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Supplementary Fig. S1 | SEM images of La-Cu2O HS in (A) low and (B) high magnification. 

  



 

Supplementary Fig. S2 | (A, B) TEM images and (C) HRTEM image of La-Cu2O HS. 

  



 

Supplementary Fig. S3 | Nitrogen adsorption-desorption isotherm of (A) La-Cu2O HS, (B) La-Cu2O SS, and (C) CuOx 

HS. (D) The corresponding BJH pore size distribution of La-Cu2O HS. 

  



 

Supplementary Fig. S4 | XRD patterns of La-Cu2O HS, La-Cu2O SS, and CuOx HS. 

  



 

Supplementary Fig. S5 | (A) Cu 2p XPS profile, (B) Cu Auger LMM spectra, and (C) La 3d XPS profile of La-Cu2O 

HS. 

  



 

Supplementary Fig. S6 | EDS mapping of La-Cu2O HS. Yellow, green, and blue represent Cu, La, and O elements, 

respectively. The results indicate that Cu, La, and O elements are uniformly distributed on La-Cu2O HS. 

  



 

Supplementary Fig. S7 | (A) SEM, (B, C) TEM, (D) HRTEM images, and (E) EDS mapping of La-Cu SS (yellow and 

green represent Cu and La elements, respectively.). 

  



 

Supplementary Fig. S8 | (A) SEM, (B) TEM, and (C) HRTEM images of Cu HS. 

  



 

Supplementary Fig. S9 | La 3d XPS profile of (A) La-Cu HS, La-Cu SS, La2O3, La(OH)3 and (B) Cu HS. 

  



 

Supplementary Fig. S10 | Cu Auger LMM spectra of (A) La-Cu HS, (B) La-Cu SS, and (C) Cu HS. 

  



 

Supplementary Fig. S11 | The optical photo of flow cell used for in situ XAS experiment. 

  



 

Supplementary Fig. S12 | Fourier transform extended X-ray absorption fine structure spectra of La-Cu HS, La-Cu SS, 

and Cu HS. 

  



 
Supplementary Fig. S13 | (A) La L3-edge XANES spectra and (B) FT EXAFS spectra of La-Cu HS, La-Cu SS, La(OH)3 

and La2O3. 

 

  



 

Supplementary Fig. S14 | The K+ concentration distribution over surface of (A) solid sphere, (B) hollow sphere with 

channels, and within channels of (C) hollow sphere at -300 mA. The K+ concentration distribution over surface of (D) 

solid sphere, (E) hollow sphere with channels, and within channels of (F) hollow sphere at -500 mA. 

  



 

Supplementary Fig. S15 | The negative charge distribution over solid sphere, hollow sphere with channels, and within 

channels of hollow sphere at (A) -300 mA, (B) -500 mA, (C) -700 mA, and (D) -900 mA. 

 

  



 

Supplementary Fig. S16 | The XRD patterns of the electrode loaded with La-Cu HS after CO2 reduction. 

 

  



 

Supplementary Fig. S17 | The pH distribution in electrolyte near surface of (A) solid sphere, (B) hollow sphere with 

channels, and within (C) channel of hollow sphere at -300 mA. The pH distribution in electrolyte near surface of (D) 

solid sphere, (E) hollow sphere with channels, and within (F) channels of hollow sphere at -500 mA. 

  



 

Supplementary Fig. S18 | The photograph of cell used for in situ SERS spectroscopy. 

  



 

 

Supplementary Fig. S19 | The product distribution over (A) La-Cu HS, (B) La-Cu SS, and (C) Cu HS under different 

current densities. Values are means and error bars indicate s.d. (n = 3 replicates). 

  



 

Supplementary Fig. S20 | The products distribution of La-Cu, Pr-Cu, Tb-Cu and Er-Cu at -900 mA cm-2. 

 

  



 

Supplementary Fig. S21 | (A) TEM image, (B) HRTEM image, and (C) XRD pattern of La-Cu HS with La/Cu ratio of 

0.1. 

  



 

Supplementary Fig. S22 | (A) TEM image, (B) HRTEM image, and (C) XRD pattern of La-Cu HS with La/Cu ratio of 

0.2. 

  



 

Supplementary Fig. S23 | (A) TEM image, (B) HRTEM image, and (C) XRD pattern of La-Cu HS with La/Cu ratio of 

0.4.  

  



 

Supplementary Fig. S24 | Product distribution of La-Cu HS with various La/Cu ratio at -900 mA cm-2. Values are means 

and error bars indicate s.d. (n = 3 replicates). 

  



 

Supplementary Fig. S25 | The products FE of La-Cu HS in 0.05 M H2SO4 aqueous solution containing different KCl 

concentrations at -900 mA cm-2. Values are means and error bars indicate s.d. (n = 3 replicates). 

