
Open Access This file is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 
attribution to the source work.  The images or other third party material in this file are included in the 
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

 Global critical soil moisture thresholds of plant water stress



Editorial Note: Parts of this Peer Review File have been redacted as indicated to remove third-party 
material where no permission to publish could be obtained. 



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors present an analysis of the ‘critical soil moisture threshold’ (theta_crit) based on remotely 

sensed and model data and validated with tower data. The theta_crit value is where soil moisture 

becomes limiting and evapotranspiration (ET) fluxes being to decrease. Understanding the value of 

theta_crit can help in creating and parameterizing models of vegetation stress and its effects on ET. 

There have be numerous recent studies of theta_crit, including a similar study the authors have 

previously conducted with global sets of tower-based observation (see ref 6 in particular). The main 

addition here appears to be doing a similar thing with satellite data as well as comparing with 

theta_crit derived from model outputs and evaluating trends in theta_crit through time. 

 

Overall, the study is well written and the subject matter is of interest to a wide audience. I suggest a 

few interconnected issues which should be addressed. 

1) Given the number of prior studies in this subject area (e.g. refs 1, 6, 7, 16, and others cited) the 

authors do not do a sufficient job of placing the finding here within the context of these earlier works. 

These prior studies also examined theta_crit, or similar quantities, and so how is what is learned here 

different, similar, and building upon this prior body of work. We’re similar patterns observed with 

respect to aridity, LAI, veg type, etc.? This is lacking in the manuscript. 

2) In a similar vein, little is present about what hydrologic theory would suggest these values are. For 

instance plant wilting points and other soil moisture thresholds are often defined with respect to the 

soil water potential. Wilting points are typically specified as being the same wilting point across 

textures, with the volumetric water content different from this based on soil retention curves. While I 

see that the authors have soil textures, they should be able to translate their observations into water 

potentials which would represent more physical properties driving the movement of water. 

3) Similarly ecological theory about plant stress in various environments has a long history. What does 

this body of literature say we should expect in more (or less) arid environments or different 

ecosystems. Which types of ecosystems are expected to shut down quicker or later? This has been 

approached in a variety of ways including LSM model parameterization, remote sensing of isohydricity, 

and other studies on vegetation stress thresholds, and so on. What new information about these 

trends/patterns/relationships by the study the authors present. 

 

All the above points are interconnected and represent a lack of placement of this studies results within 

the context of prior work. Given that these theta_crit values are not directly to be used in models (if 

they are then the authors need to compare against what values models are currently using) a better 

effort needs to be made to demonstrate the value of the work done here. This can be achieved by 

properly building off of prior understanding. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This paper presents a global assessment of the critical soil moisture thresholds using satellite-based 

soil moisture and land surface temperature (LST) estimates, unveiling global patterns of plant 

hydraulic strategies adapted to atmospheric dryness and soil water availability. A global map of critical 

soil moisture thresholds was derived by analyzing the relationship between diurnal LST range and soil 

moisture during dry-down periods (days after rainfall). The approach is validated with in-situ data 

from global flux towers (44 sites). The study showed that Earth System Models underestimate the 

spatial variability of the critical soil moisture threshold, indicating potential model deficiencies. Lastly, 

the paper revealed an increasing trend in the fraction of days with soil moisture below the critical 

threshold during the past four decades based on ERA5-Land reanalysis data. 

 

This study identifies the critical soil water threshold, its global patterns, and the environmental factors, 



which provide important insights into ecosystem water-stress regimes and soil moisture constraints on 

global water cycles. The paper is well-written, and the results are clearly and effectively presented. 

However, I have a few questions and comments regarding the potential confounding factors for critical 

soil moisture threshold determination and the analysis of ERA5-Land data, that I hope the authors 

could clarify or consider. 

 

First, the analysis could be enhanced by a thorough evaluation of the confounding variables affecting 

the dLST-SM and EF-SM relationships, thereby, the temporal variation of critical soil moisture 

threshold. In this study, a single soil moisture threshold was derived for each pixel/site, yet it is 

possible that such a threshold present temporal variation linked to atmosphere and vegetation 

changes. As suggested by Feldman et al. (2019, ref 16), VPD consistently mediates the threshold 

inferred from the dLST-SM relationship in African grasslands. Therefore, it would be beneficial to 

include confounding variables in the statistical analysis and understand whether and how they may 

affect spatial patterns of critical soil moisture threshold. 

 

Secondly, the extensive data gaps in the soil moisture threshold derived from ERA5-Land data 

presented, as seen in Fig. 4 and Fig. 9, require a more detailed explanation. The extent of missing 

data, which is much higher than satellite-based analysis, is quite surprising since ERA5-Land is a 

reanalysis product. I’m interested in understanding the main cause of data gaps: lack of dry-down 

periods, limited range of SM, or missing data. If the main cause is the failure of the breakpoint model, 

it may suggest that there are major inconsistencies in SM or LST data between ERA5-Land and 

satellite estimates. The large spread of the scatters between ERA5-Land derived and satellite-derived 

theta_crit in Supplementary Fig. 9b partly indicates such a discrepancy. An explanation and discussion 

of these inconsistencies would be helpful to strengthen the analysis. 

 

Another minor suggestion is to include a simple plot of theta_crit between satellite-derived v.s. ESM-

model estimates, perhaps summarized by biome or climate types. This could provide a more 

straightforward illustration of how ESMs underestimate the threshold in wet regions and overestimate 

the threshold in water-limited regions than the maps shown in Fig. 5. 

 

 

Minor comments: 

Main text 

L164-165: This is an interesting hypothesis. A more detailed elaboration on how recently expanded 

cropland is associated with lower critical soil moisture than established ones would be helpful. 

Fig. 4: More context on the ERA5_Land analysis would be helpful for clarity. Did the ERA5-Land 

analysis use the theta_crit derived from ERA5-Land? Which relationship was used, dLST-SM or ET-SM? 

L263: While the ESMs’ theta_crit estimates show a much smaller spatial variability, the relative 

patterns are quite similar to that of the satellite-derived values, at least in some models. 

 

Method 

L295: Does daily minimum LW occur during nighttime? 

