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Supplementary Materials 

Fig. S1 | ElasticNet predictor based on young samples. 

Elastic Net Predictor, Leave-one-species-out analysis, fitted on a subset of all young samples 

(species n = 122). Young samples are defined as samples whose age is both younger than five 

years and less than the species’ average age at sexual maturation. Feature filtering and Elastic Net 

tuning parameter set-up is the same as those for Fig. 1. Three panels show predictors for A, log 

maximum lifespan (in log years), B, log-transformed gestation time (in log days), and C, log-



transformed age at sexual maturity (in log years). As with the Fig. 1, species appear as designated 

numbers in scatter plot panels; the corresponding common names and phylogenetic orders are 

annotated in Figure legends; as indicated by the taxonomic order legend, the whole number 

(number before the decimal separator) part of each mammalian number is assigned in accordance 

with the corresponding taxonomic order. Median absolute errors (MAE) from the regression 

errors; r and p denote Pearson’s correlation and p-values, respectively. Numbers and colors are 

the mammalian species number and order annotation consistent with those of other Figures. 

Numeric values can be found in table S1. Red solid line represents the perfect prediction line, and 

the dotted line represents the fitted linear regression line. 



Fig. S2 | The maximum lifespan predictor applied to individual samples in comparison to 

their chronological ages. 

Mammalian maximum lifespan predictor, based on averaged species methylation, was used to 

predict individual sample lifespans (in years scale). The predicted values are also stratified by 

species and tissues. Only species with >100 sample sizes are shown. To demonstrate natural 

relations between maximum lifespan and chronological age, panel A scatter plot shows 



association between observed maximum lifespan and chronological age of corresponding 

samples. Each of panels B–X shows scatter plots of predicted lifespans converted to original 

scales vs. chronological age in specific species/tissue combinations. Numbers are the mammalian 

species number consistent with those in fig. S1. Red font is used when the absolute value of the 

Pearson correlation exceeds 0.5. Numeric values can be found in table S1.  



Fig. S3 | The gestation time predictor applied to individual samples in comparison to their 

chronological ages. 

Gestation time predictor, based on averaged species methylation, was used to predict individual 

sample gestation time (in log days). The predicted values are also stratified by species and tissues. 

Only species with >100 sample sizes are shown. To demonstrate natural relations between 

gestation time (days) and chronological age, panel A scatter plot shows association between 



observed gestation time (days) and chronological age of corresponding samples. Each of panels 

B–X shows scatter plots of predicted gestation time in log-days converted back to days vs. 

chronological age in specific species. Numbers are the mammalian species number consistent 

with those in fig. S1. Numeric values can be found in table S1.3. 



Fig. S4 | The time to sexual maturity predictor applied to individual samples in comparison 

to their chronological ages.  

Time to sexual maturity predictor, based on averaged species methylation, was used to predict 

individual sample time to sexual maturity (in log years). The predicted values are also stratified 

by species and tissues. Only species with >100 sample sizes are shown. To demonstrate natural 

relations between time to sexual maturity and chronological age, panel A scatter plot shows 



association between time to sexual maturity (years) and chronological age of corresponding 

samples. B–X, scatter plots of predicted age at sexual maturity in log-years converted back to 

years vs. chronological age in specific species. Numbers are the mammalian species number 

consistent with those in fig. S1. Numeric values can be found in table S1.3.  



Fig. S5 | Tissue group differences in predicted mammalian maximum lifespan. 

