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Extended Data Fig.1 VSMCs exhibit high abundance of key glycolysis regulatory
genes and are resistant to hypoxia-induced upregulation of these genes.

a-d, Basal mRNA expression of glycolytic genes GLUT1 (a), HK2 (b), PFKFB3 (c), and LDHA
(d) in 9 different cell types under aerobic conditions. Fold change was calculated relative to
PASMCs. n = 4-14.

e-h, mRNA expression of glycolytic genes in 9 different cell types cultured under normoxia
(219% O3) or hypoxia (0.2% O). Fold change was calculated relative to the corresponding type
of cells grown under aerobic condition. n = 4-6.

One-way ANOVA followed by Dunnett’s post-hoc test (a-d), Student’s t test or Mann-Whitney
U test (e-h) was applied when compared to untreated PASMCs (a-d) or normoxic cultures of
the matched cell type (e-h).
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Extended Data Fig. 2 Medium conditioned from PASMCs induces aerobic activation of
HIF1a signaling.

a, HIF1a protein expression in PASMCs cultured in growth medium (GM), conditioned medium
(CM), or 1:1 (v/v) mix of CM and GM (CM 1:1). Cells grown under 0.2% O, were used as
positive controls. Short (20 min) and long (60 min) represent film exposure duration.

b, HIF1a and HIF2a protein levels in cells cultured in GM, CM, or 0.2% O..

¢, HIF1a and HIF2a mRNA abundance in PASMCs cultured in GM. Fold change was
calculated relative to HIF2a. n = 6-9.

d, HIF1a and PHD2 protein levels in PASMCs cultured in CM for 2-24 hours.

e, HIF1a mRNA expression in cells cultured in CM for 2 and 4 hours. Fold change was
calculated relative to PASMCs grown in GM. n = 2.
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f, MRNA expression of HIF1a target genes in glucose metabolism in PASMCs when cultured
in CM for various time points. Fold change was calculated relative to cells in GM. n = 6.

g, von-Hippel Lindau protein (pVHL) levels in cells cultured in CM for different times.

h, Representative immunoblots and quantitation of hydroxylated HIF1a protein (HIF1a-OH
Pro-564) levels in GM- or CM-cultured PASMCs after addition of proteasomal inhibitor MG132
(20 uM) for 1-4 hours. Fold change was calculated relative to GM-cultured PASMCs at 1 hour
of MG132 incubation. n = 3.

i,j HIF1a protein levels (i) and mRNA expression of its transcriptional targets (j) in GM, CM,
and heat inactivation (HI) or proteinase K (PK) treated CM cultured PASMCs. Fold change in
j was calculated relative to GM-cultured cells. n = 4 (j).

k,| HIF1a protein levels (k) and mRNA expression of its transcriptional targets () in GM, CM,
and fractionated CM (larger than 10 kDa fraction, >10 and less than 10 kDa fraction, < 10)
cultured PASMCs. Fold change in | was calculated relative to GM-cultured cells. n = 4 (1).
m-o, HIF1a and its target PDK1 protein levels in PASMCs treated with lactate or pyruvate (m),
fumarate or succinate (n), aspartate or malate (0) as indicated doses.

Mann-Whitney U test (c), Student t test (h), or one-way ANOVA followed by Tukey’s post-hoc
test or Kruskal-Wallis test followed by Dunn’s test (f, j, |) was applied when compared to HIF2a
in PASMCs (c), to GM-cultured PASMCs with time-matched MG132 treatment (h) or no
treatment (f, j, 1) or to CM-cultured PASMCs (j, I).
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Extended Data Fig.3 BCKAs are the mediators of paracrine activation of HIF1a signaling

under aerobic

conditions.

a-c, HIFla (a, c) and HIF2a (b) proteins in PASMCs treated with 0.05-2 mM of sodium salts
of KIV (Na-KIV), KMV (Na-KMV), butyrate (Na-But), KIC (Na-KIC), or acid form of KIC (KIC;
DMSO as vehicle control) for 8 hours. Hypoxia (0.2% O) induced HIF2a protein stabilization
was included for comparison.