L302: To avoid confusion, consider using the official product name for “SCA-V” (e.g., SMAP_L3_XX). I 

was initially confused that “SCA-V” is soil moisture retrieved from another satellite, before reading the 

method second in detail. 

L316: It would be helpful to provide the temporal availability of the SMOS-IC dataset. 

L389: Could you please double-check the reference here? After a brief read of Reference 7, I didn’t 

find relevant results on dLST-SM relationship, but maybe I missed it. In any case, a brief summary of 

previous work on dLST-SM for theta_crit estimating would be helpful. 

L411: I am curious if there are any potential explanations about the consistently higher estimates 

from satellite versus flux tower in the low theta_crit range. 

L417: Could you please elaborate on the third point about how the high temporal variations could lead 

to uncertainties in the estimates? 

L467: It would be helpful to have the final selected hyperparameters as a reference for other and 



future studies. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

Fu et al. introduce a novel approach for estimating the critical soil moisture threshold and the fraction 

of water-limited days, deviating from methods previously limited to reanalysis and climate models. 

The global map generated in this study is of significant value, establishing a foundational reference for 

future comparisons. Given my own focus on soil moisture regime and critical values estimation, I find 

the figures in this study particularly exciting. The writing is logical, and the methods are clearly 

articulated. While I have only a few comments and suggestions, I recommend acceptance of the paper 

after minor revisions. Hsin Hsu (Wish not to remain anonymous) 

 

1.The paper shows that the Aridity Index is a primary determinant of spatial variation in θcrit. This 

also suggests that annual variability in Aridity Index can lead to annual variability in θcrit. However, 

the annual FSD is calculated based on climatological θcrit rather than year-specific values. This 

approach potentially compromises the fidelity of the FSD trend estimation. Although the authors 

reference a study (Line 507) indicating limited changes in θcrit, another research (Hsu and Dirmeyer, 

2023) suggests significant changes in θcrit over many locations in one century. The FSD examination 

of this study (40 year- reanalysis-global) is between the two mentioned extreme cases (15 year-

observation-few sites vs. 100 year with +1%CO2 per year in climate model). Given that the period 

used in all of these studies are within similar increasing rate of C02, the evidence of 15-year 

observation analysis might not effectively support authors’ statement. The authors could consider a 

decadal θcrit estimation from ERA5-land as supplementary information and/or moving the argument 

of temporal variation of θcrit from method to main text with a more comprehensive discussion. 

 

Hsu and Dirmeyer, 2023. Uncertainty in Projected Critical Soil Moisture Values in CMIP6 Affects the 

Interpretation of a More Moisture-Limited World. Doi: 10.1029/2023EF003511 

 

2.Maybe I miss this somewhere: The paper lacks clarity regarding the sampling method for drydown 

used to estimate θcrit for climate models. It is unclear whether the author selects identical months as 

observations or the model's peak growing seasons. Discussing the implications of this choice is 

essential, as differences in background climate (and the aridity index) between observations and 

model outputs may lead to variations in estimated θcrit. 

 

3.Regarding the comment #3 on divergence of hydroclimate among data products. how does author 

think the inherent divergence of simulated soil moisture distribution (Koster et al. 2009) affects the 

interpretation here. Does this extends beyond model-specific vegetation/soil dynamics as discussed in 

lines 231-236? 

 

Koster et al. 2009: On the Nature of Soil Moisture in Land Surface Models. Doi: 

10.1175/2009JCLI2832.1 

 

4.While the method using dLST appears straightforward, the main text could benefit from a physical 

description of the connection between using Evaporative Fraction (EF) and dLST, explaining why this 

approach is effective (Line 84-85). This addition would enhance the audience's understanding of the 

methodology. 

 

Line 77. typo: atmosphere 
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Response to Reviewers 

 
We greatly appreciate the opportunity to revise our manuscript, and would like to thank all 
reviewers for their valuable expertise and constructive comments. We have carefully revised the 
manuscript following the reviewers’ suggestions. Consequently, our manuscript has been 
considerably improved. Please see below our point-by-point responses in blue text following 
reviewer comments. The line numbers referred to are for the clean version of the revised 
manuscript (non-track-change version).  
 
--------------------------------------------------------------------------------------------------------------------- 
Reviewer #1 (Remarks to the Author): 

 
1.1 The authors present an analysis of the ‘critical soil moisture threshold’ (theta_crit) based on 
remotely sensed and model data and validated with tower data. The theta_crit value is where soil 
moisture becomes limiting and evapotranspiration (ET) fluxes being to decrease. Understanding 
the value of theta_crit can help in creating and parameterizing models of vegetation stress and its 
effects on ET. 
 
There have be numerous recent studies of theta_crit, including a similar study the authors have 
previously conducted with global sets of tower-based observation (see ref 6 in particular). The 
main addition here appears to be doing a similar thing with satellite data as well as comparing 
with theta_crit derived from model outputs and evaluating trends in theta_crit through time. 
 
Overall, the study is well written and the subject matter is of interest to a wide audience. I 
suggest a few interconnected issues which should be addressed.  
 
Thank you very much for supporting this paper and recognizing the significance of our study for 
a wide audience. We have carefully revised the manuscript following your suggestions. 
Consequently, our manuscript has been considerably improved. Please see below our detailed 
responses.  
 
1.2 1) Given the number of prior studies in this subject area (e.g. refs 1, 6, 7, 16, and others 
cited) the authors do not do a sufficient job of placing the finding here within the context of these 
earlier works. These prior studies also examined theta_crit, or similar quantities, and so how is 
what is learned here different, similar, and building upon this prior body of work. We’re similar 
patterns observed with respect to aridity, LAI, veg type, etc.? This is lacking in the manuscript.  
 
Thank you very much for this constructive comment. We agree that prior studies investigated 
this subject area. Bassiouni, Good 1 examined the critical soil water potential threshold based on 
a soil water balance model and an inverse modeling framework. Several previous observational 
studies also reported θcrit at flux tower sites2 or regional level3. Although these previous works 
contributed to improve our knowledge on θcrit at sites level and highlighted the importance of 
scaling observed θcrit globally, they did not provide global maps of θcrit, due to a lack of global 
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high-frequency observations of EF, leaving a gap in our understanding of θcrit at the global scale. 
Please also note that current land surface models are using soil moisture rather than soil water 
potential.  
 