Tissue-agnostic predictor of mammalian maximum lifespan, based on averaged species 

methylation, was used to predict individual maximum lifespan (in log years). The predicted 

values are aggregated by taking the mean lifespan predictions by tissue groups. Panels A-I 

convert log scale back to original units (lifespan in years); only species with more than 6 different 

tissue types are shown; mean tissue predicted value outliers are annotated; Tissue type 

“H.Stem.Progenitor.LSK” stands for Lin (negative), stem cell antigen-1 (positive)  

receptor tyrosine kinase c-Kit (positive), which are cell surface markers to characterize a subset of 

cells within the bone marrow that is capable of self-renewal and differentiation into all types of 



blood cells. C, Apart from blood, laminae are an outlying tissue in horses. Laminae are 

interlocking leaf-like tissues that connect the inner surface of the horse's hoof wall to the bone of 

the foot. The boxplot, as implemented in the R programming language, provides a visual 

summary of key statistics from a dataset: The median is represented by the horizontal line inside 

the box. The interquartile Range (IQR) encompasses the middle 50% of the data. The box's upper 

boundary represents the 75th percentile, while the lower boundary represents the 25th percentile. 

The IQR is the difference between these two values. The whiskers extend to the most extreme 

data point which is no more than 1.5 times the interquartile range from the box. 



Fig. S6 | Tissue groups differences in predicted mammalian gestation time. 

Tissue-agnostic predictor of gestation time, based on averaged species methylation, was used to 

predict individual sample gestation time (in log days). The predicted values are aggregated by 

taking the mean gestation time predictions by tissue groups. Panels A-I convert log scale back to 

original units (gestation in days); only species with more than 6 different tissue types are shown; 

mean tissue predicted value outliers are annotated; Tissue type “H.Stem.Progenitor.LSK” stands 

for “LSK Progenitor Hematopoietic Stem cells.” The boxplot, as implemented in the R 

programming language, provides a visual summary of key statistics from a dataset: The median is 

represented by the horizontal line inside the box. The interquartile Range (IQR) encompasses the 

middle 50% of the data. The box's upper boundary represents the 75th percentile, while the lower 



boundary represents the 25th percentile. The IQR is the difference between these two values. The 

whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile 

range from the box.  



Fig. S7 | Tissue groups differences in predicted mammalian time to sexual maturity. 

Tissue-agnostic predictor of time to sexual maturity. The boxplot shows median predicted values 

(short horizontal line) across tissue types. Significantly outlying tissues have been highlighted. 

The boxplot, as implemented in the R programming language, provides a visual summary of key 

statistics from a dataset: The median is represented by the horizontal line inside the box. The 

interquartile Range (IQR) encompasses the middle 50% of the data. The box's upper boundary 

represents the 75th percentile, while the lower boundary represents the 25th percentile. The IQR 

is the difference between these two values. The whiskers extend to the most extreme data point 

which is no more than 1.5 times the interquartile range from the box. Tissue-agnostic predictor of 



time to sexual maturity predictor, based on averaged species methylation, was used to predict 

individual sample time to sexual maturity (in log years). The predicted values are aggregated by 

taking the mean lifespan predictions by tissue groups. Panels A-I convert log scale back to 

original units (age at sexual maturity in years); only species with more than 6 different tissue 

types are shown; mean tissue predicted value outliers are annotated; Tissue type 

“H.Stem.Progenitor.LSK” stands for “LSK Progenitor Hematopoietic Stem cells.” 



Fig. S8 | Tissue-aware predictors trained on species-tissue combinations. 

A penalized joint linear model used to predict species lifespan (Elastic Net). Same framework as 

that of Fig. 1, except that it distinguishes tissue types. CpG probes are averaged by each species-

tissue combination. Different tissues within the same species share the same maximum lifespan 

but retain different methylation levels. Three panels show predictors for A, log maximum lifespan 

(in log years), B, log-transformed gestation time (in log days), and C, log-transformed age at 

sexual maturity (in log years). Designated Mammalian numbers in scatter plot panels and the 

Figure legend are the same as those of main Fig. 1. MAE abbreviates median absolute errors from 

the regression errors; r and p denote Pearson’s correlation and p-values, respectively. Numbers 

and colors are the mammalian species number and order annotation consistent with those of other 

Figures. Numeric values can be found in table S3. As with the Fig. 1, species appear as 



designated numbers in scatter plot panels; the corresponding common names and taxonomic 

orders are annotated in Figure legends; the whole number (number before the decimal separator) 

part of each mammalian number is assigned in accordance with the corresponding taxonomic 

order. Red solid line represents the perfect prediction line, and the dotted line represents the fitted 

linear regression line. 



