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Supplementary Fig. 1. Global distribution of land surface temperature diurnal amplitude (dLST) 
using Copernicus and MODIS land surface temperature (LST) data. An example showed the 
median dLST in 2020 using Copernicus and MODIS LST data, respectively. Note that there is no 
geostationary satellite coverage in parts of northern and eastern Europe, Central Asia, and the Indian 
subcontinent as well as parts of eastern Siberia and northern North America for Copernicus LST. 
 

 
Supplementary Fig. 2. Global distribution of the correlation coefficient between Copernicus and 
MODIS land surface temperature diurnal amplitude (dLST). An example showed the correlation 
coefficient (R) between Copernicus and MODIS daily dLST in 2020. Note that there is no geostationary 
satellite coverage in parts of northern and eastern Europe, Central Asia, and the Indian subcontinent as 
well as parts of eastern Siberia and northern North America for Copernicus LST. 
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Supplementary Fig. 3. Global distribution of the number of soil dry-downs per year. The median 
number of soil dry-downs per year during 2016-2020 calculated from SMAP-IB, SCA-V and SMOS-IC, 
respectively.  
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Supplementary Fig. 4. Global distribution of the correlation coefficient among SMAP-IB, SCA-V 
and SMOS-IC daily soil moisture (SM). An example showed the correlation coefficient (R) among 
SMAP-IB, SCA-V and SMOS-IC daily SM in 2020. 
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Supplementary Fig. 5. Comparison of critical soil moisture thresholds (θcrit) based on satellite 
observations and flux towers across sites. Relationships between θcrit derived from satellite ensembles 
and θcrit derived from flux towers using the land surface temperature diurnal amplitude (dLST)–SM 
method (a) and the evaporative fraction (EF)–SM method (b). The red line is the linear regression line 
while the dashed line represents the 1:1 line.  
 

 

Supplementary Fig. 6. Comparison of critical soil moisture thresholds (θcrit) estimated from 
ERA5-Land soil moisture (SM) between different soil layers. Comparison of θcrit estimated from 
ERA5-Land SM layer 1 (0-7 cm depth) with the layers 2 (7-28 cm, a) or 3 (28-100 cm, b). SM estimates 
from deeper layers (layers 4 and 5) in ERA5-Land are less constrained by observations, so we did not use 
them. The red line is the linear regression line while the dashed line represents the 1:1 line.  
  

0 0.1 0.2 0.3
Flux-derived crit  using dLST method (m3/m 3)

0

0.1

0.2

0.3
Sa

te
llit

es
-d

er
iv

ed
 

cr
it (m

3 /m
3 )

y=0.36x+0.15 (r=0.57, p=0.002)

a

0 0.1 0.2 0.3
Flux-derived crit  using EF method (m3/m 3)

0

0.1

0.2

0.3

y=0.40x+0.15 (r=0.55, p=0.003)

b



 6 

 
Supplementary Fig. 7. The critical soil moisture thresholds (θcrit) among different biomes and the 
impacts of crop species, irrigated areas and cropland expansion on θcrit. a, The θcrit among different 
biomes. b-d, The impacts of crop species, irrigated areas and cropland expansion on θcrit of crops. For 
each box plot, the middle line indicates the median; the box indicates the upper and lower quartiles, and 
the whiskers indicate the 5th and 95th percentiles of the data. The geographic distribution of main staple 
crops was from Monfreda, Ramankutty 1. Global Map of Irrigation Areas was downloaded from The 
Food and Agriculture Organization2, showing the amount of area equipped for irrigation in percentage of 
the total area on a raster. For cropland expansion, the map of percent of cropland net gain per pixel during 
2003-2019 was from Potapov, Turubanova 3. SHR: shrublands; GRA: grasslands; SAV: savannas; CRO: 
croplands; FOR: forests; Tro: tropical; Tem: temperate; Bor: boreal. 
 

