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S1. Buerger’s mechanism

The Buerger’s mechanism [25] is described by a uniform compression of the B1 rhombohedral primitive cell (Fig. S9) in the [111]B1
direction and uniform expansion in all directions perpendicular to this. However, this mechanism predicts intensity distribution
inconsistent with our measurements. Therefore, it was concluded that this mechanism is not activate. The stretch tensor which map
the primitive (rhombohedral) B1 basis vectors, (�!a P,

�!b P,
�!c P) to the B2 basis vectors, (a0, b0, c0) can be determined by calculating

the stretches in the principal directions. These directions are the ones along which the deformation is purely hydrostatic. A stretch
of 1 preserves the length of vectors in the direction, and any value higher (lower) will expand (contract) vectors in that principal
direction.

The Buerger’s mechanism requires h111iB1 to be one such principal direction. Since there is uniform contraction in the cor-
responding {111}B1 plane, any two orthogonal vectors in this plane can be chosen as the other two principal directions. For the
example illustrated in Fig. S9, the three principal directions are 1p

3
[111]B1, 1p

2
[11̄0]B1 and 1p

6
[112̄]B1. The amount of stretch can

be calculated using the XRD measured lattice parameters as shown in Fig. S10A. The direction (S ) and stretches (⇤) for shot
s22257 (Fig. 2A, 442(28) GPa) are given by:
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The stretches for the MgO B1!B2 is slightly di↵erent than the values reported for NaCl in Ref. [50] (0.6 for the [111]B1 and
1.19 for the other two). The stretch tensor is given by S⇤S �1. This tensor when applied to the rhombohedral B1 basis (�!a P =
a
2 [110]B1,

�!b P =
a
2 [101]B1) and �!c P =

a
2 [011]B1 (a is the lattice parameter of the B1 phase), results in the cubic B2 basis vectors (a0,

b0, c0 in Fig. S9). These basis vectors in the B1 crystallographic frame are given by a0p
6
[221̄]B1,

a0p
6
[21̄2]B1 and a0p

6
[1̄22]B1 (a0 is the

lattice parameter of the B2 phase). There are a total of twelve orientation variants for this transformation mechanism. One such
variant ([1̄11]B1) is schematically shown in Fig. S9.