Fig. S9 | Tissue group differences in predicted mammalian maximum lifespan – Tissue-

Aware  

Tissue-aware predictor of mammalian lifespan, based on averaged species methylation, was used 

to predict individual sample lifespan (in log years). The predicted values are aggregated by taking 

the mean lifespan predictions by tissue groups. Panels A-I convert log scale back to original units 

(lifespan in years); only species with more than 6 different tissue types are shown; mean tissue 

predicted value outliers are annotated; Tissue type “H.Stem.Progenitor.LSK” stands for “LSK 

Progenitor Hematopoietic Stem cells.” 



Fig. S10 | Tissue groups differences in predicted mammalian gestation time – Tissue-aware. 

Tissue-aware predictor of gestation time, based on averaged species methylation, was used to 

predict individual sample gestation time (in log days), trained on tissue-aware data. The predicted 

values are aggregated by taking the mean gestation time predictions by tissue groups. Panels A-I 

convert log scale back to original units (gestation in days); only species with more than 6 different 

tissue types are shown; mean tissue predicted value outliers are annotated; Tissue type 

“H.Stem.Progenitor.LSK” stands for “LSK Progenitor Hematopoietic Stem cells.” 



Fig. S11 | Tissue groups differences in predicted mammalian sexual maturity time – Tissue-

aware.  

Mammalian times to sexual maturity predictor, based on averaged species methylation, was used 

to predict individual sample time to sexual maturity (in log years), trained on tissue-aware data. 

The predicted values are aggregated by taking the mean lifespan predictions by tissue groups. 

Panels A-I convert log scale back to original units (age at sexual maturity in years); only species 

with more than 6 different tissue types are shown; mean tissue predicted value outliers are 

annotated; Tissue type “H.Stem.Progenitor.LSK” stands for “LSK Progenitor Hematopoietic 

Stem cells. 



Fig. S12 | Overall comparisons between DNAm lifespan predictors and phylogeny-based 

predictors.  

Various training-test validation analyses of predictors of log (base e) transformed estimates of 

maximum lifespan. We compared prediction performance between DNAm elastic net predictors 

and 1-Nearest-Neighbor predictor (k-NN). 1-Nearest-Neighbor predictor utilizes distances from 

the Mammalian phylogenetic TimeTree (55). Results under different training-test separation 

methods are shown in panels A, B, DNAm and k-NN predictors test set predictions under leave-

one-species-out (LOSO) training-test separation scheme; C, D, DNAm and k-NN predictors test 

set predictions under leave-one-family-out training-test separation; E, F, DNAm and k-NN 

predictors test set predictions under leave-one-clade-out (LOCO) training-test separation. LOCO 

(leave-one-clade-out) is defined as, for orders with more than 20 species (Rodentia, Artiodactyla, 



Chiroptera, Primates, Carnivora, and Eulipotyphla), leaving out all member species except the 

longest-living and shortest-living species. MAE abbreviates median absolute errors from the 

regression errors; r and p denote Pearson’s correlation and p-values, respectively. Numbers and 

colors are the mammalian species number and order annotation consistent with those of other 

Figures. Numeric values can be found in table S1. Shaded areas represent 95% confidence 

intervals of the simple linear regression line. 





Fig. S13 | Taxonomic order breakdown of DNAm lifespan predictors and Phylogeny-based 

Predictors under LOCO. 

A breakdown of predictor performance in large taxonomic orders under LOCO. We compared 

prediction performance between DNAm elastic net predictors and 1-Nearest-Neighbor predictor 

(k-NN). 1-Nearest-Neighbor predictor utilizes distances from the Mammalian phylogenetic 

TimeTree (55). A, DNAm predictor’s test set predictions leave-one-clade-out (LOCO) training-

test separation scheme; B, k-NN predictor’s test set predictions under LOCO; C, D, DNAm and 

k-NN predictors, respectively, test set predictions of lifespan for all species belonging to

Carnivora under LOCO; E, F, DNAm and k-NN predictors, respectively, test set predictions of

lifespan for all species belonging to Primates under LOCO; G, H DNAm and k-NN predictors,

respectively, test set predictions of lifespan for all species belonging to Artiodactyla under LOCO.