  



 

Supplementary Fig. S26 | C1 products and H2 FE of La-Cu HS under different CO2 gas flow rate at -900 mA cm-2 

  



 

Supplementary Fig. S27 | (A) SEM image, (B) TEM image, and (C) XRD pattern of La-Cu HS after 40 h CO2RR.  

  



 

Supplementary Fig. S28 | EDS mapping of La-Cu HS after 40 h CO2RR. Yellow and green represent Cu and La elements, 

respectively. The results indicate that Cu and La elements are uniformly distributed on La-Cu HS. 

  



 

Supplementary Fig. S29 | (A) Cu 2p3/2 XPS spectrum, (B) Cu Auger LMM spectrum, and (C) La 3d XPS profile of La-

Cu HS after 40 h CO2RR.  

  



 

Supplementary Fig. S30 | The photograph and scheme of cell used for in situ ATR-SEIRAS spectroscopy. 

  



 
Supplementary Fig. S31 | (A) In-situ Cu K-edge XANES spectra and (B) in-situ FT EXAFS spectra of La-Cu HS at 

different reaction time. 

  



 

Supplementary Fig. S32 | Top and side view of (A) La-O-Cu (111) and (B) Cu (111) models. 

  



 

Supplementary Fig. S33 | Top and side view of (A) 1La-Cu, (B) 2La-Cu, (C) 4La-Cu and (4) 6La-Cu models with H2O 

and K+ species on surface. The bronze, green, red, white and purple balls represent Cu, La, O, H and K atoms, respectively. 

 

  



 

Supplementary Fig. S34 | Top and side view of (A) 2*CO and (B) O*CCO over 1La-Cu model with H2O and K+ species 

on surface. The bronze, green, red, black, white and purple balls represent Cu, La, O, C, H and K atoms, respectively. 

  



 

Supplementary Fig. S35 | Top and side view of (A) 2*CO and (B) O*CCO over 2La-Cu model with H2O and K+ species 

on surface. The bronze, green, red, black, white and purple balls represent Cu, La, O, C, H and K atoms, respectively. 

 

  



 

Supplementary Fig. S36 | Top and side view of (A) 2*CO and (B) O*CCO over 4La-Cu model with H2O and K+ species 

on surface. The bronze, green, red, black, white and purple balls represent Cu, La, O, C, H and K atoms, respectively. 

 

  



 

Supplementary Fig. S37 | Top and side view of (A) 2*CO and (B) O*CCO over 6La-Cu model with H2O and K+ species 

on surface. The bronze, green, red, black, white and purple balls represent Cu, La, O, C, H and K atoms, respectively. 

  



 

Supplementary Fig. S38 | Energy and temperature variations during the AIMD simulation for 5 ps. 

  



 

 

Supplementary Fig. S39 | Top and side view of (A) CO2, (B) *COOH, (C) *CO, (D) 2*CO, (E) O*CCO and (F) *H 

over Cu model with H2O and K+ species on surface. The bronze, black, red, white and purple balls represent Cu, C, O, 

H and K atoms, respectively. 

  



 

Supplementary Fig. S40 | Top and side view of (A) CO2, (B) *COOH, (C) *CO, (D) 2*CO, (E) O*CCO and (F) *H 

over 4La-Cu model with H2O and K+ species on surface. The bronze, green, black, red, white and purple balls represent 

Cu, La, C, O, H and K atoms, respectively. 

  



 

Supplementary Fig. S41 | Calculated free energy diagram for HER over Cu and 4La-Cu. 

  



Supplementary Table S1 | Comparison of CO2RR-to-C2+ products over various reported electrocatalysts in acidic 

electrolyte. 

Catalyst pH 
C2+ FE 

(%) 

jC2+ 

(mA cm-2) 

Stability 

(h) 
Ref. 

La-Cu HS <1 86.2 775.8 40 This work 

ER-CuNS <1 84 557 30 1 

CAL-modified Cu <1 48 576 10 2 

Pd-Cu 2 89 500 4.5 3 

Cu/C <1 ~37 ~200 ~4 4 

COF:PFSA-modified PTFE–Cu <1 75 150 20 5 

Cu/PTFE - 55 ~55 9 6 

EC-Cu <1 90 ~180 10 7 

Carbon/Cu/PTFE 2 64.5* ~200 - 8 

Cu0.9Zn0.1 4 70 210 ~35 9 

CG-medium <1 ~80 ~80 160 10 

Cu/15 mM [tolyl-pyr] ~1 45 ~1.1 6 11 

* Represents ethylene Faradaic efficiency 
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