May 29, 2024

Extended Data Figures and Supplementary Tables

Branched chain α-ketoacids aerobically activate HIF1α signaling in vascular cells

Wusheng Xiao^{1,2,3,4}, Nishith Shrimali¹, William M. Oldham¹, Clary B. Clish⁵, Huamei He¹, Samantha J. Wong⁶, Bradley M. Wertheim¹, Elena Arons¹, Marcia C. Haigis⁶, Jane A. Leopold¹, and Joseph Loscalzo^{1*}

Divisions of Cardiovascular Medicine¹ and Pulmonary and Critical Care Medicine¹, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; ²Department of Toxicology, ³Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, and ⁴Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China; ⁵Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; ⁶Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA

*Corresponding author:

Joseph Loscalzo, M.D., Ph.D. Department of Medicine Brigham and Women's Hospital 75 Francis St, Boston, MA 02115, USA 617-732-5127; 617-732-6439 (fax) jloscalzo@bwh.harvard.edu

Extended Data Fig.1 VSMCs exhibit high abundance of key glycolysis regulatory genes and are resistant to hypoxia-induced upregulation of these genes.

a-d, Basal mRNA expression of glycolytic genes *GLUT1* (**a**), *HK2* (**b**), *PFKFB3* (**c**), and *LDHA* (**d**) in 9 different cell types under aerobic conditions. Fold change was calculated relative to PASMCs. n = 4-14.

e-h, mRNA expression of glycolytic genes in 9 different cell types cultured under normoxia (21% O_2) or hypoxia (0.2% O_2). Fold change was calculated relative to the corresponding type of cells grown under aerobic condition. n = 4-6.

One-way ANOVA followed by Dunnett's post-hoc test (**a-d**), Student's t test or Mann-Whitney U test (**e-h**) was applied when compared to untreated PASMCs (**a-d**) or normoxic cultures of the matched cell type (**e-h**).

Extended Data Fig. 2 Medium conditioned from PASMCs induces aerobic activation of HIF1α signaling.

a, HIF1 α protein expression in PASMCs cultured in growth medium (GM), conditioned medium (CM), or 1:1 (v/v) mix of CM and GM (CM 1:1). Cells grown under 0.2% O₂ were used as positive controls. Short (20 min) and long (60 min) represent film exposure duration.

b, HIF1 α and HIF2 α protein levels in cells cultured in GM, CM, or 0.2% O₂.

c, *HIF1* α and *HIF2* α mRNA abundance in PASMCs cultured in GM. Fold change was calculated relative to HIF2 α . *n* = 6-9.

d, HIF1 α and PHD2 protein levels in PASMCs cultured in CM for 2-24 hours.

e, *HIF1* α mRNA expression in cells cultured in CM for 2 and 4 hours. Fold change was calculated relative to PASMCs grown in GM. n = 2.

f, mRNA expression of HIF1 α target genes in glucose metabolism in PASMCs when cultured in CM for various time points. Fold change was calculated relative to cells in GM. *n* = 6.

g, von-Hippel Lindau protein (pVHL) levels in cells cultured in CM for different times.

h, Representative immunoblots and quantitation of hydroxylated HIF1 α protein (HIF1 α -OH Pro-564) levels in GM- or CM-cultured PASMCs after addition of proteasomal inhibitor MG132 (20 μ M) for 1-4 hours. Fold change was calculated relative to GM-cultured PASMCs at 1 hour of MG132 incubation. *n* = 3.

i,**j** HIF1 α protein levels (**i**) and mRNA expression of its transcriptional targets (**j**) in GM, CM, and heat inactivation (HI) or proteinase K (PK) treated CM cultured PASMCs. Fold change in **j** was calculated relative to GM-cultured cells. *n* = 4 (**j**).

k,**I** HIF1 α protein levels (**k**) and mRNA expression of its transcriptional targets (**I**) in GM, CM, and fractionated CM (larger than 10 kDa fraction, >10 and less than 10 kDa fraction, < 10) cultured PASMCs. Fold change in **I** was calculated relative to GM-cultured cells. *n* = 4 (**I**).

m-o, HIF1 α and its target PDK1 protein levels in PASMCs treated with lactate or pyruvate (**m**), fumarate or succinate (**n**), aspartate or malate (**o**) as indicated doses.

Mann-Whitney U test (**c**), Student t test (**h**), or one-way ANOVA followed by Tukey's post-hoc test or Kruskal-Wallis test followed by Dunn's test (**f**, **j**, **I**) was applied when compared to HIF2 α in PASMCs (**c**), to GM-cultured PASMCs with time-matched MG132 treatment (**h**) or no treatment (**f**, **j**, **I**) or to CM-cultured PASMCs (**j**, **I**).