MAE abbreviates median absolute errors from the regression errors; r and p denote Pearson’s

correlation and p-values, respectively. Numbers and colors are the mammalian species number

and order annotation consistent with those of fig. S1. Numeric values can be found in table S1.

Shaded areas represent 95% confidence intervals of the simple linear regression line. Panels A

and B are analogous to those of Fig. 2C,D.



Fig. S14 | DNAm lifespan predictions do not reflect confounding by adult weight. 

a-c, Report results for a DNAm max lifespan predictor trained on mammal species with an

average weight under 150 grams (small mammals). Panels A, observed (log) adult body weight

vs. observed (log) maximum lifespan in all mammalian species within the data set, color-coded

by small-size indicator (more than 150 grams); B, test set predictions for the maximum lifespan in

small-sized (<150 grams) mammalian species vs. observed (log) maximum lifespan; C, test set

predictions for the maximum lifespan in small-sized (<150 grams) mammalian species vs.

observed (log) adult body weight. MAE abbreviates median absolute errors from the regression

errors; r and p denote Pearson’s correlation and p-values, respectively. Numbers are the

mammalian species number annotation consistent with those of other Figures. Numeric values can

be found in table S1. Shaded areas represent 95% confidence intervals of the simple linear

regression line. D, Results for the final version of the tissue-agnostic DNAm predictor of

maximum lifespan. Predicted maximum lifespan (on the log scale, y-axis) versus the

corresponding adult weight adjusted version (x-axis). Specifically, the weight adjusted version of

log maximum lifespan was defined as raw residual resulting from regressing log transformed

predicted maximum lifespan on the log transformed average adult weight of the species.





Fig. S15 | Relationships between observed and epigenetic estimates of mammalian life 

history traits, including mammalian cancer risk. 

A-F, Panels depict log-transformed relationships between observed variables: A. Age at sexual

maturity and maximum lifespan B. Gestation time and maximum lifespan C. Sexual maturity time

and gestation time D. Cancer risk and maximum lifespan E. Cancer risk and sexual maturity F.

cancer risk and gestation time. G-I, estimates of mammalian cancer risk (21, y-axis) are plotted

against their corresponding epigenetic estimates: G. Maximum lifespan, H. Gestation time, I. age

at sexual maturity. J-L, this set is analogous to G-I, but the x-axis reports residuals derived from

regressing the epigenetic estimate of the life history trait on its observed value (on the log scale):

J. Log maximum lifespan, K. Log gestation time, L. Log-transformed age at sexual maturity.

"MAE" represents median absolute errors from the regression errors, while "r" and "p" signify

Pearson’s correlation and p-values, respectively. Numbering and colors correspond to the

mammalian species number and order, consistent with those in Fig. 1. Shaded areas illustrate the

95% confidence intervals of the simple linear regression line. log denotes the natural logarithm,

i.e., base e.
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Fig. S16 | Human epidemiological cohort studies of diet and clinical biomarkers. 

We performed a correlation analysis between (1) our methylation-based estimator of maximum 

lifespan (first column) and its age adjusted version (second column) and (2) 59 variables spanning 

diet, clinically relevant measurements, and lifestyle factors. Comprehensive details of these 

variables can be found in reference (57). We conducted a robust correlation analysis (biweight 

midcorrelation, bicor) between (1) our methylation based measures (columns), and (2) 59 

variables encompassing 27 self-reported dietary factors, 9 dietary biomarkers, 17 clinical 

measurements related to vital signs, metabolic traits, inflammatory markers, cognitive and lung 

function, central adiposity, leukocyte telomere length, and 6 lifestyle factors. This bicor analysis 

was applied to individuals from both the Framingham Heart Study (up to n=2544) and Women's 