S2. Watanabe-Tokonami-Morimoto mechanism

The WTM mechanism, as described in the main text and Fig. 2B, produces a XRD texture pattern consistent with our data. The
principal stretches, using the same method described above, depend on the XRD-determined lattice parameters for the B1 and B2
phases. In the WTM mechanism, there is expansion in the h110iB1 direction and uniform contraction in the corresponding {110}B1
plane. The principal direction, S (as columns) and principal stretch, ⇤ (eigenvalue) along these directions for shot s22257 (Fig. 2A,
442(28) GPa) are given by,
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The stretch tensor, F is given by S⇤S �1. Strain values for all the other shots are presented in Fig. S10B. The WTM mechanism
produces six distinct orientation variants.
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Figure S1. P-T phase diagram of MgO. Plotted are the predicted B1!B2 phase boundary (dashed-dot curves) [10, 14–18, 36, 59, 77, 78, 80, 81] and liquid phase
boundaries (dashed curves) [10, 15, 17, 82–86] with shaded yellow region constrained at low-pressure by static-compression (gray crosses) [84, 87] and at 250 GPa
and 9100 K by gas-gun experiments (gray diamond) [88]. We note there is an additional experimental constraint on the melt curve between 1200-2000 GPa [20].
Also plotted is the estimated onset condition for the B2-phase from laser ramp-compression techniques (gray right-triangle) [9], and an example of the modeled
temperature profile within a five-Earth-mass rocky exoplanet (red curve) [89]. Predicted Hugoniots are shown as the solid traces [10, 14–16, 59, 72] and compared
to previous P-T measurements along the Hugoniot: (gray circles [8] - which have been corrected in pressure based on the subsequent Hugoniot measurements by
Root et al. [10], see Fig. S11), (gray bands) [19], (gray square) [59], (gray down triangle) [90], (gray up triangle) [91]. The calculated 0-K range of onset pressures
for the B1!B2 phase transformation is shown by the scale on the bottom axis (⇠400-600 GPa) [92]. The data reported in our combined laser-shock compression,
X-ray di↵raction and pyrometry study are shown as circles (see also Fig. 1a).
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Figure S2. Determined pressure-density states of shock compressed MgO [100]. A summary of published P-⇢ data for MgO. Calculated pressure and measured
density for the B1 (green filled circles) and B2-phase (maroon open circles) (see Materials and Methods). Hugoniot data based on shock-speed measurements are
shown as the open gray circle, crossed circle, open square and crossed square symbols [2, 8, 10, 58–61]. A Hugoniot based on density functional theory (DFT)
calculations is shown as the green (B1), maroon (B2) and black (liquid) open triangles [10]. Solid line fits to these points are based on linear fits in Us-up. The
Hugoniot calculated from quasi-harmonic ab initio molecular dynamic calculations from Soubiran et al. [16] are shown as the blue dash-dot curve). The purple
dashed arrow represents an extension of the B1 phase up to pressure where we see only B1 in our X-ray di↵raction (XRD) data. Ramp compression XRD data is
shown as open green (B1) and maroon (B2) squares [9], and static compression (B1) data is shown as green crosses [30] with a Vinet equation-of-state (EOS) fit
to high pressure (green dashed). In our experiments, the pressure regions associated with XRD-measured phases are shown by the left axis. The shaded regions
represent pressure intervals where no data was obtained. At 425 GPa, measured densities show divergence from previous Hugoniot measurements with increased
agreement at higher pressures (⇠600 GPa) (see also Fig. 3B).
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Figure S3. Laser pulse shapes and measured quartz shock velocity profiles for all experiments. (A) Laser pulse shapes and (B) the associated measured quartz
shock velocity, US ,Qtz, for all the shots considered in our study (bold solid and bold dashed curves). The light dashed and light dotted curves represent HYADES
hydrocode simulations fit to the measured US ,Qtz, which provides information on the US ,MgO states during the x-ray probe period (shown here as bound by vertical
bars).
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Figure S4. X-ray di↵raction data for all shots. (A) Stereographic projection of X-ray di↵raction data for two representative shots, demonstrating a repeatable
texture, and the drop in di↵raction intensity, as a function of increasing pressure. Peak photo-stimulated luminescence (PSL) counts for the B1 (002) peak is 145
(top at 442(28) GPa) and 0.8 (bottom at 493(34) GPa). (B) Image plates detectors projected as a function of �, and d-spacing for all shots within this study [45]. The
red vertical dashed lines represent the positions of the reference peaks from the ambient-pressure Ta pinhole. The textured peaks for the MgO B1- and B2-phase
are indicated. For the two lowest pressure shots (176(31) and 308(32) GPa) polycrystalline MgO samples were used. For all other shots single crystal MgO [100]
samples were used. (C) Lineouts integrated between horizontal blue lines on panels in (b) show Ta reference peaks, B1 and B2 peaks.
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Figure S5. EOS models used in hydrocode calculations. (A) Summary of tabulated Hugoniot models used in the hydrocode determination of MgO pressure [64]
versus measured Hugoniot density for MgO [2, 8, 10, 58–61] and quartz [65]. (B) Pressure residuals of Sesame EOS model Hugoniots – Hugoniot data.
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Figure S7. Calculated pole figures for high symmetry planes of the B2 phase as a result of the WTM mechanism. The observable 2✓ ring in our experimental
geometry is shown by the green circle.
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Figure S8. Calculated pole figures for high symmetry planes of the B2 phase as a result of the Buerger’s mechanism. The observable 2✓ ring in our
experimental geometry is shown by the green circle.
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Figure S9. The Buerger’s mechanism for the B1!B2 transformation. A. The Buerger’s mechanism for the B1!B2 transformation describes compression
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Figure S10. Calculated strain needed for the for transformation from B1!B2. Here, shown for the (A) the Buerger’s mechanism [25] and (B) the ideal WTM
mechanism [26]. The pressures for five shots are represented on the x-axis.
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No.
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(002)

