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Malaria transmission model 1

Malaria transmission is a complex process involving dynamics between host, parasite 2

and vector, with influence from the environment. While the dynamics of MGDrivE [1] 3

and MGDrivE 2 [2] focus on vector dynamics, several models are available that focus on 4

pathogen transmission in the host [3, 4]. In MGDrivE 3, we incorporate an adapted 5

version of the Imperial College London (ICL) malaria transmission model [4], as it 6

represents a suitable level of parsimony and has been fitted to extensive malaria data 7

sets throughout sub-Saharan Africa. The ICL malaria model contains several important 8

components: 9

1. Time and age-structured equations describing the movement of humans into 10

various disease states; 11

2. Equilibrium distribution based on baseline entomological innoculation rate (EIR) 12

and age structure of the population; and 13

3. Population-level immunity functions which modulate various infection 14

probabilities. 15

The state space is modeled as a set of partial differential equations (PDEs). The 16

infection states are: susceptible (S), treated symptomatic disease (T), untreated 17

symptomatic disease (D), asymptomatic infection that is detectable by rapid diagnostic 18

test (RDT) (A), sub-patent infection that is undetectable by RDT (U), and 19

post-treatment prophylaxis (P). The force of infection on humans (which depends on 20

the EIR) is denoted Λ, the probability that symptoms develop after an infectious 21

challenge is denoted Φ, and the fraction of clinical cases that receive effective treatment 22

is denoted fT . The set of human state PDEs is shown below, with a representing age 23

and t representing time. 24
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Here, di indicates the mean duration of state i. Additionally, the model includes four 25

forms of population-level immunity: 26

• Pre-erythrocytic immunity, IB , reduces the probability of infection if bitten by an 27

infectious mosquito; 28

• Acquired and maternal clinical immunity, ICA and ICM , represent the effects of 29

blood stage immunity in reducing the probability of developing clinical symptoms; 30

and 31

• Detection immunity, ID, represents the effect of blood stage immunity in reducing 32

the detectability of an infection and onward transmission to mosquitoes. 33

The PDEs describing immunity are below. Note that ε represents the EIR, ui limits the 34

rate at which immunity can be boosted at high exposure for immunity state i, and di 35

determines the duration of immunity for immunity state i. 36
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Each immunity function is transformed to a reduction in the appropriate infection 37

probability via a Hill function. 38

Instead of numerically solving the PDEs directly, we first discretize the model by age 39

category and biting heterogeneity. To discretize by age, we augment each infection state 40

by an age category. For example, if we had two age categories 0-10 years and 10-100 41

years, then we would have susceptible compartments S1 and S2, where S1 contains the 42

people in the 0-10 year category and S2 contains the people in the 10-100 year category. 43

This would apply for all infection states. In addition, each compartment contains a rate 44

at which people age and therefore move between age compartments. 45
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Then, each PDE becomes a discrete ODE representing an age compartment. For 46

example, 47

dSi

dt
= −ΛSi +

Pi

dP
+

Ui

dU
− ηiSi + ηi−1Si−1

gives the rate equation for the susceptible (S) state for age category i where ηi gives the 48

aging rate from Si −→ Si+1 and similarly ηi−1 gives the aging rate from Si−1 −→ Si. 49

For the youngest age group, the ηi−1Si−1 term would be left out, and for the oldest age 50

group, the ηiSi term would be left out. 51

One implementation note is that the model assumes a fixed latent period of 12 days 52

after an infectious challenge from a mosquito, after which either symptoms develop or 53

an asymptomatic infection proceeds. Because of this fixed delay, the equations are 54

technically formulated as “delay differential equations,” where the current state depends 55

on the previous state. 56

To initialize the distribution of disease and immunity states, the model takes as input 57

the baseline EIR, the age structure of the population, the proportion of treated cases, 58

and baseline entomological parameters. Some of the mosquito life cycle parameters will 59

vary in the presence of interventions, which will be described in the next section. 60

Finally, an important novel contribution of this work incorporates a model for 61

genotype-specific transmission probabilities. In the gene drive context, it is important 62

to understand how mosquitoes modified with a certain allele can affect disease 63

transmission. In the traditional context [5], force of infection on humans (λH) is 64

proportional to the EIR (ε) and the probability of successful infection upon biting (b). 65