Health Initiative (up to n=2107), stratified by gender and ethnic category within each respective 

cohort. The results were consolidated using fixed-effects meta-analysis models, weighted by 

inverse variance, generating a meta-estimate of bicor and meta P-value. The clinical biomarkers 

in FHS offspring cohort were measured during the 8th examination aligned with the measures of 

DNA methylation profiles. The 9 dietary biomarkers, however, were only available in the WHI 

cohort, with measurements taken from fasting plasma collected at baseline. Food groups and 

nutrients considered were comprehensive, encompassing all types and preparation methods; for 

instance, folic acid included both synthetic and natural forms, and dairy encompassed cheese and 

all varieties of milk. Further details on the individual diet variables of the WHI cohort can be 

found in our previous study (57). 



Fig. S17 | Maximum Mammalian Lifespan Predictor which discriminates dog breeds. 

The y-axis in each panel represents the cross-validation estimates of the log-transformed 

maximum lifespan, while the x-axis displays the observed values from AnAge or the canine study 

(41). a, a multivariate predictor of maximum lifespan trained across all mammalian species, 

including 93 dog breeds. This predictor was constructed similarly to that in Fig. 1, with a key 

difference: instead of using a single data point for the species Canis lupus familiaris, we 

differentiated into 93 separate entries for various dog breeds. The lifespan data for these breeds 

and their corresponding methylation data are detailed in reference (41). 

B, This is a detailed view of panel A, focusing solely on dog breeds. The negligible Pearson 

correlation (r=0.068) reflected the predictor's ineffectiveness in accurately distinguishing between 

longer- and shorter-lived dog breeds. C, a different multivariate predictor is trained exclusively on 

the dog breed data. The multivariate predictor for the (log-transformed) median lifespan of dog 

breeds shows a modest correlation (r=0.42).  



Fig. S18 | Species-predictive CpGs vs. linear lifespan predictor CpGs 

It is of interest to characterize which CpGs are most important for predicting species according to 

our random forest predictor (table 1). Towards this end, we used the Gini index based measure of 

variable importance from our trained Random Forest species classifier to rank CpGs according to 

their importance for predicting species. In this figure, the line plot corresponds to all 37492 CpGs 

used by the Random Forest species classifier, ranked by mean reduction in Gini index, from high 

to low. The CpGs are ordered by mean reduction in Gini index along the x-axis, indicating their 

rankings. In addition, the figure overlays the 152 CpGs selected by the linear lifespan predictor, 

annotated in red lines, among species Random Forest’s Gini index ranking. We observe lifespan 

CpGs evenly spread-out throughout the Gini ranking. We highlight the top 1000 Random Forest 

CGs that are the overwhelmingly dominant Random Forest features, of which only 3 out of the 

152 lifespan predictor CpGs are members. Majority of the lifespan predictor CpGs resulted in 

close to no Gini index reduction when removed from the random forest, implying them being 

minimally “influential” in classifying Mammalian species. 
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Table S1 Mammalian Species Information 

Table listing all Mammalian species used for this article. In addition, mammalian taxonomic 

Orders, designated Mammalian numbers, common names, observed maximum lifespan, sample 

sizes, time to sexual maturity, body mass, and tissues collected are provided for each species as 

well. 

Table S2 Data Description 

Taxonomic Orders information is summarized, including number of species per Order, total 

sample sizes per Order, and longest living species per Order. 

Table S3 Lifespan Predictions by Tissues - Final Model 

This table summarizes final model predictions on individual sample predictions aggregated by 

species-tissue strata. The final model* is trained on all available species-averaged data as the 

training set, building a final predictor. The predictors are trained on log-scale. Columns reporting 

predictions in units of years (non-log) are taken the exponential of the log predictions, and will 

therefore exhibit a non-linear log-shaped relations; Member mean*, prediction model trained on 

species-averaged data same as above, but fitted to individual members of each species, and 

subsequently mean predictions for each species are reported. Sample sizes reported here do not 

include all of the hybrid animals, as well as those whose species information remains unknown. 