Going beyond previous studies, we expended an approach initially developed over Africa to 
generate the first observation-based global map of θcrit by combining systematic satellite 
observations and in-situ data from flux towers. The approach to map θcrit is based on the diurnal 
amplitude of the land surface temperature and daily soil moisture measurements during periods 
of consecutive days without rain, using in-situ flux tower networks and satellite observations 
from different sensors, including geostationary satellites to measure the diurnal amplitude of land 
surface temperature. This observation-based map of θcrit allowed us to evaluate the possible 
mechanisms controlling the global variation of θcrit, and to diagnose simulated θcrit from current 
Earth System Models. Our study thus evaluated the global distribution of observation-based θcrit 
and its drivers. We also show that models differ greatly from observations, and that models have 
spatially too smooth gradients of θcrit, underestimating θcrit in drylands and overestimating it in 
wet biomes. The novelties of this study include: 
 

1. A global comparison of two approaches to estimate θcrit values: Evaporative Fraction 
decreases during soil moisture dry-downs, which only applicable at in situ flux tower 
sites, and land surface temperature diurnal amplitude increases during soil moisture dry-
downs, applicable globally from satellite observations;  

2. The first observation-based global map of θcrit, derived by combining satellite 
observations and in-situ data from flux towers. 

3. Exploration of the drivers of global θcrit variations using a very comprehensive set of 
drivers and explainable machine learning; 

4. Uncovering the distribution of the fraction of stressed days when soil moisture stays 
below θcrit and its trend over 1979-2020; 

5. Applied the framework to CMIP6 models and diagnosed the θcrit from current Earth 
System Models simulations; 

6. Brought together multiple lines of evidence to better understand θcrit and its implications.  
 
Following your suggestions, we have added more discussion of previous works and highlighted 
our findings and novelties in the revised manuscript. 
 
Line 79-82: 
“Some model-based analyses have used the concept of critical soil water potential1, 4, but current 
land surface models are using soil moisture rather than soil water potential, and global 
observation-based analyses of critical thresholds are still missing.” 
 
Line 202-205: 
“This result is consistent with Bassiouni, Good 1, who evaluated the relation between critical soil 
water potential and aridity index based on a soil water balance model and an inverse modeling 
analysis. But our study rather focused on observation-based θcrit and used a comprehensive set of 
environmental variables to identify the main drivers of global θcrit variations.” 
 
Line 215-217: 
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“Recent studies have also shown that ecosystems with higher leaf area index have a more 
gradual stomatal closure in response to a SM decrease, which sustains photosynthesis in periods 
of low to moderate water stress2.” 
 
Line 92-93: 
“Evaporative regimes have been characterized with observed dLST–SM relationships across 
Africa, but not yet globally3, leaving a gap in our understanding of θcrit across the globe.” 
 
Line 150-155: 
“We further use SM data with different soil layers from ERA5-Land (Methods) and compare the 
θcrit values derived from ERA5-Land SM layer 1 (0-7 cm depth), layer 2 (7-28 cm) and layer 3 
(28-100 cm). We found that surface θcrit is highly correlated with θcrit derived from deep soil 
layers (Supplementary Fig. 6), showing that θcrit obtained from surface SM can provide 
information deeper into the subsurface, consistent with the results of flux tower observations 
reported by both Dong, Akbar 5 and Fu, Ciais 2.” 
 
Line 179-192: 
“The spatial distribution of θcrit in this study aligns with previous findings in ecological theory 
regarding plant stress across various environments 1, 3, 4, 5, 9, 10, 11. Land surface models often have 
a lower θcrit model parameter in arid biomes8, 9, 11. The map of ecosystem-scale isohydricity from 
remotely sensed observations showed that the anisohydric behavior is more common in arid 
ecosystems10. By quantifying the soil water potential threshold, Bassiouni, Good 1 showed that 
water uptake strategies in arid locations are generally more drought resistant. Note that soil water 
potential is rarely measured in situ, and land surface models are using soil moisture rather than 
soil water potential. Different vegetation water stress in arid and humid ecosystems have also 
been recognized in many other studies, based on the ecosystem limitation index9, the Land 
Surface Water Index12, 13, and SM anomalies11. However, these indicators are not direct measures 
of water stress. The θcrit values quantified in our study reflect the long-term adaptation of 
ecosystems to aridity regimes. θcrit is simple to define and is a direct measure of water stress, but 
θcrit remains not observed and our study allows to compare it across biomes. θcrit can also be used 
to quantify the time spent below θcrit and understand how recent climate trends have affected the 
exposure of ecosystems to water stress.”  
 
Line 284-304: 
“Based on the dLST–SM relationship from multiple satellite observations, this study provides 
the geographical distribution and assessment of the variations of θcrit across the globe. We also 
showed the usefulness of hourly LST data from geostationary satellites to understand ecosystem 
water stress6, 7. By uncovering the relationships between θcrit and environmental factors, 
including climatic, biotic and edaphic variables, we further added mechanistic understanding of 
the environmental factors driving the global variation in θcrit. It sheds light on potential tipping 
points of water stress impairing ecosystem functioning, and future research will aim to use the 
new understanding built based on the map of θcrit and its environmental drivers to improve land-
surface model representation of SM constraints on water and carbon cycles. In addition, we 
showed that the terrestrial ecosystems experienced more frequent water-stress regimes through 
the past four decades, with important implications on the current land carbon sink capacity. The 
ten state-of-the-art ESMs that we tested failed to accurately reproduce the magnitude of θcrit, 
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suggesting the uncertain projection of current and future response of carbon uptake and 
evapotranspiration to droughts. These ESMs need to improve the simulation of SM and related 
processes, conforming to measurements, to provide more reliable projections of the response of 
terrestrial ecosystems to climate change and feedbacks between land and atmosphere. Together, 
these results demonstrated the global distribution of θcrit and its drivers, applications and models’ 
performance, with important implications for understanding the inception of water stress in 
models and identifying tipping points of water stress that could result in widespread impairment 
of ecosystem functioning and loss of ecosystem services with continued climate warming.” 
 