In the ICL malaria model, the force of infection is expanded to include a term 66

corresponding to pre-erythrocytic immunity (IB): 67

λH ∝ εbIB

In our adapted model, we allow for varying transmission probabilities depending on the 68

genotype distribution of circulating mosquitoes in the model. For example, we may 69

consider a gene drive system in which the homozygous transgenic mosquito (denoted 70

“HH”) confers perfect infection blocking such that bHH = 0, and where wildtype 71

mosquitoes (denoted “WW”) have an infection probability of 0.55 (bWW = 0.55). Then, 72

to calculate the total infection probability for any time point, t, we take the weighted 73

average over the circulating proportion of infectious mosquitoes of each genotype (pHH 74

and pWW ) at time t, i.e.: 75

b(t) = pWW (t)bWW + pHH(t)bHH

More generally, for a genotype set G, we have the total infection probability as the 76

weighted average: 77

b(t) =
∑
g∈G

pg(t)bg

where pg(t) represents the population frequency of mosquitoes having genotype g at 78

time t, and bg represents the infection probability for genotype g. With all of the above 79

components in place, the epidemiology model is fully specified. 80

Epidemiological outcomes 81

In this modeling framework, it is important to specify the epidemiological outcomes of 82

interest. Generally, we are interested in clinical incidence of disease, which refers to the 83
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number of new symptomatic cases per day, and P. falciparum pathogen prevalence 84

(PfPr), which refers to the proportion of the population harboring the malaria 85

pathogen, whether symptomatic or asymptomatic. Because our model is age-structured, 86

we can consider these outcomes for different age categories. Malaria outcomes are often 87

more severe for younger individuals [6], so it makes sense to consider incidence and 88

prevalence for younger age groups (e.g., 0-2 years) in order to better understand how 89

gene drive interventions will mitigate these cases. Additionally, we can consider all-ages 90

prevalence and incidence to understand how the intervention will perform in the entire 91

population. 92

Mathematically, we define PfPr as the sum of all individuals in infectious disease states: 93

symptomatic and treated (T), symptomatic and untreated (D), asymptomatic patent 94

infection (A), and asymptomatic subpatent infection (U). Therefore, the all-ages (often 95

denoted by the subscript 0-99 to denote the entire lifespan in years) pathogen 96

prevalence at a given time point, t, is given by: 97

PfPr[0−99](t) =
∑
a∈A

(Aa(t) + Ua(t) +Da(t) + Ta(t))

where A is the set of all age compartments. Similarly, the 0-2 years PfPr is given 98

by: 99

PfPr[0−2](t) = A[0−2](t) + U[0−2](t) +D[0−2](t) + T[0−2](t)

As for clinical incidence, we first define some parameters: 100

• ϕ: the probability of acquiring clinical disease upon infection (proportional to 101

immunity levels via a Hill function); 102

• λH : the force of infection on humans (linearly proportional to the EIR, ε); and 103

• Y : the sum of non-clinical disease states, susceptible (S), asymptomatic patent 104

infection (A), and subpatent infection (U). 105

Then we can define the all-ages clinical incidence as: 106

CI[0−99](t) =
∑
a∈A

ϕa(t)λH,a(t)Ya(t)

and the 0-2 years clinical incidence as: 107

CI[0−2](t) = ϕ[0−2](t)λH,[0−2](t)Y[0−2](t)

Generally, we are interested in these outcomes with respect to their baseline or 108

pre-intervention values. In our analyses, we will calculate the reduction in prevalence 109

and clinical incidence as our outcomes of interest. As we will be running many 110

stochastic repetitions of the simulation for a given parameter set, the mean reduction 111

over the repetition set and simulation timespan will be used. Note that in this 112

formulation, each disease state is a proportion, with all disease states summing to 1. If 113

instead we wish to model a population of NH humans, then we would simply divide 114

each outcome by NH to obtain the proportional value. 115

Additional interventions 116

Here we show the full derivation of how indoor residual spraying (IRS), long-lasting 117

insecticide-treated nets (LLIN), and artemisisin-based combination therapy (ACT) 118
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interventions modify baseline mosquito life cycle parameters. This derivation is adapted 119

from previous work [4, 7]. 120

First, we assume that, at baseline, we have three proportions of active vector control 121

interventions, {χIRS , χLLIN , χACT }, which represent the proportion of humans in the 122

model covered by the given intervention. Then, χACT corresponds to the proportion of 123

symptomatically infected humans that are treated upon infection, fT . 124

Then, {χIRS , χLLIN} jointly modify various mosquito life cycle parameters. First, we 125

model the impact of LLINs and IRS on the length of the mosquito gonotrophic cycle 126