Male - Female Ratio*, using female lifespan predictions as denominator, find the ratio of male 

predicted lifespan / female predicted lifespan. 

Table S4 DNAm Maximum Lifespan Predictions by Species 

This table summarizes final model predictions on individual sample predictions aggregated by 

species strata. It also includes species predictions LOSO* cross-validation, Leave-one-species-out 

test set prediction estimates, where test sets are separated as each species, and predictions are 

based on all other species (See Main Fig. 1). Final Model*, in addition to the LOSO model, we fit 

the model with same specifications on all available data. All predictors are train on log-scale to 

counter data skewness. Columns reporting predictions in units of years (non-log) are taken the 

exponential of the log predictions, and will therefore exhibit a non-linear log-shaped relations; 

Member median*, prediction model trained on species-averaged data same as above, but fitted to 

individual members of each species, and subsequent median predictions for each species are 

reported. Sample sizes reported here do not inlucde all of the hybrid animals, as well as those 

whose species information remains unknown. In Column, “Female – Male Significant Tissues,” a 

“+” sign denotes Female minus male mean predicted DNAm lifespan is positive with an 

unadjusted p-value =< 0.05, “-” vice versa, and “.” denotes a p-value > 0.05 

Table S5 Tissue-agnostic Final Maximum Lifespan (log-years) Prediction Model 

Coefficients 

This table reports the final tissue-agnostic maximum lifespan (log scale) prediction model 

coefficients. This final regularized regression model, Elastic net, was trained on 348 species-level 



summary data, in which each summary CpG value is a species-wide average CpG methylation 

measurement. However, the final model can be fitted to either individual or aggregated samples. 

Table S6 Tissue-agnostic Final Gestation Time (log-days) Prediction Model Coefficients 

This table reports the final tissue-agnostic gestation time (log scale) prediction model coefficients. 

This final regularized regression model, Elastic net, was trained on 348 species-level summary 

data, in which each summary CpG value is a species-wide average CpG methylation 

measurement. However, the final model can be fitted to either individual or aggregated samples. 

Table S7 Tissue-agnostic Final Time-to-Sexual-Maturity (log-years) Prediction Model 

Coefficients 

This table reports the final tissue-agnostic time to sexual maturity (log scale) prediction model 

coefficients. This final regularized regression model, Elastic net, was trained on 348 species-level 

summary data, in which each summary CpG value is a species-wide average CpG methylation 

measurement. However, the final model can be fitted to either individual or aggregated samples. 

Table S8 Tissue-aware Final Maximum Lifespan (log-years) Prediction Model Coefficients 

This table reports the final tissue-aware maximum lifespan (log scale) prediction model 

coefficients. This final regularized regression model, Elastic net, was trained on 348 species-level 

summary data, in which each summary CpG value is a species-wide average CpG methylation 

measurement. However, the final model can be fitted to either individual or aggregated samples. 

Table S9 Tissue-aware Final Gestation Time (log-days) Prediction Model Coefficients 

This table reports the final tissue-aware gestation time (log scale) prediction model coefficients. 

This final regularized regression model, Elastic net, was trained on 348 species-level summary 

data, in which each summary CpG value is a species-wide average CpG methylation 

measurement. However, the final model can be fitted to either individual or aggregated samples. 

Table S10 Tissue-aware Final Time-to-Sexual-Maturity (log-years) Prediction Model 

Coefficients 

This table reports the final tissue-aware time to sexual maturity (log scale) prediction model 

coefficients. This final regularized regression model, Elastic net, was trained on 348 species-level 

summary data, in which each summary CpG value is a species-wide average CpG methylation 

measurement. However, the final model can be fitted to either individual or aggregated samples. 



Table S11 Museum of Vertebrates, UC Berkeley Catalog Numbers 

This table reports all samples used in this article that come from Museum of Vertebrates, UC 

Berkeley, with their corresponding Catalog Numbers, species Latin name, species common name, 

and tissue type if applicable. 
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