1.3 2) In a similar vein, little is present about what hydrologic theory would suggest these values 
are. For instance plant wilting points and other soil moisture thresholds are often defined with 
respect to the soil water potential. Wilting points are typically specified as being the same wilting 
point across textures, with the volumetric water content different from this based on soil 
retention curves. While I see that the authors have soil textures, they should be able to translate 
their observations into water potentials which would represent more physical properties driving 
the movement of water. 
 
Thank you for this critical comment. We fully agree that soil water potential represents better the 
physical properties in driving the movement of water than soil moisture. Following your 
suggestions, we tried to converted our map of θcrit into a map of critical soil water potential (ycrit) 
using soil pedotransfer functions, which showed the map of ycrit is not realistic, with more 
negative ycrit values in the driest regions and less negative ones in wet ecosystems (Figure R1). 
The bias is likely due to the uncertainty in soil pedotransfer functions and parameters. It is well 
known that the parameter distributions in pedotransfer functions are poorly constrained and 
prevent confident transformation of soil moisture to soil water potential. For example, even 
relatively small variations in a single parameter of the van Genuchten model cause soil water 
potential to vary by an order of magnitude over a wide range of soil moisture8. Please look at the 
ref 8 for more details about the large uncertainty in converting soil moisture to soil water 
potential using soil pedotransfer functions and parameters. Given the large uncertainties in soil 
pedotransfer functions and parameters, we choose not to add the map of critical soil water 
potential into the manuscript.  
 

 
Figure R1. Estimated soil matric potential threshold by converting the θcrit based on soil 
pedotransfer function and parameters. 
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1.4 3) Similarly ecological theory about plant stress in various environments has a long history. 
What does this body of literature say we should expect in more (or less) arid environments or 
different ecosystems. Which types of ecosystems are expected to shut down quicker or later? 
This has been approached in a variety of ways including LSM model parameterization, remote 
sensing of isohydricity, and other studies on vegetation stress thresholds, and so on. What new 
information about these trends/patterns/relationships by the study the authors present. 
 
Thank you for this valuable suggestion. The spatial distribution of θcrit in this study is in  
agreement with previous studies in ecological theory about plant stress in various environments1, 

3, 4, 5, 9, 10, 11. Land surface models often have a lower θcrit model parameter in arid biomes8, 9, 11. 
The map of ecosystem-scale isohydricity derived from remotely sensed observations showed that 
the anisohydric behavior is more common in arid ecosystems10. Note that this plant trait is not a 
direct indicator of water stress. By quantifying the soil water potential threshold, Bassiouni, 
Good 1 showed that water uptake strategies in arid locations are generally more drought resistant. 
But soil water potential is rarely measured in situ, and land surface models are using soil 
moisture rather than soil water potential. Different vegetation water stress in arid and humid 
ecosystems have also been recognized in many other studies, based on the ecosystem limitation 
index9, the Land Surface Water Index12, 13, and SM anomalies11. However, these indicators are 
not direct measures of water stress. 
 
Quantifying the inception of water stress – the θcrit, as done in our study, is a prerequisite for 
understanding the response rates of gas exchanges to SM stress. θcrit is simple to define and is a 
direct measure of water stress (Evaporative Fraction drops), but θcrit remains not observed and 
our study allows to compare it across biomes. The θcrit values quantified in our study reflect the 
long-term adaptation of ecosystems to aridity regimes. Ecosystems with low θcrit often have 
greater adaptive capacity to deal with water stress because low θcrit reflects a resistance to soil 
dryness. In addition, explainable machine learning models (random forest) were applied in our 
study to gain insights on the climatic, biotic and edaphic factors controlling the spatial variations 
of θcrit. Based on our map of θcrit , we can also calculate the fraction of stressed days (FSD, Fig. 4 
in the manuscript) to explore how many days in a year that ecosystem are water-limited.  
 
Observation based models of evapotranspiration and gross primary productivity (e.g., light use 
efficiency models) typically assume fixed plant functional type values14, 15 to define SM stress 
thresholds, that are used across regions and climate. Our study provides spatially explicit 
parameterizations of plant water stress as a function of envirometal drivers that could be 
incorporated in future model iterations to improve the representation of plant water stress and its 
spatial variations. 
 
In the revised manuscript, we now added this discussion as suggested. 
 
Line 179-192: 
“The spatial distribution of θcrit in this study aligns with previous findings in ecological theory 
regarding plant stress across various environments 1, 3, 4, 5, 9, 10, 11. Land surface models often have 
a lower θcrit model parameter in arid biomes8, 9, 11. The map of ecosystem-scale isohydricity from 
remotely sensed observations showed that the anisohydric behavior is more common in arid 
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ecosystems10. By quantifying the soil water potential threshold, Bassiouni, Good 1 showed that 
water uptake strategies in arid locations are generally more drought resistant. Note that soil water 
potential is rarely measured in situ, and land surface models are using soil moisture rather than 
soil water potential. Different vegetation water stress in arid and humid ecosystems have also 
been recognized in many other studies, based on the ecosystem limitation index9, the Land 
Surface Water Index12, 13, and SM anomalies11. However, these indicators are not direct measures 
of water stress. The θcrit values quantified in our study reflect the long-term adaptation of 
ecosystems to aridity regimes. θcrit is simple to define and is a direct measure of water stress, but 
θcrit remains not observed and our study allows to compare it across biomes. θcrit can also be used 
to quantify the time spent below θcrit and understand how recent climate trends have affected the 
exposure of ecosystems to water stress.”  
 
1.5 All the above points are interconnected and represent a lack of placement of this studies 
results within the context of prior work. Given that these theta_crit values are not directly to be 
used in models (if they are then the authors need to compare against what values models are 
currently using) a better effort needs to be made to demonstrate the value of the work done here. 
This can be achieved by properly building off of prior understanding. 
 
