoms, respectively.

Supplementary Fig. S35 | Top and side view of (A) 2*CO and (B) O*CCO over 2La-Cu model with H₂O and K⁺ species on surface. The bronze, green, red, black, white and purple balls represent Cu, La, O, C, H and K atoms, respectively.

Supplementary Fig. S36 | Top and side view of (A) 2*CO and (B) O*CCO over 4La-Cu model with H₂O and K⁺ species on surface. The bronze, green, red, black, white and purple balls represent Cu, La, O, C, H and K atoms, respectively.

Supplementary Fig. S37 | Top and side view of (A) 2*CO and (B) O*CCO over 6La-Cu model with H₂O and K⁺ species on surface. The bronze, green, red, black, white and purple balls represent Cu, La, O, C, H and K atoms, respectively.

Supplementary Fig. S38 | Energy and temperature variations during the AIMD simulation for 5 ps.

Supplementary Fig. S39 | Top and side view of (A) CO_2 , (B) *COOH, (C) *CO, (D) 2*CO, (E) O*CCO and (F) *H over Cu model with H₂O and K⁺ species on surface. The bronze, black, red, white and purple balls represent Cu, C, O, H and K atoms, respectively.

Supplementary Fig. S40 | Top and side view of (A) CO₂, (B) *COOH, (C) *CO, (D) 2*CO, (E) O*CCO and (F) *H over 4La-Cu model with H₂O and K⁺ species on surface. The bronze, green, black, red, white and purple balls represent Cu, La, C, O, H and K atoms, respectively.

Reaction coordinate

Supplementary Fig. S41 | Calculated free energy diagram for HER over Cu and 4La-Cu.

Catalyst	рН	C ₂₊ FE (%)	<i>j</i> _{C2+} (mA cm ⁻²)	Stability (h)	Ref.
La-Cu HS	<1	86.2	775.8	40	This work
ER-CuNS	<1	84	557	30	1
CAL-modified Cu	<1	48	576	10	2
Pd-Cu	2	89	500	4.5	3
Cu/C	<1	~37	~200	~4	4
COF:PFSA-modified PTFE-Cu	<1	75	150	20	5
Cu/PTFE	-	55	~55	9	6
EC-Cu	<1	90	~180	10	7
Carbon/Cu/PTFE	2	64.5*	~200	-	8
Cu _{0.9} Zn _{0.1}	4	70	210	~35	9
CG-medium	<1	~80	~80	160	10
Cu/15 mM [tolyl-pyr]	~1	45	~1.1	6	11

Supplementary Table S1 | Comparison of CO_2RR -to- C_{2^+} products over various reported electrocatalysts in acidic

electrolyte.

* Represents ethylene Faradaic efficiency

References

- 1. Ma, Z. et al. CO₂ electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. *Nat. Commun.* **13**, 7596 (2022).
- 2. Huang, J. E. et al. CO₂ electrolysis to multicarbon products in strong acid. *Science* **372**, 1074-1078 (2021).
- 3. Xie, Y. et al. High carbon utilization in CO₂ reduction to multi-carbon products in acidic media. *Nat. Catal.* **5**, 564-570 (2022).
- 4. Gu, J. et al. Modulating electric field distribution by alkali cations for CO₂ electroreduction in strongly acidic medium. *Nat. Catal.* **5**, 268-276 (2022).
- 5. Zhao, Y. et al. Conversion of CO₂ to multicarbon products in strong acid by controlling the catalyst microenvironment. *Nature Synthesis* **2**, 403-412 (2023).
- 6. O'Brien, C. P. et al. Single pass CO₂ conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO₂ Regeneration. *ACS Energy Lett.* **6**, 2952-2959 (2021).
- Cao, Y. et al. Surface hydroxide promotes CO₂ electrolysis to ethylene in acidic conditions. *Nat. Commun.* 14, 2387 (2023).
- 8. Wang, Z. et al. Localized alkaline environment via in situ electrostatic confinement for enhanced CO₂-to-ethylene conversion in neutral medium. *J. Am. Chem. Soc.* **145**, 6339-6348 (2023).
- 9. Zhang, J. et al. Accelerating electrochemical CO₂ reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. *Nat. Commun.* **14**, 1298 (2023).
- Fan, M. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. *Nat. Catal.* 6, 763-772 (2023).
- Nie, W., Heim, G. P., Watkins, N. B., Agapie, T. & Peters, J. C. Organic additive-derived films on Cu electrodes promote electrochemical CO₂ reduction to C₂₊ products under strongly acidic conditions. *Angew. Chem. Int. Ed.* 62, e202216102 (2023).