Extended Data Fig.3 BCKAs are the mediators of paracrine activation of HIF1 α signaling under aerobic conditions.

a-c, HIF1 α (**a**, **c**) and HIF2 α (**b**) proteins in PASMCs treated with 0.05-2 mM of sodium salts of KIV (Na-KIV), KMV (Na-KMV), butyrate (Na-But), KIC (Na-KIC), or acid form of KIC (KIC; DMSO as vehicle control) for 8 hours. Hypoxia (0.2% O₂) induced HIF2 α protein stabilization was included for comparison.

d, mRNA expression of three HIF1 α target genes in glucose metabolism in PASMCs stimulated with 0.05-2 mM of Na-KIV, Na-KMV, Na-KIC, KIC, and Na-But for 8 hours. Fold change was calculated relative to vehicle control (H₂O or DMSO) treated cells. *n* = 1.

e-g, HIF1 α (**e**) and HIF2 α (**f**) protein levels and the mRNA expression of HIF1 α target genes in glucose metabolism (**g**) in PASMCs stimulated with BCKAs (100 μ M Na-KIC, 50 μ M of each Na-KIV and Na-KMV) for different time points. Fold change in **g** was calculated relative to untreated control cells at 8-hour time point. *n* = 5 (**g**).

h,**i**, mRNA (**h**) and protein (**i**) expression of BCAT1 and BCAT2 in PASMCs transfected with siRNAs for control (siCtrl), *BCAT1* (siBCAT1), *BCAT2* (siBCAT2), or both (siBCAT1/2). Fold change in **h** was relative to siCtrl-transfected cells. n = 4 (**h**).

j,**k**, Protein levels of HIF1 α , PFKFB3, and PDK1 (**j**) and mRNA expression of *GLUT1* and *PFKFB3* (**k**) in PASMCs cultured in BCAA-free DMEM in the presence or absence of BCKAs for 8 hours. Fold change in **k** was calculated relative to untreated control cells. *n* = 3 (**k**).

I,**m**, HIF1 α , PFKFB3, and LDHA protein levels (I) and the mRNA expression of HIF1 α regulatory genes in glycolysis (**m**) of human colorectal adenocarcinoma Caco2 cells treated with BCKAs. Fold change in (**m**) was relative to vehicle control treated cells. *n* = 5 (**m**).

n, mRNA expression of *GLUT1*, *LDHA*, or *PFKFB3* in normal and cancerous cells after stimulation with different doses of BCKAs. Fold change was calculated relative to their own untreated control cells. Dotted line separates normal *vs.* malignant cell types. n = 4-5.

o, Phosphorylated BCKDH (p-BCKDH) protein levels in 10 different types of cells with BCKA treatment.

One-way ANOVA followed by Dunnett's post-hoc test (**g**, **h**, **m**, **n**) or Student's t test (**k**) was applied when compared to untreated control PASMCs (**g**), siCtrl-transfected PASMCs (**h**), BCAA-free DMEM-cultured control PASMCs (**k**), untreated Caco2 cells (**m**), or the corresponding untreated cells (**n**).

Extended Data Fig. 4 Effects of BCKAs on PHD2 and KGDH activity.

a, PASMCs were treated with BCKAs (100 μ M of KIC, 50 μ M of each KIV and KMV) or vehicle control for 8 hours followed by addition of proteasomal inhibitor MG132 (20 μ M) for 1-4 hours. Hydroxylated HIF1 α (HIF1 α -OH Pro-564) protein levels were measured and quantitated. Fold change was calculated relative to untreated cells with MG132 incubation for 1 hour. *n* = 3. **b**, Inhibition curve and IC₅₀ value of roxadustat for PHD2 hydroxylase activity. *n* = 4.

c, Protein-ligand interaction fingerprint (PLIF) prediction of 20 potential binding configurations of each BCKA with the PHD2 active site. α -KG and roxadustat, two known ligands of PHD2 enzyme, were included for comparison.

d, KGDH activity in PASMCs treated with BCKAs. n = 5.

Student's t test (**a**) or Kruskal-Wallis test followed by Dunn's post-hoc test (**d**) was applied when compared to untreated PASMCs at time-matched MG132 treatment (**a**) or untreated PASMCs (**d**).

Extended Data Fig. 5 The influence of BCKAs on mitochondrial respiration and its dependence on HIF1 α activity in PASMCs.

a,b, LC-MS measurements of intermediary metabolites aconitate (ACO), citrate (CIT), succinate (SUC), fumarate (FUM), and malate (MAL) of the TCA cycle (**a**), and of ATP and its derivatives (**b**) in PASMCs in the presence or absence of BCKAs. Fold change was calculated relative to control cells. n = 6.

c,d, PASMCs were transfected with human *HIF1a* siRNA (siHIF1a) or control siRNA (siCtrl) followed by treatment with BCKAs. LC-MS was used to measure the TCA cycle metabolites (**c**), and ATP and its metabolites (**d**). Fold change was calculated relative to siCtrl-transfected and untreated cells. n = 3.