Thank you very much for these constructive comments. In this study, we are trying our best and 
making the most of current knowledges to generate the first observation-based global map of θcrit 
by combining systematic satellite observations and in-situ data from flux towers. We have 
followed your suggestions and carefully revised the manuscript as above. As a consequence, our 
manuscript has been considerably improved. Please see our detailed responses above. We hope 
that our responses and revision of the manuscript are satisfactory to you.  
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Reviewer #2 (Remarks to the Author): 
 
2.1 This paper presents a global assessment of the critical soil moisture thresholds using satellite-
based soil moisture and land surface temperature (LST) estimates, unveiling global patterns of 
plant hydraulic strategies adapted to atmospheric dryness and soil water availability. A global 
map of critical soil moisture thresholds was derived by analyzing the relationship between 
diurnal LST range and soil moisture during dry-down periods (days after rainfall). The approach 
is validated with in-situ data from global flux towers (44 sites). The study showed that Earth 
System Models underestimate the spatial variability of the critical soil moisture threshold, 
indicating potential model deficiencies. Lastly, the paper revealed an increasing trend in the 
fraction of days with soil moisture below the critical threshold during the past four decades based 
on ERA5-Land reanalysis data.  
 
This study identifies the critical soil water threshold, its global patterns, and the environmental 
factors, which provide important insights into ecosystem water-stress regimes and soil moisture 
constraints on global water cycles. The paper is well-written, and the results are clearly and 
effectively presented. However, I have a few questions and comments regarding the potential 
confounding factors for critical soil moisture threshold determination and the analysis of ERA5-
Land data, that I hope the authors could clarify or consider. 
 
We greatly appreciate the reviewer’s positive comments and support of the manuscript. We have 
thoroughly revised the manuscript following your suggestions. Consequently, our manuscript has 
been considerably improved. Please see below our detailed responses. 
 
2.2 First, the analysis could be enhanced by a thorough evaluation of the confounding variables 
affecting the dLST-SM and EF-SM relationships, thereby, the temporal variation of critical soil 
moisture threshold. In this study, a single soil moisture threshold was derived for each pixel/site, 
yet it is possible that such a threshold present temporal variation linked to atmosphere and 
vegetation changes. As suggested by Feldman et al. (2019, ref 16), VPD consistently mediates 
the threshold inferred from the dLST-SM relationship in African grasslands. Therefore, it would 
be beneficial to include confounding variables in the statistical analysis and understand whether 
and how they may affect spatial patterns of critical soil moisture threshold. 
 
Thank you for this critical comment. While other factors limit evapotranspiration besides SM 
and the linear dependency is a simple approximation, many previous studies have showed that 
the EF–SM framework provides a good first-order representation of regimes of land–atmosphere 
coupling (Fig. 5 from Seneviratne, Corti 16), both in models and observations (e.g., Seneviratne, 
Corti 16, Seneviratne, Lüthi 17, Koster, Dirmeyer 18, Koster, Suarez 19, Teuling, Seneviratne 20, 
Feldman, Short Gianotti 3). Here we provided a global analysis based on this first-order 
theoretical and empirically verified framework. 
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Fig. 5 from Seneviratne, Corti 16. Definition of soil moisture regimes and corresponding 
evapotranspiration regimes. This paper has been cited over 4000 times by the field since 2010. 
 
We fully agree that it is possible that the critical soil moisture threshold present temporal 
variation linked to atmospheric and vegetation changes. But as Feldman et al. 2019 concluded 
that, the actual impacts of these confounding factors (e.g. VPD, net radiation) on θcrit are minor, 
and that soil moisture remains to be the dominant factor in partitioning surface energy in the 
transition from non-water limited to water limited regimes. It is also important to note that 
Feldman et al. 2019’s analysis on confounding factors quantified how short‐term changes of 
confounding factors influenced dLST–SM relationships. As stated in Feldman et al. 2019, 
caveats exist in the analysis of confounding factors, including high covariation between 
regressors, assumption of linear interactions, and inability to account for auto-regressive terms 
due to irreconcilable time gaps between drydowns. Given these uncertainties, we choose to not 
conduct such an analysis. Instead, we used random forest models and uncovered the relationships 
between θcrit and environmental factors, including climatic, biotic and edaphic factors, to 
evaluate the possible drivers in controlling the spatial variation of θcrit. We believe this is much 
more important than considering the minor effects of confounding factors on θcrit based on short-
term temporal variations. 
 
In the revised manuscript, we now added this discussion according to your suggestion. 
 
Line 392-397: 
“While other factors limit evapotranspiration besides SM and the linear dependency is a simple 
approximation, many previous studies have showed that the EF–SM and dLST–SM framework 
provides a good first-order representation of regimes of land–atmosphere coupling, both in 
models and observations (e.g., Seneviratne, Corti 16, Seneviratne, Lüthi 17, Koster, Dirmeyer 18, 
Koster, Suarez 19, Teuling, Seneviratne 20, Feldman, Short Gianotti 3). Here we provided a global 
analysis based on this first-order theoretical and empirically verified framework.” 
 
2.3 Secondly, the extensive data gaps in the soil moisture threshold derived from ERA5-Land 
data presented, as seen in Fig. 4 and Fig. 9, require a more detailed explanation. The extent of 
missing data, which is much higher than satellite-based analysis, is quite surprising since ERA5-
Land is a reanalysis product. I’m interested in understanding the main cause of data gaps: lack of 
dry-down periods, limited range of SM, or missing data. If the main cause is the failure of the 
breakpoint model, it may suggest that there are major inconsistencies in SM or LST data between 
ERA5-Land and satellite estimates. The large spread of the scatters between ERA5-Land derived 

                [Redacted]
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and satellite-derived theta_crit in Supplementary Fig. 9b partly indicates such a discrepancy. An 
explanation and discussion of these inconsistencies would be helpful to strengthen the analysis.  
 
Thank you for this constructive comment. We compared the daily ERA5-Land SM and dLST 
with those from satellites for a day in 2020 (Supplementary Fig. 10). We found that the primary 
biases between ERA5-Land and satellites lie in SM data, rather than dLST data, emphasizing the 
importance of global soil moisture measurements. Following your suggestions, we have added 
the explanation and discussion in the revised manuscript.  
 

 
Supplementary Fig. 10. Comparison of daily ERA5-Land SM and dLST with those from 
satellites for a day in 2020. 
 