(i.e., the time taken for a mosquito to take a blood meal and lay eggs before seeking its 127

next blood meal). This time can be divided into τ1 (the time spent foraging) and τ2 128

(the time spent ovipositing and resting). Then, the length of the gonotrophic cycle in 129

the presence of vector control is given by: 130

1

δc
=

τ1(0, 0)

1− z
+ τ2

where τ1(0, 0) represents the time time spent foraging with LLIN and IRS coverages of 131

zero, and: 132

z = Q0cLLINθBrLLIN +Q0cIRSθIrIRS+

Q0cLLIN,IRS(θI − θB)rIRS+

Q0cLLIN,IRSθBrIRS,LLIN

Here, Q0 represents the human blood index, θB represents the proportion of bites taken 133

on a person in bed, θI represents the proportion of bites taken on a person outdoors, 134

rIRS represents the probability of repeating a feeding attempt in the presence of IRS, 135

rIRS,LLIN represents the probability of repeating a feeding attempt in the presence of 136

IRS and LLINs, and: 137

cLLIN = χLLIN − χLLINχIRS

cIRS = χIRS − χLLINχIRS

cLLIN,IRS = χLLINχIRS

c0 = 1− χLLIN − χIRS + χLLINχIRS

Then, with the modified gonotrophic cycle calculated (δC), we can model the impact of 138

LLINs and IRS on the adult mosquito death rate. We express the mortality rate in the 139

presence of vector control as: 140

µV,C = − log p(χIRS , χLLIN )

where p represents the probability of an adult mosquito surviving one day. Then we can 141

break down p into two components p1 (the probability of surviving the mosquito stage) 142

and p2 (the probability of surviving the blood meal stage): 143

p(χIRS , χLLIN ) = (p1(χIRS , χLLIN )p2)
δc

where: 144

p1(χIRS , χLLIN ) =
p1(0, 0)w

1− zp1(0, 0)

z is the same as above and w gives the probability that a mosquito successfully feeds 145

and survives a single feeding attempt: 146

w = 1−Q0 +Q0c0 +Q0cLLIN (1− θB + θBsLLIN )+

Q0cIRS(1− θI + θIsIRS)+

Q0cIRS,LLIN ((θB − θI)sIRS + 1− θI + θBsLLIN,IRS)

April 23, 2024 5/7



Here, sLLIN and sIRS represent the probability of feeding and surviving in the presence 147

of LLINs and IRS, respectively. The non-intervention survival probabilities are given 148

by: 149

p1(0, 0) = e−µV τ1(0,0)

p2 = e−µV τ2

Now, we have mathematical expressions for the gonotrophic cycle length and adult 150

mortality rate (δc and µV,c respectively). We can finally model the impact of LLINs and 151

IRS on the egg laying rate of the adult female mosquito. In the absence of vector 152

control, the egg laying rate is given by: 153

β =
εµV

e
µV
δ − 1

where ε is the number of viable eggs laid per oviposition cycle. Then, with the 154

previously defined parameters, the egg laying rate in the presence of vector control 155

interventions is simply: 156

βc =
εµV,c

e
µV,c
δc − 1

Finally, we can modify the human biting rate per mosquito in the presence of LLINs 157

and IRS. In the absence of interventions, the biting rate is given by: 158

aV = δQ0

The biting index under intervention is given by: 159

Qc = 1− 1−Q0

w

where w is the calculated probability from above. Then, using the modified gonotrophic 160

cycle length previously derived (δc), the modified biting rate is thus: 161

aV,c = δcQc

With these definitions in place, we have fully specified the impact of vector control
interventions on mosquito life cycle parameters.
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