Student's t test (\mathbf{a} , \mathbf{b}) or one-way ANOVA followed by Tukey's post-hoc test (\mathbf{c} , \mathbf{d}) was applied when compared to control PASMCs (\mathbf{a} , \mathbf{b}), or siCtrl-transfected and control or BCKA-treated cells (\mathbf{c} , \mathbf{d}).

Extended Data Fig. 6 The levels of synthetic phenotype marker proteins in PASMCs.

(a) Protein levels in PASMCs treated with BCKAs. Fold change was calculated relative to untreated control. n = 6.

(b-d) Protein levels in PASMCs transfected with control siRNA (siCtrl), *BCAT1* and *BCKDHA1* siRNA (siBCAT1+siBCKDHA1; **b**), or *BCAT2* and *BCKDK* siRNA (siBCAT2+siBCKDK; **c**), or *HIF1a* siRNA (siHIF1a; d) with or without BCKA treatment. Fold change was calculated relative to siCtrl-transfected and untreated control. n = 3 (**b**, **c**) and 8 (**d**).

(e,f) Representative immunoblots (e) and quantitation (f) of COL1A1 and COL4 protein levels in PASMCs cultured in 21% O₂ or 0.2% O₂. HIF1 α protein was included as a positive control in hypoxia. Fold change in f was relative to normoxic cultures of PASMCs. *n* = 6.

Student's t test (COL1A1 and VIM in **a**, COL4 in **f**), Mann-Whitney U test (COL4 in **a**, COL1A1 in **f**), or one-way ANOVA followed by Tukey's post-hoc test (**b-d**) was applied when compared to control PASMCs (**a**, **f**), or siCtrl-transfected and control or BCKA-treated cells (**b-d**).

Extended Data Fig. 7 The levels of key BCKA metabolic proteins in the lungs of PAH patients and rats.

a, Quantitation results of BCAT1, BCAT2, BCKDK, and p-BCKDH proteins in the lungs of IPAH patients. n = 8 individuals.

b-d, Quantitation results of BCAT1, BCAT2, BCKDK, and p-BCKDH proteins in the lungs of PAH rats treated with MCT (**b**), hypoxia (10% O_2 ; **c**), or Sugen5416+hypoxia (**d**). n = 3-4 rats.

Student's t test (**a-d**) or Mann-Whitney U test (BCAT1 in **a** and BCKDK in **d**) was applied when compared to control patients (**a**) or animals (**c-d**).

Extended Data Fig. 8 The expression of synthetic marker genes in IPAH-PASMCs with endogenous and exogenous manipulation of BCKA levels.

(a) mRNA expression of BCAT1 and BCKDHA1 in IPAH-PASMCs transfected with siRNAs for control (siCtrl) or *BCAT1* and *BCKDHA1* (siBCAT1+siBCKDHA1) followed by BCKAs or vehicle control treatment. n = 9 from 3 individuals.

(b) mRNA expression of BCAT2 and BCKDK in IPAH-PASMCs transfected with siCtrl or BCAT2 and BCKDK (siBCAT2+siBCKDK) followed by BCKAs or vehicle control treatment. n = 9 from 3 individuals.

(c) mRNA expression of synthetic marker genes in IPAH-PASMCs transfected and treated as described in panels **a** and **b**. n = 9-18 from 3 individuals.

Kruskal-Wallis test followed by Dunn's post-hoc test (**a-c**) or one-way ANOVA followed by Dunnett's (**b**) or Tukey's (**c**) post-hoc test was applied when compared to siCtrl-transfected control cells (**a-c**) or BCKA-treated cells (**c**).

Patient ID	Clinical diagnosis	Gender	Race	Ethnicity
Lung RNA sa	amples			
AH-007	FDL	М	White	Non-Hispanic
AH-009	FDL	М	White	Non-Hispanic
AH-012	FDL	М	White	Non-Hispanic
AH-013	FDL	F	White	Non-Hispanic
BA-033	FDL	М	White	Non-Hispanic
BA-040	FDL	М	Unknown	Hispanic or Latino
BA-046	FDL	F	Unknown	Hispanic or Latino
BA-055	FDL	М	White	Non-Hispanic
UC-010	FDL	F	White	Non-Hispanic
VA-005	FDL	М	White	Non-Hispanic
BA-017	IPAH	F	White	Non-Hispanic
CC-017	IPAH	М	White	Non-Hispanic
CC-030	IPAH	F	White	Non-Hispanic
ST-004	IPAH	F	White	Non-Hispanic
ST-010	IPAH	М	White	Non-Hispanic
ST-017	IPAH	М	White	Non-Hispanic
ST-019	IPAH	М	White	Hispanic or Latino
ST-042	IPAH	М	White	Non-Hispanic
UA-013	IPAH	М	Asian	Non-Hispanic
VA-015	IPAH	F	White	Non-Hispanic
Frozen lung	tissues			
AH-012	FDL	М	White	Non-Hispanic
AH-013	FDL	F	White	Non-Hispanic
AH-016	FDL	М	White	Non-Hispanic
BA-040	FDL	М	Unknown	Hispanic or Latino
BA-043	FDL	М	Unknown	Hispanic or Latino
BA-046	FDL	F	Unknown	Hispanic or Latino
BA-048	FDL	М	White	Non-Hispanic
BA-049	FDL	М	Unknown	Non-Hispanic