Line 537-543: 
“We noted that there are some data gaps in θcrit derived from ERA5-Land datasets 
(Supplementary Fig. 9a) because of the failure to fit a breakpoint model, suggesting that there are 
some inconsistencies in SM or dLST data between ERA5-Land and satellites. The large spread 
of the scatters between ERA5-Land derived and satellite-derived θcrit (Supplementary Fig. 9b) 
partly indicates such a discrepancy. We thus compared the daily ERA5-Land SM and dLST with 
those from satellites for a day in 2020, and found that the primary biases between ERA5-Land 
and satellites lie in SM data, rather than dLST data (Supplementary Fig. 10).” 
 
2.4 Another minor suggestion is to include a simple plot of theta_crit between satellite-derived 
v.s. ESM-model estimates, perhaps summarized by biome or climate types. This could provide a 
more straightforward illustration of how ESMs underestimate the threshold in wet regions and 
overestimate the threshold in water-limited regions than the maps shown in Fig. 5. 
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Following your interesting suggestion, we now show a new plot comparing the distributions of 
θcrit derived from satellites vs ESMs, summarized by climate. 

 

 
Supplementary Fig. 11. Comparison between multi-model mean θcrit and observation-based 
θcrit grouped by climate types based on the aridity classification. 
 
Line 257-264: 
“We found that the models showed less spatial variability of θcrit than in the observation-based 
map (Fig. 5a, Supplementary Figs. 11-12, Fig. 2g) and significantly underestimated θcrit in wet 
regions (Fig. 5b, Supplementary Fig. 11), suggesting that they may underestimate the soil 
moisture point of inception of plant water stress in wet regions. Such a bias may lead to overly 
optimistic projections of the future increase of plant CO2 uptake. Conversely, models 
significantly overestimated θcrit in dry regions and failed to capture the observed very low θcrit 
values in arid areas (Fig. 5b, Supplementary Fig. 11), which could partly explain why ESMs 
underestimate both gross and net CO2 fluxes in dryland ecosystems21, 22.” 
 
Minor comments: 
Main text 
2.5 L164-165: This is an interesting hypothesis. A more detailed elaboration on how recently 
expanded cropland is associated with lower critical soil moisture than established ones would be 
helpful. 
 
Thank you for this comment. Following your suggestion, we have added more explanations in 
the revised manuscript. 
 
Line 476-478: 
“We also tested the hypothesis that the areas of recent cropland expansion over drier marginal 
lands should be associated with a decrease of θcrit, as more crop species adapted to dry 
environments would be selected.” 
 
2.6 Fig. 4: More context on the ERA5_Land analysis would be helpful for clarity. Did the 
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ERA5-Land analysis use the theta_crit derived from ERA5-Land? Which relationship was used, 
dLST-SM or ET-SM? 
 
Yes, the ERA5-Land analysis used the θcrit derived from ERA5-Land SM and dLST. We now 
stated it clearly in the revised manuscript as suggested. 
 
Line 528-529: 
“Following satellite datasets analysis, the θcrit for ERA5-Land was estimated using ERA5-Land 
SM and dLST.” 
 
Line 712-713: 
“The global distribution of θcrit using ERA5-Land surface SM and dLST.” 
 
2.7 L263: While the ESMs’ theta_crit estimates show a much smaller spatial variability, the 
relative patterns are quite similar to that of the satellite-derived values, at least in some models.  
 
Thank you for this suggestion. We have modified the sentence to read “Although the relative 
patterns of θcrit in some models are similar to those observed, the ten state-of-the-art ESMs that 
we tested failed to accurately reproduce the magnitude and spatial variability of θcrit, suggesting 
the uncertain projection of current and future response of carbon uptake and evapotranspiration 
to droughts.” 
 
Method 
2.8 L295: Does daily minimum LW occur during nighttime? 
 
The daily minimum LW occurs either in the morning (e.g., 5 am) or at night (e.g., 19 pm), and 
this timing varies across different sites and days.  
 
2.9 L302: To avoid confusion, consider using the official product name for “SCA-V” (e.g., 
SMAP_L3_XX). I was initially confused that “SCA-V” is soil moisture retrieved from another 
satellite, before reading the method second in detail.  
 
Thank you for this suggestion. We have added the official product name for “SCA-V” 
(SMAP_L3_SM_P) as suggested.  
 
Line 334-336: 
“We used three L-band passive daily surface SM (to a depth of 5 cm) products: Soil Moisture 
Active Passive (SMAP)-INRAE-BORDEAUX (SMAP-IB)23, single channel vertical polarization 
(SCA-V, SMAP_L3_SM_P)24  and Soil Moisture and Ocean Salinity in version IC (SMOS-
IC)25.” 
 
2.10 L316: It would be helpful to provide the temporal availability of the SMOS-IC dataset.  
 
Changed as the reviewer suggested. 
 
Line 348-349: 
“SMOS-IC has 25 km resolution and two to four-day revisit from 1 January 2011 to 31 



 12 

December 202025.” 
 
2.11 L389: Could you please double-check the reference here? After a brief read of Reference 7, 
I didn’t find relevant results on dLST-SM relationship, but maybe I missed it. In any case, a brief 
summary of previous work on dLST-SM for theta_crit estimating would be helpful. 
 
Thank you for your careful reading. We have deleted the reference 7 here and added a brief 
summary of previous work per your suggestions.  
 
Line 420-423: 
“Evaporative regimes and θcrit estimating have been characterized previously with observed 
dLST–SM relationships across some regions, such as Africa3 and site level26, showing that the 
dLST–SM relationship is an effective method to estimate θcrit. Here we applied this method to 
the global scale using multiple satellite observations.” 
 
Line 88-92: 
“Specifically, the land-surface temperature diurnal amplitude (dLST) starts to increase below θcrit 
when ecosystems plunge into the water‐limited regime27, 26, 28, 29. An increased dLST, for a given 
amount of net radiation, is directly linked to a decrease in EF and thus increased SM stress30. 
dLST is positively associated with sensible heating but negatively associated with EF and SM26, 

28, 29.” 
 
2.12 L411: I am curious if there are any potential explanations about the consistently higher 
estimates from satellite versus flux tower in the low theta_crit range. 
 
Thank you for this comment. We have added the possible explanations in the revised manuscript 
per your suggestion.  
 