 

Supplementary Fig. 8. The critical soil moisture thresholds (θcrit) among different climate types 
based on the aridity classification by the United Nations Environment Programme4. For each box 
plot, the middle line indicates the median; the box indicates the upper and lower quartiles, and the 
whiskers indicate the 5th and 95th percentiles of the data. 
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Supplementary Fig. 9. The global distribution of critical soil moisture threshold (θcrit) using 
ERA5-Land data and the relationship between θcrit derived from ERA5-Land and θcrit derived 
from satellite ensembles. a, The global distribution of θcrit using ERA5-Land surface soil moisture (SM) 
and land surface temperature diurnal amplitude (dLST). The gaps indicate that the pixels did not have a 
defined θcrit value because there were either no dry-downs, or SM varied only within a water- or energy‐
limited regime, or the number of samples were too low (missing data), thus rendering the breakpoint 
analysis of dLST–SM unreliable. b, The relationship between θcrit derived from ERA5-Land and θcrit 
derived from satellite ensembles. The red line is the linear regression line while the dashed line 
represents the 1:1 line. 
 

 
Supplementary Fig. 10. Comparison of daily ERA5-Land soil moisture (SM) and land surface 
temperature diurnal amplitude (dLST) with those from satellites for a day in 2020. 
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Supplementary Fig. 11. Comparison between multi-model mean critical soil moisture threshold 
(θcrit) and observation-based θcrit grouped by climate types based on the aridity classification. For 
each box plot, the middle line indicates the median; the box indicates the upper and lower quartiles, and 
the whiskers indicate the 5th and 95th percentiles of the data. Obs: observations. 
 

 
Supplementary Fig. 12. The critical soil moisture threshold (θcrit) from ten Earth System Models 
with daily outputs.   
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Supplementary Table 1. Eddy covariance sites used in this study. Site identifier (ID), latitude (Lat, °), 
longitude (Long, °), plant functional type (PFT), and study periods are listed. Plant functional types were 
defined according to the IGBP classification, including SAV (savannas); SHR (shrublands); ENF 
(evergreen needleleaf forests); EBF (evergreen broadleaf forests); DBF (deciduous broadleaf forests); 
MF (mixed forests); GRA (grasslands) and CRO (croplands).  

Site ID Lat Long IGBP Periods Reference 

AU-Ade -13.08 131.12 WSA 2007-2009 5 

AU-ASM -22.28 133.25 SAV 2010-2014 6 

AU-DaP -14.06 131.32 GRA 2007-2013 7 

AU-DaS -14.16 131.39 SAV 2008-2014 8 

AU-Gin -31.38 115.71 SAV 2011-2014 9 

AU-Rig -36.65 145.58 GRA 2011-2014 10 

AU-Whr -36.67 145.03 EBF 2011-2014 11 

CA-Oas 53.63 -106.20 DBF 1996-2010 12 

CH-Cha 47.21 8.41 GRA 2005-2020 13 

CH-Dav 46.82 9.86 ENF 1997-2014 14 

CH-Oe1 47.29 7.73 GRA 2002-2008 15 

CZ-BK2 49.49 18.54 GRA 2004-2012 16 

CZ-Lnz 48.68 16.95 MF 2015-2020 17 

DE-Gri 50.95 13.51 GRA 2004-2020 18 

DE-Hai 51.08 10.45 DBF 2000-2020 19 

DE-HoH 52.09 11.22 DBF 2015-2020 20 

DE-Kli 50.89 13.52 CRO 2004-2018 21 

DE-Lnf 51.33 10.37 DBF 2002-2012 22 

DE-Obe 50.79 13.72 ENF 2008-2020 23 

DE-RuR 50.62 6.30 GRA 2011-2020 24 

DE-RuS 50.87 6.45 CRO 2011-2021 25 

DE-Tha 50.96 13.57 ENF 1996-2020 26 

ES-Abr 38.70 -6.79 SAV 2015-2018 27 

ES-LM1 39.94 -5.78 SAV 2014-2020 27 

ES-LM2 39.93 -5.78 SAV 2014-2020 27 

FR-Hes 48.67 7.06 DBF 2014-2020 28 

GF-Guy 5.28 -52.92 EBF 2004-2014 29 

IT-CA2 42.38 12.03 CRO 2011-2014 30 

IT-Col 41.85 13.59 DBF 1996-2014 31 

IT-Lsn 45.74 12.75 SHR 2016-2020 20 

IT-Noe 40.61 8.15 SHR 2004-2014 32 

IT-SR2 43.73 10.29 ENF 2013-2020 17 

IT-SRo 43.73 10.28 ENF 1999-2012 33 

JP-MBF 44.39 142.32 DBF 2003-2005 34 

NL-Loo 52.17 5.74 ENF 1996-2018 35 

SE-Htm 56.10 13.42 ENF 2015-2020 20 
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US-AR1 36.43 -99.42 GRA 2009-2012 36 

US-Goo 34.25 -89.87 GRA 2002-2006 37 

US-Me3 44.32 -121.61 ENF 2004-2009 38 

US-MMS 39.32 -86.41 DBF 1999-2014 39 

US-SRM 31.82 -110.87 SAV 2004-2014 40 

US-Var 38.41 -120.95 GRA 2000-2014 41 

US-WCr 45.81 -90.08 DBF 1999-2014 42 

US-Whs 31.74 -110.05 SHR 2007-2014 43 

 
Supplementary Table 2. The predictor variables used in the random forest models. 