d, mRNA expression of three HIFla target genes in glucose metabolism in PASMCs
stimulated with 0.05-2 mM of Na-KIV, Na-KMV, Na-KIC, KIC, and Na-But for 8 hours. Fold
change was calculated relative to vehicle control (H,O or DMSOQ) treated cells. n = 1.

e-g, HIF1a (e) and HIF2a (f) protein levels and the mRNA expression of HIF1a target genes
in glucose metabolism (g) in PASMCs stimulated with BCKAs (100 uM Na-KIC, 50 uM of each
Na-KIV and Na-KMV) for different time points. Fold change in g was calculated relative to
untreated control cells at 8-hour time point. n =5 (g).
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h,i, mRNA (h) and protein (i) expression of BCAT1 and BCAT2 in PASMCs transfected with
siRNAs for control (siCtrl), BCAT1 (siBCAT1), BCAT2 (siBCAT2), or both (siBCAT1/2). Fold
change in h was relative to siCtrl-transfected cells. n = 4 (h).

ik, Protein levels of HIF1a, PFKFB3, and PDK1 (j) and mRNA expression of GLUT1 and
PFKFB3 (k) in PASMCs cultured in BCAA-free DMEM in the presence or absence of BCKAs
for 8 hours. Fold change in k was calculated relative to untreated control cells. n = 3 (k).

I,m, HIF1a, PFKFB3, and LDHA protein levels (I) and the mRNA expression of HIF1a
regulatory genes in glycolysis (m) of human colorectal adenocarcinoma Caco?2 cells treated
with BCKAs. Fold change in (m) was relative to vehicle control treated cells. n =5 (m).

n, mMRNA expression of GLUT1, LDHA, or PFKFB3 in normal and cancerous cells after
stimulation with different doses of BCKAs. Fold change was calculated relative to their own
untreated control cells. Dotted line separates normal vs. malignant cell types. n = 4-5.

0, Phosphorylated BCKDH (p-BCKDH) protein levels in 10 different types of cells with BCKA
treatment.

One-way ANOVA followed by Dunnett’s post-hoc test (g, h, m, n) or Student’s t test (k) was
applied when compared to untreated control PASMCs (g), siCtrl-transfected PASMCs (h),
BCAA-free DMEM-cultured control PASMCs (k), untreated Caco2 cells (m), or the
corresponding untreated cells (n).
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Extended Data Fig. 4 Effects of BCKAs on PHD2 and KGDH activity.

a, PASMCs were treated with BCKAs (100 uM of KIC, 50 uM of each KIV and KMV) or vehicle
control for 8 hours followed by addition of proteasomal inhibitor MG132 (20 uM) for 1-4 hours.
Hydroxylated HIF1a (HIF1a-OH Pro-564) protein levels were measured and quantitated. Fold
change was calculated relative to untreated cells with MG132 incubation for 1 hour. n = 3.

b, Inhibition curve and ICso value of roxadustat for PHD2 hydroxylase activity. n = 4.

c, Protein-ligand interaction fingerprint (PLIF) prediction of 20 potential binding configurations
of each BCKA with the PHD2 active site. a-KG and roxadustat, two known ligands of PHD2
enzyme, were included for comparison.

d, KGDH activity in PASMCs treated with BCKAs. n = 5.

Student’s t test (a) or Kruskal-Wallis test followed by Dunn’s post-hoc test (d) was applied
when compared to untreated PASMCs at time-matched MG132 treatment (a) or untreated
PASMCs (d).
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Extended Data Fig. 5 The influence of BCKAs on mitochondrial respiration and its
dependence on HIF1a activity in PASMCs.

a,b, LC-MS measurements of intermediary metabolites aconitate (ACO), citrate (CIT),
succinate (SUC), fumarate (FUM), and malate (MAL) of the TCA cycle (a), and of ATP and its
derivatives (b) in PASMCs in the presence or absence of BCKAs. Fold change was calculated
relative to control cells. n = 6.

c,d, PASMCs were transfected with human HIF71a siRNA (siHIF1a) or control siRNA (siCtrl)
followed by treatment with BCKAs. LC-MS was used to measure the TCA cycle metabolites
(c), and ATP and its metabolites (d). Fold change was calculated relative to siCtrl-transfected
and untreated cells. n = 3.