B2	
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B2	
(011)	

B2	
Average#

Normalized	
B1	

Intensity@

176(31)b s75281 1.830(3) - - 5.462(36) - -
308(32)b s75290 1.774(3) - - 5.995(36) - -
397(26) s22255 1.709(3) - - 6.746(36) - - 1
425(30) s22258 1.714(2) 2.141(2) 1.505(2) 6.650(23) 6.817(19) 6.942(28) 6.880(95)
442(28) s22257 1.707(3) 2.125(3) 1.500(4) 6.734(36) 6.975(30) 7.017(56) 6.996(70) 0.275
448(24) s22259 1.696(7) 2.131(14) 1.505(7) 6.862(85) 6.921(136) 6.941(97) 6.931(168) 0.264
472(44) s22261 1.710(2) 2.121(3) 1.501(2)	 6.693(23) 7.016(30) 6.999(28) 7.007(43) 0.064
493(34) s22263 1.710(1) 2.111(4) 1.499(3) 6.702(12) 7.106(40) 7.021(42) 7.063(84) 0.002
519(25) s22262 - 2.109(5) 1.495(8)	 - 7.136(51) 7.080(114) 7.108(131)
543(12) s22265 - - 1.497(2)	 - - 7.057(28) 7.057(28)
545(46) s22264 - - 1.502	(1) - - 6.985(14) 6.985(14)
634(29) s22266 - - - - - -

d-spacinga	(Å)

Updated 5/17/24
(A) X-ray	Diffraction

Density	(g/cm3)

Temperature errors included
random and systematic

B2_Average_Rho_err = ((B2_001_rho_err2+ B2_011_rho_err2 + Stdev(B2_001,B2_011)2)0.5
Assumes a normal distribution.

P	
(GPa)

Shot	
No.

T(!"!"#$%)
(K)

!"&'(#)'*+#'",
	(K)

- s75281 -
- s75290 -

390(10) s22255 9614(450) 330
414(12) s22258 9731(320) 110
439(16)	 s22257 9621(320)	 110
454(16)	 s22259 9717(360)	 190
450(17)	 s22261 9933(330)	 130
482(12)	 s22263 9796(400)	 270
513(14)	 s22262 10757(610)	 530
520(12)	 s22264 11450(350)	 170

553(12)	 s22265 11822(370)	 220
649(12) s22266 14152(460) 350

(B) Pyrometry

Table S1. Summary of experimental results. (A) Measured X-ray di↵raction crystal structure and density versus estimated bulk pressure. aUncertainty in d-
spacing includes: (i) accuracy of pinhole reference peaks fit to ideal ambient-pressure 2✓ values, (ii) variation in d-spacing as a function of azimuthal angle (�), and
(iii) uncertainty in the sample - pinhole (reference plane) distance. Pressure uncertainty includes experimental (as determined by the VISAR record) and systematic
(uncertainty in material EOS models) contributions. bPolycrystalline samples. #Values plotted in Fig. 3B. @Values plotted in Fig. 1B. The value for shot s22258
was deemed unreliable due to target misalignment. (B) Measured average shock-front temperature and calculated average shock-front pressure, during the X-ray
probe period. The total uncertainties in temperature (�TTotal) represent the standard deviation in the measured temperature distribution (�TDistribution) (see Fig. 7B),
combined with an additional ± 300 K estimated to represent random uncertainties in the measurement of temperature (see Fig. 1, and Methods and Materials).
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