Variable Variable group Units Sources 

Sand Soil % 

ref44 (SoilGrids: 

https://www.isric.org/ex

plore/soilgrids) 

Silt Soil % 

Clay Soil % 

Soil organic carbon Soil g/kg 

Organic carbon stock Soil kg/m³ 

Organic carbon density Soil kg/m³ 

Total Nitrogen Soil g/kg 

Coarse fragments Soil % 

Cation exchange capacity at pH7 Soil cmol/kg 

Bulk density Soil kg/dm³ 

pH Soil Unitless 

Total Phosphorus Soil g/kg ref45 

Aridity index Climatic Unitless ref46 

(Global-AI_PET_v3) Potential evapotranspiration (PET) Climatic mm 

Precipitation frequency Climatic days 

ERA5-Land 

(https://cds.climate.coper

nicus.eu/) 

Vapour pressure deficit Climatic kPa 

ref47 
Radiation Climatic W/m2 

Wind speed Climatic m/s 

Mean annual precipitation Climatic mm 

Albedo Climatic Unitless 

MODIS 

(https://lpdaac.usgs.gov/

products/mcd43c3v061/) 

Leaf area index  Vegetative m2/m2 ref48 

EVI Vegetative EVI value 
ref49 (MODIS) 

NDVI Vegetative NDVI value 

Tree cover Vegetative % ref50 

Tree density Vegetative 
Number of 

trees/ha 
ref51 
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Woody density Vegetative mg/mm3 ref52 

Forest canopy height Vegetative m ref53 

Root depth Vegetative m ref54 

Specific leaf area Vegetative m2/kg 

ref55 Leaf Nitrogen Vegetative mg/g 

Leaf Phosphorus Vegetative mg/g 

Plant hydraulic resistance 
Plant hydraulic 

traits 
day/mm ref54 

Leaf water potential at 50% of 

xylem conductance (P50) 

Plant hydraulic 

traits 
MPa 

ref56 

The slope parameter in the 

Medlyn's stomatal conductance 

model 

Plant hydraulic 

traits 
kPa/0.5 

Maximum xylem conductance 
Plant hydraulic 

traits 
mm/hr/MPa 

The ratio between the leaf water 

potential at 50% of stomatal 

conductance and that at 50% of 

xylem conductance 

Plant hydraulic 

traits 
Unitless 

 
Supplementary Table 3. Earth System Models from CMIP6 models with daily outputs used in the 
analysis.  

CMIP6 Models Institution ID Modeling Group Land Component Reference 

ACCESS-ESM1-5 CSIRO 
Commonwealth Scientific and Industrial 

Research Organisation, Australia 
CABLE2.4 57 

BCC-ESM1 BCC 

 

 Beijing Climate Center 

 

BCC_AVIM2 58 

Can-ESM5 CCCma 
Canadian Centre for Climate Modelling 

and Analysis 

CLASS3.6/CTEM1.

2 
59 

CMCC-ESM2 CMCC 
Fondazione Centro Euro-Mediterraneo 

sui Cambiamenti Climatici, Italy 

CLM4.5 (BGC 

mode) 
60 

INM-CM5-0 INM Institute for Numerical Mathematics INM-LND1 61 

IPSL-CM6A-LR IPSL Institute Pierre Simon Laplace, France ORCHIDEE (v2.0) 62 

MIROC6 MIROC 
Japan Agency for Marine-Earth Science 

and Technology 
MATSIRO6.0 63 

MPI-ESM1-2-HR MPI-M Max Planck Institute for Meteorology JSBACH3.20 64 

MRI-ESM2-0 MRI Meteorological Research Institute, Japan HAL 1.0 65 

NorESM2-MM NCC Norwegian Climate Centre, Norway CLM 66 
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