Supplementary Table 1 Clinical and demographic information on human specimen presented in this study

BA-055	FDL	Μ	White	Non-Hispanic	
BA-062	FDL	Μ	Asian	Unknown	
BA-017	IPAH	F	White	Non-Hispanic	
CC-030	IPAH	F	White	Non-Hispanic	
ST-028	IPAH	F	White	Hispanic or Latino	
ST-033	IPAH	F	White	Non-Hispanic	
ST-037	IPAH	F	Unknown	Hispanic or Latino	
ST-042	IPAH	М	White	Non-Hispanic	
ST-052	IPAH	М	Asian	Non-Hispanic	
UA-013	IPAH	М	Asian	Non-Hispanic	
VA-011	IPAH	F	White	Non-Hispanic	
VA-015	IPAH	F	White	Non-Hispanic	
Lung slides					
BA-049	FDL	М	Unknown	Non-Hispanic	
BA-062	FDL	М	Asian	Unknown	
BA-046	FDL	F	Unknown	Hispanic or Latino	
BA-046 PASMCs	FDL	F	Unknown	Hispanic or Latino	•
BA-046 PASMCs Patient ID	FDL Clinical diagnosis	F Gender	Unknown Race	Hispanic or Latino Age (Y)	•
BA-046 PASMCs Patient ID CC-013	FDL Clinical diagnosis IPAH	F Gender F	Unknown Race White	Hispanic or Latino Age (Y) 27	
BA-046 PASMCs Patient ID CC-013 ST-019	FDL Clinical diagnosis IPAH IPAH	F Gender F M	Unknown Race White White	Hispanic or Latino Age (Y) 27 25	-
BA-046 PASMCs Patient ID CC-013 ST-019 ST-026	FDL Clinical diagnosis IPAH IPAH IPAH	F Gender F M M	Unknown Race White White White	Hispanic or Latino Age (Y) 27 25 40	- •
BA-046 PASMCs Patient ID CC-013 ST-019 ST-026 UA-013	FDL Clinical diagnosis IPAH IPAH IPAH IPAH	F Gender F M M M	Unknown Race White White White Asian	Hispanic or Latino Age (Y) 27 25 40 18	-
BA-046 PASMCs Patient ID CC-013 ST-019 ST-026 UA-013 VA-011	FDL Clinical diagnosis IPAH IPAH IPAH IPAH IPAH	F Gender F M M M M F	Unknown Race White White White Asian White	Hispanic or Latino Age (Y) 27 25 40 18 32	

FDL: failed donor lung; IPAH: Idiopathic pulmonary arterial hypertension

Supplementary Table 2 Abbreviations and their corresponding full names used

Abbreviation	Full name
α-KG	α-ketoglutarate
ACTA2	α-smooth muscle actin
AoSMCs	aortic smooth muscle cells
BCAAs	branched chain amino acids
BCAT	branched chain amino acid transaminase
BCKAs	branched chain α-ketoacids
BCKDH	branched chain ketoacid dehydrogenase complex
BCKDK	branched chain ketoacid dehydrogenase kinase
CASMCs	coronary artery smooth muscle cells
COL1A1	collagen 1A1
COL4	collagen 4
ECAR	extracellular acidification rate
GLUT1	glucose transporter 1
HK2	hexokinase 2
HIF1α	hypoxia-inducible factor 1α
KGDH	α-KG dehydrogenase
KIC	α-ketoisocaproate
KIV	α-ketoisovalerate
KMV	α-keto-β-methylvalerate
L2HG	L-2-hydroxyglutarate
L2HGDH	L2HG dehydrogenase
LDHA	lactate dehydrogenase A
mPAP	mean pulmonary artery pressure
OCR	oxygen consumption rate
PAH	pulmonary arterial hypertension
PASMCs	pulmonary arterial smooth muscle cells
PDK1	pyruvate dehydrogenase kinase 1
PFKFB3	6-phosphofructo-2-kinase/fructose 2,6-biphosphatase 3
PHD2	prolyl hydroxylase domain-containing protein 2
PVR	pulmonary vascular resistance
ROS	reactive oxygen species
ТСА	tricarboxylic acid
VIM	vimentin
VSMCs	vascular smooth muscle cells