Line 452-455: 
“We noted that the qcrit estimated from satellites is a bit higher than that of flux towers in the low 
qcrit range (Supplementary Fig. 5), which may be attributed to higher SM values from satellite 
data compared to measurements from flux towers in arid regions because of different sampling 
depths between flux tower measurements and satellite observations.” 
 
2.13 L417: Could you please elaborate on the third point about how the high temporal variations 
could lead to uncertainties in the estimates? 
 
Thank you for this suggestion. We have elaborated on the third point in the revised manuscript as 
suggested.  
 
Line 449-452: 
“Third, daily data from both flux towers and satellites were used, and high variability and 
measurement errors affect the data at this short time scale. Moreover, there are 48 measurements 
per day for flux towers but only a few revisits per week for satellite SM. These factors could 
introduce biases when comparing their θcrit values.” 
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2.14 L467: It would be helpful to have the final selected hyperparameters as a reference for other 
and future studies.	
 
Changed as the reviewer suggested. 
 
Line 504-507: 
 “Additionally, for each model, the number of variables used at each node split (between 2 and 
the number of predictor variables, with a final selection of 4) and the number of trees used in the 
model (between 50 and 5000, with a final selection of 1500) were optimized to maximize out-of-
bag R-square value.” 
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Reviewer #3 (Remarks to the Author): 
 
3.1 Fu et al. introduce a novel approach for estimating the critical soil moisture threshold and the 
fraction of water-limited days, deviating from methods previously limited to reanalysis and 
climate models. The global map generated in this study is of significant value, establishing a 
foundational reference for future comparisons. Given my own focus on soil moisture regime and 
critical values estimation, I find the figures in this study particularly exciting. The writing is 
logical, and the methods are clearly articulated. While I have only a few comments and 
suggestions, I recommend acceptance of the paper after minor revisions. Hsin Hsu (Wish not to 
remain anonymous) 
 
We appreciate Dr. Hsu’s positive comments and very helpful suggestions. We have thoroughly 
revised the manuscript following your suggestions. Please see below our detailed responses. 
 
3.2 1.The paper shows that the Aridity Index is a primary determinant of spatial variation in 
θcrit. This also suggests that annual variability in Aridity Index can lead to annual variability in 
θcrit. However, the annual FSD is calculated based on climatological θcrit rather than year-
specific values. This approach potentially compromises the fidelity of the FSD trend estimation. 
Although the authors reference a study (Line 507) indicating limited changes in θcrit, another 
research (Hsu and Dirmeyer, 2023) suggests significant changes in θcrit over many locations in 
one century. The FSD examination of this study (40 year- reanalysis-global) is between the two 
mentioned extreme cases (15 year-observation-few sites vs. 100 year with +1%CO2 per year in 
climate model). Given that the period used in all of these studies are within similar increasing 
rate of CO2, the evidence of 15-year observation analysis might not effectively support authors’ 
statement. The authors could consider a decadal θcrit estimation from ERA5-land as 
supplementary information and/or moving the argument of temporal variation of θcrit from 
method to main text with a more comprehensive discussion. 
 
Hsu and Dirmeyer, 2023. Uncertainty in Projected Critical Soil Moisture Values in CMIP6 
Affects the Interpretation of a More Moisture-Limited World. Doi: 10.1029/2023EF003511 
 
Thank you for this constructive comment. Following your suggestion, we have moved the 
argument of temporal variation of θcrit from method to main text with a more comprehensive 
discussion by referring to Hsu and Dirmeyer 31. 
 
Line 247-253: 
“We acknowledge that θcrit may change over time. Based on model outputs analysis, Hsu and 
Dirmeyer 31 found significant temporal variations in θcrit across many locations spanning 100 
years. Conversely, another study analyzed the temporal dynamics of θcrit at five flux tower sites 
with at least 15 years of measurements and found no significant trend over time2. This 
underscores the need for future research to gain a better understanding of the temporal dynamics 
of θcrit through longer observations. We considered here that the temporal dynamics of θcrit 
should not hamper our trend analysis, given that even if θcrit changes, its magnitude over 40 years 
is minimal.” 
 
3.3 2.Maybe I miss this somewhere: The paper lacks clarity regarding the sampling method for 
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drydown used to estimate θcrit for climate models. It is unclear whether the author selects 
identical months as observations or the model's peak growing seasons. Discussing the 
implications of this choice is essential, as differences in background climate (and the aridity 
index) between observations and model outputs may lead to variations in estimated θcrit. 
 
Thank you for this suggestion. The full year data of satellite observations were used and results 
were found to be similar when only growing season data were used. Following satellite datasets 
analysis, the full year data of model outputs were also used. This is now clearly stated in the 
revised manuscript.  
 
Line 560-564: 
“Following the observational analysis, the same analysis was carried out for the ten CMIP6 
models. For each model, we first selected all soil dry-downs from the full-year dataset of model 
outputs, defined as at least 10 consecutive days of decreasing SM, then quantified θcrit pixel-by-
pixel by means of the EF–SM relationship.” 
 
3.4 3.Regarding the comment #3 on divergence of hydroclimate among data products. how does 
author think the inherent divergence of simulated soil moisture distribution (Koster et al. 2009) 
affects the interpretation here. Does this extends beyond model-specific vegetation/soil dynamics 
as discussed in lines 231-236? 
 
Koster et al. 2009: On the Nature of Soil Moisture in Land Surface Models. Doi: 
10.1175/2009JCLI2832.1 
 
Thank you for this critical comment. We agree that different models led to different simulated 
soil moisture values, which could contribute to the differences between observation-based θcrit 
and models-based θcrit values. But we found that all models consistently showed less spatial 
variability of θcrit than in the observation-based map (Supplementary Fig. 12), suggesting that our 
result did not depend on the inherent divergence of simulated soil moisture distribution. Please 
also note that we only used the surface soil moisture for all models so that the effects of the 
inherent divergence of simulated soil moisture from different models are muted. 
 
Following your suggestion, we have discussed the effects of inherent divergence of simulated 
soil moisture distribution from different models by referring to Koster, Guo 32. 
 
Line 566-570: 
“We noted that different models led to different simulated SM values32, and this inherent 
divergence of simulated SM distribution could also contribute to the differences between 
observation-based θcrit and models-based θcrit values. But we found that all models consistently 
showed less spatial variability of θcrit than in the observation-based map, suggesting that our 
result did not depend on the inherent divergence of simulated SM distribution.” 
 