Student’s t test (a, b) or one-way ANOVA followed by Tukey’s post-hoc test (c, d) was applied
when compared to control PASMCs (a, b), or siCtrl-transfected and control or BCKA-treated
cells (c, d).
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Extended Data Fig. 6 The levels of synthetic phenotype marker proteins in PASMCs.
(a) Protein levels in PASMCs treated with BCKAs. Fold change was calculated relative to
untreated control. n = 6.

(b-d) Protein levels in PASMCs transfected with control siRNA (siCtrl), BCAT1 and BCKDHA1
SiRNA (siBCAT1+siBCKDHAL; b), or BCAT2 and BCKDK siRNA (siBCAT2+siBCKDK; c), or
HIF7a siRNA (siHIF1a; d) with or without BCKA treatment. Fold change was calculated
relative to siCtrl-transfected and untreated control. n = 3 (b, ¢) and 8 (d).

(e,f) Representative immunoblots (e) and quantitation (f) of COL1A1 and COL4 protein levels
in PASMCs cultured in 21% O or 0.2% O.. HIF1a protein was included as a positive control
in hypoxia. Fold change in f was relative to normoxic cultures of PASMCs. n = 6.

Student’s t test (COL1A1 and VIM in a, COL4 in f), Mann-Whitney U test (COL4 in a, COL1A1
in f), or one-way ANOVA followed by Tukey’s post-hoc test (b-d) was applied when compared
to control PASMCs (a, f), or siCtrl-transfected and control or BCKA-treated cells (b-d).
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Extended Data Fig. 7 The levels of key BCKA metabolic proteins in the lungs of PAH
patients and rats.

a, Quantitation results of BCAT1, BCAT2, BCKDK, and p-BCKDH proteins in the lungs of
IPAH patients. n = 8 individuals.

b-d, Quantitation results of BCAT1, BCAT2, BCKDK, and p-BCKDH proteins in the lungs of
PAH rats treated with MCT (b), hypoxia (10% Og; c), or Sugen5416+hypoxia (d). n = 3-4 rats.

Student’s t test (a-d) or Mann-Whitney U test (BCAT1 in a and BCKDK in d) was applied when
compared to control patients (a) or animals (c-d).
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Extended Data Fig. 8 The expression of synthetic marker genes in IPAH-PASMCs with
endogenous and exogenous manipulation of BCKA levels.

(a) MRNA expression of BCAT1 and BCKDHAL in IPAH-PASMCs transfected with siRNAs for
control (siCtrl) or BCAT1 and BCKDHAL (siBCAT1+siBCKDHAL) followed by BCKAs or
vehicle control treatment. n = 9 from 3 individuals.

(b) mMRNA expression of BCAT2 and BCKDK in IPAH-PASMCs transfected with siCtrl or
BCAT2 and BCKDK (siBCAT2+siBCKDK) followed by BCKAs or vehicle control treatment. n
=9 from 3 individuals.

(c) mRNA expression of synthetic marker genes in IPAH-PASMCs transfected and treated as
described in panels a and b. n = 9-18 from 3 individuals.

Kruskal-Wallis test followed by Dunn’s post-hoc test (a-c) or one-way ANOVA followed by
Dunnett’s (b) or Tukey’s (c) post-hoc test was applied when compared to siCtrl-transfected
control cells (a-c) or BCKA-treated cells (c).
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Supplementary Table 1 Clinical and demographic information on human specimen
presented in this study

Patient ID  Clinical diagnosis Gender Race Ethnicity

Lung RNA samples

AH-007 FDL M White Non-Hispanic
AH-009 FDL M White Non-Hispanic
AH-012 FDL M White Non-Hispanic
AH-013 FDL F White Non-Hispanic
BA-033 FDL M White Non-Hispanic
BA-040 FDL M Unknown Hispanic or Latino
BA-046 FDL F Unknown Hispanic or Latino
BA-055 FDL M White Non-Hispanic
uUC-010 FDL F White Non-Hispanic
VA-005 FDL M White Non-Hispanic
BA-017 IPAH F White Non-Hispanic
CC-017 IPAH M White Non-Hispanic
CC-030 IPAH F White Non-Hispanic
ST-004 IPAH F White Non-Hispanic
ST-010 IPAH M White Non-Hispanic
ST-017 IPAH M White Non-Hispanic
ST-019 IPAH M White Hispanic or Latino
ST-042 IPAH M White Non-Hispanic
UA-013 IPAH M Asian Non-Hispanic
VA-015 IPAH F White Non-Hispanic
Frozen lung tissues
AH-012 FDL M White Non-Hispanic
AH-013 FDL F White Non-Hispanic
AH-016 FDL M White Non-Hispanic
BA-040 FDL M Unknown Hispanic or Latino
BA-043 FDL M Unknown Hispanic or Latino
BA-046 FDL F Unknown Hispanic or Latino
BA-048 FDL M White Non-Hispanic
BA-049 FDL M Unknown Non-Hispanic

[N
w



BA-055 FDL M White Non-Hispanic
BA-062 FDL M Asian Unknown
BA-017 IPAH F White Non-Hispanic
CC-030 IPAH F White Non-Hispanic
ST-028 IPAH F White Hispanic or Latino
ST-033 IPAH F White Non-Hispanic
ST-037 IPAH F Unknown Hispanic or Latino
ST-042 IPAH M White Non-Hispanic
ST-052 IPAH M Asian Non-Hispanic
UA-013 IPAH M Asian Non-Hispanic
VA-011 IPAH F White Non-Hispanic
VA-015 IPAH F White Non-Hispanic
Lung slides
BA-049 FDL M Unknown Non-Hispanic
BA-062 FDL M Asian Unknown
BA-046 FDL F Unknown Hispanic or Latino
PASMCs

Patient ID  Clinical diagnosis Gender Race Age (Y)
CC-013 IPAH F White 27
ST-019 IPAH M White 25
ST-026 IPAH M White 40
UA-013 IPAH M Asian 18
VA-011 IPAH F White 32

FDL.: failed donor lung; IPAH: Idiopathic pulmonary arterial hypertension
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Supplementary Table 2 Abbreviations and their corresponding full names used

Abbreviation

Full name

a-KG
ACTA2
AoSMCs
BCAAs
BCAT
BCKAs
BCKDH
BCKDK
CASMCs
COL1A1
coL4
ECAR
GLUT1
HK2
HIF1la
KGDH
KIC

KIV
KMV
L2HG
L2HGDH
LDHA
mPAP
OCR
PAH
PASMCs
PDK1
PFKFB3
PHD2
PVR
ROS
TCA
VIM
VSMCs

a-ketoglutarate

a-smooth muscle actin

aortic smooth muscle cells

branched chain amino acids

branched chain amino acid transaminase
branched chain a-ketoacids

branched chain ketoacid dehydrogenase complex
branched chain ketoacid dehydrogenase kinase
coronary artery smooth muscle cells

collagen 1A1

collagen 4

extracellular acidification rate

glucose transporter 1

hexokinase 2

hypoxia-inducible factor 1a

a-KG dehydrogenase

a-ketoisocaproate

a-ketoisovalerate

a-keto-B-methylvalerate

L-2-hydroxyglutarate

L2HG dehydrogenase

lactate dehydrogenase A

mean pulmonary artery pressure

oxygen consumption rate
pulmonary arterial hypertension

pulmonary arterial smooth muscle cells
pyruvate dehydrogenase kinase 1
6-phosphofructo-2-kinase/fructose 2,6-biphosphatase 3
prolyl hydroxylase domain-containing protein 2
pulmonary vascular resistance

reactive oxygen species

tricarboxylic acid

vimentin

vascular smooth muscle cells

15