3.5 4.While the method using dLST appears straightforward, the main text could benefit from a 
physical description of the connection between using Evaporative Fraction (EF) and dLST, 
explaining why this approach is effective (Line 84-85). This addition would enhance the 
audience's understanding of the methodology. 
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Thank you for your valuable suggestion. We have now incorporated additional details on the 
connection between using EF and dLST in the revised manuscript, as per your recommendation. 
 
Line 88-92: 
“Specifically, the land-surface temperature diurnal amplitude (dLST) starts to increase below θcrit 
when ecosystems plunge into the water‐limited regime27, 26, 28, 29. An increased dLST, for a given 
amount of net radiation, is directly linked to a decrease in EF and thus increased SM stress30. 
dLST is positively associated with sensible heating but negatively associated with EF and SM26, 

28, 29.” 
 
3.6 Line 77. typo: atmosphere	
 
Changed as suggested. 
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REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed my comments in their revision. Nice work. 

 

 

Reviewer #2 (Remarks to the Author): 

 

Dear authors, 

 

Thank you very much for thoroughly addressing my previous comments! All my concerns have been 

comprehensively resolved and the paper has been significantly improved in clarity. I just have a few 

minor suggestions for the authors to consider incorporating. 

 

 

Line 536-537 (track-change manuscript): Thanks for the clarification. Could you please also specific 

the temporal range for this analysis? I am curious to know whether it covers 2016-2020 (consistent 

with satellite-based analysis) or the entire time period of ERA5-Land. 

 

Supplementary Fig. 9, Fig.10: The scatter plots might benefit from using a point density plot (or 

adjusting the transparency of the points) to mitigate the visual bias caused by overlapping. This 

overlap seems to visually amplify the impact of outliers and reduce the actual significance of the 

correlations. 

 

 

Thanks again for your efforts in revising the manuscript and addressing my comments! 

Congratulations on completing an exciting paper! 

 

 

Reviewer #2 (Remarks on code availability): 

 

The authors have provided a ReadMe file that provides detialed information in running the code to 

reproduce the results. Yet, since the raw data is public and not included in the repository, I suggest 

providing a more detailed description of the raw data format and preprocessing processes (if any) to 

faciliate reproducing. For example, the first step, "SM dry-down identification.m" reads in "*.mat" 

files, it would be benefitial to briefly outlinet the content of these files as comment or in the ReadMe. 

 

 

Reviewer #3 (Remarks to the Author): 

 

I appreciate the authors for addressing the comments and modifying their manuscript accordingly. The 

revised manuscript extensively discusses the relevant literature and uncertainty of their analysis, and 

provides great detail on their methods. I close my paper-review work and anticipate the paper's 

publication. 

 

Minor comment: 

 

The information provided in Line 310: "have undergone a standardized set of quality control and gap 

filling" is highly redundant to Line 320: "Data were quality controlled so that only measured...” 

 

-Hsin Hsu 
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#NCOMMS-23-53911A 

 
Response to Reviewers 

 
Reviewer #1 (Remarks to the Author): 

 
1.1 The authors have addressed my comments in their revision. Nice work. 
 
Thank you very much for your constructive comments in the process. 
 
Reviewer #2 (Remarks to the Author): 
 
2.1 Thank you very much for thoroughly addressing my previous comments! All my concerns 
have been comprehensively resolved and the paper has been significantly improved in clarity. I 
just have a few minor suggestions for the authors to consider incorporating. 
 
We greatly appreciate the reviewer’s positive comments and support of the manuscript. We have 
thoroughly revised the manuscript following your suggestions. Please see below our detailed 
responses. 
 
2.2 Line 536-537 (track-change manuscript): Thanks for the clarification. Could you please also 
specific the temporal range for this analysis? I am curious to know whether it covers 2016-2020 
(consistent with satellite-based analysis) or the entire time period of ERA5-Land. 
 
Thank you very much for your suggestions. As per your suggestions, we have specified the 
temporal range in Line 525-526: “We first compared the FSD from ERA5-Land reanalysis SM 
during 2016-2020 with that of satellite observations.” 
 
2.3 Supplementary Fig. 9, Fig.10: The scatter plots might benefit from using a point density plot 
(or adjusting the transparency of the points) to mitigate the visual bias caused by overlapping. 
This overlap seems to visually amplify the impact of outliers and reduce the actual significance 
of the correlations. 
 
Thank you for this constructive comment. Following your suggestion, we have adjusted the 
transparency of the points in Supplementary Figs. 9-10. 
 
2.4 Thanks again for your efforts in revising the manuscript and addressing my comments! 
Congratulations on completing an exciting paper! 
 
Thank you for your kind words and valuable suggestions. 
 
2.5 Reviewer #2 (Remarks on code availability): 
The authors have provided a ReadMe file that provides detialed information in running the code 
to reproduce the results. Yet, since the raw data is public and not included in the repository, I 
suggest providing a more detailed description of the raw data format and preprocessing processes 
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(if any) to faciliate reproducing. For example, the first step, "SM dry-down identification.m" 
reads in "*.mat" files, it would be benefitial to briefly outlinet the content of these files as 
comment or in the ReadMe. 
 
Thank you for this suggestion. Following your suggestion, we have added the detailed 
description of the raw data format and preprocessing processes in the ReadMe file. As an 
example, the ‘SM_SCA-V_2020.mat’ and ‘Delta_LST_2020.mat’ files have been included in 
the repository. 
 
Reviewer #3 (Remarks to the Author): 
 
3.1 I appreciate the authors for addressing the comments and modifying their manuscript 
accordingly. The revised manuscript extensively discusses the relevant literature and uncertainty 
of their analysis, and provides great detail on their methods. I close my paper-review work and 
anticipate the paper's publication. 
 
Minor comment: 
 
The information provided in Line 310: "have undergone a standardized set of quality control and 
gap filling" is highly redundant to Line 320: "Data were quality controlled so that only 
measured...” 
 
-Hsin Hsu 
 
Thank you for your positive comments and helpful suggestions. As per your suggestions, we 
have removed Line 320: "Data were quality controlled so that only measured...”.  
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